JP4759755B2 - Device for measuring solid uranium in equipment - Google Patents

Device for measuring solid uranium in equipment Download PDF

Info

Publication number
JP4759755B2
JP4759755B2 JP2008075371A JP2008075371A JP4759755B2 JP 4759755 B2 JP4759755 B2 JP 4759755B2 JP 2008075371 A JP2008075371 A JP 2008075371A JP 2008075371 A JP2008075371 A JP 2008075371A JP 4759755 B2 JP4759755 B2 JP 4759755B2
Authority
JP
Japan
Prior art keywords
uranium
detector
detection
signal
detection elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008075371A
Other languages
Japanese (ja)
Other versions
JP2009229257A (en
Inventor
雅彦 大高
邦章 荒
典岳 杉杖
薫 横山
Original Assignee
独立行政法人 日本原子力研究開発機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人 日本原子力研究開発機構 filed Critical 独立行政法人 日本原子力研究開発機構
Priority to JP2008075371A priority Critical patent/JP4759755B2/en
Publication of JP2009229257A publication Critical patent/JP2009229257A/en
Application granted granted Critical
Publication of JP4759755B2 publication Critical patent/JP4759755B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Radiation (AREA)

Description

本発明は、遠心機などの機器内に存在している固体ウランの量を外部から簡便に測定できる小型の測定装置に関するものである。   The present invention relates to a small measuring apparatus that can easily measure the amount of solid uranium present in a device such as a centrifuge from the outside.

ガス遠心分離法のウラン濃縮施設では、多数の遠心機が狭小間隔で配列され、配管で相互接続されてカスケードを構成している。このような施設において、遠心機群の運転に伴って、各遠心機内に固体ウランがどの程度の量、存在しているかなどについてモニタリングできれば、システムの安全性や運転効率などの面で有用な情報が得られることになる。しかし、この種の遠心機内に存在している固体ウラン量は一般にかなり少なく、しかも遠心機の周囲には高感度の大型検出器を設置するような余分なスペースは殆どない。   In a uranium enrichment facility using gas centrifugation, a large number of centrifuges are arranged at narrow intervals and interconnected by pipes to form a cascade. In such facilities, if you can monitor the amount and amount of solid uranium present in each centrifuge as the centrifuges operate, it will be useful information in terms of system safety and operational efficiency. Will be obtained. However, the amount of solid uranium present in this type of centrifuge is generally quite small, and there is almost no extra space around the centrifuge for installing a large sensitive detector.

ところで、極低線量で且つ複数核種が存在する条件での、核種識別及び線量測定などを目的とするγ線測定のためには、従来、エネルギー分解能が高く、計数効率も高いGe結晶を検出器母材とした半導体検出器が用いられている。しかし、Ge結晶を用いた検出器は、液体窒素や電気的手段によりGe結晶を冷却しつつ測定する必要があるため、測定時にはGe結晶を冷却装置と結合させなければならない。Ge検出器の冷却の必要性並びに液体窒素による冷却設備に関しては、例えば特許文献1などに記載がある。このように、付設する冷却機構のためにγ線検出装置が大型化し、測定現場において検出装置の設置空間を確保できないことがあった。特に、ガス遠心分離法のウラン濃縮施設では、多数の遠心機が狭小間隔で配列され、配管などで相互接続されているため、γ線検出装置が大型だと、その設置空間を確保することができない問題があった。
特開平11−153672号公報
By the way, for gamma ray measurement for the purpose of nuclide identification and dosimetry under the condition of extremely low dose and existence of multiple nuclides, a conventional Ge crystal detector with high energy resolution and high counting efficiency is used. A semiconductor detector as a base material is used. However, since a detector using a Ge crystal needs to be measured while cooling the Ge crystal by liquid nitrogen or electrical means, the Ge crystal must be coupled to a cooling device at the time of measurement. The necessity of cooling the Ge detector and the cooling facility using liquid nitrogen are described in Patent Document 1, for example. As described above, the γ-ray detection device is increased in size due to the attached cooling mechanism, and the installation space of the detection device may not be secured at the measurement site. In particular, in a uranium enrichment facility using a gas centrifuge, a large number of centrifuges are arranged at narrow intervals and interconnected by piping, etc., so if the γ-ray detector is large, the installation space can be secured. There was a problem that could not be done.
JP-A-11-153672

本発明が解決しようとする課題は、検出器設置空間が狭隘であっても、極低線量で複数核種が存在する条件で、遠心機などの機器内に存在しているウラン235の識別及び線量測定を外部から簡便に行えるようにすることである。   The problem to be solved by the present invention is to identify and detect the dose of uranium 235 present in a device such as a centrifuge under the condition that a plurality of nuclides exist at an extremely low dose even if the detector installation space is narrow. It is to make it easy to measure from outside.

本発明は、被測定機器の近傍に設置されるγ線検出器と、その検出信号を伝送するケーブルと、伝送されてきた検出信号を分析・演算処理する信号処理装置とを具備し、前記γ線検出器は、電極で挟まれた化合物半導体からなる薄板状の検出器母材を複数枚積層して1系統分の検出素子とし、該検出素子を複数並置して複数系統の検出要素を形成し、該検出要素の各系統毎にプリアンプを設置して独立に検出信号を出力させる構造であり、前記信号処理装置は、各系統毎の検出信号を独立に増幅するメインアンプと、各メインアンプで増幅したパルス信号をそれぞれ独立に波高分析処理してウラン235に起因するγ線を計測する波高分析部と、それぞれの計測結果を加算して信号強度をウラン量に換算する加算処理部と、その結果を表示する表示部とからなることを特徴とする機器内の固体ウラン測定装置である。   The present invention comprises a γ-ray detector installed in the vicinity of a device under test, a cable for transmitting the detection signal, and a signal processing device for analyzing and calculating the transmitted detection signal, A line detector is made by laminating a plurality of thin plate-shaped detector base materials made of compound semiconductor sandwiched between electrodes to form a detection element for one system, and a plurality of detection elements are juxtaposed to form a plurality of detection elements. In addition, a preamplifier is installed for each system of the detection elements and a detection signal is output independently, and the signal processing device includes a main amplifier that amplifies the detection signal for each system independently, and each main amplifier A pulse height analysis unit for measuring the γ-rays caused by uranium 235 by independently performing pulse height analysis processing on each of the pulse signals amplified in step 1, an addition processing unit for adding the respective measurement results and converting the signal intensity into a uranium amount, Display the result A solid uranium measuring device in the device, characterized in that it consists of a radical 113.

ここでγ線検出器は、Pt電極とIn電極で挟まれたCdTeからなる薄板状の検出器母材を3〜7枚積層して1系統分の検出素子とし、その検出素子を2〜6個並置して並置数に対応した系統数の検出要素を形成し、該検出要素の検出器母材重ね合わせ面がγ線飛来方向と平行になるようにプリアンプと共に検出器筐体内に組み込まれる。検出要素の数が多すぎると、装置が複雑になるしコストアップとなるため、より好ましくは3〜4個程度とするのがよい。各プリアンプ間には電磁シールドが施されている構造が好ましい。なお、波高分析部は、ウラン235に起因する185.7keVのγ線に対応し且つバックグラウンドを除去するため、185.7keVの中心チャンネルと、その上側チャンネルと下側チャンネルの計測値を求めるものである。   Here, the γ-ray detector is formed by stacking 3 to 7 thin plate-like detector base materials made of CdTe sandwiched between a Pt electrode and an In electrode to form a detection element for one system. The detection elements of the number of systems corresponding to the number of juxtapositions are formed side by side, and the detector base material overlapping surface of the detection elements is incorporated in the detector housing together with the preamplifier so that the γ-ray flying direction is parallel. If the number of detection elements is too large, the apparatus becomes complicated and the cost is increased. Therefore, the number is preferably about 3 to 4. A structure in which an electromagnetic shield is provided between the preamplifiers is preferable. Note that the wave height analysis unit obtains the measured values of the 185.7 keV central channel and its upper and lower channels in order to remove the background corresponding to 185.7 keV gamma rays caused by uranium 235. It is.

本発明に係る測定装置が測定対象とする機器は、典型的にはガス遠心法のウラン濃縮施設における遠心機であるが、その他、原子力関連施設で固体ウランが蓄積される、あるいは蓄積される恐れがある機器や配管などもある。   The device to be measured by the measuring apparatus according to the present invention is typically a centrifuge in a gas uranium enrichment facility, but solid uranium may be accumulated or accumulated in other nuclear facilities. There are also equipment and piping.

本発明で用いるγ線検出器は、検出器母材としてバンドギャップが大きく高密度で高原子番号の化合物半導体を使用し、電極間の検出器母材を薄板状としたことにより、常温で測定可能なため冷却装置が不要であり、小型化と高エネルギー分解能を両立させることができる。また、肉厚の薄い検出器母材を、電極を介して複数枚積層することで、γ線入射面積をかせぎ、しかもγ線と反応し生じた電子と正孔が高い割合で電極まで到達するため高いエネルギー分解能を維持することができる。更に本発明は、検出器母材を複数枚積層した検出素子を複数並置して複数系統の検出要素とし、各系統毎にプリアンプを設置して独立に検出信号を出力させる構造なので、検出要素の静電容量を制限しノイズレベルを抑制することができ、しかも十分に大きなγ線入射面積を得ることができる。   The gamma ray detector used in the present invention uses a compound semiconductor having a large band gap, a high density and a high atomic number as a detector base material, and the detector base material between the electrodes is made into a thin plate shape, so that it is measured at room temperature. Since it is possible, a cooling device is unnecessary, and both downsizing and high energy resolution can be achieved. In addition, by stacking a plurality of thin detector base materials through the electrodes, the γ-ray incident area is increased, and electrons and holes generated by reaction with γ-rays reach the electrodes at a high rate. Therefore, high energy resolution can be maintained. Furthermore, the present invention has a structure in which a plurality of detector elements in which a plurality of detector base materials are stacked are juxtaposed to form a plurality of detection elements, and a preamplifier is installed for each system to output detection signals independently. Capacitance can be limited to suppress the noise level, and a sufficiently large γ-ray incident area can be obtained.

また、各系統毎の検出信号を独立に増幅して波高分析処理した後、それぞれの波高分析処理結果を加算するように構成しているので、それによってもS/Nが向上する。波高処理部は、全体のスペクトルを計測するのではなく、ウラン235に起因するγ線の計測に特化しているので、回路構成は簡素化され、安価に製作できる。   In addition, since the detection signals for each system are independently amplified and subjected to the pulse height analysis process, the respective pulse height analysis processing results are added, so that the S / N is also improved. Since the wave height processing unit does not measure the entire spectrum but specializes in the measurement of γ rays caused by uranium 235, the circuit configuration is simplified and can be manufactured at low cost.

これらによって、本発明に係る機器内の固体ウラン測定装置は、γ線検出器が小型化できるため、従来の大型Ge検出器では測定できなかった狭隘な測定現場におけるγ線測定が可能となり、ガス遠心法のウラン濃縮施設における遠心機内に存在している固体ウランなど極低線量で複数核種が存在する条件でもウラン235の識別及び線量測定を行うことが可能となる。   As a result, the solid uranium measuring device in the apparatus according to the present invention can reduce the size of the γ-ray detector, so that γ-ray measurement can be performed in a narrow measurement site that cannot be measured by a conventional large Ge detector. It becomes possible to identify and measure the dose of uranium 235 even under conditions in which multiple nuclides are present at extremely low doses such as solid uranium present in a centrifuge at a uranium enrichment facility using the centrifuge method.

また、γ線検出器が小型のため、被測定機器に対してγ線検出器を移動させたり、測定方向を変えたりすることも可能であり、複数個配列して測定することも可能となり、γ線源の可視化に利用することも可能になる。   In addition, since the γ-ray detector is small, it is possible to move the γ-ray detector with respect to the device under test or to change the measurement direction, and it is also possible to measure a plurality of arrays, It can also be used for visualization of γ-ray sources.

図1は本発明に係る機器内の固体ウラン測定装置の一実施例を示すブロック図である。この測定装置は、被測定機器の近傍に設置される(例えば遠心機の場合は、その端板の斜め上側に、該遠心機に向けて設置するのが好ましい)γ線検出器10と、その検出信号を光通信で伝送する光ケーブル12と、伝送されてきた検出信号を分析・演算処理する信号処理装置14とからなる。   FIG. 1 is a block diagram showing an embodiment of a solid uranium measuring apparatus in an apparatus according to the present invention. This measuring apparatus is installed in the vicinity of the device under test (for example, in the case of a centrifuge, it is preferable to install the gamma ray detector 10 on the diagonally upper side of the end plate toward the centrifuge) and its It comprises an optical cable 12 that transmits a detection signal by optical communication, and a signal processing device 14 that analyzes and computes the transmitted detection signal.

γ線検出器の要部の詳細を図2に示す。Aは検出要素であり、Bは検出素子の断面を表している。Pt電極20とIn電極22で挟まれたCdTeからなる薄板状の検出器母材24を5枚積層して1系統分の検出素子26を構成する。このような検出素子26を4個並置して4系統の検出要素28とする。この検出要素28は、検出器母材重ね合わせ面がγ線飛来方向と平行になるようにプリアンプと共に検出器筐体内に組み込まれる。   The detail of the principal part of a gamma ray detector is shown in FIG. A is a detection element, and B represents a cross section of the detection element. Five detector base materials 24 made of CdTe sandwiched between the Pt electrode 20 and the In electrode 22 are laminated to form a detection element 26 for one system. Four such detection elements 26 are juxtaposed to form four detection elements 28. This detection element 28 is incorporated in the detector housing together with the preamplifier so that the detector base material overlapping surface is parallel to the γ-ray flying direction.

ここで薄板状の検出器母材は、それぞれ10mm×10mm×0.5mm(厚さ)の大きさで、それを5枚積層したものが1系統分となり、4系統分を並置することで10mm×10mm×10mmの実効体積となる。吸収長(検出器母材の長さに対するγ線の吸収割合)を考慮して、γ線入射方向の検出素子寸法(奥行き寸法)を10mm程度に設定することで、ウラン235に起因する185.7keVのγ線の吸収割合を90%以上となるようにし、しかも検出器母材の肉厚を薄く(典型的には0.5mm程度)することで検出器母材内でγ線と反応し生じた電子と正孔が高い割合で電極まで到達することになり、それらによって、高いエネルギー分解能を得ることが可能となり、適切な計数効率が得られることになる。また検出器母材を積層・並置することで、10mm×10mm程度の十分大きなγ線入射面積を確保して感度を向上させている。   Here, each of the thin plate-shaped detector base materials has a size of 10 mm × 10 mm × 0.5 mm (thickness), and a stack of five of them becomes one line, and 10 mm is obtained by juxtaposing four lines. The effective volume is × 10 mm × 10 mm. Considering the absorption length (absorption ratio of γ rays with respect to the length of the detector base material), the detection element size (depth size) in the γ ray incident direction is set to about 10 mm, resulting in 185. By making the absorption ratio of 7 keV γ rays 90% or more and reducing the thickness of the detector base material (typically about 0.5 mm), it reacts with γ rays in the detector base material. The generated electrons and holes reach the electrode at a high rate, and thereby, high energy resolution can be obtained, and appropriate counting efficiency can be obtained. In addition, by stacking and juxtaposing detector base materials, a sufficiently large γ-ray incident area of about 10 mm × 10 mm is secured to improve sensitivity.

更に、検出器母材にバンドギャップの大きな化合物半導体を用いることで、常温での測定を可能(冷却装置が不要)とし、プリアンプも内蔵させた状態で、検出器筐体の全長を15cm程度に小型化できるため、被測定機器である遠心機の周囲に設置することが可能となる。   Furthermore, by using a compound semiconductor with a large band gap as the detector base material, measurement at room temperature is possible (no cooling device is required), and the total length of the detector housing is reduced to about 15 cm with a built-in preamplifier. Since it can be reduced in size, it can be installed around a centrifuge, which is a device to be measured.

各系統の検出素子26の出力は、それぞれ対応するプリアンプ30に個別に入力し、信号の増幅、S/Nの改善、インピーダンス整合などが行われる。検出素子での信号の減衰やS/Nの劣化を抑えるため、プリアンプ30は検出素子26の直近に配置され、それらは検出器筐体内に収められる。本発明では検出器母材として半導体を使用しており、半導体検出器では検出素子の静電容量が印加電圧によって変化するので、プリアンプにはその影響を受けない電荷有感型のプリアンプ(チャージ・センシティブ・アンプ)を用いている。このような構成で、各プリアンプからは対応する各系統毎に独立に検出信号が出力する。対応する各系統毎に独立に検出信号を出力させるように構成することで、各検出素子における検出器母材の積層枚数を適切にし静電容量を制限してノイズレベルを抑制する。
なお、系統間のクロストークを防ぐため、プリアンプ30間に電磁シールド31を施している。
The outputs of the detection elements 26 of each system are individually input to the corresponding preamplifiers 30 to perform signal amplification, S / N improvement, impedance matching, and the like. In order to suppress signal attenuation and S / N degradation at the detection element, the preamplifier 30 is disposed in the immediate vicinity of the detection element 26, and they are housed in the detector housing. In the present invention, a semiconductor is used as a detector base material. In the semiconductor detector, since the capacitance of the detection element varies depending on the applied voltage, a charge-sensitive preamplifier (charge Sensitive amplifier). With such a configuration, each preamplifier outputs a detection signal independently for each corresponding system. By configuring the detection signals to be output independently for each corresponding system, the number of detector base materials stacked in each detection element is made appropriate to limit the capacitance and suppress the noise level.
In order to prevent crosstalk between systems, an electromagnetic shield 31 is provided between the preamplifiers 30.

前述のように、γ線検出器10と信号処理装置14との間の信号の伝送は、電磁的な外乱を抑制するため、光ファイバケーブル12による光通信で行っている。   As described above, signal transmission between the γ-ray detector 10 and the signal processing device 14 is performed by optical communication using the optical fiber cable 12 in order to suppress electromagnetic disturbance.

信号処理装置14は、各系統毎の検出信号を独立に増幅するメインアンプ32と、各メインアンプで増幅したパルス信号をそれぞれ独立に波高分析処理してウラン235に起因するγ線を計測する波高分析部34と、それぞれの計測結果を加算して信号強度をウラン量に換算する加算処理部36と、その結果を表示する表示部38とからなる。   The signal processing apparatus 14 includes a main amplifier 32 that independently amplifies the detection signal for each system, and a pulse height that is obtained by independently analyzing the pulse signal amplified by each main amplifier and measuring γ-rays caused by uranium 235. It comprises an analysis unit 34, an addition processing unit 36 for adding the respective measurement results to convert the signal intensity into a uranium amount, and a display unit 38 for displaying the results.

各メインアンプ32は、各系統毎のプリアンプ出力に対して、それぞれ個別にパルス処理を行う。具体的には、パルス波高の増幅、S/Nの改善などの処理であり、直線性に優れた線形アンプ(スペクトロスコピー・アンプ)を用いる。各メインアンプ32で増幅されたパルス信号は、対応する波高分析部34で、それぞれ独立に波高分析処理される。波高分析部34では、メインアンプ32からのパルス信号の波高値(アナログ量)をADC(アナログ−デジタル変換器)でデジタル量(ch単位)に高速変換する。ここでは、波高分析部34は、ウラン235に起因する185.7keVのγ線に対応する計数値を得るものであり、185.7keVの中心チャンネルと、それに対して下側チャンネルと上側チャンネルのデータメモリに計数値が累積される。下側チャンネルと上側チャンネルの計数値は、バックグラウンドの算出などに用いられる。このように本発明装置では固体ウランのみの計測機能を具備していればよく、スペクトルとしては計測する必要はない。そのため、信号処理装置も大幅に簡素化できる。   Each main amplifier 32 individually performs pulse processing on the preamplifier output for each system. Specifically, processing such as pulse wave height amplification and S / N improvement is performed, and a linear amplifier (spectroscopy amplifier) having excellent linearity is used. The pulse signal amplified by each main amplifier 32 is subjected to a pulse height analysis process independently by the corresponding pulse height analysis unit 34. The pulse height analysis unit 34 converts the peak value (analog amount) of the pulse signal from the main amplifier 32 into a digital amount (ch unit) at high speed by an ADC (analog-digital converter). Here, the wave height analysis unit 34 obtains a count value corresponding to 185.7 keV γ-rays caused by uranium 235, and the data of the lower channel and upper channel with respect to the central channel of 185.7 keV. The count value is accumulated in the memory. The count values of the lower channel and the upper channel are used for background calculation and the like. Thus, the device of the present invention only needs to have a measurement function for only solid uranium, and it is not necessary to measure the spectrum. Therefore, the signal processing apparatus can be greatly simplified.

加算処理部36では、最終的に4系統の3チャンネル(185.7keVの中心チャンネルと、その下側チャンネル及び上側チャンネル)での累積計数値を加算する。これによって、バックグラウンドを除去してウラン235に起因する185.7keVのγ線の信号強度を求める。このようにして得られる信号強度は、ウラン量との間に相関(両対数グラフで直線性)があることから、それを利用してウラン量に換算し、表示部38でウラン量を表示させる。なお、信号強度の校正は、別途、高感度Ge検出器などを利用してを行えばよい。   The addition processing unit 36 finally adds the accumulated count values in the four channels of the three channels (the center channel of 185.7 keV, its lower channel and the upper channel). As a result, the signal intensity of the 185.7 keV gamma rays resulting from uranium 235 is obtained by removing the background. Since the signal intensity obtained in this way has a correlation (linearity in a log-log graph) with the amount of uranium, it is converted to the amount of uranium using that and the uranium amount is displayed on the display unit 38. . The signal intensity may be calibrated separately using a high sensitivity Ge detector or the like.

本発明で用いているγ線検出器(1系統分)の有効性を確認するため、遠心機内のウラン線源量を測定した結果(エネルギースペクトル:パルス波高分布)を図3に示す。測定対象核種はウラン235であり、そのγ線のエネルギーは185.7keVである。ここでは、γ線検出器としての有効性を示すため、計測したスペクトルを示している。Aは遠心機内のウラン量が少ない場合、Bは遠心機内のウラン量が多い場合である。図3から、ウラン235のγ線である185.7keVの信号が得られる(ウラン235のγ線がバックグラウンドと識別して計測できる)と共に、機器内の固体ウラン内包量に応じた強度が得られることが確認できた。   In order to confirm the effectiveness of the γ-ray detector (for one system) used in the present invention, the results (energy spectrum: pulse wave height distribution) of the amount of uranium source in the centrifuge are shown in FIG. The measurement target nuclide is uranium 235, and the energy of the γ-ray is 185.7 keV. Here, in order to show the effectiveness as a gamma ray detector, the measured spectrum is shown. A is when the amount of uranium in the centrifuge is small, and B is when the amount of uranium in the centrifuge is large. From FIG. 3, a signal of 185.7 keV, which is a gamma ray of uranium 235, is obtained (gamma ray of uranium 235 can be measured by being distinguished from the background), and an intensity corresponding to the amount of solid uranium contained in the device is obtained. It was confirmed that

図4は、天然ウラン量と信号強度の相関を示すグラフである。両対数グラフでプロットすると、ウラン量と信号強度とは直線性がある。本発明は、この相関を利用しており、それによって信号強度からウラン量を求めている。   FIG. 4 is a graph showing the correlation between the amount of natural uranium and the signal intensity. When plotted in a log-log graph, the amount of uranium and the signal intensity are linear. The present invention utilizes this correlation, thereby obtaining the amount of uranium from the signal intensity.

以上、遠心機内に存在している固体ウランの測定を例にとって説明したが、本発明は、原子力関連施設内での機器や配管に内包されている固体ウランの量の測定に使用できることは言うまでもない。また、検出器が小型化できることから、複数の検出器を配置して測定したり、移動して測定することで、固体ウランの分布状況を可視化することも可能となる。   As described above, the measurement of solid uranium existing in the centrifuge has been described as an example. However, it goes without saying that the present invention can be used for measuring the amount of solid uranium contained in equipment and piping in a nuclear facility. . In addition, since the detector can be reduced in size, it is possible to visualize the distribution state of solid uranium by arranging and measuring a plurality of detectors or moving and measuring.

本発明に係る機器内の固体ウラン測定装置の一実施例を示すブロック図。The block diagram which shows one Example of the solid uranium measuring device in the apparatus which concerns on this invention. そのγ線検出器の要部の詳細図。The detail drawing of the principal part of the gamma ray detector. γ線検出器で得られたスペクトルの例を示す説明図。Explanatory drawing which shows the example of the spectrum acquired with the gamma ray detector. 信号強度と天然ウラン量との相関を示す説明図。Explanatory drawing which shows the correlation with signal strength and the amount of natural uranium.

符号の説明Explanation of symbols

10 γ線検出器
12 光ファイバ
14 信号処理装置
20 Pt電極
22 In電極
24 検出器母材
26 検出素子
28 検出要素
30 プリアンプ
32 メインアンプ
34 波高分析部
36 加算処理部
38 表示部
DESCRIPTION OF SYMBOLS 10 γ-ray detector 12 Optical fiber 14 Signal processing apparatus 20 Pt electrode 22 In electrode 24 Detector base material 26 Detection element 28 Detection element 30 Preamplifier 32 Main amplifier 34 Wave height analysis part 36 Addition processing part 38 Display part

Claims (4)

被測定機器の近傍に設置されるγ線検出器と、その検出信号を伝送するケーブルと、伝送されてきた検出信号を分析・演算処理する信号処理装置とを具備し、
前記γ線検出器は、電極で挟まれた化合物半導体からなる薄板状の検出器母材を複数枚積層して1系統分の検出素子とし、該検出素子を複数並置して複数系統の検出要素を形成し、該検出要素の各系統毎にプリアンプを設置して独立に検出信号を出力させる構造であり、前記信号処理装置は、各系統毎の検出信号を独立に増幅するメインアンプと、各メインアンプで増幅したパルス信号をそれぞれ独立に波高分析処理してウラン235に起因するγ線を計測する波高分析部と、それぞれの計測結果を加算して信号強度をウラン量に換算する加算処理部と、その結果を表示する表示部とからなることを特徴とする機器内の固体ウラン測定装置。
A γ-ray detector installed in the vicinity of the device under measurement, a cable for transmitting the detection signal, and a signal processing device for analyzing and calculating the transmitted detection signal;
The γ-ray detector is formed by stacking a plurality of thin plate-like detector base materials made of a compound semiconductor sandwiched between electrodes to form a detection element for one system, and a plurality of detection elements are juxtaposed to form a plurality of detection elements Is formed, and a preamplifier is installed for each system of the detection elements to independently output a detection signal, the signal processing device includes a main amplifier that independently amplifies the detection signal for each system, and each A pulse height analysis unit for measuring the γ-rays caused by uranium 235 by independently performing pulse height analysis processing on the pulse signals amplified by the main amplifier, and an addition processing unit for adding the respective measurement results to convert the signal intensity into a uranium amount And a display unit for displaying the result, a solid uranium measuring device in equipment.
γ線検出器は、Pt電極とIn電極で挟まれたCdTeからなる薄板状の検出器母材を3〜7枚積層して1系統分の検出素子とし、その検出素子を2〜6個並置して並置数に対応した系統数の検出要素を形成し、該検出要素の検出器母材重ね合わせ面がγ線飛来方向と平行になるようにプリアンプと共に検出器筐体内に組み込まれ、各プリアンプ間には電磁シールドが施されている請求項1記載の機器内の固体ウラン測定装置。   The γ-ray detector is composed of 3 to 7 thin plate-like detector base materials made of CdTe sandwiched between Pt electrodes and In electrodes to form a detection element for one system, and 2 to 6 detection elements are juxtaposed. The number of detection elements corresponding to the number of juxtaposed elements is formed, and the detector base material overlapping surface of the detection elements is incorporated in the detector housing together with the preamplifier so that the detector base material overlapping surface is parallel to the γ-ray flying direction. The apparatus for measuring solid uranium in an apparatus according to claim 1, wherein an electromagnetic shield is provided therebetween. 波高分析部は、ウラン235に起因する185.7keVのγ線に対応し且つバックグラウンドを除去するため、185.7keVの中心チャンネルと、その上側チャンネルと下側チャンネルの計測値を求めるものである請求項1又は2記載の機器内の固体ウラン測定装置。   The wave height analysis unit obtains the measurement values of the central channel of 185.7 keV and its upper and lower channels in order to deal with 185.7 keV gamma rays caused by uranium 235 and to remove the background. The apparatus for measuring solid uranium in an apparatus according to claim 1 or 2. 被測定機器がガス遠心法のウラン濃縮施設における遠心機である請求項3記載の機器内の固体ウラン測定装置。   4. The apparatus for measuring solid uranium in an instrument according to claim 3, wherein the device to be measured is a centrifuge in a uranium enrichment facility using gas centrifugation.
JP2008075371A 2008-03-24 2008-03-24 Device for measuring solid uranium in equipment Expired - Fee Related JP4759755B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008075371A JP4759755B2 (en) 2008-03-24 2008-03-24 Device for measuring solid uranium in equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008075371A JP4759755B2 (en) 2008-03-24 2008-03-24 Device for measuring solid uranium in equipment

Publications (2)

Publication Number Publication Date
JP2009229257A JP2009229257A (en) 2009-10-08
JP4759755B2 true JP4759755B2 (en) 2011-08-31

Family

ID=41244829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008075371A Expired - Fee Related JP4759755B2 (en) 2008-03-24 2008-03-24 Device for measuring solid uranium in equipment

Country Status (1)

Country Link
JP (1) JP4759755B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6485545B2 (en) * 2015-06-24 2019-03-20 株式会社島津製作所 Radiation detector and radiation imaging apparatus having the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6134491A (en) * 1984-07-26 1986-02-18 Fuji Electric Co Ltd Multiple type radiation detection unit
JP2687122B2 (en) * 1987-01-26 1997-12-08 株式会社ジャパンエナジー Multilayer CdTe radiation detection element
JP3427584B2 (en) * 1995-03-22 2003-07-22 三菱電機株式会社 Wide-area radiation detector
JP3923186B2 (en) * 1998-07-21 2007-05-30 三菱電機株式会社 Radiation detector
JP2005223009A (en) * 2004-02-03 2005-08-18 Hitachi Ltd Semiconductor radiation detector and radiation detecting device

Also Published As

Publication number Publication date
JP2009229257A (en) 2009-10-08

Similar Documents

Publication Publication Date Title
US7655912B2 (en) Direction finding radiation detector, and radiation monitoring method and apparatus
US8084748B2 (en) Radioactive material detecting and identifying device and method
Bell et al. Fast beam conditions monitor BCM1F for the CMS experiment
US7064333B2 (en) Direction sensitive detector of radiation
KR101051126B1 (en) Plastic Scintillator-based Radiation Detector and Radionuclide Detection Method Using the Same
EP2883085B1 (en) Gamma-ray spectrometer
AU2014372312B2 (en) Radiation detection apparatus and method
JP2010276519A (en) Charged particle measuring instrument and measuring method thereof
CN106997058A (en) A kind of scintillator performance testing device and its Concordance method
EP0734076B1 (en) Wide range radiation detector
Chichester et al. Comparison of BCF-10, BCF-12, and BCF-20 scintillating fibers for use in a 1-dimensional linear sensor
US12044815B2 (en) Fixed in-core detector design using sic Schottky diodes configured with a high axial and radial sensor density and enhanced fission gamma measurement sensitivity
JP4759755B2 (en) Device for measuring solid uranium in equipment
McNeil et al. 1-D array of perforated diode neutron detectors
Hildebrandt et al. Detection of thermal neutrons using ZnS (Ag): 6LiF neutron scintillator read out with WLS fibers and SiPMs
JP2018017613A (en) Radiation measurement device
KR20040086608A (en) METHOD AND DEVICE FOR MEASURING α-RAY
CN104730565A (en) Ultrafast gamma ray energy disperse spectroscopy
KR20090059350A (en) A portable radiation dosimeter using radiation detectors
Gupta et al. Pulse height and timing characteristics of CsI (Tl)-Si (PIN) detector for γ‐rays and fission fragments
CN113419270A (en) Online filter stack spectrometer
CN217305555U (en) Large radiation field gamma energy spectrum on-line measuring device
Carminati et al. 32-Channel silicon strip detection module for combined X-ray fluorescence spectroscopy and X-ray diffractometry analysis
RU83624U1 (en) PRISMATIC SPECTROMETER
Bochek et al. Development of a software and technical complex for a two-channel detecting system for continuous registration of X-ray and gamma radiation

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110511

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110513

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees