JP4760814B2 - Valve timing adjustment device - Google Patents

Valve timing adjustment device Download PDF

Info

Publication number
JP4760814B2
JP4760814B2 JP2007285059A JP2007285059A JP4760814B2 JP 4760814 B2 JP4760814 B2 JP 4760814B2 JP 2007285059 A JP2007285059 A JP 2007285059A JP 2007285059 A JP2007285059 A JP 2007285059A JP 4760814 B2 JP4760814 B2 JP 4760814B2
Authority
JP
Japan
Prior art keywords
chamber
advance
valve
pressure
retard
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007285059A
Other languages
Japanese (ja)
Other versions
JP2009114856A (en
Inventor
泰宏 ▲濱▼岡
善之 村尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2007285059A priority Critical patent/JP4760814B2/en
Publication of JP2009114856A publication Critical patent/JP2009114856A/en
Application granted granted Critical
Publication of JP4760814B2 publication Critical patent/JP4760814B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Valve Device For Special Equipments (AREA)

Description

本発明は、内燃機関(以下、エンジンと称す)のカムシャフトの進角量を油圧制御によってコントロールし、吸気バルブまたは排気バルブの少なくとも一方の開閉タイミングを可変させるバルブタイミング調整装置(以下、VVTと称す)に関する。   The present invention controls a valve timing adjustment device (hereinafter referred to as VVT) that controls the advance angle of a camshaft of an internal combustion engine (hereinafter referred to as an engine) by hydraulic control and varies the opening and closing timing of at least one of an intake valve and an exhaust valve. Name).

背景技術を、図5を参照して説明する(図中における各符号は後述する実施例と共通)。
VVTは、エンジンのカムシャフトに取り付けられて、バルブの開閉タイミングを連続的に可変可能なバルブタイミング可変機構(以下、VCTと称す)2と、このVCT2の作動を油圧制御する油圧制御手段3と、油圧制御手段3に設けられるオイル・フロー・コントロール・バルブ(以下、OCVと称す)22を電気的に制御するECU(エンジン・コントロール・ユニットの略:制御装置)4とから構成されている(例えば、特許文献1、2参照)。
The background art will be described with reference to FIG. 5 (the reference numerals in the figure are common to the embodiments described later).
The VVT is attached to the camshaft of the engine and has a variable valve timing mechanism (hereinafter referred to as VCT) 2 that can continuously change the valve opening and closing timing, and a hydraulic control means 3 that hydraulically controls the operation of the VCT 2. And an ECU (abbreviation of engine control unit: control device) 4 for electrically controlling an oil flow control valve (hereinafter referred to as OCV) 22 provided in the hydraulic control means 3 ( For example, see Patent Documents 1 and 2).

VCT2は、エンジンのクランクシャフトによって回転駆動される入力側ロータ5と、エンジンのカムシャフトを回転駆動する出力側ロータ6とを備え、進角室A(出力側ロータ6を進角側へ変位させる油圧室)と遅角室B(出力側ロータ6を遅角側へ変位させる油圧室)に与えられる油圧差により、入力側ロータ5に対して出力側ロータ6を相対回転させて、クランクシャフトに対するカムシャフトの進角量の調整を行うものである。   The VCT 2 includes an input side rotor 5 that is rotationally driven by the crankshaft of the engine and an output side rotor 6 that rotationally drives the camshaft of the engine, and the advance chamber A (the output side rotor 6 is displaced to the advance side). The output-side rotor 6 is rotated relative to the input-side rotor 5 by the hydraulic pressure applied to the hydraulic chamber) and the retarding chamber B (the hydraulic chamber that displaces the output-side rotor 6 to the retarding side). This adjusts the amount of advance of the camshaft.

カムシャフトは、吸気バルブまたは排気バルブを開閉駆動するものであるため、カムシャフトにはバルブの開閉駆動に伴うトルク変動が発生する。
このカムシャフトに生じるトルク変動は、出力側ロータ6に伝わるため、入力側ロータ5に対して出力側ロータ6が遅角側および進角側にトルク変動することになる。
出力側ロータ6に進角側に向かうトルク変動が与えられると、進角室Aに拡張力が生じて進角室A内が負圧方向に作用する。
逆に、出力側ロータ6に遅角側に向かうトルク変動が与えられると、遅角室Bに拡張力が生じて遅角室B内が負圧方向に作用する。
即ち、カムシャフトから伝わるトルク変動により、進角室Aと遅角室Bには繰り返して拡張力が与えられる。
Since the camshaft drives the intake valve or the exhaust valve to open and close, the camshaft generates torque fluctuations accompanying the opening and closing drive of the valve.
The torque fluctuation generated in the camshaft is transmitted to the output-side rotor 6, so that the output-side rotor 6 undergoes torque fluctuation to the retard side and the advance side with respect to the input side rotor 5.
When torque fluctuation toward the advance side is given to the output side rotor 6, an expansion force is generated in the advance chamber A, and the inside of the advance chamber A acts in the negative pressure direction.
On the other hand, when torque fluctuation toward the retard side is given to the output side rotor 6, an expansion force is generated in the retard chamber B, and the inside of the retard chamber B acts in the negative pressure direction.
That is, the expansion force is repeatedly applied to the advance chamber A and the retard chamber B by the torque fluctuation transmitted from the camshaft.

ここで、オイルポンプ21の吐出油圧が低油圧の場合(油温が高く、エンジン低回転で供給油量が低い状態)、OCV22から進角室Aおよび遅角室Bに与えられる作動油圧が低油圧になる。
このような状態で、出力側ロータ6に進角側に向かうトルク変動が与えられると、遅角室Bの油圧によってトルク変動を押さえ込むことができず、進角室Aが拡張しようとする。OCV22は、オイルの流れ抵抗が大きいため、オイルポンプ21からOCV22を介して進角室Aに与えられるオイルの供給が間に合わないと進角室Aが負圧となる。
逆に、出力側ロータ6に遅角側へ向かうトルク変動が与えられると、進角室Aの油圧によってトルク変動を押さえ込むことができず、遅角室Bが拡張しようとする。OCV22は、オイルの流れ抵抗が大きいため、オイルポンプ21からOCV22を介して遅角室Bに与えられるオイルの供給が間に合わないと遅角室Bが負圧となる。
Here, when the discharge hydraulic pressure of the oil pump 21 is low (the oil temperature is high, the engine is rotating slowly and the amount of supplied oil is low), the hydraulic pressure applied from the OCV 22 to the advance chamber A and the retard chamber B is low. It becomes hydraulic.
In this state, if torque fluctuation toward the advance side is given to the output side rotor 6, the torque fluctuation cannot be suppressed by the hydraulic pressure in the retard chamber B, and the advance chamber A tries to expand. Since the oil flow resistance of the OCV 22 is large, the advance chamber A becomes a negative pressure unless the oil supplied from the oil pump 21 to the advance chamber A via the OCV 22 is in time.
Conversely, when torque fluctuation toward the retard angle side is given to the output side rotor 6, the torque fluctuation cannot be suppressed by the hydraulic pressure in the advance chamber A, and the retard chamber B tries to expand. Since the oil flow resistance of the OCV 22 is large, the retard chamber B becomes negative pressure if the oil supplied from the oil pump 21 to the retard chamber B via the OCV 22 is not in time.

トルク変動により進角室Aに負圧が生じると、出力側ロータ6には遅角方向の力が働くことになる。このため、カムシャフトの位相を遅角側から進角側へ変更する場合に、目標位相に到達するまでの応答時間が長くなるという問題が生じる。
同様に、トルク変動により遅角室Bに負圧が生じると、出力側ロータ6には進角方向の力が働くことになる。このため、カムシャフトの位相を進角側から遅角側へ変更する場合に、目標位相に到達するまでの応答時間が長くなるという問題が生じる。
特開2001−27107号公報 特開2005−54797号公報
When negative pressure is generated in the advance chamber A due to torque fluctuation, a force in the retard direction acts on the output-side rotor 6. For this reason, when the phase of the camshaft is changed from the retarded angle side to the advanced angle side, there arises a problem that the response time until reaching the target phase becomes longer.
Similarly, when a negative pressure is generated in the retard chamber B due to torque fluctuation, a force in the advance direction acts on the output side rotor 6. For this reason, when the phase of the camshaft is changed from the advance side to the retard side, there arises a problem that the response time until the target phase is reached becomes longer.
JP 2001-27107 A JP 2005-54797 A

本発明は、上記問題点に鑑みてなされたものであり、その目的は、進角室や遅角室に負圧が生じることによる応答性の劣化を防ぐことのできるVVTの提供にある。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a VVT capable of preventing deterioration of responsiveness due to negative pressure generated in an advance chamber or a retard chamber.

〔請求項1の手段〕
請求項1の手段を採用するVVTは、カムシャフトのトルク変動を受けて進角室に拡張力が与えられて進角室が負圧になると、進角側油路開閉弁が進角側高圧バイパス路を開く。すると、オイルポンプの発生した油圧が、オイルの流れ抵抗の大きいOCVをバイパスして進角室に与えられて進角室の油圧が上昇する。進角室の油圧が正圧になると、進角側油路開閉弁が進角側高圧バイパス路を閉じる。この結果、OCVで調圧された油圧のみが進角室および遅角室に与えられる。
このようにして進角室の負圧が防がれるため、出力側ロータに働く遅角方向の力が抑えられる。その結果、カムシャフトの位相を遅角側から進角側へ変更する場合に、目標位相に到達するまでの応答時間を短縮できる。
[Means of Claim 1]
In the VVT employing the means of claim 1, when the expansion force is applied to the advance chamber due to the torque fluctuation of the camshaft and the advance chamber becomes negative pressure, the advance side oil passage opening / closing valve becomes the advance side high pressure. Open the bypass. Then, the hydraulic pressure generated by the oil pump bypasses the OCV having a large oil flow resistance and is given to the advance chamber, so that the hydraulic pressure in the advance chamber increases. When the hydraulic pressure in the advance chamber becomes positive, the advance side oil passage opening / closing valve closes the advance side high pressure bypass passage. As a result, only the hydraulic pressure regulated by the OCV is applied to the advance chamber and the retard chamber.
Thus, since the negative pressure in the advance chamber is prevented, the retarding force acting on the output-side rotor is suppressed. As a result, when the phase of the camshaft is changed from the retard side to the advance side, the response time until the target phase is reached can be shortened.

〔請求項2の手段〕
請求項2の手段を採用するVVTの進角側油路開閉弁は、負圧により作動するスプール弁、あるいはダイヤフラムを用いた切替弁などの構造を採用するものであり、進角側高圧バイパス路を開閉する弁体と、進角側高圧バイパス路が閉じる側に弁体を付勢する閉弁力付与手段と、大気圧と進角室の油圧との差圧で弁体を駆動する差圧作動手段とを備える。
[Means of claim 2]
The advance side oil passage opening / closing valve of the VVT employing the means of claim 2 adopts a structure such as a spool valve operated by negative pressure or a switching valve using a diaphragm, and the advance side high pressure bypass passage. A valve body that opens and closes the valve body, a valve closing force applying means that urges the valve body toward the closing side of the advance side high-pressure bypass path, and a differential pressure that drives the valve body by a differential pressure between atmospheric pressure and the hydraulic pressure of the advance chamber Operating means.

〔請求項3の手段〕
請求項3の手段を採用するVVTは、カムシャフトのトルク変動を受けて遅角室に拡張力が与えられて遅角室が負圧になると、遅角側油路開閉弁が遅角側高圧バイパス路を開く。すると、オイルポンプの発生した油圧が、オイルの流れ抵抗の大きいOCVをバイパスして遅角室に与えられて遅角室の油圧が上昇する。遅角室の油圧が正圧になると、遅角側油路開閉弁が遅角側高圧バイパス路を閉じる。この結果、OCVで調圧された油圧のみが進角室および遅角室に与えられる。
このようにして遅角室の負圧が防がれるため、出力側ロータに働く進角方向の力が抑えられる。その結果、カムシャフトの位相を進角側から遅角側へ変更する場合に、目標位相に到達するまでの応答時間を短縮できる。
[Means of claim 3]
In the VVT employing the means of claim 3, when the expansion force is applied to the retard chamber due to the torque fluctuation of the camshaft and the retard chamber becomes negative pressure, the retard side oil passage opening / closing valve is set to the retard side high pressure. Open the bypass. Then, the hydraulic pressure generated by the oil pump bypasses the OCV having a large oil flow resistance and is given to the retard chamber, and the retard chamber hydraulic pressure increases. When the hydraulic pressure in the retard chamber becomes positive, the retard side oil passage opening / closing valve closes the retard side high pressure bypass passage. As a result, only the hydraulic pressure regulated by the OCV is applied to the advance chamber and the retard chamber.
In this way, the negative pressure in the retard chamber is prevented, so that the advance force acting on the output-side rotor is suppressed. As a result, when the phase of the camshaft is changed from the advance side to the retard side, the response time until the target phase is reached can be shortened.

〔請求項4の手段〕
請求項4の手段を採用するVVTの遅角側油路開閉弁は、負圧により作動するスプール弁、あるいはダイヤフラムを用いた切替弁などの構造を採用するものであり、遅角側高圧バイパス路を開閉する弁体と、遅角側高圧バイパス路が閉じる側に弁体を付勢する閉弁力付与手段と、大気圧と遅角室の油圧との差圧で弁体を駆動する差圧作動手段とを備える。
[Means of claim 4]
The VVT retarded side oil passage opening / closing valve employing the means of claim 4 employs a structure such as a spool valve operated by negative pressure or a switching valve using a diaphragm, and the retarded side high pressure bypass passage. A valve body that opens and closes the valve body, a valve closing force applying means that urges the valve body toward the closing side of the retard-side high-pressure bypass, and a differential pressure that drives the valve body by the differential pressure between the atmospheric pressure and the hydraulic pressure of the retard chamber Operating means.

VVTは、エンジンのクランクシャフトによって回転駆動される入力側ロータに対してエンジンのカムシャフトを回転駆動する出力側ロータを油圧によって進角側に駆動する進角室、および入力側ロータに対して出力側ロータを油圧によって遅角側に駆動する遅角室を備えるVCTと、進角室および遅角室に対して油圧の給排を行うOCVを備える油圧制御手段とを具備する。   The VVT outputs an output side rotor for rotationally driving an engine camshaft with respect to an input side rotor that is rotationally driven by an engine crankshaft, and an output to an advance side chamber for hydraulically driving the output side rotor. VCT having a retarding chamber for driving the side rotor to the retarding angle side by hydraulic pressure, and hydraulic control means having an OCV for supplying and discharging hydraulic pressure to and from the advance chamber and the retarding chamber.

最良の形態1のVVTの油圧制御手段は、OCVをバイパスしてオイルポンプの発生した油圧を進角室に与える進角側高圧バイパス路と、進角室の負圧によって駆動され、進角室の負圧時に進角側高圧バイパス路を開き、進角室の正圧時に進角側高圧バイパス路を閉じる進角側油路開閉弁とを備える。   The VVT hydraulic pressure control means of the best mode 1 is driven by an advance side high-pressure bypass passage that bypasses the OCV and supplies the hydraulic pressure generated by the oil pump to the advance chamber, and is driven by the negative pressure of the advance chamber. And an advance-side oil passage opening / closing valve that opens the advance-side high-pressure bypass when the negative pressure is negative and closes the advance-side high-pressure bypass when the advance chamber is positive.

最良の形態2のVVTの油圧制御手段は、OCVをバイパスしてオイルポンプの発生した油圧を遅角室に与える遅角側高圧バイパス路と、遅角室の負圧によって駆動され、遅角室の負圧時に遅角側高圧バイパス路を開き、遅角室の正圧時に遅角側高圧バイパス路を閉じる遅角側油路開閉弁とを備える。   The hydraulic control means for the VVT of the best mode 2 is driven by a retarded-side high-pressure bypass passage that bypasses the OCV and supplies the retarded chamber with the hydraulic pressure generated by the oil pump, and is driven by the negative pressure of the retarded chamber. And a retarding-side oil passage opening / closing valve that opens the retarding-side high-pressure bypass when the negative pressure is negative, and closes the retarding-side high-pressure bypass when the retarding chamber is positive.

最良の形態3のVVTの油圧制御手段は、最良の形態1、2を組み合わせたものであり、OCVをバイパスしてオイルポンプの発生した油圧を進角室に与える進角側高圧バイパス路と、進角室の負圧によって駆動され、進角室の負圧時に進角側高圧バイパス路を開き、進角室の正圧時に進角側高圧バイパス路を閉じる進角側油路開閉弁と、OCVをバイパスしてオイルポンプの発生した油圧を遅角室に与える遅角側高圧バイパス路と、遅角室の負圧によって駆動され、遅角室の負圧時に遅角側高圧バイパス路を開き、遅角室の正圧時に遅角側高圧バイパス路を閉じる遅角側油路開閉弁とを備える。   The VVT hydraulic control means of the best mode 3 is a combination of the best modes 1 and 2, and an advance side high-pressure bypass passage that bypasses the OCV and supplies the oil pressure generated by the oil pump to the advance chamber; An advance side oil passage opening / closing valve that is driven by the negative pressure of the advance chamber, opens the advance side high pressure bypass passage when the advance chamber pressure is negative, and closes the advance side high pressure bypass passage when the advance chamber pressure is positive; A retarded-side high-pressure bypass that bypasses the OCV and supplies the oil pressure generated by the oil pump to the retarded chamber, and is driven by the negative pressure in the retarded chamber, and opens the retarded-side high-pressure bypass when negative pressure is in the retarded chamber And a retard-side oil passage opening / closing valve that closes the retard-side high-pressure bypass when the retard chamber has a positive pressure.

本発明を適用した実施例1を、図1〜図4を参照して説明する。
(VVTの説明)
先ず、VVTの構造を図3、図4を参照して説明する。
VVTは、エンジンのカムシャフト(吸気バルブ用、排気バルブ用、吸排気兼用カムシャフトのいずれか)1に取り付けられて、吸気バルブまたは排気バルブの少なくとも一方のバルブの開閉タイミングを連続的に可変可能なVCT2と、このVCT2の作動を油圧によって制御する油圧制御手段3と、この油圧制御手段3を電気的に制御するECU4とから構成される。
A first embodiment to which the present invention is applied will be described with reference to FIGS.
(Explanation of VVT)
First, the structure of the VVT will be described with reference to FIGS.
The VVT is attached to the engine camshaft (intake valve, exhaust valve, intake / exhaust combined camshaft) 1 and can continuously change the opening / closing timing of at least one of the intake valve and the exhaust valve. VCT 2, hydraulic control means 3 for controlling the operation of VCT 2 by hydraulic pressure, and ECU 4 for electrically controlling hydraulic control means 3.

(VCT2の説明)
VCT2は、エンジンのクランクシャフトに同期して回転駆動される入力側ロータ(ハウジングロータ)5と、この入力側ロータ5に対して相対回転可能に設けられ、カムシャフト1と一体に回転する出力側ロータ(ベーンロータ)6とを備えるものであり、入力側ロータ5内に構成される油圧アクチュエータによって入力側ロータ5に対して出力側ロータ6を相対的に回転駆動して、カムシャフト1を進角側あるいは遅角側へ変化させるものである。
(Explanation of VCT2)
The VCT 2 is provided with an input side rotor (housing rotor) 5 that is driven to rotate in synchronization with the crankshaft of the engine, and an output side that is provided so as to be rotatable relative to the input side rotor 5 and rotates integrally with the camshaft 1. The rotor (vane rotor) 6 is provided, and the output side rotor 6 is driven to rotate relative to the input side rotor 5 by a hydraulic actuator configured in the input side rotor 5 to advance the camshaft 1. It changes to the side or retarded side.

入力側ロータ5は、エンジンのクランクシャフトにタイミングベルトやタイミングチェーン等を介して回転駆動されるスプロケット7と、略リング円盤形状のフロントプレート8と、スプロケット7とフロントプレート8に軸方向に挟まれるシューハウジング9との3部品が複数のボルト10によって結合されて、スプロケット7と一体回転するものである。なお、フロントプレート8とシューハウジング9とを、1つの部品で形成したものであっても良い。
シューハウジング9は、図4に示すように、内径方向に仕切り部材として複数(この実施例では3つ)のシュー9aを有しており、各シュー9aの間に略扇状凹部が形成される。なお、入力側ロータ5は、図4において時計方向に回転するものであり、この回転方向が進角方向である。
The input-side rotor 5 is sandwiched in the axial direction between a sprocket 7 that is rotationally driven by a crankshaft of an engine via a timing belt, a timing chain, or the like, a substantially ring disk-shaped front plate 8, and the sprocket 7 and the front plate 8. The three parts with the shoe housing 9 are coupled by a plurality of bolts 10 and rotate integrally with the sprocket 7. Note that the front plate 8 and the shoe housing 9 may be formed of a single component.
As shown in FIG. 4, the shoe housing 9 has a plurality of (three in this embodiment) shoes 9a as partition members in the inner diameter direction, and a substantially fan-shaped recess is formed between the shoes 9a. In addition, the input side rotor 5 rotates clockwise in FIG. 4, and this rotation direction is an advance angle direction.

出力側ロータ6は、カムシャフト1の端部にノックピン11で一体回転するように位置決めされた後、センターボルト12によってカムシャフト1の端部に固定されるものであり、カムシャフト1と一体に回転する。
出力側ロータ6は、各シュー9aの間に形成される略扇状凹部を進角室Aと遅角室Bに区画する複数(この実施例では3つ)のベーン6aを備えるものであり、出力側ロータ6は入力側ロータ5に対して所定角度内で回転可能に設けられている。
進角室Aは、油圧によってベーン6aを進角側へ駆動するための油圧室であってベーン6aの反回転方向側の略扇状凹部内に形成される。逆に、遅角室Bは、油圧によってベーン6aを遅角側へ駆動するための油圧室である。各ベーン6aの外周面には、シューハウジング9の内周面に摺動するシール部材13が設けられており、進角室Aと遅角室Bの連通を遮断している。
The output-side rotor 6 is positioned at the end of the camshaft 1 so as to rotate integrally with the knock pin 11, and then fixed to the end of the camshaft 1 by the center bolt 12. Rotate.
The output-side rotor 6 includes a plurality of (three in this embodiment) vanes 6a that divide a substantially fan-shaped recess formed between the shoes 9a into an advance chamber A and a retard chamber B. The side rotor 6 is provided to be rotatable within a predetermined angle with respect to the input side rotor 5.
The advance chamber A is a hydraulic chamber for driving the vane 6a to the advance side by hydraulic pressure, and is formed in a substantially fan-shaped recess on the side opposite to the rotation direction of the vane 6a. Conversely, the retard chamber B is a hydraulic chamber for driving the vane 6a to the retard side by hydraulic pressure. A seal member 13 that slides on the inner peripheral surface of the shoe housing 9 is provided on the outer peripheral surface of each vane 6a to block communication between the advance chamber A and the retard chamber B.

VCT2は、出力側ロータ6を最遅角位置で入力側ロータ5に係合させるストッパピン14を備える。
ストッパピン14は、略円柱棒状を呈し、3つのベーン6aのうちの1つにおいて軸方向に貫通形成された略円穴形状のストッパ挿入穴15の内部に軸方向に摺動自在に挿入されている。このストッパピン14は、スプリング16によってスプロケット7側に付勢されており、最遅角位置においてスプロケット7に圧入固定されたストッパブッシュ17内に嵌合するように設けられている。なお、ストッパピン14とストッパブッシュ17の嵌合部にはテーパ部が形成されており、ストッパピン14がストッパブッシュ17に滑らかに嵌合するようになっている。
The VCT 2 includes a stopper pin 14 for engaging the output side rotor 6 with the input side rotor 5 at the most retarded position.
The stopper pin 14 has a substantially cylindrical rod shape, and is slidably inserted in the axial direction into a substantially circular stopper insertion hole 15 formed through one of the three vanes 6a in the axial direction. Yes. The stopper pin 14 is biased toward the sprocket 7 by a spring 16 and is provided so as to be fitted in a stopper bush 17 press-fitted and fixed to the sprocket 7 at the most retarded position. A tapered portion is formed in the fitting portion between the stopper pin 14 and the stopper bush 17 so that the stopper pin 14 can be smoothly fitted into the stopper bush 17.

ストッパピン14の図3右側先端とスプロケット7との間に形成される第1ストッパ解除油室18は、進角室Aと連通しており、進角室Aに印加される油圧によりストッパピン14を図3左側へ押し戻し、ストッパピン14とストッパブッシュ17の嵌合を解除するように設けられている。
また、ストッパピン14は、図3左側が大径に設けられており、このストッパピン14の段差部とストッパ挿入穴15との間に形成される第2ストッパ解除油室19は、遅角室Bと連通しており、遅角室Bに印加される油圧によりストッパピン14を図3左側へ押し戻し、ストッパピン14とストッパブッシュ17の嵌合を解除するように設けられている。
A first stopper releasing oil chamber 18 formed between the tip of the stopper pin 14 on the right side in FIG. 3 and the sprocket 7 communicates with the advance chamber A, and the stopper pin 14 is driven by the hydraulic pressure applied to the advance chamber A. 3 is pushed back to the left side in FIG. 3 to release the fitting between the stopper pin 14 and the stopper bush 17.
Further, the stopper pin 14 is provided with a large diameter on the left side in FIG. 3, and the second stopper release oil chamber 19 formed between the step portion of the stopper pin 14 and the stopper insertion hole 15 is a retard chamber. The stopper pin 14 is pushed back to the left side in FIG. 3 by the hydraulic pressure applied to the retard chamber B, and the fitting between the stopper pin 14 and the stopper bush 17 is released.

(油圧制御手段3の説明)
次に、油圧制御手段3を図2、図3を参照して説明する。
油圧制御手段3は、進角室Aおよび遅角室Bのオイルを給排して、進角室Aと遅角室Bに油圧差を発生させて出力側ロータ6を入力側ロータ5に対して相対回転させるための手段であり、クランクシャフト等によって駆動されるオイルポンプ(油圧発生源)21から圧送されるオイル(油圧)を進角室Aまたは遅角室Bに切り替えて供給するOCV22を備える。なお、OCV22のバイパス路等については後述する。
(Description of hydraulic control means 3)
Next, the hydraulic control means 3 will be described with reference to FIGS.
The hydraulic pressure control means 3 supplies and discharges oil from the advance chamber A and the retard chamber B, generates a hydraulic pressure difference between the advance chamber A and the retard chamber B, and connects the output side rotor 6 to the input side rotor 5. OCV 22 is a means for relatively rotating the oil, and supplies oil (hydraulic pressure) pumped from an oil pump (hydraulic pressure generating source) 21 driven by a crankshaft or the like to the advance chamber A or the retard chamber B. Prepare. The bypass path of the OCV 22 will be described later.

OCV22は、スプール弁と、このスプール弁を駆動する電磁アクチュエータとを結合してなる周知の電磁スプール弁である。
スプール弁は、オイルポンプ21に連通する入力ポート23と、進角室Aに進角油路24を介して連通する進角側出力ポート25と、遅角室Bに遅角油路26を介して連通する遅角側出力ポート27と、進角室Aのオイル排出を行う進角側排出ポート28と、遅角室Bのオイル排出を行う遅角側排出ポート29とを備える。なお、進角側排出ポート28と遅角側排出ポート29を共通化したものであっても良い。
そして、電磁アクチュエータの作動によりスプール弁内のスプールを変位させることで各ポートの連通状態を制御して、進角側出力ポート25の発生油圧(進角室Aの油圧)と、遅角側出力ポート27の発生油圧(遅角室Bの油圧)とを制御するものである。
The OCV 22 is a well-known electromagnetic spool valve formed by coupling a spool valve and an electromagnetic actuator that drives the spool valve.
The spool valve includes an input port 23 communicating with the oil pump 21, an advance side output port 25 communicating with the advance chamber A via the advance oil passage 24, and a retard oil passage 26 with the retard chamber B. A retarded angle side output port 27 communicating therewith, an advance angle side drain port 28 for draining oil from the advance angle chamber A, and a retard angle side drain port 29 for draining oil from the retard angle chamber B. The advance side discharge port 28 and the retard side discharge port 29 may be made common.
Then, the communication state of each port is controlled by displacing the spool in the spool valve by the operation of the electromagnetic actuator, and the hydraulic pressure generated by the advance side output port 25 (hydraulic pressure of the advance chamber A) and the retard side output It controls the hydraulic pressure generated by the port 27 (hydraulic pressure in the retard chamber B).

なお、OCV22の進角側出力ポート25から進角室Aに通じる進角油路24と、遅角側出力ポート27から遅角室Bに通じる遅角油路26は、図3に示すように、エンジン側の固定油路→カムシャフト1を回転自在に支持するカムジャーナル30→カムシャフト1の内部油路→出力側ロータ6の内部油路によって設けられている。   As shown in FIG. 3, the advance oil passage 24 leading from the advance angle side output port 25 of the OCV 22 to the advance angle chamber A and the retard angle oil passage 26 leading from the retard angle side output port 27 to the retard angle chamber B are as shown in FIG. The engine side fixed oil passage → the cam journal 30 that rotatably supports the camshaft 1 → the internal oil passage of the camshaft 1 → the internal oil passage of the output side rotor 6 is provided.

(ECU4の説明)
ECU4は、周知のコンピュータである。このECU4は、各種センサ等により読み込まれたエンジン運転状態(乗員の運転状態を含む)と、メモリに記憶されたプログラムとに基づいてOCV22の通電量(供給電流量)をデューティ比制御するVVT制御機能を備えており、OCV22の通電量が制御されることで進角室Aおよび遅角室Bの油圧が制御されて、カムシャフト1の進角位相(進角量)をエンジン運転状態に応じた進角位相に制御する。
(Description of ECU 4)
The ECU 4 is a known computer. The ECU 4 performs duty ratio control on the energization amount (supply current amount) of the OCV 22 based on the engine operation state (including the occupant operation state) read by various sensors and the program stored in the memory. It has a function, and the hydraulic pressure of the advance chamber A and the retard chamber B is controlled by controlling the energization amount of the OCV 22, and the advance phase (advance amount) of the camshaft 1 is set according to the engine operating state. Control to advance phase.

〔実施例1の特徴1〕
この実施例1の油圧制御手段3には、図2(a)に示すように、OCV22をバイパスしてオイルポンプ21の発生した油圧を進角室Aに与える進角側高圧バイパス路41が設けられている。この進角側高圧バイパス路41は、エンジン側の固定油路であり、例えば、OCV22が取り付けられるシリンダヘッドあるいはカムカバーに形成されている。
進角側高圧バイパス路41には、進角室Aの負圧によって駆動され、進角室Aの負圧時に進角側高圧バイパス路41を開き、進角室Aの正圧時に進角側高圧バイパス路41を閉じる進角側油路開閉弁42が設けられている。
[Feature 1 of Example 1]
As shown in FIG. 2A, the hydraulic pressure control means 3 of the first embodiment is provided with an advance side high pressure bypass passage 41 that bypasses the OCV 22 and supplies the hydraulic pressure generated by the oil pump 21 to the advance chamber A. It has been. The advance side high pressure bypass passage 41 is a fixed oil passage on the engine side, and is formed, for example, in a cylinder head or a cam cover to which the OCV 22 is attached.
The advance side high pressure bypass passage 41 is driven by the negative pressure of the advance chamber A, opens the advance side high pressure bypass passage 41 when the advance chamber A has a negative pressure, and advances on the advance side when the advance chamber A has a positive pressure. An advance side oil passage opening / closing valve 42 for closing the high pressure bypass passage 41 is provided.

進角側油路開閉弁42は、大気圧と進角室Aの圧力差によって進角側高圧バイパス路41を開閉する切替弁であり、応答性を高めるために小型に設けられている。この進角側油路開閉弁42は、進角側高圧バイパス路41を開閉する弁体43と、進角側高圧バイパス路41が閉じる側に弁体43を付勢する閉弁力付与手段44と、大気圧と進角室Aの油圧との差圧で弁体43を駆動する差圧作動手段とを備える。
この実施例1の進角側油路開閉弁42は、図2(b)に示すように、スプール弁構造を採用する。また、この実施例1の差圧作動手段は、弁体43および弁体43の軸方向両側の空間(大気に連通する空間と、進角室Aに連通する空間)とで構成され、弁体43の両側の空間の差圧により弁体43が変位するように設けられている。なお、差圧でダイヤフラムを変位させ、ダイヤフラムの変位によって弁体43を駆動させるように進角側油路開閉弁42を設けても良い。
The advance side oil passage opening / closing valve 42 is a switching valve that opens and closes the advance side high pressure bypass passage 41 according to the pressure difference between the atmospheric pressure and the advance chamber A, and is provided in a small size in order to improve responsiveness. The advance side oil passage opening / closing valve 42 includes a valve body 43 for opening and closing the advance side high pressure bypass passage 41 and a valve closing force applying means 44 for biasing the valve body 43 toward the side where the advance side high pressure bypass passage 41 is closed. And differential pressure operating means for driving the valve body 43 with a differential pressure between the atmospheric pressure and the hydraulic pressure of the advance chamber A.
The advance side oil passage opening / closing valve 42 of the first embodiment employs a spool valve structure as shown in FIG. The differential pressure actuating means of the first embodiment is configured by a valve body 43 and a space on both sides in the axial direction of the valve body 43 (a space communicating with the atmosphere and a space communicating with the advance chamber A). The valve body 43 is provided so as to be displaced by the pressure difference between the spaces on both sides of the valve 43. The advance side oil passage opening / closing valve 42 may be provided so that the diaphragm is displaced by the differential pressure and the valve body 43 is driven by the displacement of the diaphragm.

ここで、進角側油路開閉弁42の構造を、図2(b)を参照して具体的に説明する。
進角側油路開閉弁42は、OCV22が取り付けられるシリンダヘッドあるいはカムカバーに形成された軸穴45(シリンダヘッドあるいはカムカバーに取り付けられる筒状スリーブの軸穴)の内部において軸方向へ摺動自在に支持される弁体43(スプール)を備える。この弁体43によって区画される軸穴45の一方の空間(図示左側空間)は、開口部を介して大気に連通する大気室である。また、弁体43によって区画される軸穴45の他方の空間(図示右側空間)は油路を介して進角側高圧バイパス路41の進角室A側と連通する背圧室(進角室Aと略同圧の空間)である。
Here, the structure of the advance side oil passage opening / closing valve 42 will be specifically described with reference to FIG.
The advance side oil passage opening / closing valve 42 is slidable in the axial direction inside a shaft hole 45 (a shaft hole of a cylindrical sleeve attached to the cylinder head or cam cover) formed in the cylinder head or cam cover to which the OCV 22 is attached. A valve body 43 (spool) to be supported is provided. One space (left space in the figure) of the shaft hole 45 defined by the valve body 43 is an atmospheric chamber that communicates with the atmosphere through the opening. Further, the other space (right space in the figure) of the shaft hole 45 defined by the valve body 43 is a back pressure chamber (advance chamber) that communicates with the advance chamber A side of the advance side high pressure bypass passage 41 via an oil passage. A space having substantially the same pressure as A).

弁体43は、大気室側に変位すると進角側高圧バイパス路41を閉じ、背圧室側に変位すると進角側高圧バイパス路41を開くように設けられている。
背圧室の内部には、弁体43を大気室側、即ち進角側高圧バイパス路41を閉じる側(閉弁方向)に付勢する閉弁力付与手段44が設けられている。この閉弁力付与手段44は、弁体43を大気室側(閉弁側)へ付勢するスプリング(例えば、圧縮コイルスプリング等)である。この閉弁力付与手段44は、進角側油路開閉弁42の開弁圧の設定を行うものであり、開弁時の応答性を高めるために閉弁力付与手段44による弁体43の付勢力は弱めに設定されている。
The valve body 43 is provided so as to close the advance side high pressure bypass passage 41 when displaced toward the atmosphere chamber side and open the advance side high pressure bypass passage 41 when displaced toward the back pressure chamber side.
Inside the back pressure chamber, there is provided a valve closing force applying means 44 for biasing the valve body 43 toward the atmosphere chamber, that is, the side of closing the advance side high pressure bypass passage 41 (the valve closing direction). The valve closing force applying means 44 is a spring (for example, a compression coil spring or the like) that urges the valve body 43 toward the atmosphere chamber side (valve closing side). The valve closing force applying means 44 sets the valve opening pressure of the advance side oil passage opening / closing valve 42, and the valve closing force applying means 44 improves the responsiveness when the valve opening force is applied. The biasing force is set to be weak.

〔実施例1の特徴2〕
また、この実施例1の油圧制御手段3には、図2(a)に示すように、OCV22をバイパスしてオイルポンプ21の発生した油圧を遅角室Bに与える遅角側高圧バイパス路51が設けられている。この遅角側高圧バイパス路51は、上述した進角側高圧バイパス路41と同様、エンジン側の固定油路であり、例えば、OCV22が取り付けられるシリンダヘッドあるいはカムカバーに形成されている。
遅角側高圧バイパス路51には、遅角室Bの負圧によって駆動され、遅角室Bの負圧時に遅角側高圧バイパス路51を開き、遅角室Bの正圧時に遅角側高圧バイパス路51を閉じる遅角側油路開閉弁52が設けられている。
[Feature 2 of Example 1]
Further, in the hydraulic pressure control means 3 of the first embodiment, as shown in FIG. 2A, the retard side high pressure bypass passage 51 that bypasses the OCV 22 and supplies the hydraulic pressure generated by the oil pump 21 to the retard chamber B. Is provided. The retard side high pressure bypass passage 51 is a fixed oil passage on the engine side, similar to the advance side high pressure bypass passage 41 described above, and is formed, for example, in a cylinder head or a cam cover to which the OCV 22 is attached.
The retard side high pressure bypass 51 is driven by the negative pressure of the retard chamber B, opens the retard side high pressure bypass 51 when the retard chamber B has a negative pressure, and retards when the retard chamber B has a positive pressure. A retarded-side oil passage opening / closing valve 52 that closes the high-pressure bypass passage 51 is provided.

遅角側油路開閉弁52は、大気圧と遅角室Bの圧力差によって遅角側高圧バイパス路51を開閉する切替弁であり、応答性を高めるために小型に設けられている。この遅角側油路開閉弁52は、遅角側高圧バイパス路51を開閉する弁体53と、遅角側高圧バイパス路51が閉じる側に弁体53を付勢する閉弁力付与手段54と、大気圧と遅角室Bの油圧との差圧で弁体53を駆動する差圧作動手段とを備える。
この実施例1の遅角側油路開閉弁52は、進角側油路開閉弁42と同様の構成を採用する。即ち、スプール弁構造を採用するものであり、差圧作動手段は弁体53および弁体53の軸方向両側の空間(大気に連通する空間と、遅角室Bに連通する空間)とで構成され、弁体53の両側の空間の差圧により弁体53が変位するように設けられている。なお、差圧でダイヤフラムを変位させ、ダイヤフラムの変位によって弁体53を駆動させるように遅角側油路開閉弁52を設けても良い。
実施例1の遅角側油路開閉弁52の具体的な構造は、上述した進角側油路開閉弁42と同一構造{図2(b)参照}を採用するものであり、説明は省略する。
The retarding-side oil passage opening / closing valve 52 is a switching valve that opens and closes the retarding-side high-pressure bypass passage 51 according to the pressure difference between the atmospheric pressure and the retarding chamber B, and is provided in a small size in order to improve responsiveness. The retard side oil passage opening / closing valve 52 includes a valve body 53 that opens and closes the retard side high pressure bypass passage 51 and a valve closing force applying means 54 that biases the valve body 53 toward the side where the retard side high pressure bypass passage 51 is closed. And differential pressure operating means for driving the valve body 53 with a differential pressure between the atmospheric pressure and the hydraulic pressure of the retarded chamber B.
The retard angle side oil passage opening / closing valve 52 of the first embodiment employs the same configuration as the advance angle side oil passage opening / closing valve 42. That is, a spool valve structure is adopted, and the differential pressure operating means is constituted by a valve body 53 and spaces on both axial sides of the valve body 53 (a space communicating with the atmosphere and a space communicating with the retarded angle chamber B). In addition, the valve body 53 is provided so as to be displaced by the pressure difference between the spaces on both sides of the valve body 53. Note that the retard side oil passage opening / closing valve 52 may be provided so that the diaphragm is displaced by the differential pressure and the valve body 53 is driven by the displacement of the diaphragm.
The specific structure of the retard side oil passage opening / closing valve 52 of the first embodiment employs the same structure as that of the aforementioned advance side oil passage opening / closing valve 42 (see FIG. 2B), and the description thereof is omitted. To do.

(VVTの作動説明)
エンジンの停止状態では、ストッパピン14はストッパブッシュ17に嵌合している。エンジンの始動直後の状態では、オイルポンプ21から各油圧室に油圧が十分に供給されないため、ストッパピン14はストッパブッシュ17に嵌合したままであり、カムシャフト1は最遅角位置に保持されている。これにより、油圧が各油圧室に供給されるまでの間、カムシャフト1が受けるトルク変動によって入力側ロータ5と出力側ロータ6とが揺動して衝突する不具合がない。
(Explanation of VVT operation)
When the engine is stopped, the stopper pin 14 is fitted to the stopper bush 17. Immediately after the engine is started, oil pressure is not sufficiently supplied from the oil pump 21 to each hydraulic chamber, so that the stopper pin 14 remains fitted to the stopper bush 17 and the camshaft 1 is held at the most retarded position. ing. Thus, there is no problem that the input-side rotor 5 and the output-side rotor 6 swing and collide with each other due to the torque fluctuation received by the camshaft 1 until the hydraulic pressure is supplied to each hydraulic chamber.

エンジンの始動後、オイルポンプ21から各油圧室に油圧が十分に供給されると、第1、第2ストッパ解除油室18、19に供給される油圧によりストッパピン14がストッパブッシュ17から抜け出すため、入力側ロータ5に対して出力側ロータ6が相対的に回転可能になる。そして、進角室Aの油圧を遅角室Bの油圧より大きくすることで出力側ロータ6が入力側ロータ5に対して相対的に進角側へ変位してカムシャフト1が進角し、逆に遅角室Bの油圧を進角室Aの油圧より大きくすることで出力側ロータ6が入力側ロータ5に対して相対的に遅角側へ変位してカムシャフト1が遅角する。
出力側ロータ6が目標位相に到達すると、ECU4はOCV22の通電量をデューティ比制御して、進角室Aおよび遅角室Bの駆動油圧を保持し、出力側ロータ6を目標位相に保持する。
After the engine is started, if the hydraulic pressure is sufficiently supplied from the oil pump 21 to each hydraulic chamber, the stopper pin 14 comes out of the stopper bush 17 by the hydraulic pressure supplied to the first and second stopper release oil chambers 18 and 19. The output-side rotor 6 can rotate relative to the input-side rotor 5. Then, by making the hydraulic pressure in the advance chamber A greater than the hydraulic pressure in the retard chamber B, the output side rotor 6 is displaced toward the advance side relative to the input side rotor 5, and the camshaft 1 is advanced. Conversely, by making the hydraulic pressure in the retard chamber B greater than the hydraulic pressure in the advance chamber A, the output side rotor 6 is displaced to the retard side relative to the input side rotor 5 and the camshaft 1 is retarded.
When the output side rotor 6 reaches the target phase, the ECU 4 controls the duty ratio of the energization amount of the OCV 22, maintains the drive hydraulic pressure of the advance chamber A and the retard chamber B, and holds the output side rotor 6 at the target phase. .

(実施例1の効果1)
図1(a)を参照して、オイルポンプ21の吐出油圧が低油圧のエンジン運転状態(油温が高く、エンジン低回転で供給油量が低い状態)で、OCV22から進角室Aおよび遅角室Bに与えられる作動油圧が低油圧の場合におけるVVTの「進角作動」を説明する。 この状態で、出力側ロータ6に進角側に向かうカムシャフト1のトルク変動が与えられると、遅角室Bの油圧によってトルク変動を押さえ込むことができず、進角室Aが拡張しようとする。この時、オイルポンプ21からOCV22を介して進角室Aに与えられるオイルの供給が間に合わないと進角室Aが負圧となる。すると、進角室Aに連通する進角側油路開閉弁42の背圧室も負圧になり、進角側油路開閉弁42の弁体43が開弁側へ変位して、進角側油路開閉弁42が進角側高圧バイパス路41を開く。これにより、オイルポンプ21の発生した油圧が、オイルの流れ抵抗の大きいOCV22をバイパスして進角室Aに与えられて進角室Aの油圧が上昇する。
(Effect 1 of Example 1)
Referring to FIG. 1A, in the engine operating state where the oil pump 21 has a low discharge hydraulic pressure (the oil temperature is high, the engine is rotating low and the amount of oil supplied is low), the OCV 22 and the advance chamber A and the slow oil pressure are retarded. The “advanced angle operation” of the VVT when the hydraulic pressure applied to the corner chamber B is low will be described. In this state, if torque fluctuation of the camshaft 1 toward the advance side is given to the output side rotor 6, the torque fluctuation cannot be suppressed by the hydraulic pressure of the retard chamber B, and the advance chamber A tries to expand. . At this time, if the supply of oil supplied from the oil pump 21 to the advance chamber A via the OCV 22 is not in time, the advance chamber A becomes negative pressure. Then, the back pressure chamber of the advance side oil passage opening / closing valve 42 communicating with the advance angle chamber A also becomes negative pressure, and the valve body 43 of the advance side oil passage opening / closing valve 42 is displaced to the valve opening side, so that the advance angle is increased. The side oil passage opening / closing valve 42 opens the advance side high pressure bypass passage 41. As a result, the hydraulic pressure generated by the oil pump 21 bypasses the OCV 22 having a large oil flow resistance and is given to the advance chamber A, so that the hydraulic pressure in the advance chamber A increases.

進角側油路開閉弁42の開弁動作により進角室Aの油圧が上昇して正圧になると、進角室Aに連通する進角側油路開閉弁42の背圧室も正圧になり、進角側油路開閉弁42の弁体43が閉弁側へ変位して、進角側油路開閉弁42が進角側高圧バイパス路41を閉じる。これによって、OCV22で調圧された油圧のみが進角室Aおよび遅角室Bに与えられる。
上記の作動により進角室Aの負圧が防がれるため、出力側ロータ6に働く遅角方向の力が抑えられ、カムシャフト1の位相を遅角側から進角側へ変更する場合における目標位相への到達時間を短縮できる。即ち、進角時の応答性を高めることができる。
When the hydraulic pressure in the advance chamber A rises to a positive pressure due to the opening operation of the advance side oil passage opening / closing valve 42, the back pressure chamber of the advance side oil passage opening / closing valve 42 communicating with the advance chamber A is also positive pressure. Thus, the valve element 43 of the advance side oil passage opening / closing valve 42 is displaced toward the valve closing side, and the advance side oil passage opening / closing valve 42 closes the advance side high pressure bypass passage 41. As a result, only the hydraulic pressure regulated by the OCV 22 is applied to the advance chamber A and the retard chamber B.
Since the negative pressure in the advance chamber A is prevented by the above operation, the retard force acting on the output side rotor 6 is suppressed, and the phase of the camshaft 1 is changed from the retard side to the advance side. The time to reach the target phase can be shortened. That is, the responsiveness at the time of advance can be improved.

(実施例1の効果2)
図1(b)を参照して、オイルポンプ21の吐出油圧が低油圧のエンジン運転状態(油温が高く、エンジン低回転で供給油量が低い状態)で、OCV22から進角室Aおよび遅角室Bに与えられる作動油圧が低油圧の場合におけるVVTの「遅角作動」を説明する。 この状態で、出力側ロータ6に遅角側に向かうカムシャフト1のトルク変動が与えられると、進角室Aの油圧によってトルク変動を押さえ込むことができず、遅角室Bが拡張しようとする。この時、オイルポンプ21からOCV22を介して遅角室Bに与えられるオイルの供給が間に合わないと遅角室Bが負圧となる。すると、遅角室Bに連通する遅角側油路開閉弁52の背圧室も負圧になり、遅角側油路開閉弁52の弁体53が開弁側へ変位して、遅角側油路開閉弁52が遅角側高圧バイパス路51を開く。これにより、オイルポンプ21の発生した油圧が、オイルの流れ抵抗の大きいOCV22をバイパスして遅角室Bに与えられて遅角室Bの油圧が上昇する。
(Effect 2 of Example 1)
Referring to FIG. 1B, in the engine operating state where the discharge hydraulic pressure of the oil pump 21 is low (the oil temperature is high, the engine is low and the supply oil amount is low), the OCV 22 and the advance angle chamber A and the slow chamber The “retarding operation” of the VVT in the case where the working oil pressure applied to the corner chamber B is a low oil pressure will be described. In this state, when the torque fluctuation of the camshaft 1 toward the retard side is given to the output side rotor 6, the torque fluctuation cannot be suppressed by the hydraulic pressure of the advance chamber A, and the retard chamber B tries to expand. . At this time, if the supply of oil supplied from the oil pump 21 to the retardation chamber B via the OCV 22 is not in time, the retardation chamber B becomes negative pressure. Then, the back pressure chamber of the retard side oil passage opening / closing valve 52 communicating with the retardation chamber B also becomes negative pressure, and the valve body 53 of the retard side oil passage opening / closing valve 52 is displaced to the valve opening side, thereby retarding the retard angle. The side oil passage opening / closing valve 52 opens the retard side high pressure bypass passage 51. As a result, the hydraulic pressure generated by the oil pump 21 bypasses the OCV 22 having a large oil flow resistance and is given to the retarded chamber B, so that the hydraulic pressure in the retarded chamber B increases.

遅角側油路開閉弁52の開弁動作により遅角室Bの油圧が上昇して正圧になると、遅角室Bに連通する遅角側油路開閉弁52の背圧室も正圧になり、遅角側油路開閉弁52の弁体53が閉弁側へ変位して、遅角側油路開閉弁52が遅角側高圧バイパス路51を閉じる。これによって、OCV22で調圧された油圧のみが進角室Aおよび遅角室Bに与えられる。
上記の作動により遅角室Bの負圧が防がれるため、出力側ロータ6に働く進角方向の力が抑えられ、カムシャフト1の位相を進角側から遅角側へ変更する場合における目標位相への到達時間を短縮できる。即ち、遅角時の応答性を高めることができる。
When the hydraulic pressure in the retarding chamber B rises to a positive pressure due to the opening operation of the retarding-side oil passage opening / closing valve 52, the back pressure chamber of the retarding-side oil passage opening / closing valve 52 communicating with the retarding chamber B is also positive pressure. Thus, the valve body 53 of the retarded-side oil passage opening / closing valve 52 is displaced toward the valve closing side, and the retarding-side oil passage on-off valve 52 closes the retarding-side high-pressure bypass passage 51. As a result, only the hydraulic pressure regulated by the OCV 22 is applied to the advance chamber A and the retard chamber B.
Since the negative pressure in the retard chamber B is prevented by the above operation, the force in the advance direction acting on the output side rotor 6 is suppressed, and the phase of the camshaft 1 is changed from the advance side to the retard side. The time to reach the target phase can be shortened. That is, the responsiveness at the time of retardation can be improved.

(実施例1の効果3)
上記実施例1の効果1、2では、進角作動時および遅角作動時における効果を説明したが、出力側ロータ6が目標位相に到達し、その状態を保持する際であっても次の効果を得ることができる。
オイルポンプ21の吐出油圧が低油圧のエンジン運転状態(油温が高く、エンジン低回転で供給油量が低い状態)で、OCV22から進角室Aおよび遅角室Bに与えられる作動油圧が低油圧の場合におけるVVTの「目標位相保持作動」を説明する。
この状態でカムシャフト1のトルク変動を受けると、進角室Aと遅角室Bとが交互に繰り返して負圧になる。進角室Aが負圧になると、上記実施例1の効果1で説明したように、進角側油路開閉弁42が開き、進角室Aの負圧を解消する。同様に、遅角室Bが負圧になると、上記実施例1の効果2で説明したように、遅角側油路開閉弁52が開き、遅角室Bの負圧を解消する。
この結果、入力側ロータ5に対して出力側ロータ6が左右回転方向に1回づつ揺動しただけで、進角室Aおよび遅角室Bの油圧が高まって負圧が解消され、出力側ロータ6の揺動が抑えられる。
(Effect 3 of Example 1)
In the effects 1 and 2 of the first embodiment, the effects at the time of the advance operation and the operation at the retard angle have been described. Even when the output-side rotor 6 reaches the target phase and maintains the state, An effect can be obtained.
The operating hydraulic pressure applied from the OCV 22 to the advance chamber A and the retard chamber B is low in an engine operating state in which the discharge hydraulic pressure of the oil pump 21 is low (the oil temperature is high, the engine is rotating slowly and the amount of supplied oil is low). The “target phase holding operation” of VVT in the case of hydraulic pressure will be described.
When the torque fluctuation of the camshaft 1 is received in this state, the advance chamber A and the retard chamber B are alternately repeated to become negative pressure. When the advance chamber A becomes negative pressure, the advance side oil passage opening / closing valve 42 is opened and the negative pressure in the advance chamber A is eliminated as described in the effect 1 of the first embodiment. Similarly, when the retarding chamber B becomes negative pressure, the retarding-side oil passage opening / closing valve 52 is opened and the negative pressure in the retarding chamber B is eliminated as described in the effect 2 of the first embodiment.
As a result, the output side rotor 6 swings once in the left-right rotation direction with respect to the input side rotor 5, and the hydraulic pressure in the advance chamber A and the retard chamber B is increased and the negative pressure is eliminated. The swing of the rotor 6 is suppressed.

(実施例1の効果4)
ここで、従来技術では、トルク変動により進角室Aおよび遅角室Bが負圧になると、カムシャフト1とカムジャーナル30の摺動部などから進角油路24および遅角油路26にエアを吸い込む懸念があった。そこで、従来技術では、特許文献1、2に示すように、エアの吸込みを防止する手段を設けることが提案されている。
これに対し、この実施例1では、進角室Aおよび遅角室Bが負圧になると、進角側油路開閉弁42および遅角側油路開閉弁52が開弁作動して進角室Aおよび遅角室Bの負圧を解消するように設けられているため、従来技術における「エアの吸込み防止手段」を用いる必要がない。即ち、進角室Aおよび遅角室Bの作動油中にエアが混入することで生じるカムシャフト1の振動増加を防ぐことができるとともに、エアの混入によるカムシャフト1の進角量の制御精度の低下を防ぐことができ、高い信頼性を得ることができる。
(Effect 4 of Example 1)
Here, in the prior art, when the advance chamber A and the retard chamber B become negative pressure due to torque fluctuation, the advance oil passage 24 and the retard oil passage 26 are moved from the sliding portion of the camshaft 1 and the cam journal 30 to each other. There was concern about inhaling air. Therefore, in the prior art, as shown in Patent Documents 1 and 2, it has been proposed to provide means for preventing air inhalation.
On the other hand, in the first embodiment, when the advance chamber A and the retard chamber B become negative pressure, the advance side oil passage opening / closing valve 42 and the retard side oil passage opening / closing valve 52 are opened to advance the advance angle. Since it is provided to eliminate the negative pressure in the chamber A and the retarded angle chamber B, it is not necessary to use the “air suction prevention means” in the prior art. That is, it is possible to prevent an increase in the vibration of the camshaft 1 caused by air mixed into the hydraulic fluid in the advance chamber A and the retard chamber B, and to control the advance amount of the camshaft 1 due to the air mixture. Can be prevented, and high reliability can be obtained.

〔変形例〕
上記の実施例では、油圧制御手段3に「進角側高圧バイパス路41+進角側油路開閉弁42」と「遅角側高圧バイパス路51+遅角側油路開閉弁52」の両方を設ける例を示したが、「進角側高圧バイパス路41+進角側油路開閉弁42」または「遅角側高圧バイパス路51+遅角側油路開閉弁52」のいずれか一方のみを用いるものであっても良い。
[Modification]
In the above embodiment, the hydraulic pressure control means 3 is provided with both “advance side high pressure bypass passage 41 + advance side oil passage on / off valve 42” and “retard side high pressure bypass passage 51 + retard side oil passage on / off valve 52”. Although an example is shown, only one of “advance side high pressure bypass passage 41 + advance side oil passage on / off valve 42” or “retard side high pressure bypass passage 51 + retard side oil passage on / off valve 52” is used. There may be.

上記の実施例に追加して、出力側ロータ6の固定保持力を高める手段を設けても良い。具体的な一例を示すと、進角油路24に進角室AからOCV22側へのオイルの逆流を防ぐ進角逆止弁を設けるとともに、遅角油路26に遅角室BからOCV22側へのオイルの逆流を防ぐ遅角逆止弁を設けて、進角量を固定する際の出力側ロータ6の固定保持力を高める手段を追加しても良い。この手段に示す進角逆止弁および遅角逆止弁には、進角量の可変時に各逆止弁の機能を解除するための逆止弁解除手段(例えば、逆止弁のバイパス路の開閉手段)が設けられるものである。
このように、出力側ロータ6の固定保持力を高める手段を採用することにより、カムシャフト1のトルク変動による出力側ロータ6の揺動が抑えられるため、信頼性をさらに高めることができる。
In addition to the above embodiment, a means for increasing the fixing holding force of the output side rotor 6 may be provided. As a specific example, an advance check valve for preventing the backflow of oil from the advance chamber A to the OCV 22 side is provided in the advance oil passage 24, and the retard chamber B to the OCV 22 side in the retard oil passage 26. A means for increasing the fixing holding force of the output-side rotor 6 when fixing the advance amount may be added by providing a retarded check valve for preventing the oil backflow. The advance check valve and the retard check valve shown in this means include check valve release means for releasing the function of each check valve when the advance amount is variable (for example, the bypass valve of the check valve). Open / close means) is provided.
Thus, by adopting a means for increasing the fixing holding force of the output side rotor 6, the oscillation of the output side rotor 6 due to the torque fluctuation of the camshaft 1 can be suppressed, so that the reliability can be further improved.

上記の実施例では、OCV22のバルブ構造の一例としてスプール弁を例示したが、他のバルブ構造(ロータリ弁等)を採用しても良い。
また、上記の実施例では、OCV22を電磁アクチュエータ(リニアソレノイド)により駆動する例を示したが、電動モータの回転を軸力に変換してOCV22を駆動する電動アクチュエータや、ピエゾアクチュエータなど、他の構造の電動アクチュエータを用いても良い。あるいはパイロット油圧によりOCV22を駆動しても良い。
In the above embodiment, the spool valve is exemplified as an example of the valve structure of the OCV 22, but other valve structures (such as a rotary valve) may be adopted.
In the above-described embodiment, the OCV 22 is driven by an electromagnetic actuator (linear solenoid). However, there are other actuators such as an electric actuator that drives the OCV 22 by converting the rotation of the electric motor into an axial force, and a piezoelectric actuator. An electric actuator having a structure may be used. Alternatively, the OCV 22 may be driven by pilot hydraulic pressure.

上記の実施例では、VCT2をカムシャフト1に設ける例を示したが、VCT2をエンジンのクランクシャフトに設けるなど、他の部位に設けるものであっても良い。
上記の実施例では、入力側ロータ5内を3つのシュー9aにより3つの略扇状凹部に区画し、出力側ロータ6の外周部に3つのベーン6aを設けた例を示したが、シュー9aの数やベーン6aの数は構成上1つあるいはそれ以上であればいくつでも構わないものであり、シュー9aおよびベーン6aの数を他の数にしても良い。
上記の実施例では、入力側ロータ5がクランクシャフトと同期回転し、出力側ロータ6がカムシャフト1と一体回転する例を示したが、逆に出力側ロータ6をクランクシャフトと同期回転させ、入力側ロータ5がカムシャフト1と一体回転するように構成しても良い。
In the above-described embodiment, the example in which the VCT 2 is provided on the camshaft 1 has been described. However, the VCT 2 may be provided on another part such as an engine crankshaft.
In the above embodiment, the input side rotor 5 is divided into three substantially fan-shaped concave portions by the three shoes 9a, and the three vanes 6a are provided on the outer peripheral portion of the output side rotor 6. The number and the number of vanes 6a may be any number as long as it is one or more in terms of configuration, and the number of shoes 9a and vanes 6a may be other numbers.
In the above embodiment, the input-side rotor 5 rotates synchronously with the crankshaft, and the output-side rotor 6 rotates integrally with the camshaft 1. Conversely, the output-side rotor 6 rotates synchronously with the crankshaft, The input side rotor 5 may be configured to rotate integrally with the camshaft 1.

VVTの進角時および遅角時の作動説明図である(実施例1)。(Example 1) which is the operation | movement explanatory drawing at the time of the advance angle of VVT, and a retard angle. VVTおよび進角側油路開閉弁の概略図である(実施例1)。(Example 1) which is the schematic of VVT and an advance angle side oil-path on-off valve. VCTの軸方向断面を用いたVVTの概略図である(実施例1)。(Example 1) which is the schematic of VVT using the axial direction cross section of VCT. 軸方向から見たVCTの説明図である(実施例1)。(Example 1) which is explanatory drawing of VCT seen from the axial direction. VVTの概略図である(従来例)。It is the schematic of VVT (conventional example).

符号の説明Explanation of symbols

1 カムシャフト
2 VCT(バルブタイミング可変機構)
3 油圧制御手段
5 入力側ロータ
6 出力側ロータ
21 オイルポンプ
22 OCV(オイルフローコントロールバルブ)
41 進角側高圧バイパス路
42 進角側油路開閉弁
43 進角側油路開閉弁の弁体
44 進角側油路開閉弁の閉弁力付与手段
51 遅角側高圧バイパス路
52 遅角側油路開閉弁
53 遅角側油路開閉弁の弁体
54 遅角側油路開閉弁の閉弁力付与手段
A 進角室
B 遅角室
1 Camshaft 2 VCT (Variable valve timing mechanism)
3 Hydraulic control means 5 Input side rotor 6 Output side rotor 21 Oil pump 22 OCV (oil flow control valve)
41 Advance angle side high pressure bypass passage 42 Advance angle side oil passage opening / closing valve 43 Valve body 44 of advance angle side oil passage opening / closing valve Valve closing force applying means 51 of advance angle side oil passage opening / closing valve Delay angle side high pressure bypass passage 52 Delay angle Side oil passage opening / closing valve 53 Valve element 54 of the retarding side oil passage opening / closing valve A means for closing the retarding side oil passage opening / closing valve A Advance angle chamber B Delay angle chamber

Claims (4)

内燃機関のクランクシャフトによって回転駆動される入力側ロータに対して前記内燃機関のカムシャフトを回転駆動する出力側ロータを油圧によって進角側に駆動する進角室、および前記入力側ロータに対して前記出力側ロータを油圧によって遅角側に駆動する遅角室を備えるバルブタイミング可変機構と、
前記進角室および前記遅角室に対して油圧の給排を行うオイルフローコントロールバルブを備える油圧制御手段と、を具備するバルブタイミング調整装置において、
前記油圧制御手段は、前記オイルフローコントロールバルブをバイパスしてオイルポンプの発生した油圧を前記進角室に与える進角側高圧バイパス路と、
前記進角室の負圧によって駆動され、前記進角室の負圧時に前記進角側高圧バイパス路を開き、前記進角室の正圧時に前記進角側高圧バイパス路を閉じる進角側油路開閉弁と、を備えることを特徴とするバルブタイミング調整装置。
With respect to an input side rotor that is rotationally driven by a crankshaft of the internal combustion engine, an advance angle chamber that drives an output side rotor that rotationally drives the camshaft of the internal combustion engine to an advance side by hydraulic pressure, and the input side rotor A variable valve timing mechanism including a retard chamber that drives the output-side rotor to the retard side by hydraulic pressure;
In a valve timing adjustment device comprising: an oil flow control valve that includes an oil flow control valve that supplies and discharges hydraulic pressure to and from the advance chamber and the retard chamber.
The hydraulic pressure control means bypasses the oil flow control valve, and provides an advance side high-pressure bypass path that supplies the hydraulic pressure generated by the oil pump to the advance chamber;
Advancing oil that is driven by the negative pressure of the advance chamber, opens the advance-side high-pressure bypass when the advance chamber is negative, and closes the advance-side high-pressure bypass when the advance chamber is positive A valve timing adjusting device comprising: a road opening / closing valve.
請求項1に記載のバルブタイミング調整装置において、
前記進角側油路開閉弁は、前記進角側高圧バイパス路を開閉する弁体と、前記進角側高圧バイパス路が閉じる側に前記弁体を付勢する閉弁力付与手段と、大気圧と前記進角室の油圧との差圧で前記弁体を駆動する差圧作動手段とを備えることを特徴とするバルブタイミング調整装置。
In the valve timing adjustment device according to claim 1,
The advance side oil passage opening / closing valve includes a valve body that opens and closes the advance side high pressure bypass passage, a valve closing force applying means that biases the valve body toward a side where the advance side high pressure bypass passage is closed, A valve timing adjusting device comprising: a differential pressure operating means for driving the valve body by a differential pressure between an atmospheric pressure and a hydraulic pressure of the advance chamber.
内燃機関のクランクシャフトによって回転駆動される入力側ロータに対して前記内燃機関のカムシャフトを回転駆動する出力側ロータを油圧によって進角側に駆動する進角室、および前記入力側ロータに対して前記出力側ロータを油圧によって遅角側に駆動する遅角室を備えるバルブタイミング可変機構と、
前記進角室および前記遅角室に対して油圧の給排を行うオイルフローコントロールバルブを備える油圧制御手段と、を具備するバルブタイミング調整装置において、
前記油圧制御手段は、前記オイルフローコントロールバルブをバイパスしてオイルポンプの発生した油圧を前記遅角室に与える遅角側高圧バイパス路と、
前記遅角室の負圧によって駆動され、前記遅角室の負圧時に前記遅角側高圧バイパス路を開き、前記遅角室の正圧時に前記遅角側高圧バイパス路を閉じる遅角側油路開閉弁と、を備えることを特徴とするバルブタイミング調整装置。
With respect to an input side rotor that is rotationally driven by a crankshaft of the internal combustion engine, an advance angle chamber that drives an output side rotor that rotationally drives the camshaft of the internal combustion engine to an advance side by hydraulic pressure, and the input side rotor A variable valve timing mechanism including a retard chamber that drives the output-side rotor to the retard side by hydraulic pressure;
In a valve timing adjustment device comprising: an oil flow control valve that includes an oil flow control valve that supplies and discharges hydraulic pressure to and from the advance chamber and the retard chamber.
The hydraulic pressure control means bypasses the oil flow control valve and provides a retarded-side high-pressure bypass path that supplies the hydraulic pressure generated by the oil pump to the retarded chamber;
Retarded side oil that is driven by the negative pressure of the retarded chamber, opens the retarded high pressure bypass when the retarded chamber is negative, and closes the retarded high pressure bypass when the retarded chamber is positive A valve timing adjusting device comprising: a road opening / closing valve.
請求項3に記載のバルブタイミング調整装置において、
前記遅角側油路開閉弁は、前記遅角側高圧バイパス路を開閉する弁体と、前記遅角側高圧バイパス路が閉じる側に前記弁体を付勢する閉弁力付与手段と、大気圧と前記遅角室の油圧との差圧で前記弁体を駆動する差圧作動手段とを備えることを特徴とするバルブタイミング調整装置。
In the valve timing adjusting device according to claim 3,
The retard angle side oil passage on-off valve includes a valve body that opens and closes the retard side high pressure bypass passage, a valve closing force applying means that biases the valve body toward a side where the retard angle high pressure bypass passage is closed, A valve timing adjusting device comprising: a differential pressure operating means for driving the valve body by a differential pressure between an atmospheric pressure and a hydraulic pressure of the retard chamber.
JP2007285059A 2007-11-01 2007-11-01 Valve timing adjustment device Expired - Fee Related JP4760814B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007285059A JP4760814B2 (en) 2007-11-01 2007-11-01 Valve timing adjustment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007285059A JP4760814B2 (en) 2007-11-01 2007-11-01 Valve timing adjustment device

Publications (2)

Publication Number Publication Date
JP2009114856A JP2009114856A (en) 2009-05-28
JP4760814B2 true JP4760814B2 (en) 2011-08-31

Family

ID=40782287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007285059A Expired - Fee Related JP4760814B2 (en) 2007-11-01 2007-11-01 Valve timing adjustment device

Country Status (1)

Country Link
JP (1) JP4760814B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102252847A (en) * 2011-06-08 2011-11-23 重庆长安汽车股份有限公司 Method for testing actuating phase of variable valve timing (VVT) mechanism of engine pedestal benchmarking test

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001027107A (en) * 1999-07-14 2001-01-30 Toyota Central Res & Dev Lab Inc Valve timing adjusting device of internal combustion engine
JP2002213262A (en) * 2001-01-19 2002-07-31 Denso Corp Valve timing adjustment device for internal combustion engine
JP4457284B2 (en) * 2001-02-21 2010-04-28 アイシン精機株式会社 Valve timing control device
JP3873809B2 (en) * 2002-05-10 2007-01-31 トヨタ自動車株式会社 Variable valve timing control device for internal combustion engine
JP2004150278A (en) * 2002-10-28 2004-05-27 Mitsubishi Electric Corp Valve timing regulator
JP4358180B2 (en) * 2005-11-04 2009-11-04 株式会社日立製作所 Valve timing control device for internal combustion engine
JP4577576B2 (en) * 2006-03-15 2010-11-10 アイシン精機株式会社 Valve timing control device
JP4560736B2 (en) * 2006-03-29 2010-10-13 株式会社デンソー Valve timing adjustment device

Also Published As

Publication number Publication date
JP2009114856A (en) 2009-05-28

Similar Documents

Publication Publication Date Title
JP5876061B2 (en) Cam torque driven phaser with intermediate position lock
JP4518149B2 (en) Valve timing adjustment device
JP4253109B2 (en) Variable valve operating device for internal combustion engine
JP5403341B2 (en) Valve timing control device
US6772721B1 (en) Torsional assist cam phaser for cam in block engines
JP2009138611A (en) Valve timing adjustment device
JP2004108370A (en) Variable cam shaft timing mechanism
WO2020195747A1 (en) Operating oil control valve, and valve timing adjusting device
JP4019614B2 (en) Intake valve drive control device for internal combustion engine
WO1999049187A1 (en) Valve timing control device of internal combustion engine
JP2009133217A (en) Valve-timing control apparatus
JP2013053553A (en) Internal combustion engine with variable valve opening characteristic
JP2009264133A (en) Variable cam phase type internal combustion engine
JP4760814B2 (en) Valve timing adjustment device
JP2005121016A (en) Phaser
JP5152312B2 (en) Valve timing adjustment device
JP5793107B2 (en) Variable valve operating device for internal combustion engine
JP2002030909A (en) Valve timing control device of internal combustion engine
US20050126527A1 (en) Variable valve timing controller
JP2010116779A (en) Valve timing control system for internal combustion engine
JP2010242532A (en) Variable valve gear for internal combustion engine
JP4507417B2 (en) Variable valve operating device for internal combustion engine
JP4831098B2 (en) Valve timing adjustment device
JP3817067B2 (en) Valve timing control device for internal combustion engine
JP6797342B2 (en) Valve timing adjuster

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110421

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110523

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees