JP4760822B2 - Epitaxial wafer manufacturing method - Google Patents

Epitaxial wafer manufacturing method Download PDF

Info

Publication number
JP4760822B2
JP4760822B2 JP2007323158A JP2007323158A JP4760822B2 JP 4760822 B2 JP4760822 B2 JP 4760822B2 JP 2007323158 A JP2007323158 A JP 2007323158A JP 2007323158 A JP2007323158 A JP 2007323158A JP 4760822 B2 JP4760822 B2 JP 4760822B2
Authority
JP
Japan
Prior art keywords
wafer
epitaxial
single crystal
defects
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2007323158A
Other languages
Japanese (ja)
Other versions
JP2008150283A (en
Inventor
敏昭 小野
忠美 田中
正隆 宝来
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Original Assignee
Sumco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Corp filed Critical Sumco Corp
Priority to JP2007323158A priority Critical patent/JP4760822B2/en
Publication of JP2008150283A publication Critical patent/JP2008150283A/en
Application granted granted Critical
Publication of JP4760822B2 publication Critical patent/JP4760822B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

この発明は、半導体の集積回路素子に使用されるエピタキシャルウェーハの改良に関し、抵抗率が0.008〜0.025Ω・cmの単結晶引上げ育成時に特定の冷却を施すことで、エピタキシャル欠陥の発生がなく、酸素析出物密度の面内均一性が良好で、かつlG(Intrinsic gettering)効果にすぐれたエピタキシャルウェーハの製造方法に関する。   The present invention relates to an improvement of an epitaxial wafer used for a semiconductor integrated circuit element, and the generation of epitaxial defects is caused by applying specific cooling during single crystal pulling growth with a resistivity of 0.008 to 0.025 Ω · cm. In addition, the present invention relates to a method for manufacturing an epitaxial wafer having excellent uniformity of oxygen precipitate density in the surface and excellent lG (Intrinsic Gettering) effect.

シリコン半導体デバイスの高集積化は、著しく進んでおり、デバイスを形成する基板のシリコンウェーハ自体の高品質化が一層厳しく要求されている。すなわち、高集積化とともに回路パターンがますます微細化されるため、ウェーハ上のデバイスが形成されるデバイス活性領域では、リーク電流の増大やキャリアのライフタイムの低下原因となる転位等の結晶欠陥および金属系不純物の低減、除去が従来に増して厳しく求められている。   High integration of silicon semiconductor devices is progressing remarkably, and higher quality of the silicon wafer itself of the substrate on which the devices are formed is demanded more severely. In other words, as the circuit pattern becomes finer with higher integration, in the device active region where the device on the wafer is formed, crystal defects such as dislocations that cause an increase in leakage current and a decrease in carrier lifetime and Reduction and removal of metal impurities is more strictly required than ever before.

かかる要請から結晶欠陥をほぼ完全に含まないエピタキシャル層をウェーハ上に成長させたエピタキシャルウェーハが開発され、高集積化デバイスの製造に多く使用されている。このエピタキシャル層を成長させるウェーハとして、ボロンを高濃度にドープしたp+シリコンウェーハが一般的に用いられている。 In response to such a demand, an epitaxial wafer in which an epitaxial layer containing almost no crystal defects is grown on the wafer has been developed and is often used in the manufacture of highly integrated devices. As a wafer for growing this epitaxial layer, a p + silicon wafer doped with boron at a high concentration is generally used.

エピタキシャルウェーハにp+ウェーハが採用される理由は、まずデバイス設計上の理由として、デバイスが動作する場合に生じる浮遊電荷が意図しなかった寄生トランジスタを動作させてしまう、いわゆるラッチアップ現象をp+ウェーハを用いることで防止でき、デバイスの設計が容易になることがある。また、トレンチ構造のキャパシタを用いる場合にトレンチ周辺の電圧印加時の空乏層広がりがp+の場合は防止できる利点がある。かかるp+ウェーハにエピタキシャル層を成長させたウェーハをp/p+エピタキシャルウェーハと称する。 Why p + wafer is employed in the epitaxial wafer, as the reason for the device design First, the device will not operate the parasitic transistor the floating charge is not intended that occurs when operating, a so-called latch-up phenomenon p + This can be prevented by using a wafer, and device design may be facilitated. Further, when using a capacitor having a trench structure, there is an advantage that it can be prevented when the depletion layer spread at the time of applying a voltage around the trench is p + . The wafer an epitaxial layer grown on such a p + wafer referred to as p / p + epitaxial wafer.

一般的に、ボロンを高濃度に添加した低抵抗率のウェーハは、表面にエピタキシャル層を形成しても、ほとんどエピタキシャル欠陥は発生しないことが知られている。ところが近年、0.008〜0.025Ωcmの抵抗率範囲にボロンをドープしたp+ウェーハに、エピタキシャル層を形成した場合、エピタキシャル欠陥が多発することが判明した。 In general, it is known that a low resistivity wafer to which boron is added at a high concentration hardly causes epitaxial defects even when an epitaxial layer is formed on the surface. However, in recent years, it has been found that when an epitaxial layer is formed on a p + wafer doped with boron in a resistivity range of 0.008 to 0.025 Ωcm, epitaxial defects frequently occur.

発明者らは、この原因について調査したところ、0.008〜0.025Ωcmの抵抗率範囲にあるp+ウェーハ内には、酸化誘起積層欠陥が1×102個/cm2を超える結晶領域が存在しており、この酸化誘起積層欠陥が存在する領域部においてエピタキシャル欠陥が発生していることを知見した。 The inventors investigated this cause, and found that there was a crystal region in which the oxidation-induced stacking fault exceeded 1 × 10 2 / cm 2 in the p + wafer in the resistivity range of 0.008 to 0.025 Ωcm. It has been found that an epitaxial defect is generated in a region where the oxidation-induced stacking fault exists.

エピタキシャル欠陥を回避するために、抵抗値を変化させることも考えられるが、0.008〜0.025Ω・cmの低抵抗値ウェーハ表面に高抵抗値のエピタキシャル層を形成することで、高速度トランジスタの実現並びにpn接合素子間の分離を有効にできることから、当該抵抗率範囲にあるシリコン単結晶ウェーハに対しエピタキシャル欠陥の低減が強く求められるところである。   Although it is conceivable to change the resistance value in order to avoid epitaxial defects, a high-speed transistor is formed by forming an epitaxial layer having a high resistance value on the surface of a low resistance value wafer of 0.008 to 0.025 Ω · cm. Therefore, the reduction of epitaxial defects is strongly demanded for silicon single crystal wafers in the resistivity range.

また、前記酸化誘起積層欠陥の発生は、ウェーハ中の酸素濃度を低くすることにより低減できるものの、ウェーハの低酸素化はウェーハ内部に形成される酸索析出物量の低下を招き、lG(Intrinsic gettering)能力が低下することとなる。このゲッタリング能を考慮した場合、ウェーハ中の酸素濃度は少なくとも11×1017atoms/cm3(ASTM F−121,1979)以上は必要となる。 Further, the occurrence of the oxidation-induced stacking fault can be reduced by lowering the oxygen concentration in the wafer. However, lowering the oxygen in the wafer leads to a decrease in the amount of acid precipitates formed inside the wafer, and lG (Intrinsic Gettering). ) The ability will be reduced. In consideration of this gettering ability, the oxygen concentration in the wafer needs to be at least 11 × 10 17 atoms / cm 3 (ASTM F-121, 1979) or more.

発明者らは、前記酸素濃度範囲で0.008〜0.025Ωcmの抵抗率範囲にあるp+ウェーハを製造しようとした場合、不可避的に酸化誘起積層欠陥がl×102個/cm2を超える結晶領域が必ずウェーハ内に含まれてしまい、上述したようなエピタキシャル欠陥を生じてしまう問題があることを知見した。 When the inventors tried to manufacture a p + wafer having a resistivity range of 0.008 to 0.025 Ωcm in the oxygen concentration range, inevitably, the oxidation-induced stacking fault was 1 × 10 2 / cm 2 . It has been found that there is a problem that an excessive crystal region is always included in the wafer and the above-described epitaxial defect occurs.

この発明は、発明者らが知見した上述のp/p+エピタキシャルウェーハにおける問題を解消し、エピタキシャル欠陥の発生がなく、酸素析出物密度の面内均一性が良好で、かつlG効果にすぐれたエピタキシャルウェーハの製造方法の提供を目的としている。 The present invention has solved the problems in the above-mentioned p / p + epitaxial wafer found by the inventors, has no occurrence of epitaxial defects, has excellent in-plane uniformity of oxygen precipitate density, and has an excellent lG effect. It aims at providing the manufacturing method of an epitaxial wafer.

発明者らは、エピタキシャル欠陥の発生防止を目的に、シリコン単結晶の育成時に受ける熱履歴と該欠陥との関係に着目し、単結晶の引上げ速度を種々変更して得られた熱履歴の異なるウェーハにエピタキシャル層を成長して欠陥などについて鋭意検討した結果、引上げ後の1100℃から900℃の温度域を急冷することで、エピタキシャル欠陥の発生が抑制されることを知見し、この発明を完成した。   For the purpose of preventing the occurrence of epitaxial defects, the inventors pay attention to the relationship between the thermal history received during the growth of a silicon single crystal and the defect, and the thermal history obtained by variously changing the pulling rate of the single crystal is different. As a result of growing an epitaxial layer on the wafer and intensively examining defects, it was found that the occurrence of epitaxial defects was suppressed by rapidly cooling the temperature range from 1100 ° C. to 900 ° C. after the pulling, and the present invention was completed. did.

すなわち、この発明は、ボロンが添加されて抵抗率が0.008〜0.025Ω・cmで酸素濃度が11×1017atoms/cm3(ASTM F−121,1979)以上であるシリコン単結晶をチョクラルスキー法によって引上げ育成する工程で、引上げ後の1100℃から900℃の温度範囲を3.0℃/min以上の冷却速度で冷却して、高温酸化処理時に発生する酸化誘起積層欠陥が1×102/cm2以下の性状を有するシリコン単結晶を得る工程、該単結晶よりウェーハを切り出し研磨する工程、ウェーハ主面にエピタキシャル層を成長する工程を有し、単結晶よりウェーハを切り出した後、鏡面研磨する前に、700℃以上、900℃未満の温度で30分から4時間までの熱処理を施すことを特徴とするエピタキシャルウェーハの製造方法である。 That is, the present invention provides a silicon single crystal having a resistivity of 0.008 to 0.025 Ω · cm and an oxygen concentration of 11 × 10 17 atoms / cm 3 (ASTM F-121, 1979) or more added with boron. In the step of pulling and growing by the Czochralski method, the temperature range from 1100 ° C. to 900 ° C. after the pulling is cooled at a cooling rate of 3.0 ° C./min or more, and oxidation-induced stacking faults generated during high-temperature oxidation treatment are 1 A step of obtaining a silicon single crystal having a property of × 10 2 / cm 2 or less, a step of cutting and polishing a wafer from the single crystal, and a step of growing an epitaxial layer on the main surface of the wafer were cut out from the single crystal. Then, before mirror polishing, the epitaxial wafer is subjected to a heat treatment at a temperature of 700 ° C. or higher and lower than 900 ° C. for 30 minutes to 4 hours. It is a manufacturing method of C.

この発明によると、シリコン単結晶の育成に際して引上げ速度を速くでき、単結晶製造の生産性を低下させることがなく、また育成時の熱履歴を最適化することで、ウェーハ化した後に目的のエピタキシャル欠陥の個数が低減され、酸素析出物密度の面内均一性が良好でかつ高いゲッタリング能力を付与でき、さらに安定的に抵抗率が0.008〜0.025Ω・cmのp/p+エピタキシャルウェーハを提供できる。 According to the present invention, the pulling speed can be increased when growing a silicon single crystal, the productivity of single crystal production is not reduced, and the thermal history at the time of growth is optimized, so that the target epitaxial layer is formed after wafer formation. P / p + epitaxial with reduced number of defects, good in-plane uniformity of oxygen precipitate density and high gettering ability, and stable resistivity of 0.008 to 0.025 Ω · cm A wafer can be provided.

発明者らは、シリコン単結晶育成時の熱履歴が、エピタキシャル欠陥の発生に及ぼす影響などを調査するために、直径8インチのシリコン単結晶をチョクラルスキー法によって引き上げる際の速度を変更する実験を行った。   The inventors conducted an experiment to change the speed at which a silicon single crystal having a diameter of 8 inches is pulled up by the Czochralski method in order to investigate the influence of the thermal history during the growth of the silicon single crystal on the occurrence of epitaxial defects. Went.

すなわち、抵抗値を0.012Ωcmとなるようにボロンを添加し、引き上げ速度が1.1mm/minで500mm長さまで直胴部を育成し、500mmの時点で引き上げ速度を1.8mm/minに変化させて、550mmで再度1.1mm/minに戻して、そのまま1000mmまで育成した後、テール絞りを行なって引上を終了した。   That is, boron is added so that the resistance value becomes 0.012 Ωcm, the straight body part is grown to a length of 500 mm at a lifting speed of 1.1 mm / min, and the lifting speed is changed to 1.8 mm / min at the time of 500 mm. Then, after returning to 1.1 mm / min at 550 mm and growing it to 1000 mm as it is, tail drawing was performed to finish the pulling up.

上述の熱履歴で育成された単結晶は、引き上げ速度の変更開始時の融液からの距離、すなわち、結晶の引き上げ速度の変更開始時、固液界面からの距離に応じた温度から低温側ヘ100℃前後の温度範囲で急冷されたことになる。   The single crystal grown with the above-mentioned thermal history is changed from the temperature according to the distance from the melt at the start of the change in the pulling rate, that is, from the temperature corresponding to the distance from the solid-liquid interface to the low temperature side. It was quenched in the temperature range around 100 ° C.

これら単結晶の1400〜600℃の各温度から急冷された部位よりサンプルを切り出して850℃で2時間の処理を行った後、鏡面研磨を施して仕上げ、さらに5μmのエピタキシャル層の成長を行い、エピタキシャルウェーハを得た。表面欠陥検査装置(KLA−Tencor社製、SP−l)を用いて0.09μmサイズ以上の表面欠陥、すなわちエピタキシャル欠陥を測定した結果を図1に示す。   A sample was cut out from a portion of these single crystals that were quenched from 1400 to 600 ° C. and treated at 850 ° C. for 2 hours, and then mirror-polished to finish, and an epitaxial layer of 5 μm was further grown. An epitaxial wafer was obtained. FIG. 1 shows the result of measuring a surface defect of 0.09 μm size or more, that is, an epitaxial defect, using a surface defect inspection apparatus (SP-I manufactured by KLA-Tencor).

図1の引き上げ速度の変更開始温度と欠陥密度との関係を示すグラフから明らかなように、1100℃から900℃の温度域を急冷することで、エピタキシャル欠陥の発生が抑制されることが分かった。これは、p+シリコン単結晶ウェーハのCrown−in酸素析出核のサイズが急冷化することで縮小化したためと考えられる。 As is clear from the graph showing the relationship between the change start temperature of the pulling rate in FIG. 1 and the defect density, it was found that the occurrence of epitaxial defects was suppressed by rapidly cooling the temperature range from 1100 ° C. to 900 ° C. . This is presumably because the size of the Crown-in oxygen precipitation nuclei of the p + silicon single crystal wafer was reduced by rapid cooling.

この発明において、シリコン単結晶及びエピタキシャルウェーハの抵抗率を0.008〜0.025Ω・cmと規定するのは、前述したごとく、高速度、高性能、高密度の半導体デバイスを得るのに必要な性状であるためである。   In the present invention, the resistivity of the silicon single crystal and the epitaxial wafer is defined as 0.008 to 0.025 Ω · cm, as described above, which is necessary to obtain a high-speed, high-performance, high-density semiconductor device. This is because it is a property.

また、シリコン単結晶及びエピタキシャルウェーハの酸素濃度は、11〜18×1017atoms/cm3(ASTM F−121,1979)の範囲が望ましい。11×1017atoms/cm3未満の酸素濃度では、デバイス熱処理工程において十分なゲッタリング効果を得るために必要な酸素析出量をウェーハ内に確保することができない。18×1017atoms/cm3を超える酸素濃度では、酸素析出過多となり、ウェーハ内に酸素析出物に起因した二次欠陥の発生を生じる恐れがある。 The oxygen concentration of the silicon single crystal and the epitaxial wafer is preferably in the range of 11 to 18 × 10 17 atoms / cm 3 (ASTM F-121, 1979). When the oxygen concentration is less than 11 × 10 17 atoms / cm 3, it is not possible to ensure the amount of oxygen deposited in the wafer to obtain a sufficient gettering effect in the device heat treatment process. When the oxygen concentration exceeds 18 × 10 17 atoms / cm 3 , oxygen precipitation becomes excessive, and there is a possibility of generating secondary defects due to oxygen precipitates in the wafer.

この発明において、シリコン単結晶及びエピタキシャルウェーハは、高温酸化処理時に発生する酸化誘起積層欠陥が1×102/cm2以下の性状を有することを特徴とするが、これは、高温酸化処理時に発生する酸化誘起積層欠陥が1×102/cm2を超えると、エピタキシャル欠陥の発生が多くなり、デバイス作製後の動作不良等を招来するため、1×102/cm2以下とするもので、かかる酸化誘起積層欠陥が少ないほど良好な半導体デバイスが得られる。 In the present invention, the silicon single crystal and the epitaxial wafer are characterized in that oxidation-induced stacking faults generated during high-temperature oxidation treatment have a property of 1 × 10 2 / cm 2 or less, which occurs during high-temperature oxidation treatment. When the oxidation-induced stacking fault to exceed 1 × 10 2 / cm 2 , the number of epitaxial defects is increased, resulting in malfunction after device fabrication, etc., so that it is 1 × 10 2 / cm 2 or less. The smaller the oxidation-induced stacking fault, the better the semiconductor device.

この発明のシリコン単結晶の製造方法は、チョクラルスキー法によってシリコン単結晶を引上げ育成する方法を採用するもので、公知のいずれの方法、装置をも採用できる。特にこの発明の特徴である、引上げ時の1100℃から900℃の温度範囲を3.0℃/min以上の冷却速度で冷却する工程を実現するには、実施例に示すごとき、育成する単結晶を囲む熱シールド材を配置したり、さらに熱シールド材に冷却筒を付設するなどの構成、方法を採用することが可能である。   The method for producing a silicon single crystal according to the present invention employs a method of pulling and growing a silicon single crystal by the Czochralski method, and any known method and apparatus can be employed. In particular, in order to realize the process of cooling the temperature range from 1100 ° C. to 900 ° C. at the time of pulling at a cooling rate of 3.0 ° C./min or more, which is a feature of the present invention, a single crystal to be grown as shown in the examples. It is possible to adopt a configuration and a method such as arranging a heat shield material surrounding the heat shield, and further attaching a cooling cylinder to the heat shield material.

この発明において、特定の冷却温度範囲が、1100℃から900℃であるのは発明者の知見に基づくものであり、冷却速度を3.0℃/min以上とするのは、Crown−in酸素析出核のサイズを縮小でき、目的のエピタキシャル欠陥を低減できるからであり、好ましい冷却速度は、3.0℃/min〜6.5℃/minである。但し、過度の結晶冷却は、単結晶育成時の熱応力が増大するため、単結晶育成中に単結晶が割れる恐れが有るため、6.5℃/min以下に留めることが望ましい。   In this invention, the specific cooling temperature range is 1100 ° C. to 900 ° C. based on the inventor's knowledge, and the cooling rate of 3.0 ° C./min or more is the Crown-in oxygen precipitation. This is because the size of the nucleus can be reduced and the target epitaxial defects can be reduced, and the preferable cooling rate is 3.0 ° C./min to 6.5 ° C./min. However, excessive crystal cooling increases the thermal stress at the time of single crystal growth, so that the single crystal may break during single crystal growth. Therefore, it is desirable to keep it at 6.5 ° C./min or less.

この発明において、チョクラルスキー法によって、抵抗率が0.008〜0.025Ω・cmとなるようにボロンを添加してシリコン単結晶を引上げ育成し、前記の特定の温度範囲を急冷するが、冷却に最も効果的な単結晶の外周に冷却筒を設置した場合でも、1100℃〜900℃の温度範囲における冷却速度、3.0℃/min以上を確保するためには、単結晶の引き上げ速度を0.9mm/min以上に設定する必要がある。また、前述の冷却速度を6.5℃/min以下にするためには、引き上げ速度を1.8mm/min以下に抑える必要がある。   In this invention, by the Czochralski method, boron is added so as to have a resistivity of 0.008 to 0.025 Ω · cm, the silicon single crystal is pulled up and grown, and the specific temperature range is rapidly cooled. Even when a cooling cylinder is installed on the outer periphery of the single crystal most effective for cooling, in order to ensure a cooling rate in the temperature range of 1100 ° C. to 900 ° C., 3.0 ° C./min or more, the pulling rate of the single crystal Must be set to 0.9 mm / min or more. Moreover, in order to make the above-mentioned cooling rate into 6.5 degrees C / min or less, it is necessary to suppress a pulling-up speed to 1.8 mm / min or less.

この発明において、上述の方法で得られた高温酸化処理時に発生する酸化誘起積層欠陥が1×102/cm2以下の性状を有するシリコン単結晶より、エピタキシャルウェーハを得るには、少なくとも該単結晶よりウェーハを切り出し研磨する工程と、主面にエピタキシャル層を成長する工程を経る必要がある。ウェーハに切り出しする方法、ウェーハの主面やエッジを研磨する方法、エピタキシャル成膜する方法について特に限定するものでなく、公知のいずれの方法、構成、装置をも採用できる。 In the present invention, in order to obtain an epitaxial wafer from a silicon single crystal having a property that the oxidation-induced stacking fault generated during the high-temperature oxidation treatment obtained by the above-described method is 1 × 10 2 / cm 2 or less, at least the single crystal is obtained. Further, it is necessary to go through a process of cutting and polishing the wafer and a process of growing an epitaxial layer on the main surface. There are no particular limitations on the method of cutting into the wafer, the method of polishing the main surface or edge of the wafer, and the method of epitaxial film formation, and any known method, configuration, and apparatus can be employed.

この発明において、エピタキシャルウェーハの製造に際し、単結晶よりウェーハを切り出した後、鏡面研磨する前に、700℃以上、900℃未満の温度で30分から4時間までの熱処理を施すのは、エピタキシャルウェーハlG(Intrinsic gettering)効果を持たせるためであり、エピタキシャル工程の高温で消滅してしまうようなボロン(B)を核とした小さな折出核の成長を促進し、エピタキシャル成長処理で消滅せずに残留する酸素折出物密度を増大させることができ、ゲッタリング効果の向上を計るものである。かかる熱処理を鏡面研磨する前に施すのは、熱処理時の保持治具からの傷などを残さないためである。   In this invention, in manufacturing an epitaxial wafer, after cutting a wafer from a single crystal and before mirror polishing, a heat treatment is performed at a temperature of 700 ° C. or higher and lower than 900 ° C. for 30 minutes to 4 hours. This is to provide an (intrinsic gettering) effect, and promotes the growth of small bent nuclei with boron (B) as a nucleus that disappears at a high temperature in the epitaxial process, and remains without disappearing by the epitaxial growth process. It is possible to increase the density of the oxygen breakout and improve the gettering effect. The reason for applying the heat treatment before mirror polishing is to leave no scratches from the holding jig during the heat treatment.

好ましい熱処理条件としては、酸素と不活性ガスの混合雰囲気中で行うことでウェーハの汚染防止のために保護酸化膜を形成することができ、後工程の鏡面研磨で酸化膜を除去できるため、また、熱処理時の保持治具からの傷なども鏡面研磨で除去できることから、かかる熱処理を鏡面研磨する前に施すことが望ましい。   As a preferable heat treatment condition, a protective oxide film can be formed to prevent contamination of the wafer by performing in a mixed atmosphere of oxygen and inert gas, and the oxide film can be removed by mirror polishing in the subsequent process. Since scratches from the holding jig during heat treatment can be removed by mirror polishing, it is desirable to perform such heat treatment before mirror polishing.

シリコン単結晶の育成装置の構成例を図2に示す。詳述すると、装置の中心位置にルツボ1が配置され、ルツボ1は石英製容器1aとこの外側に配置された黒鉛製容器1bとから構成されている。   A configuration example of a silicon single crystal growth apparatus is shown in FIG. More specifically, the crucible 1 is disposed at the center position of the apparatus, and the crucible 1 is composed of a quartz container 1a and a graphite container 1b disposed on the outside thereof.

ルツボ1の外周部には、加熱ヒータ2が同心円状に配設され、ルツボ1内には加熱ヒータにより溶融された融液3が収容されている。ルツボ1の上方には、引き上げ軸4が種結晶5を装着して回転及び昇降可能に垂設してあり、種結晶5の下端から単結晶6を成長させることが可能であり、さらに引き上げ軸4の上昇とともに育成される単結晶6を囲むように熱シールド材7が配置されている。   A heater 2 is disposed concentrically on the outer periphery of the crucible 1, and a melt 3 melted by the heater is accommodated in the crucible 1. Above the crucible 1, a pulling shaft 4 is mounted so as to be able to rotate and move up and down with a seed crystal 5, a single crystal 6 can be grown from the lower end of the seed crystal 5, and the pulling shaft The heat shield material 7 is arranged so as to surround the single crystal 6 grown with the rise of 4.

比較例1
上述した図2のシリコン単結晶育成装置を使用し、直径8インチ、p型(100)、酸素濃度が13×1017atoms/cm3、0.015Ω・cm〜0.012Ω・cmの単結晶を、引き上げ速度1.2mm/minにて育成した。育成されたシリコン単結晶からウェーハを切り出し、鏡面研磨を施したウェーハ(実施No.1)と、切り出し後、鏡面研磨工程前に850℃で1時間保持する熱処理を施したウェーハ(実施No.2)とを準備した。
Comparative Example 1
A single crystal having the diameter of 8 inches, p-type (100), oxygen concentration of 13 × 10 17 atoms / cm 3 , 0.015 Ω · cm to 0.012 Ω · cm, using the above-described silicon single crystal growth apparatus of FIG. Was grown at a pulling rate of 1.2 mm / min. A wafer cut out from the grown silicon single crystal and subjected to mirror polishing (Example No. 1), and a wafer subjected to a heat treatment held at 850 ° C. for 1 hour after the cutting and before the mirror polishing step (Example No. 2) ) And prepared.

前記2種のウェーハに、エピタキシャル成膜装置を用いて1150℃で1分間の水素ベークに続き、堆積温度が1075℃の条件でエピタキシャル層を5μm厚みに成長させた。得られたエピタキシャルウェーハに対して表面欠陥検査装置(KLA‐Tencor社製;SP‐1)にて0.09μmサイズ以上の表面欠陥(エピタキシャル欠陥)をカウントした。   An epitaxial layer was grown to a thickness of 5 μm on the two kinds of wafers using an epitaxial film forming apparatus, followed by hydrogen baking for 1 minute at 1150 ° C. under a deposition temperature of 1075 ° C. With respect to the obtained epitaxial wafer, surface defects (epitaxial defects) having a size of 0.09 μm or more were counted with a surface defect inspection apparatus (manufactured by KLA-Tencor; SP-1).

次に、これらのエピタキシャルウェーハに対し、l000℃で16時間保持する熱処理を施してウェーハを劈開し、ライトエッチング液で5分間の選択エッチングを行い、光学顕微鏡にてエッチングピット密度をカウントし、シリコンウェーハ中に形成された酸素析出物(BMD)密度を求めた。その測定結果を表1に示す。   Next, these epitaxial wafers were heat-treated at 1000 ° C. for 16 hours to cleave the wafers, selectively etched with a light etchant for 5 minutes, counted for etching pit density with an optical microscope, and silicon The density of oxygen precipitates (BMD) formed in the wafer was determined. The measurement results are shown in Table 1.

表1におけるエピタキシャル欠陥の個数は、25枚のエピタキシャルウェーハを測定した累計の個数を示している。1100℃〜900℃の温度域の冷却速度が3.0℃/min以下である比較例の実施No.1とNo.2では、エピタキシャル欠陥の個数が多い。No.2ではエピタキシャル成膜前に熱処理を施していない実施No.1と比較して高密度なBMD密度が得られているが、エピタキシャル欠陥が多発した。   The number of epitaxial defects in Table 1 indicates the total number of measured 25 epitaxial wafers. Example No. of the comparative example in which the cooling rate in the temperature range of 1100 ° C. to 900 ° C. is 3.0 ° C./min or less. 1 and No. 2 has a large number of epitaxial defects. No. In No. 2, no heat treatment was performed before epitaxial film formation. BMD density higher than that of 1 was obtained, but epitaxial defects occurred frequently.

実施例1
図2に示すシリコン単結晶育成装置において、熱シールド材7を図3に示すごとく、その内側に冷却筒8を組み込み、冷却液を循環させることで引き上げる単結晶の1100℃〜900℃の温度域の冷却速度を増速可能な構成となして、比較例1と同様に直径8インチ、p型(100)、酸素濃度が13×1017atoms/cm3、0.015Ωcm〜0.012Ωcmのシリコン単結晶を種々の引き上げ速度で育成した。
Example 1
In the silicon single crystal growing apparatus shown in FIG. 2, the temperature range of 1100 ° C. to 900 ° C. of the single crystal pulled up by incorporating the cooling cylinder 8 inside the heat shield material 7 and circulating the coolant as shown in FIG. In the same manner as in Comparative Example 1, the cooling rate is 8 inches in diameter, p-type (100), silicon having an oxygen concentration of 13 × 10 17 atoms / cm 3 and 0.015 Ωcm to 0.012 Ωcm. Single crystals were grown at various pulling speeds.

引き上げ速度を0.9〜1.35mm/minにて育成したシリコン単結晶からウェーハを切り出し、鏡面研磨を施したウェーハ(実施No.3〜No.5)と、切り出し後、鏡面研磨工程前に850℃で1時間保持する熱処理を施したウェーハ(実施No.6〜No.8)とを準備した。   A wafer was cut out from a silicon single crystal grown at a pulling rate of 0.9 to 1.35 mm / min and mirror-polished (No. 3 to No. 5), and after the cut and before the mirror polishing step Wafers (No. 6 to No. 8) that had been heat-treated at 850 ° C. for 1 hour were prepared.

前記2種のウェーハに、エピタキシャル成膜装置を用いて1150℃で1分間の水素ベークに続き、堆積温度が1075℃の条件でエピタキシャル層を5μm厚みに成長させた。得られたエピタキシャルウェーハに対して表面欠陥検査装置(KLA‐Tencor社製;SP‐1)にて0.09μmサイズ以上の表面欠陥(エピタキシャル欠陥)をカウントした。   An epitaxial layer was grown to a thickness of 5 μm on the two kinds of wafers using an epitaxial film forming apparatus, followed by hydrogen baking for 1 minute at 1150 ° C. under a deposition temperature of 1075 ° C. With respect to the obtained epitaxial wafer, surface defects (epitaxial defects) having a size of 0.09 μm or more were counted with a surface defect inspection apparatus (manufactured by KLA-Tencor; SP-1).

次に、これらのエピタキシャルウェーハに対し、l000℃で16時間保持する熱処理を施してウェーハを劈開し、ライトエッチング液で5分間の選択エッチングを行い、光学顕微鏡にてエッチングピット密度をカウントし、シリコンウェーハ中に形成されたBMD密度を求めた。その測定結果を表1に示す。   Next, these epitaxial wafers were heat-treated at 1000 ° C. for 16 hours to cleave the wafers, selectively etched with a light etchant for 5 minutes, counted for etching pit density with an optical microscope, and silicon The BMD density formed in the wafer was determined. The measurement results are shown in Table 1.

1100℃〜900℃の温度域の冷却速度が3.0℃/min以上であるこの発明の実施例(実施No.3〜No.8)では、冷却速度が3.0℃/min以下であるサンプル(実施No.1〜No.2)と比較してエピタキシャル欠陥が低く、その発生が抑制されていることが分かる。また、エピタキシャル成膜前に熱処理を施した実施No.3〜No.5においてもエピタキシャル欠陥の個数が低く抑制されている。   In the examples (Examples No. 3 to No. 8) of the present invention in which the cooling rate in the temperature range of 1100 ° C. to 900 ° C. is 3.0 ° C./min or more, the cooling rate is 3.0 ° C./min or less. It can be seen that the number of epitaxial defects is lower than that of the samples (Execution Nos. 1 to 2), and the generation thereof is suppressed. In addition, the implementation No. in which heat treatment was performed before epitaxial film formation was performed. 3-No. Also in 5, the number of epitaxial defects is suppressed low.

また、1100℃〜900℃の冷却速度が3.0℃/min以上で育成されたウェーハに、エピタキシャル前処理を施すことでゲッタリングに有効なBMD密度が高く、かつエピタキシャル欠陥個数の少ないp/p+エピタキシャルウェーハを製造できることが分かる。 Further, by performing epitaxial pretreatment on a wafer grown at a cooling rate of 1100 ° C. to 900 ° C. at 3.0 ° C./min or higher, B / D density effective for gettering is high and the number of epitaxial defects is small. It can be seen that p + epitaxial wafers can be manufactured.

このように熱履歴を最適化したこの発明の実施例では、引き上げ速度0.9mm/min以上で単結晶育成可能で、単結晶製造の生産性を低下させることなく、高品質なp/p+エピタキシャルウェーハが製造できる。 In the embodiment of the present invention in which the thermal history is optimized in this way, a single crystal can be grown at a pulling rate of 0.9 mm / min or higher, and high quality p / p + can be obtained without reducing the productivity of single crystal production. An epitaxial wafer can be manufactured.

実施例2
さらに、実施No.1〜8で作製したシリコンウェーハと同じサンプルウェーハを準備し、エピタキシャル成長処理前の各サンプルウェーハについて、高温酸化処理した場合に酸化誘起積層欠陥がどの程度発生するのかを調査した。
Example 2
Furthermore, the implementation No. The same sample wafer as the silicon wafer produced in 1 to 8 was prepared, and the degree to which oxidation-induced stacking faults occurred when each sample wafer before the epitaxial growth treatment was subjected to high-temperature oxidation treatment was investigated.

実験条件は、各サンプルウェーハを酸化雰囲気中で1100℃の温度で16時間の熱処理を行い、ライトエッチング液を用いてウェーハ表面を5μmエッチング処理した後、光学顕微鏡でウェーハ表面を複数点観察し、各観察点で観察されるピット数(酸化誘起積層欠陥密度)をカウントして各観察点の密度を測定した。その測定結果を表1に示す。表中、酸化積層欠陥密度は観察した各観察点の中で得られた最大値を示すものである。また、表中の<1×102は、前記測定における検出下限値を示す。 The experimental conditions were that each sample wafer was heat treated in an oxidizing atmosphere at a temperature of 1100 ° C. for 16 hours, the wafer surface was etched using a light etchant for 5 μm, and then the wafer surface was observed at multiple points with an optical microscope. The number of pits observed at each observation point (oxidation-induced stacking fault density) was counted to measure the density at each observation point. The measurement results are shown in Table 1. In the table, the oxidation stacking fault density indicates the maximum value obtained among the observed points. Further, <1 × 10 2 in the table indicates a detection lower limit value in the measurement.

表1から明らかなように、この発明の実施例(実施No.3〜8)では、ウェーハ面内において、酸化誘起積層欠陥がl×102個/cm2を超える結晶領域は全く観察されないのに対し、比較例(実施No.1,2)では、ウェーハ面内において、酸化誘起校層欠陥がl×102個/cm2を超える結晶領域が観察された。これは、酸化誘起積層欠陥の発生量がエピタキシャル欠陥の発生量に大きく影響することを意味している。 As is apparent from Table 1, in the examples of the present invention (Examples Nos. 3 to 8), no crystal region in which the oxidation-induced stacking fault exceeds 1 × 10 2 / cm 2 is observed in the wafer plane. On the other hand, in the comparative example (Example Nos. 1 and 2), a crystal region in which the oxidation-induced formation layer defects exceeded 1 × 10 2 pieces / cm 2 was observed in the wafer surface. This means that the amount of oxidation-induced stacking faults greatly affects the amount of epitaxial defects.

Figure 0004760822
Figure 0004760822

本発明によれば、シリコン単結晶の育成に際して引上げ速度を速くでき、単結晶製造の生産性を低下させることがなく、また育成時の熱履歴を最適化することで、ウェーハ化した後に目的のエピタキシャル欠陥の個数が低減され、酸素析出物密度の面内均一性が良好でかつ高いゲッタリング能力を付与でき、さらに安定的に抵抗率が0.008〜0.025Ω・cmのp/p+エピタキシャルウェーハを提供できる。したがって、本発明は、高集積化デバイスの基板として用いられるエピタキシャルウェーハの製造に広く適用することができる。 According to the present invention, when a silicon single crystal is grown, the pulling speed can be increased, the productivity of single crystal production is not reduced, and the thermal history at the time of growth is optimized, so that the target after forming into a wafer can be obtained. P / p + having a reduced number of epitaxial defects, good in-plane uniformity of oxygen precipitate density and high gettering ability, and a stable resistivity of 0.008 to 0.025 Ω · cm. An epitaxial wafer can be provided. Therefore, the present invention can be widely applied to the manufacture of epitaxial wafers used as substrates for highly integrated devices.

CZ法による途中過程の引き上げ速度を変更した際のエピタキシャル欠陥密度と引き上げ速度変更開始時の温度との関係を示すグラフである。It is a graph which shows the relationship between the epitaxial defect density at the time of changing the pulling speed of the middle process by CZ method, and the temperature at the time of a pulling speed change start. シリコン単結晶の育成装置の概略構成示す説明図である。It is explanatory drawing which shows schematic structure of the growth apparatus of a silicon single crystal. 図2の熱シールド材に冷却手段を組み込む構成を示す説明図である。It is explanatory drawing which shows the structure which incorporates a cooling means in the heat shield material of FIG.

符号の説明Explanation of symbols

1 ルツボ
1a 石英製容器
1b 黒鉛製容器
2 加熱ヒータ
3 融液
4 引き上げ軸
5 種結晶
6 単結晶
7 熱シールド材
8 冷却筒
DESCRIPTION OF SYMBOLS 1 Crucible 1a Quartz container 1b Graphite container 2 Heater 3 Melt 4 Lifting shaft 5 Seed crystal 6 Single crystal 7 Heat shield material 8 Cooling cylinder

Claims (1)

ボロンが添加されて抵抗率が0.008〜0.025Ω・cmで酸素濃度が11×1017atoms/cm3(ASTM F−121,1979)以上であるシリコン単結晶をチョクラルスキー法によって引上げ育成する工程で、引上げ後の1100℃から900℃の温度範囲を3.0℃/min以上の冷却速度で冷却して、高温酸化処理時に発生する酸化誘起積層欠陥が1×102/cm2以下の性状を有するシリコン単結晶を得る工程、
該単結晶よりウェーハを切り出し研磨する工程、
ウェーハ主面にエピタキシャル層を成長する工程を有し、
単結晶よりウェーハを切り出した後、鏡面研磨する前に、700℃以上、900℃未満の温度で30分から4時間までの熱処理を施すことを特徴とするエピタキシャルウェーハの製造方法。
A silicon single crystal having a resistivity of 0.008 to 0.025 Ω · cm and an oxygen concentration of 11 × 10 17 atoms / cm 3 (ASTM F-121, 1979) or higher with boron added is pulled up by the Czochralski method. In the growing step, the temperature range from 1100 ° C. to 900 ° C. after the pulling is cooled at a cooling rate of 3.0 ° C./min or more, and oxidation-induced stacking faults generated during high-temperature oxidation treatment are 1 × 10 2 / cm 2. Obtaining a silicon single crystal having the following properties:
Cutting and polishing a wafer from the single crystal,
A process of growing an epitaxial layer on the wafer main surface;
An epitaxial wafer manufacturing method comprising performing heat treatment at a temperature of 700 ° C. or higher and lower than 900 ° C. for 30 minutes to 4 hours after cutting a wafer from a single crystal and before mirror polishing.
JP2007323158A 2007-12-14 2007-12-14 Epitaxial wafer manufacturing method Expired - Lifetime JP4760822B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007323158A JP4760822B2 (en) 2007-12-14 2007-12-14 Epitaxial wafer manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007323158A JP4760822B2 (en) 2007-12-14 2007-12-14 Epitaxial wafer manufacturing method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002251068A Division JP4570317B2 (en) 2002-08-29 2002-08-29 Silicon single crystal and epitaxial wafer and method for producing them

Publications (2)

Publication Number Publication Date
JP2008150283A JP2008150283A (en) 2008-07-03
JP4760822B2 true JP4760822B2 (en) 2011-08-31

Family

ID=39652870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007323158A Expired - Lifetime JP4760822B2 (en) 2007-12-14 2007-12-14 Epitaxial wafer manufacturing method

Country Status (1)

Country Link
JP (1) JP4760822B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5613994B2 (en) * 2009-04-14 2014-10-29 株式会社Sumco Silicon wafer and manufacturing method thereof
WO2010109873A1 (en) * 2009-03-25 2010-09-30 株式会社Sumco Silicon wafer and method for manufacturing same
JP5504667B2 (en) * 2009-03-25 2014-05-28 株式会社Sumco Silicon wafer and manufacturing method thereof
JP5504664B2 (en) * 2009-03-25 2014-05-28 株式会社Sumco Silicon epitaxial wafer and manufacturing method thereof
EP2309038B1 (en) 2009-10-08 2013-01-02 Siltronic AG production method of an epitaxial wafer
JP5811218B2 (en) * 2014-03-18 2015-11-11 株式会社Sumco Manufacturing method of silicon epitaxial wafer
JP6202119B2 (en) * 2016-03-14 2017-09-27 株式会社Sumco Method for producing silicon single crystal
JP2021127278A (en) * 2020-02-14 2021-09-02 グローバルウェーハズ・ジャパン株式会社 Method for producing silicon single crystal

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3601340B2 (en) * 1999-02-01 2004-12-15 信越半導体株式会社 Epitaxial silicon wafer, method for manufacturing the same, and substrate for epitaxial silicon wafer
JP2002012496A (en) * 1999-10-19 2002-01-15 Shin Etsu Handotai Co Ltd Silicon epitaxial wafer and method for producing the same
JP2001217251A (en) * 1999-11-26 2001-08-10 Mitsubishi Materials Silicon Corp Method of heat-treating silicon wafer
JP3735002B2 (en) * 2000-03-27 2006-01-11 シルトロニック・ジャパン株式会社 Silicon semiconductor substrate and manufacturing method thereof

Also Published As

Publication number Publication date
JP2008150283A (en) 2008-07-03

Similar Documents

Publication Publication Date Title
JP4760822B2 (en) Epitaxial wafer manufacturing method
KR100573473B1 (en) Silicon wafer and method of fabricating the same
JP4805681B2 (en) Epitaxial wafer and method for manufacturing epitaxial wafer
KR100461893B1 (en) Silicon wafer and method of producing silicon single crystal utilizing same
WO2010109873A1 (en) Silicon wafer and method for manufacturing same
JP4670224B2 (en) Silicon wafer manufacturing method
EP1926134B1 (en) Method for manufacturing silicon epitaxial wafers
JP5121139B2 (en) Annealed wafer manufacturing method
KR100788988B1 (en) Silicon single-crystal wafer for epitaxial wafer, epitaxial wafer, methods for producing them, and evaluating method
KR101684873B1 (en) Method of manufacturing silicon substrate, and silicon substrate
KR101012350B1 (en) Annealed wafer and annealed wafer manufacturing method
JP3589119B2 (en) Manufacturing method of epitaxial wafer
JP2007045662A (en) Semiconductor silicon wafer and method for manufacturing the same
JP4570317B2 (en) Silicon single crystal and epitaxial wafer and method for producing them
JP4102988B2 (en) Method for producing silicon wafer and epitaxial wafer, and epitaxial wafer
JP2004165489A (en) Epitaxial silicon wafer, its manufacturing method and semiconductor device
JPH11204534A (en) Manufacture of silicon epitaxial wafer
JP4089137B2 (en) Method for producing silicon single crystal and method for producing epitaxial wafer
JP3760889B2 (en) Epitaxial wafer manufacturing method
JP2014078667A (en) Silicon epitaxial wafer and manufacturing method of solid state imaging element using the same
JP5560546B2 (en) Silicon wafer and manufacturing method thereof
JP2002201091A (en) Method of manufacturing epitaxial wafer having no epitaxial defect using nitrogen and carbon added substrate
JPH11302098A (en) Silicon wafer and silicon epitaxial wafer, and their production
JP4615785B2 (en) Method for producing epitaxial wafer having no epitaxial layer defect using nitrogen-added substrate
JP4144163B2 (en) Epitaxial wafer manufacturing method

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110523

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4760822

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term