JP4761461B2 - Nb-based oxide catalyst and method for producing unsaturated compound using the same - Google Patents

Nb-based oxide catalyst and method for producing unsaturated compound using the same Download PDF

Info

Publication number
JP4761461B2
JP4761461B2 JP2006158904A JP2006158904A JP4761461B2 JP 4761461 B2 JP4761461 B2 JP 4761461B2 JP 2006158904 A JP2006158904 A JP 2006158904A JP 2006158904 A JP2006158904 A JP 2006158904A JP 4761461 B2 JP4761461 B2 JP 4761461B2
Authority
JP
Japan
Prior art keywords
catalyst
oxide catalyst
reaction
reduced oxide
propane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006158904A
Other languages
Japanese (ja)
Other versions
JP2007326032A (en
Inventor
英範 日名子
守 渡辺
輝昌 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2006158904A priority Critical patent/JP4761461B2/en
Publication of JP2007326032A publication Critical patent/JP2007326032A/en
Application granted granted Critical
Publication of JP4761461B2 publication Critical patent/JP4761461B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

本発明は、プロパン又はイソブタンの気相接触アンモ酸化反応、あるいは気相接触酸化反応に用いる触媒、および該触媒を用いた不飽和ニトリル又は不飽和カルボン酸の製造方法に関する。   The present invention relates to a catalyst used in a gas phase catalytic ammoxidation reaction of propane or isobutane or a gas phase catalytic oxidation reaction, and a method for producing an unsaturated nitrile or an unsaturated carboxylic acid using the catalyst.

最近、プロピレン又はイソブチレンに代わって、プロパン又はイソブタンを原料とし、気相接触アンモ酸化反応や気相接触酸化反応によって不飽和ニトリルや不飽和カルボン酸を製造する技術が着目されており、多数の触媒が提案されている。   Recently, instead of propylene or isobutylene, propane or isobutane is used as a raw material, and technology for producing unsaturated nitriles and unsaturated carboxylic acids by gas phase catalytic ammoxidation reaction or gas phase catalytic oxidation reaction has attracted attention. Has been proposed.

それらの中でも特に注目されている触媒は、モリブデンを主成分とするMo−V−Te−Nb又はMo−V−Sb−Nbから構成される酸化物触媒であり、例えば特許文献1や特許文献2等に開示されている。これらが着目される理由は、不飽和ニトリルや不飽和カルボン酸の選択率が比較的高く、そのうえ反応が420〜450℃と低い温度で運転されているためである。こうした温度領域では熱に誘引されたプロパンの活性化はほとんど生じないため、比較的高い選択性を有すると考えられている。   Among them, a catalyst that is particularly attracting attention is an oxide catalyst composed of Mo—V—Te—Nb or Mo—V—Sb—Nb mainly composed of molybdenum. Etc. are disclosed. The reason for these attentions is that the selectivity of unsaturated nitriles and unsaturated carboxylic acids is relatively high, and the reaction is operated at a low temperature of 420 to 450 ° C. In such a temperature range, activation of propane induced by heat hardly occurs, and it is considered to have a relatively high selectivity.

一般に、気相接触アンモ酸化反応や気相接触酸化反応では、水が反応副生成物として生成する。モリブデンを含む酸化物触媒を用いた気相接触アンモ酸化反応や気相接触酸化反応においては、モリブデンは、気相接触アンモ酸化反応や気相接触酸化反応で発生した水と化合して蒸気圧を有するモリブデン酸Mo2(OH)2へと変化し、このモリブデン酸はガス気流に乗って飛散し、この結果、触媒中のモリブデン量は減少していく。(例えば、非特許文献1参照、特許文献3参照)。こうした理由から、モリブデンを含む複合酸化物触媒は触媒が劣化し、生産性の低下を引き起こすという問題があるうえ、飛散したモリブデンは反応器の冷却コイルや反応ラインに固着し、除熱の効率を低下させ、汚れや閉塞を引き起こすという問題がある。そのため劣化した触媒の活性化やモリブデンの追添を行ったり、反応器や反応ラインに固着したモリブデンを定期的に除去しなければならない、などという問題がある。 In general, water is generated as a reaction byproduct in the gas phase catalytic ammoxidation reaction or the gas phase catalytic oxidation reaction. In a gas phase ammoxidation reaction or gas phase catalytic oxidation reaction using an oxide catalyst containing molybdenum, molybdenum combines with water generated in the gas phase ammoxidation reaction or gas phase contact oxidation reaction to reduce the vapor pressure. The molybdic acid Mo 2 (OH) 2 contained in the catalyst is scattered, and the molybdic acid is scattered in the gas stream. As a result, the amount of molybdenum in the catalyst decreases. (For example, refer nonpatent literature 1 and patent literature 3). For these reasons, there is a problem that the composite oxide catalyst containing molybdenum deteriorates the catalyst and causes a decrease in productivity, and the scattered molybdenum adheres to the cooling coil and reaction line of the reactor to improve the efficiency of heat removal. There is a problem that it lowers and causes dirt and blockage. For this reason, there are problems such as activation of a deteriorated catalyst and addition of molybdenum, and periodic removal of molybdenum fixed to the reactor and reaction line.

一方、モリブデンを主成分としない触媒として、Sb−Nb/Ta−Vを含む触媒など(例えば、特許文献4参照)が、Nb−Bi−Vを含む触媒など(例えば、特許文献5参照)が、W−Cr−Biを含む触媒など(例えば、特許文献6参照)が、Bi−Vを含む触媒など(例えば、特許文献7参照)が開示されている。また、モリブデン含有量が低い触媒として、鉄を主成分とするFe−Sb−Cr−Moを含む触媒など(例えば、特許文献8参照)が、Fe−Sb−V−Moを含む触媒(例えば、特許文献9参照)、Nb−Sb−Crを含む触媒(例えば、特許文献10参照)、V−Sbを主活性相とする触媒(例えば、特許文献11等参照)などが開示されている。しかしながら、これらの触媒では、目的生成物である不飽和ニトリル又は不飽和カルボン酸の選択率や収率、活性が低い。また、500℃前後ないしはそれ以上の極めて高い反応温度を必要とするため、反応器の材質、製造コストなどの面で不利であるうえ、500℃以上の反応では熱に誘引されたラジカル反応によるプロパン、イソブタンの活性化メカニズムであるため、選択率、収率の向上の望める触媒にはなりにくい。さらに、アンチモンも揮発性があるといわれており(例えば、非特許文献2参照)、これを主成分としない触媒が望まれる。   On the other hand, as a catalyst not containing molybdenum as a main component, a catalyst containing Sb—Nb / Ta—V (see, for example, Patent Document 4) or a catalyst containing Nb—Bi—V (see, for example, Patent Document 5). Catalysts containing W-Cr-Bi (see, for example, Patent Document 6) and catalysts containing Bi-V (see, for example, Patent Document 7) are disclosed. In addition, as a catalyst having a low molybdenum content, a catalyst containing Fe—Sb—Cr—Mo containing iron as a main component (see, for example, Patent Document 8) includes a catalyst containing Fe—Sb—V—Mo (eg, Patent Document 9), a catalyst containing Nb—Sb—Cr (for example, see Patent Document 10), a catalyst having V-Sb as a main active phase (for example, see Patent Document 11), and the like are disclosed. However, these catalysts have low selectivity, yield and activity of the target product, unsaturated nitrile or unsaturated carboxylic acid. In addition, since a very high reaction temperature of about 500 ° C. or higher is required, it is disadvantageous in terms of the material of the reactor, production cost, etc. In addition, propane by a radical reaction induced by heat in a reaction of 500 ° C. or higher. Because of the activation mechanism of isobutane, it is difficult to become a catalyst that can improve selectivity and yield. Furthermore, it is said that antimony is also volatile (see, for example, Non-Patent Document 2), and a catalyst that does not have this as a main component is desired.

こうした理由から、プロパン又はイソブタンの気相接触アンモ酸化反応や気相接触酸化反応に用いられる触媒で、モリブデンを主成分とせずとも比較的低い反応温度で活性が高い触媒が切望されている。くわえて、目的生成物である不飽和ニトリル、不飽和カルボン酸の選択率などの反応成績が良好な触媒が切望されている。   For these reasons, a catalyst that is used for a gas phase catalytic ammoxidation reaction or a gas phase catalytic oxidation reaction of propane or isobutane and has a high activity at a relatively low reaction temperature without using molybdenum as a main component is desired. In addition, a catalyst having a good reaction result such as the selectivity of the target product, unsaturated nitrile and unsaturated carboxylic acid, is desired.

アンモ酸化反応において特に利用価値の高い副生物は青酸である。青酸はアルデヒド類とのストレッカー反応などに用いられ、そこで得られたシアンヒドリン類はメタクリル酸メチルやアミノ酸などに転化される。アンモ酸化の場合には不飽和ニトリルの選択率に加えて青酸選択率の高い触媒が望まれている。
特開平5−208136号公報 特開平9−157241号公報 特開2005−211844号公報 特開平11−246505号公報 特開2000−117103号公報 特開平10−87513号公報 特開昭63−295545号公報 特開2000−351760号 特開平11−246504号公報 特開平10−1465号公報 特開2005−254240号公報 ビュッテン(J.Buiten)、Oxidation of propylen by means of SnO2−MoO3 catalysts、「ジャーナル オブ キャタリシス(Journal of catalysis)」(オランダ)、エルセビア(Elsevier)、1968年、188−199頁 伊藤ら 資源・素材2000秋季大会2000年、67−68頁
A by-product with particularly high utility value in the ammoxidation reaction is hydrocyanic acid. Cyanic acid is used for Strecker reaction with aldehydes, and cyanohydrins obtained there are converted to methyl methacrylate or amino acids. In the case of ammoxidation, a catalyst having high selectivity to hydrocyanic acid in addition to the selectivity of unsaturated nitrile is desired.
JP-A-5-208136 Japanese Patent Laid-Open No. 9-157241 JP 2005-211184 A JP-A-11-246505 JP 2000-117103 A JP-A-10-87513 JP 63-295545 A JP 2000-351760 Japanese Patent Laid-Open No. 11-246504 Japanese Patent Laid-Open No. 10-1465 JP 2005-254240 A Butten (J. Buiten), Oxidation of propylen by means of SnO2-MoO3 catalysts, "Journal of catalysis" (Netherlands), Elsevier 88, p. Ito et al. Resources and Materials 2000 Fall Meeting 2000, pp. 67-68

本発明の目的は、プロパン又はイソブタンの気相接触アンモ酸化反応によって不飽和ニトリルと青酸を、あるいは気相接触酸化反応によって不飽和カルボン酸を製造する際に用いる触媒であって、飛散性の元素であるモリブデンを主成分とせずに、比較的低い反応温度で活性が高く、目的生成物である不飽和ニトリル、不飽和カルボン酸の選択率が高く、副生物として青酸選択率の高い触媒を提供することである。   The object of the present invention is a catalyst used for producing unsaturated nitrile and hydrocyanic acid by gas phase catalytic ammoxidation reaction of propane or isobutane, or unsaturated carboxylic acid by gas phase catalytic oxidation reaction, Provides a catalyst with high activity at a relatively low reaction temperature, high selectivity for unsaturated nitriles and unsaturated carboxylic acids as target products, and high selectivity to hydrocyanic acid as a by-product. It is to be.

かかる事情のもと、本発明者らは、プロパン又はイソブタンの気相接触アンモ酸化反応によって不飽和ニトリルを、あるいは気相接触酸化反応によって不飽和カルボン酸を製造する際に用いる触媒を鋭意検討した結果、全く新しい技術であるNbを主成分とするタングステンブロンズ構造を有する還元型酸化物触媒が、比較的低い反応温度で不飽和ニトリル又は不飽和カルボン酸の選択率が大きく、しかも活性が高いこと、また副次的な効果としてアンモ酸化の場合には青酸選択率の高いことを見出し、本発明を完成するに至った。   Under such circumstances, the present inventors have intensively studied a catalyst used for producing an unsaturated nitrile by a gas phase catalytic ammoxidation reaction of propane or isobutane or an unsaturated carboxylic acid by a gas phase catalytic oxidation reaction. As a result, a reduced oxide catalyst having a tungsten bronze structure mainly composed of Nb, which is a completely new technology, has a high selectivity for unsaturated nitriles or unsaturated carboxylic acids at a relatively low reaction temperature, and a high activity. In addition, as a secondary effect, in the case of ammoxidation, it was found that the selectivity of hydrocyanic acid was high, and the present invention was completed.

すなわち、本発明の第一の態様では、
[1] プロパン又はイソブタンの気相接触アンモ酸化反応によって不飽和ニトリル、あるいは気相接触酸化反応によって不飽和カルボン酸を製造する際に用いる酸化物触媒であって、
Nbを主成分とするタングステンブロンズ構造を有する還元型酸化物触媒、
[2] 前記還元型酸化物触媒が、下記式(I)で表される、
Nb1an1 (I)
(式中、
Xは、バナジウム、ビスマス、セリウム、モリブデン及びチタンからなる群から選択される少なくとも1種の元素を表し、
a及びn1は、Nb1原子あたりの原子比を表し、aは、0<a<0.8であり、n1は構成金属の酸化状態によって決まる原子比である。)
前項[1]に記載の還元型酸化物触媒、
[3] 前記還元型酸化物触媒が、下記式(II)で表される、
Nb1bBicdn2(II)
(式中、
Yは、セリウム、モリブデン及びチタンからなる群から選択される少なくとも1種の元素を表し、
b、c、d及びn2は、Nb1原子あたりの原子比を表し、b及びcは、各々0.01≦b<0.8、0.01≦c<0.8であり、dは、0≦d<0.8であり、n2は、構成金属の酸化状態によって決まる原子比である。)
前項[1]に記載の還元型酸化物触媒、
[4] 前記還元型酸化物触媒が、該還元型酸化物触媒とシリカの全重量に対し、10〜60重量%のシリカに担持されている、前項[1]ないし[3]のうち何れか一項に記載の還元型酸化物触媒、
を提供する。
That is, in the first aspect of the present invention,
[1] An oxide catalyst used for producing an unsaturated nitrile by a gas phase catalytic ammoxidation reaction of propane or isobutane, or an unsaturated carboxylic acid by a gas phase catalytic oxidation reaction,
A reduced oxide catalyst having a tungsten bronze structure mainly composed of Nb;
[2] The reduced oxide catalyst is represented by the following formula (I):
Nb 1 X a O n1 (I)
(Where
X represents at least one element selected from the group consisting of vanadium, bismuth, cerium, molybdenum and titanium,
a and n1 represent an atomic ratio per Nb1 atom, a is 0 <a <0.8, and n1 is an atomic ratio determined by the oxidation state of the constituent metals. )
The reduced oxide catalyst according to [1] above,
[3] The reduced oxide catalyst is represented by the following formula (II):
Nb 1 V b Bi c Y d O n2 (II)
(Where
Y represents at least one element selected from the group consisting of cerium, molybdenum and titanium,
b, c, d and n2 represent atomic ratios per Nb atom, b and c are 0.01 ≦ b <0.8 and 0.01 ≦ c <0.8, respectively, and d is 0 ≦ d <0.8, and n2 is an atomic ratio determined by the oxidation state of the constituent metals. )
The reduced oxide catalyst according to [1] above,
[4] Any one of [1] to [3] above, wherein the reduced oxide catalyst is supported on 10 to 60% by weight of silica based on the total weight of the reduced oxide catalyst and silica. The reduced oxide catalyst according to one item,
I will provide a.

また、本発明の第二の態様では、
[5] プロパン又はイソブタンの気相接触アンモ酸化反応によって不飽和ニトリルを製造する方法であって、
前項[1]ないし[4]のうち何れか一項に記載の還元型酸化物触媒と、前記プロパン又はイソブタンとを接触させる工程を含む不飽和ニトリルの製造方法、
[6] プロパン又はイソブタンの気相接触酸化反応によって不飽和カルボン酸を製造する方法であって、
前項[1]ないし[4]のうち何れか一項に記載の還元型酸化物触媒と、前記プロパン又はイソブタンとを接触させる工程を含む不飽和カルボン酸の製造方法、
を提供する。
In the second aspect of the present invention,
[5] A method for producing an unsaturated nitrile by a gas phase catalytic ammoxidation reaction of propane or isobutane,
A method for producing an unsaturated nitrile, comprising the step of bringing the reduced oxide catalyst according to any one of [1] to [4] above into contact with the propane or isobutane;
[6] A method for producing an unsaturated carboxylic acid by a gas phase catalytic oxidation reaction of propane or isobutane,
A method for producing an unsaturated carboxylic acid comprising a step of bringing the reduced oxide catalyst according to any one of [1] to [4] above into contact with the propane or isobutane;
I will provide a.

本発明に係る還元型酸化物触媒によれば、プロパン又はイソブタンから、比較的低い反応温度にて高活性で反応させることができ、さらに不飽和ニトリル又は不飽和カルボン酸を高い選択率で製造することができる。また、本発明に係る還元型酸化物触媒を用いた気相接触アンモ酸化反応では、有用な副生物である青酸の選択率が高い。さらに、本発明に係る還元型酸化物触媒は、飛散性の元素を主成分としないため、反応器の冷却コイルや反応ラインの汚れといった運転上の厄介な問題が生じない。   According to the reduced oxide catalyst of the present invention, it is possible to react from propane or isobutane with a high activity at a relatively low reaction temperature, and to produce an unsaturated nitrile or an unsaturated carboxylic acid with high selectivity. be able to. In addition, in the gas phase catalytic ammoxidation reaction using the reduced oxide catalyst according to the present invention, the selectivity for hydrocyanic acid, which is a useful byproduct, is high. Furthermore, since the reduced oxide catalyst according to the present invention does not contain a scattering element as a main component, troublesome operational problems such as contamination of the reactor cooling coil and reaction line do not occur.

以下の実施形態は、本発明を説明するための例示であり、本発明をこの実施形態にのみ限定する趣旨ではない。本発明は、その要旨を逸脱しない限り、さまざまな形態で実施することができる。   The following embodiment is an example for explaining the present invention, and is not intended to limit the present invention only to this embodiment. The present invention can be implemented in various forms without departing from the gist thereof.

本発明に係る酸化物触媒は、Nbを主成分とするタングステンブロンズ構造を有する還元型酸化物触媒である。ここで、用語「Nbを主成分とする」とは、酸化物触媒を構成する酸素以外の元素のうち、Nbが最も含有量が多い触媒を意味する。また、用語「タングステンブロンズ構造」とは、一般的には、AxWO3(A=H、Li、Na、K、Rb、Cs、Ca、Sr、Ba、In、Tl、Ge、Sn、Pb、Cu、Agなどのカチオン性元素、x≧0)としてよく知られ、酸素八面体(WO6)の単位ブロックが頂点、稜を共有して連なった構造である(例えば、結晶構造ハンドブック(共立出版)p832、第4版実験化学講座16無機化合物(丸善)p448、Lars Kihlborg, Renu Sharma,J. Microsc. Spectrosc. Electron.,7,387(1982)等参照)。その頂点、稜の共有の仕方によって極めて多様な構造をとり得るが、例として、ペロブスカイト型ブロンズ構造、五員環、六員環、七員環等のトンネル構造を有するブロンズ構造(トンネルには金属元素が存在していても空であってもよい)、インターグロースブロンズ構造などが知られている。なお、本明細書中では、用語「タングステンブロンズ構造」という表現を構造名称として用いているが、化合物骨格がタングステンおよび酸素から形成されることを意味するものではなく、タングステンブロンズ型構造を有するものとして知られているすべての構造を指す。 The oxide catalyst according to the present invention is a reduced oxide catalyst having a tungsten bronze structure mainly composed of Nb. Here, the term “having Nb as the main component” means a catalyst in which Nb has the highest content among elements other than oxygen constituting the oxide catalyst. The term “tungsten bronze structure” generally refers to A x WO 3 (A = H, Li, Na, K, Rb, Cs, Ca, Sr, Ba, In, Tl, Ge, Sn, Pb. Well known as a cationic element such as Cu, Ag, x ≧ 0), and is a structure in which unit blocks of oxygen octahedron (WO 6 ) are connected together sharing a vertex and a ridge (for example, crystal structure handbook (Kyoritsu) Publication) p832, 4th edition experimental chemistry course 16 inorganic compound (Maruzen) p448, Lars Kihlberg, Renu Sharma, J. Microsc. Spectrosc. Electron., 7, 387 (1982) etc.). Depending on how the vertices and edges are shared, a wide variety of structures can be used. For example, a bronze structure having a perovskite-type bronze structure, a five-membered ring, a six-membered ring, a seven-membered ring, etc. An intergrowth bronze structure or the like is known. In this specification, the term “tungsten bronze structure” is used as a structure name, but it does not mean that the compound skeleton is formed of tungsten and oxygen, but has a tungsten bronze structure. Refers to all structures known as.

本発明では、タングステンブロンズ構造を有する還元型酸化物の一つの特徴は、層状的な構造をとるため、CuKα線によって測定されたX線回折図において、層の面間隔(c軸を面ベクトルにとった場合(001))に相当する22.5±1°、好ましくは22.5±0.5°、より好ましくは22.5±0.2°、さらに好ましくは22.5±0.1°に強いピークを有することである。上記の面間隔に相当するピーク強度は、タングステンブロンズ構造を有する還元型酸化物に帰属されるピークのうちで1番強いか、2番目ないし3番目に強い。本発明に係る還元型酸化物触媒では、タングステンブロンズ構造を有する還元型酸化物に帰属されないピークが存在しても存在しなくてもよいし、帰属されないピークの大小は問わない。   In the present invention, one feature of the reduced oxide having a tungsten bronze structure is that it has a layered structure. Therefore, in the X-ray diffractogram measured by CuKα rays, the interplanar spacing of the layers (with the c axis as the plane vector). 22.5 ± 1 °, preferably 22.5 ± 0.5 °, more preferably 22.5 ± 0.2 °, still more preferably 22.5 ± 0.1 corresponding to (001)) It has a strong peak at °. The peak intensity corresponding to the above face spacing is the strongest among the peaks attributed to the reduced oxide having a tungsten bronze structure, or the second to the third strongest. In the reduced oxide catalyst according to the present invention, a peak not attributed to the reduced oxide having a tungsten bronze structure may or may not exist, and the size of the peak not attributed does not matter.

本発明により還元型タングステンブロンズ構造を示す一例として、CuKα線によって測定されたX線回折図において、22.5°±0.5°(P1ピーク)、28.4°±0.5°(P2ピーク)、36.7°±0.5°(P3ピーク)、46.3°±0.5°(P4ピーク)にピークを持つ。好ましくは22.5°±0.2°、28.4±0.2°、36.7°±0.2°、46.3°±0.2°である。より好ましくは22.5°±0.1°、28.4±0.1°、36.7°±0.1°、46.3°±0.1°、である。P1ピーク強度を1としたとき、P2ピーク強度は0.2〜1.5、P3ピーク強度は0.03〜0.6、P4ピーク強度は0.01〜0.5が好ましい。   As an example showing a reduced tungsten bronze structure according to the present invention, in an X-ray diffraction diagram measured by CuKα rays, 22.5 ° ± 0.5 ° (P1 peak), 28.4 ° ± 0.5 ° (P2 Peak), 36.7 ° ± 0.5 ° (P3 peak), 46.3 ° ± 0.5 ° (P4 peak). Preferably, they are 22.5 ° ± 0.2 °, 28.4 ± 0.2 °, 36.7 ° ± 0.2 °, and 46.3 ° ± 0.2 °. More preferably, they are 22.5 ° ± 0.1 °, 28.4 ± 0.1 °, 36.7 ° ± 0.1 °, 46.3 ° ± 0.1 °. When the P1 peak intensity is 1, the P2 peak intensity is preferably 0.2 to 1.5, the P3 peak intensity is 0.03 to 0.6, and the P4 peak intensity is preferably 0.01 to 0.5.

本発明に係る酸化物触媒の好ましい一の態様では、Nbを主成分とする酸化物触媒の組成が、下記式(I)で表される還元型酸化物触媒である:
Nb1an1 (I)
(式中、
Xは、バナジウム、ビスマス、セリウム、モリブデン及びチタンからなる群から選択される少なくとも1種の元素を表し、
a及びn1は、Nb1原子あたりの原子比を表し、aは、0<a<0.8であり、n1は構成金属の酸化状態によって決まる原子比である。)。
ここで、aは、好ましくは0.02≦a≦0.5であり、より好ましくは0.03≦a≦0.3であり、さらに好ましくは0.04≦a≦0.2である。
In one preferred embodiment of the oxide catalyst according to the present invention, the composition of the oxide catalyst mainly composed of Nb is a reduced oxide catalyst represented by the following formula (I):
Nb 1 X a O n1 (I)
(Where
X represents at least one element selected from the group consisting of vanadium, bismuth, cerium, molybdenum and titanium,
a and n1 represent an atomic ratio per Nb1 atom, a is 0 <a <0.8, and n1 is an atomic ratio determined by the oxidation state of the constituent metals. ).
Here, a is preferably 0.02 ≦ a ≦ 0.5, more preferably 0.03 ≦ a ≦ 0.3, and still more preferably 0.04 ≦ a ≦ 0.2.

また、本発明に係る酸化物触媒の好ましい別の態様では、Nbを主成分とする酸化物触媒の組成が、下記式(II)で表される還元型酸化物触媒である:
Nb1bBicdn2(II)
(式中、
Yは、セリウム、モリブデン及びチタンからなる群から選択される少なくとも1種の元素を表し、
b、c、d及びn2は、Nb1原子あたりの原子比を表し、b及びcは、各々0.01≦b<0.8、0.01≦c<0.8であり、dは、0≦d<0.8であり、n2は、構成金属の酸化状態によって決まる原子比である。)。
ここで、bは、好ましくは0.02≦b≦0.5であり、より好ましくは0.03≦b≦0.3であり、さらに好ましくは0.04≦b≦0.2である。cは、好ましくは0.02≦c≦0.5であり、より好ましくは0.03≦c≦0.3であり、さらに好ましくは0.04≦c≦0.2である。また、dは、好ましくは0≦d≦0.5であり、より好ましくは0≦d≦0.2であり、さらに好ましくは0<d≦0.1である。なお、上記式(I)及び(II)における、Nb1原子あたりの原子比a、b、cおよびdの値は、構成元素の仕込む組成比を示す。
In another preferred embodiment of the oxide catalyst according to the present invention, the composition of the oxide catalyst containing Nb as a main component is a reduced oxide catalyst represented by the following formula (II):
Nb 1 V b Bi c Y d O n2 (II)
(Where
Y represents at least one element selected from the group consisting of cerium, molybdenum and titanium,
b, c, d and n2 represent atomic ratios per Nb atom, b and c are 0.01 ≦ b <0.8 and 0.01 ≦ c <0.8, respectively, and d is 0 ≦ d <0.8, and n2 is an atomic ratio determined by the oxidation state of the constituent metals. ).
Here, b is preferably 0.02 ≦ b ≦ 0.5, more preferably 0.03 ≦ b ≦ 0.3, and further preferably 0.04 ≦ b ≦ 0.2. c is preferably 0.02 ≦ c ≦ 0.5, more preferably 0.03 ≦ c ≦ 0.3, and still more preferably 0.04 ≦ c ≦ 0.2. Further, d is preferably 0 ≦ d ≦ 0.5, more preferably 0 ≦ d ≦ 0.2, and further preferably 0 <d ≦ 0.1. In the above formulas (I) and (II), the values of the atomic ratios a, b, c, and d per Nb atom indicate the composition ratio of the constituent elements charged.

本発明に係る還元型酸化物触媒は、上記式(I)及び(II)にて表されるが、これらの中心組成の任意成分として、Cr、W、Al、Ta、Zr、Hf、Mn、Re、Fe、Ru、Co、Rh、Ni、Pd、Pt、Cu、Ag、Zn、B、In、Ge、Sn、P、Pb、Y、Ga、希土類元素及びアルカリ土類金属から選ばれる少なくとも1種の元素を添加してもよい。好ましくは、W、Al、Zr、Ge、Sn、Re、B、In、P、Y、希土類元素から選ばれる少なくとも1種の元素である。任意成分の添加量はNbのモル数に対して0.8未満であり、0.2未満が特に好ましい。   The reduced oxide catalyst according to the present invention is represented by the above formulas (I) and (II). As optional components of these central compositions, Cr, W, Al, Ta, Zr, Hf, Mn, At least one selected from Re, Fe, Ru, Co, Rh, Ni, Pd, Pt, Cu, Ag, Zn, B, In, Ge, Sn, P, Pb, Y, Ga, rare earth elements and alkaline earth metals Seed elements may be added. Preferably, it is at least one element selected from W, Al, Zr, Ge, Sn, Re, B, In, P, Y, and a rare earth element. The addition amount of the optional component is less than 0.8 with respect to the number of moles of Nb, and particularly preferably less than 0.2.

また、本発明に係る還元型酸化物触媒は、担体に担持させて用いることができる。担体としては公知の担体を用いることができるが好ましくは、例えばシリカである。シリカの重量は、好ましくは10〜60重量%であり、より好ましくは20重量%〜50重量%である。シリカの重量が10重量%未満では強度が小さく、60重量%以上では強度は大きいものの、活性が低くなるか、不飽和ニトリル、不飽和カルボン酸の選択率が低くなる。   Further, the reduced oxide catalyst according to the present invention can be used by being supported on a carrier. As the carrier, a known carrier can be used, and preferably, for example, silica. The weight of silica is preferably 10 to 60% by weight, more preferably 20% to 50% by weight. When the weight of silica is less than 10% by weight, the strength is small, and when the weight is 60% by weight or more, the strength is large.

なお、シリカの重量%は、式(I)又は式(II)の酸化物の重量をW1、シリカの重量をW2として、下記の式(III)式で定義される。W1は、仕込み組成と仕込み金属成分の酸化数に基づいて算出された重量である。W2は、仕込み組成に基づいて算出された重量である。
シリカの重量%=100×W2/(W1+W2) (III)
The weight percent of silica is defined by the following formula (III), where W1 is the weight of the oxide of formula (I) or formula (II), and W2 is the weight of silica. W1 is a weight calculated based on the charged composition and the oxidation number of the charged metal component. W2 is a weight calculated based on the charged composition.
Silica weight% = 100 × W2 / (W1 + W2) (III)

本発明のNbを主成分とするタングステンブロンズ構造を有する還元型酸化物触媒は、還元的に製造された酸化物触媒である。焼成法でも水熱合成法でもよい。空気をイナートガスで希釈した雰囲気、イナートガス雰囲気、空気とともに有機物、アンモニア、水素など還元ガスを共存させた雰囲気、還元ガス雰囲気などの空気よりも酸素濃度が希釈された雰囲気、または空気などの酸素含有ガスに還元ガスを共存させた雰囲気で焼成したり、水熱合成することで製造される酸化物触媒である。好ましくは触媒原料調合工程の原料に、有機物やアンモニウムイオンなどを用いて得られた触媒前駆体をイナートガス雰囲気で焼成して製造された酸化物触媒である。   The reduced oxide catalyst having a tungsten bronze structure containing Nb as the main component of the present invention is an oxide catalyst produced reductively. A firing method or a hydrothermal synthesis method may be used. An atmosphere in which air is diluted with an inert gas, an inert gas atmosphere, an atmosphere in which a reducing gas such as organic matter, ammonia or hydrogen coexists with air, an atmosphere in which the oxygen concentration is diluted than air, such as a reducing gas atmosphere, or an oxygen-containing gas such as air It is an oxide catalyst produced by firing in an atmosphere in which a reducing gas coexists with or by hydrothermal synthesis. Preferably, it is an oxide catalyst produced by calcining a catalyst precursor obtained using an organic substance, ammonium ion or the like as a raw material in the catalyst raw material preparation step in an inert gas atmosphere.

本発明に還元型酸化物触媒を製造するための原料は後記の化合物を用いることができる。ニオブの原料としては、ニオブ酸、酸化ニオブ、二塩基酸にニオブ酸を溶解させた水溶液などを用いることができる。シュウ酸水溶液にニオブ酸を溶解させた水溶液を好適に用いることができる。シュウ酸/ニオブのモル比は1〜10であり、好ましくは2〜6であり、より好ましくは2〜4である。得られた水溶液に過酸化水素を添加してもよい。過酸化水素/ニオブのモル比は好ましくは0.5〜10であり、より好ましくは2〜6である。   The following compounds can be used as raw materials for producing the reduced oxide catalyst in the present invention. As a raw material of niobium, niobic acid, niobium oxide, an aqueous solution in which niobic acid is dissolved in a dibasic acid, or the like can be used. An aqueous solution in which niobic acid is dissolved in an oxalic acid aqueous solution can be suitably used. The molar ratio of oxalic acid / niobium is 1 to 10, preferably 2 to 6, and more preferably 2 to 4. Hydrogen peroxide may be added to the obtained aqueous solution. The molar ratio of hydrogen peroxide / niobium is preferably 0.5 to 10, more preferably 2 to 6.

バナジウム原料としては、メタバナジン酸アンモニウム、酸化バナジウム(V)、バナジウムのオキシ塩化物、バナジウムのアルコキシド等を用いることができ、好ましくはメタバナジン酸アンモニウム、酸化バナジウム(V)である。   As the vanadium raw material, ammonium metavanadate, vanadium oxide (V), vanadium oxychloride, vanadium alkoxide, and the like can be used, and preferably ammonium metavanadate and vanadium oxide (V).

ビスマス原料としては、硝酸ビスマス・五水和物、酸化ビスマス、水酸化ビスマス、炭酸酸化ビスマス、酢酸ビスマス、酢酸酸化ビスマス等を用いることができ、好ましくは硝酸ビスマスである。   As a bismuth raw material, bismuth nitrate pentahydrate, bismuth oxide, bismuth hydroxide, bismuth carbonate, bismuth acetate, bismuth acetate, etc. can be used, and bismuth nitrate is preferred.

なお、担体としてシリカを用いる場合は原料としてシリカゾルが好適に用いられる。   In addition, when using silica as a support | carrier, a silica sol is used suitably as a raw material.

本発明に係る酸化物触媒の製造方法を、下記の原料調合、乾燥および焼成の3つの工程を経て製造する場合を用いて説明する。
<原料調合工程>
ニオブ酸をシュウ酸水溶液に溶解してニオブ原料液を調製する。このときニオブ原料液に過酸化水素水を添加してもよい。硝酸ビスマスを硝酸水溶液に溶解させてビスマス原料液を調製する。メタバナジン酸アンモニウムを水に溶解させてバナジウム原料液を調製する。ニオブ原料液にバナジウム原料液を添加して、ついでビスマス原料液を添加し、触媒原料液を調製する。原料調合工程に用いる触媒原料には、この例のようにシュウ酸などの有機物やアンモニウムイオンを含むことが好ましい。
シリカ担持触媒を製造する場合には、上記調合順序のいずれかのステップにおいてシリカゾルを添加して触媒原料液を得ることができる。
その他の成分を含む触媒を製造する場合には、上記調合順序のいずれかのステップにおいて任意成分を含む原料を添加して触媒原料液を得ることができる。
The manufacturing method of the oxide catalyst according to the present invention will be described using the case of manufacturing through the following three steps of raw material preparation, drying and firing.
<Raw material preparation process>
Niobic acid is dissolved in an oxalic acid aqueous solution to prepare a niobium raw material liquid. At this time, hydrogen peroxide water may be added to the niobium raw material liquid. Bismuth nitrate is dissolved in an aqueous nitric acid solution to prepare a bismuth raw material liquid. A vanadium raw material liquid is prepared by dissolving ammonium metavanadate in water. A vanadium raw material liquid is added to the niobium raw material liquid, and then a bismuth raw material liquid is added to prepare a catalyst raw material liquid. The catalyst raw material used in the raw material preparation step preferably contains an organic substance such as oxalic acid or ammonium ions as in this example.
In the case of producing a silica-supported catalyst, the catalyst raw material liquid can be obtained by adding silica sol in any step of the above-mentioned preparation sequence.
In the case of producing a catalyst containing other components, a catalyst raw material liquid can be obtained by adding a raw material containing an optional component in any step of the above blending sequence.

<乾燥工程>
原料調合工程で得られた触媒原料液を噴霧乾燥法または蒸発乾固法によって乾燥させ、触媒前駆体を得ることができる。噴霧乾燥法における噴霧化は、遠心方式、二流体ノズル方式または高圧ノズル方式を採用することができる。乾燥熱源は、スチーム、電気ヒーターなどによって加熱された空気を用いることができる。このとき熱風の乾燥機入口温度は150〜300℃が好ましい。噴霧乾燥は簡便には100℃〜300℃に加熱された鉄板上へ触媒原料液を噴霧することによって行うこともできる。
<Drying process>
The catalyst precursor liquid obtained in the raw material preparation step can be dried by spray drying or evaporation to dryness to obtain a catalyst precursor. The atomization in the spray drying method can employ a centrifugal method, a two-fluid nozzle method, or a high-pressure nozzle method. As the drying heat source, air heated by steam, an electric heater or the like can be used. At this time, the dryer inlet temperature of hot air is preferably 150 to 300 ° C. Spray drying can also be performed simply by spraying the catalyst raw material liquid onto an iron plate heated to 100 ° C to 300 ° C.

<焼成工程>
乾燥工程で得られた触媒前駆体を焼成することによって酸化物触媒を得ることができる。焼成は回転炉、トンネル炉、管状炉、流動焼成炉等を用いる。焼成雰囲気は、空気をイナートガスで希釈した雰囲気、イナートガス雰囲気、空気とともに有機物、アンモニアなど還元ガスを共存させた雰囲気、還元雰囲気などの空気よりも酸素濃度が希釈された雰囲気、または空気などの酸素含有ガスに還元ガスを共存させた雰囲気である。実質的に酸素を含まない窒素等の不活性ガスを流通させながら行うことがより好ましい。本発明に係る酸化物触媒は、各元素の最高酸化数よりも還元されていることが好ましく、その方法として触媒原料に有機物やアンモニウム塩を含む原料を用いて、不活性雰囲気で焼成することによってこのような酸化物触媒を得ることができる。焼成温度は500〜900℃、好ましくは550〜670℃で実施することが好ましい。焼成時間は0.5〜5時間、好ましくは1〜3時間である。不活性ガス中の酸素濃度は、ガスクロマトグラフィー又は微量酸素分析計で測定して1000ppm以下であり、好ましくは100ppm以下であり、より好ましくは10ppm以下である。焼成は反復することができる。この焼成の前に大気雰囲気下または大気流通下で200℃〜420℃であり、好ましくは250℃〜350℃で10分〜5時間前焼成することができる。また、焼成の後に大気雰囲気下で200℃〜400℃、5分〜5時間、後焼成することもできる。
<Baking process>
An oxide catalyst can be obtained by calcining the catalyst precursor obtained in the drying step. For the firing, a rotary furnace, a tunnel furnace, a tubular furnace, a fluidized firing furnace or the like is used. The firing atmosphere is an atmosphere in which air is diluted with an inert gas, an inert gas atmosphere, an atmosphere in which a reducing gas such as organic matter or ammonia coexists with air, an atmosphere in which the oxygen concentration is diluted than air, such as a reducing atmosphere, or an oxygen-containing atmosphere such as air It is an atmosphere in which reducing gas coexists with gas. More preferably, it is carried out while circulating an inert gas such as nitrogen that does not substantially contain oxygen. The oxide catalyst according to the present invention is preferably reduced more than the maximum oxidation number of each element, and as a method thereof, a raw material containing an organic substance or an ammonium salt is used as a catalyst raw material, and is fired in an inert atmosphere. Such an oxide catalyst can be obtained. The baking temperature is 500 to 900 ° C, preferably 550 to 670 ° C. The firing time is 0.5 to 5 hours, preferably 1 to 3 hours. The oxygen concentration in the inert gas is 1000 ppm or less, preferably 100 ppm or less, more preferably 10 ppm or less as measured by gas chromatography or a trace oxygen analyzer. Firing can be repeated. Prior to this firing, pre-baking can be performed at 200 ° C. to 420 ° C., preferably at 250 ° C. to 350 ° C. for 10 minutes to 5 hours in an air atmosphere or under air circulation. Further, after firing, post-baking can be performed in an air atmosphere at 200 ° C. to 400 ° C. for 5 minutes to 5 hours.

このようにして製造された触媒は、プロパン又はイソブタンを気相接触アンモ酸化させて不飽和ニトリルを、あるいはプロパン又はイソブタンを気相接触酸化させて不飽和カルボン酸を製造する際の触媒として用いることができる。   The catalyst thus produced should be used as a catalyst for the production of unsaturated nitriles by gas phase catalytic ammoxidation of propane or isobutane, or by the gas phase catalytic oxidation of propane or isobutane. Can do.

本発明における気相接触アンモ酸化反応又は気相接触酸化反応に使用されるプロパン又はイソブタンとアンモニアの供給原料は、必ずしも高純度である必要はなく、工業グレードのガスを使用することができる。反応系に供給する酸素源として空気、酸素を富化した空気、又は純酸素を用いることができる。さらに、希釈ガスとしてヘリウム、アルゴン、炭酸ガス、水蒸気、窒素などを供給してもよい。   The feedstock of propane or isobutane and ammonia used for the gas phase catalytic ammoxidation reaction or the gas phase catalytic oxidation reaction in the present invention does not necessarily have to be highly pure, and an industrial grade gas can be used. As the oxygen source supplied to the reaction system, air, air enriched with oxygen, or pure oxygen can be used. Furthermore, helium, argon, carbon dioxide gas, water vapor, nitrogen, or the like may be supplied as a dilution gas.

気相接触アンモ酸化の場合、反応系に供給するアンモニアのプロパン又はイソブタンに対するモル比は0.1〜1.5であり、好ましくは0.2〜1.2である。反応に供給される分子状酸素のプロパン又はイソブタンに対するモル比は、0.2〜6であり、好ましくは0.4〜4である。   In the case of gas phase catalytic ammoxidation, the molar ratio of ammonia supplied to the reaction system to propane or isobutane is 0.1 to 1.5, preferably 0.2 to 1.2. The molar ratio of molecular oxygen supplied to the reaction to propane or isobutane is 0.2 to 6, preferably 0.4 to 4.

気相接触酸化の場合、反応系に供給される分子状酸素のプロパン又はイソブタンに対するモル比は、0.1〜10であり、好ましくは0.1〜5である。反応系に水蒸気の添加が好ましいが、反応に供給され水蒸気のプロパン又はイソブタンに対するモル比は、0.1〜70であり、好ましくは0.5〜40である。   In the case of gas phase catalytic oxidation, the molar ratio of molecular oxygen supplied to the reaction system to propane or isobutane is 0.1 to 10, preferably 0.1 to 5. Although addition of water vapor to the reaction system is preferred, the molar ratio of water vapor supplied to the reaction to propane or isobutane is 0.1 to 70, preferably 0.5 to 40.

反応圧力は、絶対圧で0.01〜1MPaであり、好ましくは0.1〜0.3MPaである。反応温度は350℃〜600℃であり、好ましくは380℃〜490℃であり、より好ましくは400〜470℃である。接触時間は0.05〜30(g・s/ml)であり、好ましくは0.1〜10(g・s/ml)である。気相接触アンモ酸化反応又は気相接触酸化反応は、固定床、流動床、移動床など従来の方式を採用できるが流動床が好ましい。反応は単流方式でもリサイクル方式でもよい。   The reaction pressure is 0.01 to 1 MPa in absolute pressure, and preferably 0.1 to 0.3 MPa. The reaction temperature is 350 ° C. to 600 ° C., preferably 380 ° C. to 490 ° C., more preferably 400 to 470 ° C. The contact time is 0.05 to 30 (g · s / ml), preferably 0.1 to 10 (g · s / ml). The gas phase catalytic ammoxidation reaction or the gas phase catalytic oxidation reaction may employ a conventional method such as a fixed bed, a fluidized bed, or a moving bed, but a fluidized bed is preferred. The reaction may be a single flow method or a recycle method.

以下に示す本発明の実施例及び比較例を挙げて本発明をさらに詳細に説明するが、これらは例示的なものであり、本発明は以下の具体例に制限されるものではない。当業者は、以下に示す実施例に様々な変更を加えて本発明を実施することができ、かかる変更は本願特許請求の範囲に包含される   The present invention will be described in more detail with reference to the following examples and comparative examples of the present invention, but these are illustrative and the present invention is not limited to the following specific examples. Those skilled in the art can implement the present invention by making various modifications to the embodiments shown below, and such modifications are included in the scope of the claims of the present application.

以下に、本発明をプロパンのアンモ酸化反応、プロパンの酸化反応の実施例で説明する。各例において、プロパン転化率、アクリロニトリル選択率およびアクリル酸選択率は、それぞれ次の定義に従う。
プロパン転化率(%)=(反応したプロパンのモル数)/(供給したプロパンのモル数)×100
アクリロニトリル選択率(%)=(生成したアクリロニトリルのモル数)/(反応したプロパンのモル数)×100
青酸選択率(%)=((生成した青酸のモル数)/3)/(反応したプロパンのモル数)×100
接触時間(s・g/ml)=W/F×60×273/(273+T)×((P+0.101)/0.101))
ここで、Wは触媒重量(g)、Fはガス流量(ml/s)、Tは反応温度(℃)、Pはゲージ圧力(MPa)
活性((s・g/ml)-1)=−Ln(1−(転化率/100))/t
ここで、tは接触時間(s)である。
In the following, the present invention will be described with reference to examples of propane ammoxidation reaction and propane oxidation reaction. In each example, propane conversion, acrylonitrile selectivity, and acrylic acid selectivity follow the following definitions, respectively.
Propane conversion (%) = (moles of propane reacted) / (moles of propane fed) × 100
Acrylonitrile selectivity (%) = (number of moles of acrylonitrile produced) / (number of moles of reacted propane) × 100
Cyanic acid selectivity (%) = ((moles of cyanide produced) / 3) / (moles of reacted propane) × 100
Contact time (s · g / ml) = W / F × 60 × 273 / (273 + T) × ((P + 0.101) /0.101))
Here, W is the catalyst weight (g), F is the gas flow rate (ml / s), T is the reaction temperature (° C.), P is the gauge pressure (MPa)
Activity ((s · g / ml) −1 ) = − Ln (1- (conversion / 100)) / t
Here, t is the contact time (s).

(実施例1)
<触媒調製>
組成式がNb10.12Bi0.12nで示される触媒を次のようにして調製した。
水2350gにNb25換算で76重量%を含有するニオブ酸200g、シュウ酸二水和物[H224・2H2O]389.5gを加え、攪拌下、60℃にて加熱して溶解させた後、30℃にて冷却してニオブ原料液を得た。
硝酸ビスマス・五水和物[Bi(NO33・5H2O]66.6gを10重量%硝酸水溶液200gに溶解させてビスマス原料液を得た。
メタバナジン酸アンモニウム[NH4VO3]16.1gを5重量%過酸化水素水211gに溶解させてバナジウム原料液を得た。
ニオブ原料液にバナジウム原料液を添加し、ついでビスマス原料液を添加して触媒原料液を得た。
得られた触媒原料液を、遠心式噴霧乾燥器を用い、入口温度230℃と出口温度120℃の条件で乾燥して微小球状の触媒前駆体を得た。得られた触媒前駆体10gを、250℃で、2時間空気中で前焼成したのち、石英容器に充填し、350Ncc/min.の窒素ガス流通下、600℃で2時間焼成して酸化物触媒を得た。
Example 1
<Catalyst preparation>
Composition formula was prepared a catalyst represented by Nb 1 V 0.12 Bi 0.12 O n as follows.
To 2350 g of water, 200 g of niobic acid containing 76% by weight in terms of Nb 2 O 5 and 389.5 g of oxalic acid dihydrate [H 2 C 2 O 4 .2H 2 O] were added, and the mixture was stirred at 60 ° C. After heating and dissolving, the mixture was cooled at 30 ° C. to obtain a niobium raw material liquid.
Bismuth nitrate pentahydrate [Bi (NO 3 ) 3 .5H 2 O] (66.6 g) was dissolved in 200 g of a 10 wt% nitric acid aqueous solution to obtain a bismuth raw material liquid.
16.1 g of ammonium metavanadate [NH 4 VO 3 ] was dissolved in 211 g of 5 wt% hydrogen peroxide solution to obtain a vanadium raw material liquid.
The vanadium raw material liquid was added to the niobium raw material liquid, and then the bismuth raw material liquid was added to obtain a catalyst raw material liquid.
The obtained catalyst raw material liquid was dried using a centrifugal spray dryer under conditions of an inlet temperature of 230 ° C. and an outlet temperature of 120 ° C. to obtain a microspherical catalyst precursor. 10 g of the obtained catalyst precursor was pre-baked in air at 250 ° C. for 2 hours, and then filled in a quartz container, and 350 Ncc / min. Was then calcined at 600 ° C. for 2 hours under a nitrogen gas flow to obtain an oxide catalyst.

<X線回折測定>
マックサイエンス(株)製MXP−18型X線回折装置を用いてX線回折の測定を行った。試料の調製方法とX線回折の条件は以下の通りである。
(試料の調製)
酸化物触媒約0.5gをメノウ乳鉢にとり、メノウ乳棒を用いて2分間手粉砕した後に分級し、粒子径53μm以下の触媒粉末を得た。得られた触媒粉末を、XRD測定用の試料台の表面にある窪み(長さ20mm、幅16mmの長方形状、深さ0.2mm)に乗せ、平板状のステンレス製スパチュラを用いて押しつけて、表面を平らにした。
(測定条件)X線回折図は以下の条件で得た。
X線源:CuKα1+CuKα2、検出器:シンチレーションカウンター、分光結晶:グラファイト、管電圧:40kV、管電流:190mA、発散スリット:1°、散乱スリット:1°、受光スリット:0.3mm、スキャン速度:1°/分、サンプリング幅:0.02°、スキャン法:2θ/θ法。
X線回折図には、22.5°、28.4°、36.7°、46.3°の位置にピークを持っていた。回折ピークをアサインメントした結果、Inorganic Crystal Database(ICSD)に収録されている番号1840(K.Kato, S.Tamura., Acta Cryst. B,31,673(1975))の構造と同型な構造を含む化合物であり、タングステンブロンズ構造を有する還元型酸化物であった。
<X-ray diffraction measurement>
X-ray diffraction was measured using an MXP-18 type X-ray diffractometer manufactured by Mac Science. The sample preparation method and X-ray diffraction conditions are as follows.
(Sample preparation)
About 0.5 g of the oxide catalyst was placed in an agate mortar , pulverized by hand for 2 minutes using an agate pestle, and classified to obtain a catalyst powder having a particle size of 53 μm or less. The obtained catalyst powder was placed in a depression (length 20 mm, width 16 mm rectangular, depth 0.2 mm) on the surface of the XRD measurement sample stage, and pressed using a flat stainless steel spatula, The surface was flattened.
(Measurement conditions) The X-ray diffraction pattern was obtained under the following conditions.
X-ray source: CuKα1 + CuKα2, detector: scintillation counter, spectral crystal: graphite, tube voltage: 40 kV, tube current: 190 mA, divergence slit: 1 °, scattering slit: 1 °, light receiving slit: 0.3 mm, scan speed: 1 ° / min, sampling width: 0.02 °, scan method: 2θ / θ method.
The X-ray diffraction pattern had peaks at 22.5 °, 28.4 °, 36.7 °, and 46.3 °. As a result of assigning the diffraction peaks, the structure of the same type as that of No. 1840 (K. Kato, S. Tamura., Acta Cryst. B, 31, 673 (1975)) recorded in Inorganic Crystal Database (ICSD) is obtained. And a reduced oxide having a tungsten bronze structure.

<プロパンのアンモ酸化反応試験>
触媒W=0.35gを内径4mmの固定床型反応管に充填し、反応温度T=450℃(外温)、プロパン:アンモニア:酸素:ヘリウム=1:0.7:1.7:5.3のモル比の混合ガスを流量F=45(ml/min)で流した。このとき圧力Pはゲージ圧で0MPaであった。接触時間は0.18(=W/F×60×273/(273+T)×((P+0.101)/0.101))(g・s/ml)である。反応ガスの分析はオンラインガスクロマトグラフィーで行った。得られた結果を表1に示す。
<Propane Ammoxidation Test>
Catalyst W = 0.35 g is packed into a fixed bed type reaction tube having an inner diameter of 4 mm, reaction temperature T = 450 ° C. (external temperature), propane: ammonia: oxygen: helium = 1: 0.7: 1.7: 5. A mixed gas having a molar ratio of 3 was allowed to flow at a flow rate F = 45 (ml / min). At this time, the pressure P was 0 MPa as a gauge pressure. The contact time is 0.18 (= W / F × 60 × 273 / (273 + T) × ((P + 0.101) /0.101)) (g · s / ml). Analysis of the reaction gas was performed by on-line gas chromatography. The obtained results are shown in Table 1.

(実施例2)
<触媒調製>
組成式がNb10.12Bi0.12n/SiO2(10重量%)で示される触媒を次のようにして調製した。
シリカ含有量30重量%のシリカゾル73gを触媒原料液に添加した以外は実施例1の触媒調製を反復して、触媒を調製した。
<X線回折測定>
22.5°、28.4°、36.7°、46.3°の位置にピークを持つタングステンブロンズ構造を有する還元型酸化物であった。
<プロパンのアンモ酸化反応試験>
得られた触媒について実施例1と同じ条件下にて行った。得られた結果を表1に示す。
(Example 2)
<Catalyst preparation>
A catalyst having a composition formula of Nb 1 V 0.12 Bi 0.12 O n / SiO 2 (10 wt%) was prepared as follows.
A catalyst was prepared by repeating the catalyst preparation of Example 1 except that 73 g of silica sol having a silica content of 30% by weight was added to the catalyst raw material liquid.
<X-ray diffraction measurement>
It was a reduced oxide having a tungsten bronze structure having peaks at 22.5 °, 28.4 °, 36.7 °, and 46.3 °.
<Propane Ammoxidation Test>
The obtained catalyst was subjected to the same conditions as in Example 1. The obtained results are shown in Table 1.

(実施例3)
<触媒調製>
組成式がNb10.12Bi0.12Ce0.02nで示される触媒を次のようにして調製した。
硝酸セリウム・六水和物[Ce(NO33・6H2O]10gをビスマス原料液に添加した以外は実施例1の触媒調製を反復して、触媒を調製した。
<X線回折測定>
22.5°、28.4°、36.7°、46.3°の位置にピークを持つタングステンブロンズ構造を有する還元型酸化物であった。
<プロパンのアンモ酸化反応試験>
得られた触媒について実施例1と同じ条件下にて行った。得られた結果を表1に示す。
(Example 3)
<Catalyst preparation>
Composition formula was prepared a catalyst represented by Nb 1 V 0.12 Bi 0.12 Ce 0.02 O n as follows.
A catalyst was prepared by repeating the catalyst preparation of Example 1 except that 10 g of cerium nitrate hexahydrate [Ce (NO 3 ) 3 .6H 2 O] was added to the bismuth raw material liquid.
<X-ray diffraction measurement>
It was a reduced oxide having a tungsten bronze structure having peaks at 22.5 °, 28.4 °, 36.7 °, and 46.3 °.
<Propane Ammoxidation Test>
The obtained catalyst was subjected to the same conditions as in Example 1. The obtained results are shown in Table 1.

(実施例4)
<触媒調製>
組成式がNb10.12Bi0.12Al0.01nで示される触媒を次のようにして調製した。
酸化アルミニウム[Al23]0.58gを触媒原料液に添加した以外は実施例1の触媒調製を反復して、触媒を調製した。
<X線回折測定>
22.5°、28.4°、36.7°、46.3°の位置にピークを持つタングステンブロンズ構造を有する還元型酸化物であった。
<プロパンのアンモ酸化反応試験>
得られた触媒について実施例1と同じ条件下にて行った。得られた結果を表1に示す。
Example 4
<Catalyst preparation>
Composition formula was prepared a catalyst represented by Nb 1 V 0.12 Bi 0.12 Al 0.01 O n as follows.
A catalyst was prepared by repeating the catalyst preparation of Example 1 except that 0.58 g of aluminum oxide [Al 2 O 3 ] was added to the catalyst raw material liquid.
<X-ray diffraction measurement>
It was a reduced oxide having a tungsten bronze structure having peaks at 22.5 °, 28.4 °, 36.7 °, and 46.3 °.
<Propane Ammoxidation Test>
The obtained catalyst was subjected to the same conditions as in Example 1. The obtained results are shown in Table 1.

(実施例5)
<触媒調製>
組成式がNb10.12Bi0.12Mo0.01nで示される触媒を次のようにして調製した。
ヘプタモリブデン酸アンモニウム[(NH46Mo724・4H2O]2.0gをバナジウム原料液に添加した以外は実施例1の触媒調製を反復して、触媒を調製した。
<X線回折測定>
22.5°、28.4°、36.7°、46.3°の位置にピークを持つタングステンブロンズ構造を有する還元型酸化物であった。
<プロパンのアンモ酸化反応試験>
得られた触媒について実施例1と同じ条件下にて行った。得られた結果を表1に示す。
(Example 5)
<Catalyst preparation>
Composition formula was prepared a catalyst represented by Nb 1 V 0.12 Bi 0.12 Mo 0.01 O n as follows.
A catalyst was prepared by repeating the catalyst preparation of Example 1 except that 2.0 g of ammonium heptamolybdate [(NH 4 ) 6 Mo 7 O 24 · 4H 2 O] was added to the vanadium raw material liquid.
<X-ray diffraction measurement>
It was a reduced oxide having a tungsten bronze structure having peaks at 22.5 °, 28.4 °, 36.7 °, and 46.3 °.
<Propane Ammoxidation Test>
The obtained catalyst was subjected to the same conditions as in Example 1. The obtained results are shown in Table 1.

(実施例6)
<触媒調製>
組成式がNb10.08Bi0.05Mo0.05nで示される触媒を次のようにして調製した。
硝酸ビスマス・五水和物[Bi(NO33・5H2O]66.6gに代えて27.7gを、メタバナジン酸アンモニウム[NH4VO3]16.1gに代えて10.7gを用い、ヘプタモリブデン酸アンモニウム[(NH46Mo724・4H2O]10gをバナジウム原料液に添加し、前焼成を行わなかった以外は実施例1の触媒調製を反復して、触媒を調製した。
<X線回折測定>
22.5°、28.4°、36.7°、46.3°の位置にピークを持つタングステンブロンズ構造を有する還元型酸化物であった。
<プロパンのアンモ酸化反応試験>
得られた触媒について触媒W=0.35gに代えて0.20g、混合ガス流量F=45(ml/min)に代えて50(ml/min)とした以外は実施例1と同じ条件下にて行った。得られた結果を表1に示す。
(Example 6)
<Catalyst preparation>
Composition formula was prepared a catalyst represented by Nb 1 V 0.08 Bi 0.05 Mo 0.05 O n as follows.
Use 27.7 g instead of 66.6 g of bismuth nitrate pentahydrate [Bi (NO 3 ) 3 .5H 2 O], and 10.7 g instead of 16.1 g of ammonium metavanadate [NH 4 VO 3 ]. The catalyst preparation of Example 1 was repeated except that 10 g of ammonium heptamolybdate [(NH 4 ) 6 Mo 7 O 24 · 4H 2 O] was added to the vanadium raw material liquid and no pre-calcination was performed. Prepared.
<X-ray diffraction measurement>
It was a reduced oxide having a tungsten bronze structure having peaks at 22.5 °, 28.4 °, 36.7 °, and 46.3 °.
<Propane Ammoxidation Test>
The obtained catalyst was subjected to the same conditions as in Example 1 except that the catalyst W was changed to 0.20 g instead of 0.35 g and the mixed gas flow rate F was changed to 50 (ml / min) instead of 45 (ml / min). I went. The obtained results are shown in Table 1.

(実施例7)
<触媒調製>
組成式がNb10.16Bi0.20nで示される触媒を次のようにして調製した。
硝酸ビスマス・五水和物[Bi(NO33・5H2O]66.6gに代えて111gを、メタバナジン酸アンモニウム[NH4VO3]16.1gに代えて21.4gを用いた以外は実施例1の触媒調製を反復して、触媒を調製した。
<X線回折測定>
22.5°、28.4°、36.7°、46.3°の位置にピークを持つタングステンブロンズ構造を有する還元型酸化物であった。
<プロパンのアンモ酸化反応試験>
得られた触媒について実施例1と同じ条件下にて行った。得られた結果を表1に示す。
(Example 7)
<Catalyst preparation>
Composition formula was prepared a catalyst represented by Nb 1 V 0.16 Bi 0.20 O n as follows.
111 g was used instead of 66.6 g of bismuth nitrate pentahydrate [Bi (NO 3 ) 3 .5H 2 O], and 21.4 g was used instead of 16.1 g of ammonium metavanadate [NH 4 VO 3 ]. Prepared the catalyst by repeating the catalyst preparation of Example 1.
<X-ray diffraction measurement>
It was a reduced oxide having a tungsten bronze structure having peaks at 22.5 °, 28.4 °, 36.7 °, and 46.3 °.
<Propane Ammoxidation Test>
The obtained catalyst was subjected to the same conditions as in Example 1. The obtained results are shown in Table 1.

(実施例8)
<触媒調製>
組成式がNb10.12Bi0.12Ti0.01nで示される触媒を次のようにして調製した。
酸化チタンアナターゼ型[TiO2]0.9gを触媒原料液に添加した以外は実施例1の触媒調製を反復して、触媒を調製した。
<X線回折測定>
22.5°、28.4°、36.7°、46.3°の位置にピークを持つタングステンブロンズ構造を有する還元型酸化物であった。
<プロパンのアンモ酸化反応試験>
得られた触媒について実施例1と同じ条件下にて行った。得られた結果を表1に示す。
(Example 8)
<Catalyst preparation>
Composition formula was prepared a catalyst represented by Nb 1 V 0.12 Bi 0.12 Ti 0.01 O n as follows.
A catalyst was prepared by repeating the catalyst preparation of Example 1 except that 0.9 g of titanium oxide anatase type [TiO 2 ] was added to the catalyst raw material liquid.
<X-ray diffraction measurement>
It was a reduced oxide having a tungsten bronze structure having peaks at 22.5 °, 28.4 °, 36.7 °, and 46.3 °.
<Propane Ammoxidation Test>
The obtained catalyst was subjected to the same conditions as in Example 1. The obtained results are shown in Table 1.

(実施例9)
<触媒調製>
組成式がNb10.41Bi0.30nで示される触媒を次のようにして調製した。
硝酸ビスマス・五水和物[Bi(NO33・5H2O]66.6gに代えて166gを、メタバナジン酸アンモニウム[NH4VO3]16.1gに代えて54gを用いた以外は実施例1の触媒調製を反復して、触媒を調製した。
<X線回折測定>
22.5°、28.4°、36.7°、46.3°の位置にピークを持つタングステンブロンズ構造を有する還元型酸化物であった。
<プロパンのアンモ酸化反応試験>
得られた触媒について混合ガス流量F=45(ml/min)に代えて35(ml/min)とした以外は実施例1と同じ条件下にて行った。得られた結果を表1に示す。
Example 9
<Catalyst preparation>
Composition formula was prepared a catalyst represented by Nb 1 V 0.41 Bi 0.30 O n as follows.
Except for using 166 g instead of 66.6 g of bismuth nitrate pentahydrate [Bi (NO 3 ) 3 .5H 2 O] and 54 g instead of 16.1 g of ammonium metavanadate [NH 4 VO 3 ]. The catalyst preparation of Example 1 was repeated to prepare a catalyst.
<X-ray diffraction measurement>
It was a reduced oxide having a tungsten bronze structure having peaks at 22.5 °, 28.4 °, 36.7 °, and 46.3 °.
<Propane Ammoxidation Test>
The obtained catalyst was subjected to the same conditions as in Example 1 except that the mixed gas flow rate F was changed to 35 (ml / min) instead of 45 (ml / min). The obtained results are shown in Table 1.

(比較例1)
<触媒調製>
実施例1の、窒素ガス流通下に代えて、空気のみの流通下、とした以外は実施例1の触媒調製を反復して、触媒を調製した。
<プロパンのアンモ酸化反応試験>
得られた触媒について混合ガス流量F=45(ml/min)に代えて4(ml/min)とした以外は実施例1と同じ条件下にて行った。得られた結果を表1に示す。

Figure 0004761461
(Comparative Example 1)
<Catalyst preparation>
A catalyst was prepared by repeating the catalyst preparation of Example 1 except that instead of the nitrogen gas flow of Example 1 and under the flow of air only.
<Propane Ammoxidation Test>
The obtained catalyst was subjected to the same conditions as in Example 1 except that the mixed gas flow rate F was changed to 4 (ml / min) instead of 45 (ml / min). The obtained results are shown in Table 1.
Figure 0004761461

本発明に係る還元型酸化物触媒によれば、プロパン又はイソブタンから、比較的低い反応温度にて高活性で反応させることができ、さらに不飽和ニトリル又は不飽和カルボン酸を高い選択率で製造することができる。また、本発明に係る還元型酸化物触媒を用いた気相接触アンモ酸化反応では、有用な副生物である青酸の選択率が高い。さらに、本発明に係る還元型酸化物触媒は、飛散性の元素を主成分としないため、反応器の冷却コイルや反応ラインの汚れといった運転上の厄介な問題が生じない。   According to the reduced oxide catalyst of the present invention, it is possible to react from propane or isobutane with a high activity at a relatively low reaction temperature, and to produce an unsaturated nitrile or an unsaturated carboxylic acid with high selectivity. be able to. In addition, in the gas phase catalytic ammoxidation reaction using the reduced oxide catalyst according to the present invention, the selectivity for hydrocyanic acid, which is a useful byproduct, is high. Furthermore, since the reduced oxide catalyst according to the present invention does not contain a scattering element as a main component, troublesome operational problems such as contamination of the reactor cooling coil and reaction line do not occur.

Claims (2)

プロパン又はイソブタンの気相接触アンモ酸化反応によって不飽和ニトリル、あるいは気相接触酸化反応によって不飽和カルボン酸を製造する際に用いる酸化物触媒であって、Nbを主成分とするタングステンブロンズ構造を有する還元型酸化物触媒であり、
前記還元型酸化物触媒が、下記式(II)で表される、
Nb 1 b Bi c d n2 (II)
(式中、
Yは、セリウム、モリブデン及びチタンからなる群から選択される少なくとも1種の元素を表し、
b、c、d及びn2は、Nb1原子あたりの原子比を表し、b及びcは、各々0.01≦b<0.8、0.01≦c<0.8であり、dは、0≦d<0.8であり、n2は、構成金属の酸化状態によって決まる原子比である。)
こと、及び、
CuKα線によって測定されたX線回折図において、22.5°±0.5°、28.4°±0.5°、36.7°±0.5°、46.3°±0.5°にピークを持つ、ことを特徴とする還元型酸化物触媒。
An oxide catalyst used for producing an unsaturated nitrile by a gas-phase catalytic ammoxidation reaction of propane or isobutane or an unsaturated carboxylic acid by a gas-phase catalytic oxidation reaction, and has a tungsten bronze structure mainly composed of Nb A reduced oxide catalyst ,
The reduced oxide catalyst is represented by the following formula (II):
Nb 1 V b Bi c Y d O n2 (II)
(Where
Y represents at least one element selected from the group consisting of cerium, molybdenum and titanium,
b, c, d and n2 represent atomic ratios per Nb atom, b and c are 0.01 ≦ b <0.8 and 0.01 ≦ c <0.8, respectively, and d is 0 ≦ d <0.8, and n2 is an atomic ratio determined by the oxidation state of the constituent metals. )
And
In the X-ray diffraction pattern measured by CuKα ray, 22.5 ° ± 0.5 °, 28.4 ° ± 0.5 °, 36.7 ° ± 0.5 °, 46.3 ° ± 0.5 A reduced oxide catalyst characterized by having a peak at °.
前記還元型酸化物触媒が、該還元型酸化物触媒とシリカの全重量に対し、10〜60重量%のシリカに担持されている、請求項1に記載の還元型酸化物触媒。 The reduced oxide catalyst according to claim 1, wherein the reduced oxide catalyst is supported on 10 to 60% by weight of silica based on the total weight of the reduced oxide catalyst and silica.
JP2006158904A 2006-06-07 2006-06-07 Nb-based oxide catalyst and method for producing unsaturated compound using the same Active JP4761461B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006158904A JP4761461B2 (en) 2006-06-07 2006-06-07 Nb-based oxide catalyst and method for producing unsaturated compound using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006158904A JP4761461B2 (en) 2006-06-07 2006-06-07 Nb-based oxide catalyst and method for producing unsaturated compound using the same

Publications (2)

Publication Number Publication Date
JP2007326032A JP2007326032A (en) 2007-12-20
JP4761461B2 true JP4761461B2 (en) 2011-08-31

Family

ID=38926891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006158904A Active JP4761461B2 (en) 2006-06-07 2006-06-07 Nb-based oxide catalyst and method for producing unsaturated compound using the same

Country Status (1)

Country Link
JP (1) JP4761461B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11214535B2 (en) * 2017-06-09 2022-01-04 Basf Se Method for producing ethyleneamines
CN112569958B (en) * 2019-09-27 2022-09-06 中国石油化工股份有限公司 Catalyst composition for preparing ethylene glycol from biomass raw material and preparation method and application thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3237314B2 (en) * 1993-06-24 2001-12-10 三菱化学株式会社 Method for producing α, β-unsaturated carboxylic acid

Also Published As

Publication number Publication date
JP2007326032A (en) 2007-12-20

Similar Documents

Publication Publication Date Title
JP4530595B2 (en) Oxide catalyst for oxidation or ammoxidation
US8153546B2 (en) Mixed metal oxide ammoxidation catalysts
US8455388B2 (en) Attrition resistant mixed metal oxide ammoxidation catalysts
US8258073B2 (en) Process for preparing improved mixed metal oxide ammoxidation catalysts
JP5483818B2 (en) Fluid bed catalyst for acrylonitrile production and process for producing acrylonitrile
JP5011176B2 (en) Catalyst for synthesizing acrylonitrile and method for producing acrylonitrile
US8835666B2 (en) Pre calcination additives for mixed metal oxide ammoxidation catalysts
US8420566B2 (en) High efficiency ammoxidation process and mixed metal oxide catalysts
JP2018164910A (en) Improved selective ammoxidation catalyst
US20180133699A1 (en) Mixed metal oxide ammoxidation catalysts
JP4727506B2 (en) Method for producing oxide having bronze structure
JP6526062B2 (en) Improved selective ammoxidation catalyst
JP4187837B2 (en) Method for producing catalyst for producing unsaturated nitrile
US10626082B2 (en) Ammoxidation catalyst with selective co-product HCN production
JP4761461B2 (en) Nb-based oxide catalyst and method for producing unsaturated compound using the same
JP5427580B2 (en) Composite metal oxide catalyst and method for producing the same
JP4212154B2 (en) Catalyst and method for producing unsaturated nitrile using the same
JP4455081B2 (en) Oxide catalyst
JP4187856B2 (en) Catalyst and method for producing unsaturated nitrile using the same
JP4761377B2 (en) Method for producing Mo-containing oxide having bronze structure
JP2007326036A (en) Oxide catalyst for oxidation or amm oxidation
JP5041509B2 (en) Oxide containing Nb and V, and method for producing the same
JP4180317B2 (en) Method for producing oxidation reaction catalyst
JP2004066024A (en) Oxide catalyst
JP4318331B2 (en) Catalyst and method for producing unsaturated nitrile using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110601

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110603

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4761461

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350