JP4759744B2 - Method for detecting contact position between railroad vehicle wheel and rail - Google Patents

Method for detecting contact position between railroad vehicle wheel and rail Download PDF

Info

Publication number
JP4759744B2
JP4759744B2 JP2006163854A JP2006163854A JP4759744B2 JP 4759744 B2 JP4759744 B2 JP 4759744B2 JP 2006163854 A JP2006163854 A JP 2006163854A JP 2006163854 A JP2006163854 A JP 2006163854A JP 4759744 B2 JP4759744 B2 JP 4759744B2
Authority
JP
Japan
Prior art keywords
wheel
strain gauge
contact position
lateral pressure
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006163854A
Other languages
Japanese (ja)
Other versions
JP2007331492A (en
Inventor
與志 佐藤
嘉之 下川
益久 谷本
康史 岸本
陽 松本
安弘 佐藤
寛之 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Industries Ltd
National Traffic Safety and Environment Laboratory
Original Assignee
Sumitomo Metal Industries Ltd
National Traffic Safety and Environment Laboratory
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd, National Traffic Safety and Environment Laboratory filed Critical Sumitomo Metal Industries Ltd
Priority to JP2006163854A priority Critical patent/JP4759744B2/en
Publication of JP2007331492A publication Critical patent/JP2007331492A/en
Application granted granted Critical
Publication of JP4759744B2 publication Critical patent/JP4759744B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Description

本発明は、鉄道車両の走行中に、車輪とレールとの接触位置を連続的に検知する方法に関するものである。   The present invention relates to a method for continuously detecting a contact position between a wheel and a rail during traveling of a railway vehicle.

鉄道車両の脱線に対する安全性の評価は、従来、車輪とレールとの間に作用する力を測定することで判断されてきたが、これだけでは必ずしも十分な安全性評価を行うことはできない。また脱線が起こるメカニズムを解明することもできない。   Conventionally, evaluation of safety against derailment of a railway vehicle has been determined by measuring a force acting between a wheel and a rail. However, sufficient safety evaluation cannot be performed by this alone. In addition, the mechanism of derailment cannot be clarified.

脱線が起こる際の状況を把握し、脱線に対する安全性を評価するためには、従来から測定されている作用力と合わせて、車輪とレールとの接触位置を把握することで、脱線に対する安全性をより厳密に評価することができる。   In order to grasp the situation when derailment occurs and evaluate the safety against derailment, the contact position between the wheel and the rail together with the acting force that has been measured in the past is known, and the safety against derailment Can be evaluated more strictly.

例えば車輪踏面とレール頭頂面との接触位置が進行方向に対して左右方向(以下、車両幅方向とも言う。)に移動したときの、車輪踏面とレール頭頂面の接触角度は、事前にそれぞれの形状を計測し、シミュレーションにて計算してマップを作成することができる。   For example, the contact angle between the wheel tread surface and the rail top surface when the contact position between the wheel tread surface and the rail top surface moves in the left-right direction (hereinafter also referred to as the vehicle width direction) with respect to the traveling direction, The shape can be measured and calculated by simulation to create a map.

従って、車輪とレールとの前記車両幅方向の接触位置を連続的に計測できれば、走行中の車輪踏面とレール頭頂面との接触角度が解り、この時の作用力を合わせれば、その状態におけるNadalの式(非特許文献1)による脱線安全性を評価できることになる。このことは、従来の車輪踏面とレール頭頂面との接触角度を一定と推定した脱線安全性評価に対して、より正確な評価を行うことができることを意味する。
財団法人鉄道総合研究所編、「在来鉄道運転向上試験マニュアル・解説」、財団法人鉄道総合研究所発行、平成5年5月10日、p79〜80
Therefore, if the contact position in the vehicle width direction between the wheel and the rail can be measured continuously, the contact angle between the running wheel tread and the rail top surface can be understood, and if the acting force at this time is combined, Nadal in that state The derailment safety according to the equation (Non-Patent Document 1) can be evaluated. This means that more accurate evaluation can be performed with respect to the derailment safety evaluation in which the contact angle between the wheel tread surface and the rail top surface is estimated to be constant.
Railway Research Institute, “Railway Driving Improvement Test Manual / Commentary”, published by Railway Research Institute, May 10, 1993, p79-80

そこで、最近、非特許文献2に示すように、走行中の車輪とレールとの接触位置を連続的に測定する方法として、車輪の板部中央に設けた輪重測定孔の同一円周上の内周対向位置に歪みゲージを貼り付ける方法が研究されている。
金原弘道、「車輪・レール間接触位置連続測定装置の開発」、平成14年鉄道技術連合シンポジウム(J−RAIL2002)、p495〜498
Therefore, recently, as shown in Non-Patent Document 2, as a method of continuously measuring the contact position between the running wheel and the rail, the wheel weight measurement hole provided at the center of the wheel plate portion is on the same circumference. Research has been conducted on a method of attaching a strain gauge to the position facing the inner periphery.
Hiromichi Kanehara, “Development of a continuous measuring device for contact position between wheels and rails”, 2002 Symposium on Railway Technology (J-RAIL2002), p495-498

しかしながら、非特許文献2に記載された方法では、その表1に示されているように、前記接触位置Cを検知する歪みゲージの感度(0.491μ/10kN・mm)が、横圧Qに対する感度(−13.4μ/10kN・mm)よりも小さくなっている。   However, in the method described in Non-Patent Document 2, as shown in Table 1, the sensitivity (0.491 μ / 10 kN · mm) of the strain gauge for detecting the contact position C is It is smaller than the sensitivity (−13.4 μ / 10 kN · mm).

つまり、非特許文献2に記載された方法では、本発明の目的である接触位置Cの検知よりも、外乱である横圧Qに対する感度のほうが大きく、横圧Qの影響をかなり受けることになる。従って、測定データを補正する必要があり、測定精度が悪くなるという問題点がある。   That is, in the method described in Non-Patent Document 2, the sensitivity to the lateral pressure Q, which is a disturbance, is greater than the detection of the contact position C, which is the object of the present invention, and the influence of the lateral pressure Q is considerably affected. . Therefore, it is necessary to correct the measurement data, and there is a problem that measurement accuracy is deteriorated.

本発明が解決しようとする問題点は、非特許文献2で開示された車輪とレールとの接触位置検知方法では、横圧Qの影響が大きく、高い検知精度で前記接触位置を検知することができないという点である。   The problem to be solved by the present invention is that the method for detecting the contact position between the wheel and the rail disclosed in Non-Patent Document 2 has a large influence of the lateral pressure Q, and the contact position can be detected with high detection accuracy. It is a point that cannot be done.

本発明の鉄道車両の車輪とレールとの接触位置検知方法は、
走行中の車輪とレールとの接触位置を、高い検知精度で連続的に測定するために、
リム部、板部およびボス部から構成され、
板部の半径方向中央部に設けた輪重測定用孔の、同一円周上の内周対向位置に1組の輪重測定用歪みゲージを、また板部ボス側の表裏には横圧測定用歪みゲージをそれぞれ貼り付けた鉄道車両の輪重・横圧測定用車輪の、
前記横圧測定用歪みゲージから半径方向外方に延長した線上の、板部リム側のRしまい部近傍に接触位置検知用歪みゲージをさらに貼り付け、
前記横圧測定用歪みゲージおよび前記接触位置検知用歪みゲージとそれぞれのブリッジ回路から計測された歪みと、前記輪重測定用歪みゲージと当該輪重測定用歪みゲージのブリッジ回路から得られた輪重とから、車輪とレールとの接触位置を検知することを最も主要な特徴としている。
The contact position detection method between the wheel and rail of the railway vehicle of the present invention,
In order to continuously measure the contact position between the running wheel and the rail with high detection accuracy,
Consists of rim, plate and boss,
A set of strain gauges for measuring the wheel load at the position opposite to the inner circumference on the same circumference of the hole for measuring the wheel load provided in the center of the plate in the radial direction, and measuring the lateral pressure on the front and back of the plate boss. Of the wheel load and lateral pressure measurement wheels of railway vehicles with the strain gauges attached
Affixing a contact position detection strain gauge in the vicinity of the R margin on the plate rim side on a line extending radially outward from the lateral pressure measurement strain gauge,
Strain measured by the lateral pressure measuring strain gauge and the contact position detecting strain gauge and the respective bridge circuits, and the wheel obtained from the bridge circuit of the wheel weight measuring strain gauge and the wheel weight measuring strain gauge. The most important feature is to detect the contact position between the wheel and the rail from the weight.

前記本発明の鉄道車両の車輪とレールとの接触位置検知方法において、
前記輪重測定用歪みゲージを貼り付けた輪重測定用孔を同一円周上に同一間隔で4箇所に設け、横圧測定用歪みゲージおよび接触位置検知用歪みゲージをそれぞれ同一円周上に同一間隔で表裏各4箇所に貼り付けると共に、
これら両方の歪みゲージのそれぞれの貼り付け位置が、前記横圧測定用歪みゲージと、当該歪みゲージから半径方向外方に延長した線上にある前記接触位置検知用歪みゲージの横圧に対する出力が、符号が逆で絶対値が同一となる位置となるようにし、
かつ前記横圧測定用歪みゲージのブリッジ回路および前記接触位置検知用歪みゲージのブリッジ回路に代えて、前記横圧測定用歪みゲージと前記接触位置検知用歪みゲージ直列に接続ると共に、
前記車輪の表側に貼り付けた歪みゲージ同士と裏側に貼り付けた歪みゲージ同士が、それぞれ対向する辺に接続される構成のブリッジ回路した場合は、複雑な計算を行わないで、あらかじめ測定しておいた輪重値に対して線形な接触位置の変化量に対する感度係数に対応した歪み出力が得られ、高度な信号処理装置が不要になる。
In the method for detecting the contact position between the wheel and rail of the railway vehicle of the present invention,
The wheel load measuring holes with the wheel load measuring strain gauges are provided at four locations on the same circumference at the same interval, and the lateral pressure measuring strain gauges and the contact position detecting strain gauges are arranged on the same circumference. Affixed to the front and back at four locations at the same interval,
The output of each of these strain gauges to the lateral pressure of the lateral pressure measuring strain gauge and the contact position detecting strain gauge on a line extending radially outward from the strain gauge, So that the sign is opposite and the absolute value is the same,
And wherein in place of the bridge circuit and the bridge circuit of the contact position detecting strain gauges lateral force measuring strain gages, to connect the lateral pressure measuring strain gauges and pre-Symbol contacting position detection strain gauge in series Rutotomoni,
Strain gauge between pasted to the strain gauge between the back side pasted to the front side of the wheel, the case of a bridge circuit configured to be connected to the respective opposite sides, without performing complex calculations, previously measured A distortion output corresponding to the sensitivity coefficient with respect to the change amount of the contact position linear to the wheel load value is obtained, and an advanced signal processing device is not required.

また、前記本発明の鉄道車両の車輪とレールとの接触位置検知方法において、
それぞれ同一円周上の同一間隔の位置で、かつ前記横圧測定用歪みゲージの出力と、当該歪みゲージから半径方向外方に延長した線上にある前記接触位置検知用歪みゲージの横圧に対する出力が、符号が逆で絶対値が同一となる位置の表裏各8箇所に、前記両方の歪みゲージをそれぞれ貼り付け、
前記横圧測定用歪みゲージのブリッジ回路、前記接触位置検知用歪みゲージのブリッジ回路および前記輪重測定用歪みゲージのブリッジ回路に代えて、前記横圧測定用歪みゲージと前記接触位置検知用歪みゲージ直列に接続たものを一組として4組並列に貼り付け、
かつ前記車輪の表側に貼り付けた歪みゲージ同士と裏側に貼り付けた歪みゲージ同士が、それぞれ対向する辺に接続される構成のブリッジ回路すれば、波状摩耗区間の高周波外乱に対して安定した出力を得ることができ、有効に接触位置を計測できる。
Moreover, in the contact position detection method of the wheel and rail of the railway vehicle of the present invention,
The output of the lateral pressure measurement strain gauge at the same interval on the same circumference and the output of the contact position detection strain gauge on the line extending radially outward from the strain gauge with respect to the lateral pressure. However, the two strain gauges are respectively attached to the front and back of the position where the absolute value is the same with the opposite sign,
Bridge circuit of the lateral force measurement strain gauge, the place of the bridge circuit of the bridge circuit and the wheel load measuring strain gauge of the contact position detecting strain gauge, the horizontal pressure measuring strain gauges before and SL contact position for detecting those connected to the strain gauge in series stuck in four sets in parallel as a set,
And if it is set as the bridge circuit of the structure where the strain gauges affixed on the front side of the said wheel and the strain gauges affixed on the back side are respectively connected to the opposing side, it was stable with respect to the high frequency disturbance of a wavy wear area. Output can be obtained, and the contact position can be measured effectively.

鉄道車両の脱線に対する安全性の評価は、従来、車輪とレールとの間に作用する力を測定することで判断が行われてきたが、これだけでは必ずしも十分な安全性評価はできず、また脱線が起こるメカニズムを解明することもできない。   Conventionally, the evaluation of the safety against derailment of railway vehicles has been made by measuring the force acting between the wheel and the rail, but this alone is not always enough to evaluate the safety, and the derailment is not possible. It is not possible to elucidate the mechanism by which this occurs.

しかしながら、本発明によれば、走行中の車輪とレールとの接触位置を、高い検知精度で連続的に測定することができるので、従来から測定されている作用力と合わせて、脱線に対する安全性をより厳密に評価できるようになる。   However, according to the present invention, since the contact position between the running wheel and the rail can be continuously measured with high detection accuracy, the safety against derailment can be combined with the acting force measured conventionally. Can be evaluated more precisely.

その際、現在、一部で研究されている同様の技術に対して、その出力感度が高い点や、波状摩耗軌道の高周波外乱に対する安定性が高い点や、複雑な信号演算装置が不用になるといった優位性を有する。   At that time, compared to the same technology that is currently being studied in part, its output sensitivity is high, its stability against high-frequency disturbances in the wavy wear track is high, and complicated signal processing devices are not required. It has the superiority.

以下、本発明を実施するための各種の形態と共に最良の形態について、添付図面を用いて詳細に説明する。
発明者らは、車輪とレールとの接触位置を走行中に連続的に検知するために、車輪に対して接触位置を変化させた際の車輪の変形モードをFEM解析によって詳細に解析した。その結果、前記接触位置が、車両幅方向に変化した場合、車輪のリム部は剛性が高いので、ほぼ剛体として動くのに対して、車輪のリム部と板部との間のR部(以下、板部とのRしまい部と言う。)の変形が大きくなることが判明した。
The best mode as well as various modes for carrying out the present invention will be described below in detail with reference to the accompanying drawings.
The inventors analyzed the deformation mode of the wheel when the contact position was changed with respect to the wheel in detail by FEM analysis in order to continuously detect the contact position between the wheel and the rail during traveling. As a result, when the contact position changes in the vehicle width direction, the rim portion of the wheel has high rigidity, so that it moves almost as a rigid body, whereas the R portion between the rim portion of the wheel and the plate portion (hereinafter referred to as the “rim portion”). It was found that the deformation of the R portion with the plate portion becomes large.

そこで、発明者らは、この板部とのRしまい部の近傍に歪みゲージを貼り付け、当該部位の歪みを計測することで、車輪とレールとの接触位置を検知することについて検討した。ここで、板部とのRしまい部近傍とは、当該Rしまい部を中心に、半径方向に±15mm以内の範囲をいう。   Therefore, the inventors studied to detect the contact position between the wheel and the rail by attaching a strain gauge in the vicinity of the R-recessed portion with the plate portion and measuring the strain at the portion. Here, the vicinity of the R margin portion with the plate portion refers to a range within ± 15 mm in the radial direction with the R margin portion as the center.

なお、この板部とのRしまい部は、従来から歪みゲージの貼り付け位置として知られていたが、前記接触位置の検知に利用するという発想はなかった。   In addition, although the R margin part with this board part was conventionally known as a sticking position of a strain gauge, there was no idea of utilizing for the detection of the said contact position.

前記板部とのRしまい部近傍に歪みゲージを貼り付けた場合の歪み出力は、非特許文献2で開示された技術と同様に、外乱としての横圧の影響を受けるが、前記板部とのRしまい部近傍の位置は、車輪接触位置の変化に対して敏感に反応する位置であり、横圧に対する感度に対して、輪重の作用位置に対する感度の割合が、非特許文献2で開示された技術に対してより高いことをFEM解析および実験で確認した。   Similar to the technique disclosed in Non-Patent Document 2, the strain output in the case where a strain gauge is attached in the vicinity of the R margin portion with the plate portion is affected by lateral pressure as a disturbance. The position in the vicinity of the R end portion is a position that reacts sensitively to changes in the wheel contact position, and the ratio of the sensitivity to the acting position of the wheel load relative to the sensitivity to the lateral pressure is disclosed in Non-Patent Document 2. It was confirmed by FEM analysis and experiment that it was higher than the proposed technique.

A.従来の輪重・横圧測定用車輪(以下、PQ車輪と言う。)における歪みゲージ貼り付け位置とそのブリッジ回路(間欠法)
従来のPQ車輪1では、図1(a)に示すように、板部1bの半径方向中央部に設けた輪重測定用孔1dの、同一円周上の内周対向位置に1組の輪重測定用歪みゲージ2a〜2dを、また板部1bのボス側の位置における表裏それぞれに横圧測定用歪みゲージ3a〜3dおよび3a’〜3d’を貼り付けている。なお、板部1bの裏側に貼り付けた歪みゲージにはその符号に「’」を付けて表す。
A. Strain gauge affixing position and its bridge circuit (intermittent method) on conventional wheel load and lateral pressure measuring wheels (hereinafter referred to as PQ wheels)
In the conventional PQ wheel 1, as shown in FIG. 1 (a), a pair of wheels are arranged at positions opposite to the inner circumference of the wheel weight measuring hole 1d provided in the center portion in the radial direction of the plate portion 1b. The strain gauges 2a to 2d for heavy measurement, and the strain gauges 3a to 3d and 3a 'to 3d' for lateral pressure measurement are attached to the front and back of the plate portion 1b on the boss side. It should be noted that the strain gauge attached to the back side of the plate portion 1b is indicated by adding “′” to the reference numeral.

そして、輪重用のブリッジ回路は、図1(b)に示すように、図1(a)の上下方向、左右方向でそれぞれ1組となる前記輪重測定用歪みゲージ2aと2b、2cと2dが対向する辺に接続するように構成されている。また横圧用のブリッジ回路は、図1(c)に示すように、図1(a)の上下方向、左右方向でそれぞれ1組となるPQ車輪1の表側に貼り付けた横圧測定用歪みゲージ3a,3bおよび3c,3dと、この歪みゲージ3a,3bおよび3c,3dとPQ車輪1の軸心を介して対向する位置の裏側に貼り付けた歪みゲージ3c’,3d’および3a’,3b’が、それぞれ対向する辺に接続するように構成されている。なお、図1(a)中の1aはリム部、1cはボス部を示す。   As shown in FIG. 1 (b), the wheel load measuring strain gauges 2a and 2b, 2c and 2d form a pair in the vertical and horizontal directions of FIG. 1 (a), respectively. Are connected to opposite sides. Further, as shown in FIG. 1 (c), the lateral pressure measuring bridge circuit is a lateral pressure measuring strain gauge attached to the front side of the PQ wheel 1 as a pair in the vertical and horizontal directions in FIG. 1 (a). 3a, 3b and 3c, 3d, and strain gauges 3c ', 3d' and 3a ', 3b attached to the back side of the positions facing the strain gauges 3a, 3b and 3c, 3d via the axis of the PQ wheel 1 'Is configured to connect to opposite sides. In FIG. 1A, 1a indicates a rim portion and 1c indicates a boss portion.

このような位置に貼り付けた輪重測定用歪みゲージ2a〜2dとブリッジ回路によって検知した輪重Pは、従来から、横圧Qの影響を受けることなく検出できることが知られている。   Conventionally, it has been known that the wheel load P detected by the wheel load measuring strain gauges 2a to 2d and the bridge circuit attached at such a position can be detected without being affected by the lateral pressure Q.

それに対して、前記位置に貼り付けた横圧測定用歪みゲージ3a〜3dおよび3a’〜3d’では、図2に示したFEM解析モデル(紙面右上側の車軸ジャーナル部と車輪の踏面に10kNの輪重を作用させた)を用いた詳細検討の結果、図3および下記表1に示すように、輪重Pの作用位置によって歪み量が多少変化することが判明した。   On the other hand, the lateral pressure measuring strain gauges 3a to 3d and 3a 'to 3d' pasted at the above positions have an FEM analysis model shown in FIG. 2 (10 kN on the axle journal portion on the upper right side of the paper and the tread surface of the wheel). As a result of detailed examination using the wheel load, as shown in FIG. 3 and Table 1 below, it was found that the amount of strain slightly changes depending on the position of the wheel load P.

さらに、この輪重Pの作用位置による歪みの変化は、前記表1に示すように、輪重作用位置の変化によるリム側板部の歪み変化は、輪重作用位置の変化によるボス側板部の歪み変化とほぼ同等であることが分かる。   Further, as shown in Table 1, the change in distortion due to the position of the wheel load P is caused by the change in distortion of the rim side plate due to the change in the wheel action position. It turns out that it is almost equivalent to the change.

発明者らは、以上の結果を利用して、輪重Pの作用位置を検知することを考えた。
これらのボス側板部およびリム側板部は、横圧Qが作用することで歪みが発生するので、この横圧Qの作用によって発生する歪みと、輪重Pの作用位置の変化によって発生する歪みを、それぞれFEM解析で求めた。
The inventors considered using the above results to detect the operating position of the wheel load P.
Since the boss side plate portion and the rim side plate portion are distorted when the lateral pressure Q acts on the boss side plate portion and the rim side plate portion, the boss side plate portion and the rim side plate portion are subjected to the distortion caused by the action of the lateral pressure Q and the distortion caused by the change of the acting position of the wheel load P. Each was obtained by FEM analysis.

その結果、これらの歪みは、それぞれの荷重の変化に対して線形で、輪重Pの作用位置に対しても線形であることが判明した。これらの計算結果の例を、図4および下記表2に示す。   As a result, it has been found that these strains are linear with respect to each load change, and are also linear with respect to the operating position of the wheel load P. Examples of these calculation results are shown in FIG.

前記表2より、ボス側板部は、従来のPQ測定で用いられているように、横圧Qの作用に対して感度が高く(10.77μm/kN)、輪重Pの作用位置の変化による影響が小さいことが分かる。   From Table 2 above, the boss side plate portion is highly sensitive to the action of the lateral pressure Q (10.77 μm / kN) as used in the conventional PQ measurement, and depends on the change in the action position of the wheel load P. It can be seen that the impact is small.

一方、リム側板部は、横圧Qの作用による感度は小さいが(2.77μm/kN)、輪重Pの作用位置の変化による感度変化は、横圧Qの作用による感度と同レベルであることが分かる。   On the other hand, the rim side plate portion has low sensitivity due to the action of the lateral pressure Q (2.77 μm / kN), but the sensitivity change due to the change in the action position of the wheel load P is the same level as the sensitivity due to the action of the lateral pressure Q. I understand that.

これらのことより、従来のPQ測定用歪み測定位置に加えて、リム側板部の歪みを計測することで、輪重Pの作用位置の変化を、感度良く検知できることが分かる。   From these facts, it can be seen that the change in the working position of the wheel load P can be detected with high sensitivity by measuring the distortion of the rim side plate portion in addition to the conventional distortion measurement position for PQ measurement.

B.本発明による輪重・横圧測定用と、レールと車輪との接触位置(以下、輪重作用位置とも言う。)検知用の歪みゲージ貼り付け位置とそのブリッジ回路(間欠法、その1)
前記の結果に鑑み、前記Aで示した輪重測定用歪みゲージ2a〜2d、横圧測定用歪みゲージ3a,3bおよび3a’,3b’に加えて、さらにリム側板部に接触位置検知用歪みゲージ4a,4bおよび4a’,4b’を追加した。
B. Strain gauge affixing position and its bridge circuit (intermittent method, part 1) for wheel load / lateral pressure measurement according to the present invention and for detecting the contact position between the rail and wheel (hereinafter also referred to as wheel load acting position)
In view of the above results, in addition to the wheel load measuring strain gauges 2a to 2d and the lateral pressure measuring strain gauges 3a, 3b and 3a ', 3b' shown in A, the contact position detecting strain is further added to the rim side plate. Gauges 4a and 4b and 4a 'and 4b' were added.

前記歪みゲージ2a〜2d、3a,3bおよび3a’,3b’、4a,4bおよび4a’,4b’の貼付け位置を図5(a)(b)に、横圧測定用歪みゲージ3a,3bおよび3a’,3b’のブリッジ回路を図5(c)に、接触位置検知用歪みゲージ4a,4bおよび4a’,4b’のブリッジ回路を図5(d)に示す。なお、輪重測定用歪みゲージ2a〜2dのブリッジ回路は図1(b)と同じである。   The affixing positions of the strain gauges 2a to 2d, 3a, 3b and 3a ′, 3b ′, 4a, 4b and 4a ′, 4b ′ are shown in FIGS. 5 (a) and 5 (b), and the lateral pressure measurement strain gauges 3a, 3b and FIG. 5C shows the bridge circuit of 3a ′ and 3b ′, and FIG. 5D shows the bridge circuit of the strain gauges 4a and 4b for contact position detection and 4a ′ and 4b ′. The bridge circuit of the wheel load measuring strain gauges 2a to 2d is the same as that shown in FIG.

ε1を横圧測定用歪みゲージ3a,3bおよび3a’,3b’を用いたブリッジ回路(図5(c))によって計測した歪み、ε2を接触位置検知用歪みゲージ4a,4bおよび4a’,4b’を用いたブリッジ回路(図5(d))によって計測した歪みとすると、ε1、ε2は下記数式1および数式2によって求めることができる。   ε1 is the strain measured by the bridge circuit (FIG. 5 (c)) using the lateral pressure measuring strain gauges 3a, 3b and 3a ′, 3b ′, and ε2 is the contact position detecting strain gauges 4a, 4b and 4a ′, 4b. Assuming that the distortion is measured by a bridge circuit using '(FIG. 5 (d)), ε1 and ε2 can be obtained by Equations 1 and 2 below.

但し、β1:ε1に対する横圧Qの感度係数
α1(x):ε1に対する輪重作用位置(x)の関数となる輪重Pの感度係数
However, sensitivity coefficient of lateral pressure Q with respect to β1: ε1 α1 (x): sensitivity coefficient of wheel load P as a function of wheel load action position (x) with respect to ε1

但し、β2:ε2に対する横圧Qの感度係数
α2(x):ε2に対する輪重作用位置(x)の関数となる輪重Pの感度係数
However, the sensitivity coefficient of the lateral pressure Q with respect to β2: ε2 α2 (x): the sensitivity coefficient of the wheel load P as a function of the wheel load acting position (x) with respect to ε2

なお、前記FEM解析結果を一般式で表すと、下記数式3および数式4になる。   In addition, when the FEM analysis result is expressed by a general formula, the following Formula 3 and Formula 4 are obtained.

但し、a1、b1:定数 Where a1, b1: constants

但し、a2、b2:定数 Where a2 and b2 are constants

前記の数式1、数式2に数式3、数式4を代入して横圧Qを消去し、xについて解くと、下記数式5のようになる。この数式5より、ε1、ε2、輪重Pを計測すれば、接触位置xを求めることができる。   Substituting Equation 3 and Equation 4 into Equation 1 and Equation 2 to eliminate the lateral pressure Q and solving for x yields Equation 5 below. From Equation 5, if ε1, ε2, and wheel load P are measured, the contact position x can be obtained.

この方法により接触位置を実測した結果の一例を図6に示す。
図6(a)の縦軸は、車輪の左右変位を地上から測定した値を、図6(b)の縦軸は、本発明の方法で、車輪接触位置の移動量を測定した結果を示したもので、両図の横軸は時間(秒)を示す。なお、図6(b)の高周波成分は、レール側の波状摩耗による高周波外乱であり、接触位置の変化に対する誤差要因である。
An example of the result of actually measuring the contact position by this method is shown in FIG.
The vertical axis in FIG. 6 (a) shows the value obtained by measuring the lateral displacement of the wheel from the ground, and the vertical axis in FIG. 6 (b) shows the result of measuring the amount of movement of the wheel contact position by the method of the present invention. The horizontal axis in both figures shows time (seconds). The high-frequency component in FIG. 6B is a high-frequency disturbance due to wavy wear on the rail side, and is an error factor for changes in the contact position.

図6にて得られた車輪接触位置の移動量は、当該車輪のレールとのフランジ遊間(約10mm)に対してよく対応している。また、当該車輪の地上に対する車両幅方向の変位に対して、車輪接触位置の移動量は少し小さ目になることが分かっていることから見て、今回の測定結果はこのことによく対応していることが分かる。   The amount of movement of the wheel contact position obtained in FIG. 6 corresponds well to the flange clearance (about 10 mm) with the rail of the wheel. In addition, it is known that the amount of movement of the wheel contact position is slightly smaller with respect to the displacement of the wheel in the vehicle width direction with respect to the ground, and this measurement result corresponds well to this. I understand that.

C.本発明による輪重・横圧と、レールと車輪との接触位置検知(間欠法、その2)
前記Bの本発明方法では、前記Aで説明した従来の間欠法に対して、接触位置検知用歪みゲージをリム側板部に追加し、それぞれブリッジ回路を別々に構成し、それぞれの歪み測定値と、従来測定法による輪重測定結果とから、演算により接触位置を求めている。
C. Wheel load / lateral pressure and contact position detection between rail and wheel according to the present invention (intermittent method, part 2)
In the method of the present invention of B, compared with the conventional intermittent method described in A, a strain gauge for contact position detection is added to the rim side plate part, and each bridge circuit is configured separately, and each strain measurement value and The contact position is obtained by calculation from the wheel load measurement result obtained by the conventional measurement method.

つまり、前記Bの本発明方法では、演算のための信号処理装置が必要で、リアルタイムで接触位置を求めるには、高性能な信号処理装置が不可欠となる。   That is, the method B of the present invention requires a signal processing device for calculation, and a high-performance signal processing device is indispensable for obtaining the contact position in real time.

一方、先のFEM解析結果より、図5において、車輪接触点に横圧Qが作用した際、接触位置検知用歪みゲージ4a,4a’と横圧測定用歪みゲージ3a,3a’の出力は、PQ車輪1の板部1b上の同一半径線上において、ちょうど符号が異なり、絶対値が同一となる位置が存在することが分かった。   On the other hand, from the previous FEM analysis result, when the lateral pressure Q acts on the wheel contact point in FIG. 5, the outputs of the contact position detecting strain gauges 4a and 4a ′ and the lateral pressure measuring strain gauges 3a and 3a ′ are as follows. It was found that on the same radial line on the plate portion 1b of the PQ wheel 1, there are positions where the signs are exactly different and the absolute values are the same.

そこで、この符号が異なり、絶対値が同一となる位置に横圧測定用歪みゲージ3a,3bおよび3a’,3b’と接触位置検知用歪みゲージ4a,4bおよび4a’,4b’を貼り付ける。そして、ブリッジ回路の各辺それぞれに、これら両歪みゲージ3a,3bおよび3a’,3b’、4a,4bおよび4a’,4b’を直列に接続する。またPQ車輪1の表側に貼り付けた歪みゲージ同士、PQ車輪1の裏側に貼り付けた歪みゲージ同士が、それぞれ対向する辺に接続されるように前記ブリッジ回路を構成する(図7参照)。   Therefore, the lateral pressure measuring strain gauges 3a, 3b and 3a ', 3b' and the contact position detecting strain gauges 4a, 4b and 4a ', 4b' are pasted at positions where the signs are different and the absolute values are the same. These strain gauges 3a, 3b and 3a ', 3b', 4a, 4b and 4a ', 4b' are connected in series to each side of the bridge circuit. Further, the bridge circuit is configured such that the strain gauges attached to the front side of the PQ wheel 1 and the strain gauges attached to the back side of the PQ wheel 1 are connected to opposite sides, respectively (see FIG. 7).

図7のような構成のブリッジ回路では、出力値は下記数式6、横圧Qによる歪みは下記数式7のようになる。   In the bridge circuit configured as shown in FIG. 7, the output value is expressed by the following formula 6, and the distortion due to the lateral pressure Q is expressed by the following formula 7.

また、接触点における歪みは、q3aとq3a’、q4aとq4a’、q3bとq3b’、q4bとq4b’は、それぞれ絶対値が等しく、符号が異なることから、下記数式8のようになる。   Further, the distortion at the contact point is expressed by the following Equation 8 because q3a and q3a ', q4a and q4a', q3b and q3b ', and q4b and q4b' have the same absolute value and different signs.

前記数式7より、横圧Qに対する歪み出力は、キャンセルされてゼロとなる。
それに対して、接触位置(輪重Pの作用位置)による出力は、接触位置検知用歪みゲージ4aと4a’および横圧測定用歪みゲージ3aと3a’、または接触位置検知用歪みゲージ4bと4b’および横圧測定用歪みゲージ3bと3b’が足し合わされて出力されるので、感度の高い出力が得られる。
From Equation 7, the distortion output for the lateral pressure Q is canceled and becomes zero.
On the other hand, the output by the contact position (the working position of the wheel load P) is output from the contact position detecting strain gauges 4a and 4a ′ and the lateral pressure measuring strain gauges 3a and 3a ′, or the contact position detecting strain gauges 4b and 4b. Since 'and lateral pressure measuring strain gauges 3b and 3b' are added together and output, a highly sensitive output can be obtained.

また、この方法を用いれば、ブリッジ回路内にて接触位置の変化量に比例する歪み出力が得られるので、高度な信号処理装置が不要になる。
ちなみに、前記図7で示したブリッジ回路の出力の歪み出力に、あらかじめ測定しておいた接触位置の変化量に対する感度係数(輪重Pに対する線形関数)と、前記Aで説明した従来法により測定した輪重Pの値を代入すれば、接触位置の変化量を計測することができる。
Further, if this method is used, a distortion output proportional to the amount of change in the contact position can be obtained in the bridge circuit, so that an advanced signal processing device is not required.
Incidentally, the distortion output of the output of the bridge circuit shown in FIG. 7 is measured by the sensitivity coefficient (linear function with respect to the wheel load P) with respect to the change amount of the contact position measured in advance and the conventional method described in A above. If the value of the wheel load P is substituted, the amount of change in the contact position can be measured.

D.本発明による輪重・横圧と、レールと車輪との接触位置検知(連続法、その3)
連続法による車輪とレールとの接触位置検出用として、車輪リム側板部での歪みゲージによる測定値を採用した場合は出力が低い。従って、連続法にてブリッジ回路を組んだ場合には、非常に低い出力となる可能性が高い。
D. Wheel load / lateral pressure and contact position detection between rail and wheel according to the present invention (continuous method, part 3)
The output is low when the measured value by the strain gauge at the wheel rim side plate is used for detecting the contact position between the wheel and the rail by the continuous method. Therefore, when the bridge circuit is assembled by the continuous method, there is a high possibility that the output is very low.

このため、輪重Pによる車輪板部の変形により、横圧Qに対する感度の影響が大きく、輪重PによるPQ車輪1の板部1bに発生する変形が検出しにくいことが予想される。
しかしながら、軌道の波状摩耗区間では、前記B、Cで説明した間欠法では、図6に示したように、波状摩耗の影響を受けて接触位置検出用歪みゲージに衝撃的な高周波波形の乱れが発生し、接触位置の測定精度が悪化する場合がある。
For this reason, it is expected that the deformation of the wheel plate portion due to the wheel load P has a great influence on the sensitivity to the lateral pressure Q, and the deformation generated in the plate portion 1b of the PQ wheel 1 due to the wheel load P is difficult to detect.
However, in the wavy wear section of the track, in the intermittent method described in B and C, as shown in FIG. 6, a shocking high-frequency waveform is disturbed in the contact position detecting strain gauge due to the influence of the wavy wear. May occur and the measurement accuracy of the contact position may deteriorate.

そこで、発明者らは、この波状摩耗区間でも、有効に接触位置を計測する方法として、連続法による接触位置検知方法を検討した。   Therefore, the inventors examined a contact position detection method using a continuous method as a method for effectively measuring the contact position even in the wavy wear section.

発明者らは、連続法にて有効な出力を得るため、前記Bで示した歪みゲージ4aと3aの横圧Qに対する出力が、符号が逆で絶対値が同じとなる位置を利用し、この反転性を用いて、輪重付加による出力が同符号になる歪みゲージ4aと3aの出力を加算することとした。   In order to obtain an effective output by the continuous method, the inventors use a position where the output to the lateral pressure Q of the strain gauges 4a and 3a indicated by B is opposite in sign and has the same absolute value. Using the reversal property, the outputs of the strain gauges 4a and 3a having the same sign as the output of the wheel load addition are added.

すなわち、図8(a)に示すように、それぞれ同一円周上の同一間隔の位置にある、横圧測定用歪みゲージ3a〜3h,3a’〜3h’と接触位置検知用歪みゲージ4a〜4h,4a’〜4h’を、それぞれの横圧Qに対する出力が、符号が逆で絶対値が同一となる8箇所の表裏位置に貼り付ける。   That is, as shown in FIG. 8A, lateral pressure measuring strain gauges 3a to 3h, 3a 'to 3h' and contact position detecting strain gauges 4a to 4h, which are at the same interval on the same circumference, respectively. , 4a ′ to 4h ′ are pasted to eight front and back positions where the outputs for the respective lateral pressures Q have opposite signs and the same absolute value.

そして、図8(b)に示すように、ブリッジ回路の各辺それぞれに、横圧測定用歪みゲージ3a〜3h,3a’〜3h’と、この歪みゲージから半径方向外方に延長した線上にある接触位置検知用歪みゲージ4a〜4h,4a’〜4h’が直列に接続されたものを一組として4組並列に貼り付ける。   Then, as shown in FIG. 8B, on each side of the bridge circuit, lateral pressure measuring strain gauges 3a to 3h, 3a 'to 3h', and lines extending radially outward from the strain gauges. A set of contact position detecting strain gauges 4a to 4h and 4a 'to 4h' connected in series is pasted in parallel as a set.

加えて、PQ車輪1の表側に貼り付けた歪みゲージ3a〜3hと4a〜4h同士、PQ車輪1の裏側に貼り付けた歪みゲージ3a’〜3h’と4a’〜4h’同士が、それぞれ対向する辺に接続されるように前記ブリッジ回路を構成するのである。   In addition, the strain gauges 3a to 3h and 4a to 4h attached to the front side of the PQ wheel 1 and the strain gauges 3a 'to 3h' and 4a 'to 4h' attached to the back side of the PQ wheel 1 are opposed to each other. The bridge circuit is configured so as to be connected to the side to be connected.

このようにすることで、横圧Qによる出力をキャンセルして、輪重Pの作用位置の変化に対するより大きな主力を得ることができるようになる。   By doing in this way, the output by the lateral pressure Q can be canceled and a greater main force against the change in the operating position of the wheel load P can be obtained.

本発明は上記の例に限らず、各請求項に記載された技術的思想の範囲内で、適宜実施の形態を変更しても良いことは言うまでもない。   The present invention is not limited to the above example, and it goes without saying that the embodiment may be appropriately changed within the scope of the technical idea described in each claim.

(a)は従来の間欠式輪重・横圧測定用車輪の歪みゲージの貼り付け位置を示した図、(b)は輪重測定用のブリッジ回路を示した図、(c)は横圧測定用のブリッジ回路を示した図である。(A) is the figure which showed the pasting position of the strain gauge of the wheel for the conventional intermittent wheel load and lateral pressure measurement, (b) the figure which showed the bridge circuit for wheel load measurement, (c) is the lateral pressure It is the figure which showed the bridge circuit for a measurement. FEM解析モデル(輪重作用時)を示した図である。It is the figure which showed the FEM analysis model (at the time of wheel load effect | action). 輪重作用時の車輪板部側面の歪(FEM解析例)を示した図である。It is the figure which showed the distortion (FEM analysis example) of the wheel board part side surface at the time of a wheel load effect | action. 車輪板部の歪み計算位置を示した図である。It is the figure which showed the distortion calculation position of a wheel board part. (a)(b)は間欠法による本発明の鉄道車両の車輪とレールとの接触位置検知方法に使用する歪みゲージの貼り付け位置を示した図、(c)は横圧測定用のブリッジ回路を示した図、(d)は接触位置検知用のブリッジ回路を示した図である。(A) (b) is the figure which showed the affixing position of the strain gauge used for the contact position detection method of the wheel and rail of the railway vehicle of this invention by an intermittent method, (c) is the bridge circuit for a lateral pressure measurement FIG. 8D is a diagram showing a bridge circuit for detecting a contact position. (a)(b)は図5に示した配置状態の歪みゲージとブリッジ回路を用いて車輪とレールとの接触位置を実測した場合の一例を示した図である。(A) and (b) are the figures which showed an example at the time of measuring the contact position of a wheel and a rail using the strain gauge and bridge circuit of the arrangement | positioning state shown in FIG. 間欠法による本発明の鉄道車両の車輪とレールとの接触位置検知方法に使用する他の接触位置検知用のブリッジ回路を示した図である。It is the figure which showed the other bridge circuit for contact position detection used for the contact position detection method of the wheel and rail of the railway vehicle of this invention by an intermittent method. (a)は連続法による本発明の鉄道車両の車輪とレールとの接触位置検知方法に使用する歪みゲージの貼り付け位置を示した図、(b)は(a)の接触位置検知用のブリッジ回路を示した図である。(A) is the figure which showed the affixing position of the strain gauge used for the contact position detection method of the wheel and rail of the railway vehicle of this invention by a continuous method, (b) is the bridge for contact position detection of (a). It is the figure which showed the circuit.

符号の説明Explanation of symbols

1 PQ車輪
1a リム部
1b 板部
1c ボス部
1d 輪重測定用孔
2a,2b… 輪重測定用歪みゲージ
3a,3b…、3a’,3b’… 横圧測定用歪みゲージ
4a,4b…、4a’,4b’… 接触位置検知用歪みゲージ
1 PQ wheel 1a Rim part 1b Plate part 1c Boss part 1d Wheel weight measuring hole 2a, 2b ... Wheel weight measuring strain gauges 3a, 3b ... 3a ', 3b' ... Lateral pressure measuring strain gauges 4a, 4b ..., 4a ', 4b' ... Strain gauge for contact position detection

Claims (4)

リム部、板部およびボス部から構成され、
板部の半径方向中央部に設けた輪重測定用孔の、同一円周上の内周対向位置に1組の輪重測定用歪みゲージを、また板部ボス側の表裏には横圧測定用歪みゲージをそれぞれ貼り付けた鉄道車両の輪重・横圧測定用車輪の、
前記横圧測定用歪みゲージから半径方向外方に延長した線上の、板部リム側のRしまい部近傍に接触位置検知用歪みゲージをさらに貼り付け、
前記横圧測定用歪みゲージおよび前記接触位置検知用歪みゲージとそれぞれのブリッジ回路から計測された歪みと、前記輪重測定用歪みゲージと当該輪重測定用歪みゲージのブリッジ回路から得られた輪重とから、車輪とレールとの接触位置を検知することを特徴とする鉄道車両の車輪とレールとの接触位置検知方法。
Consists of rim, plate and boss,
A set of strain gauges for measuring the wheel load at the position opposite to the inner circumference on the same circumference of the hole for measuring the wheel load provided in the center of the plate in the radial direction, and measuring the lateral pressure on the front and back of the plate boss. Of the wheel load and lateral pressure measurement wheels of railway vehicles with the strain gauges attached
Affixing a contact position detection strain gauge in the vicinity of the R margin on the plate rim side on a line extending radially outward from the lateral pressure measurement strain gauge,
Strain measured by the lateral pressure measuring strain gauge and the contact position detecting strain gauge and the respective bridge circuits, and the wheel obtained from the bridge circuit of the wheel weight measuring strain gauge and the wheel weight measuring strain gauge. The contact position detection method of the wheel and rail of a railway vehicle characterized by detecting the contact position of a wheel and a rail from heavy.
前記輪重測定用歪みゲージを貼り付けた輪重測定用孔が同一円周上に同一間隔で4箇所に設けられ、横圧測定用歪みゲージおよび接触位置検知用歪みゲージがそれぞれ同一円周上に同一間隔で表裏各4箇所に貼り付けられていることを特徴とする請求項1に記載の鉄道車両の車輪とレールとの接触位置検知方法。   The wheel load measuring holes with the wheel load measuring strain gauges are provided at four positions on the same circumference at the same interval, and the lateral pressure measuring strain gauge and the contact position detecting strain gauge are on the same circumference. The method for detecting the contact position between a wheel and a rail of a railway vehicle according to claim 1, wherein the wheel is attached to the front and back at four locations at the same interval. 前記横圧測定用歪みゲージと、当該歪みゲージから半径方向外方に延長した線上にある前記接触位置検知用歪みゲージの横圧に対する出力が、符号が逆で絶対値が同一となる位置に前記両方の歪みゲージをそれぞれ貼り付け、
かつ前記横圧測定用歪みゲージのブリッジ回路および前記接触位置検知用歪みゲージのブリッジ回路に代えて、前記横圧測定用歪みゲージと前記接触位置検知用歪みゲージ直列に接続ると共に、
前記車輪の表側に貼り付けた歪みゲージ同士と裏側に貼り付けた歪みゲージ同士が、それぞれ対向する辺に接続される構成のブリッジ回路することを特徴とする請求項2に記載の鉄道車両の車輪とレールとの接触位置検知方法。
The output for the lateral pressure of the lateral pressure measuring strain gauge and the lateral pressure of the contact position detecting strain gauge on the line extending radially outward from the strain gauge is at a position where the sign is opposite and the absolute value is the same. Paste both strain gauges,
And wherein in place of the bridge circuit and the bridge circuit of the contact position detecting strain gauges lateral force measuring strain gages, to connect the lateral pressure measuring strain gauges and pre-Symbol contacting position detection strain gauge in series Rutotomoni,
Strain gauge between pasted to the strain gauge between the back side pasted to the front side of the wheel, the railway vehicle according to claim 2, characterized in that the bridge circuit configured to be connected to respective opposite sides A method for detecting the contact position between a wheel and a rail.
それぞれ同一円周上の同一間隔の位置で、かつ前記横圧測定用歪みゲージの出力と、当該歪みゲージから半径方向外方に延長した線上にある前記接触位置検知用歪みゲージの横圧に対する出力が、符号が逆で絶対値が同一となる位置の表裏各8箇所に、前記両方の歪みゲージをそれぞれ貼り付け、
前記横圧測定用歪みゲージのブリッジ回路、前記接触位置検知用歪みゲージのブリッジ回路および前記輪重測定用歪みゲージのブリッジ回路に代えて、前記横圧測定用歪みゲージと前記接触位置検知用歪みゲージ直列に接続たものを一組として4組並列に貼り付け、
かつ前記車輪の表側に貼り付けた歪みゲージ同士と裏側に貼り付けた歪みゲージ同士が、それぞれ対向する辺に接続される構成のブリッジ回路することを特徴とする請求項1に記載の鉄道車両の車輪とレールとの接触位置検知方法。
The output of the lateral pressure measurement strain gauge at the same interval on the same circumference and the output of the contact position detection strain gauge on the line extending radially outward from the strain gauge with respect to the lateral pressure. However, the two strain gauges are respectively attached to the front and back of the position where the absolute value is the same with the opposite sign,
Bridge circuit of the lateral force measurement strain gauge, the place of the bridge circuit of the bridge circuit and the wheel load measuring strain gauge of the contact position detecting strain gauge, the horizontal pressure measuring strain gauges before and SL contact position for detecting those connected to the strain gauge in series stuck in four sets in parallel as a set,
And railway vehicle according to claim 1, strain gauge between pasted to the strain gauge between the back side pasted to the front side of the wheel, characterized in that the bridge circuit configured to be connected to respective opposite sides For detecting the contact position between the wheel and rail of the car.
JP2006163854A 2006-06-13 2006-06-13 Method for detecting contact position between railroad vehicle wheel and rail Active JP4759744B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006163854A JP4759744B2 (en) 2006-06-13 2006-06-13 Method for detecting contact position between railroad vehicle wheel and rail

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006163854A JP4759744B2 (en) 2006-06-13 2006-06-13 Method for detecting contact position between railroad vehicle wheel and rail

Publications (2)

Publication Number Publication Date
JP2007331492A JP2007331492A (en) 2007-12-27
JP4759744B2 true JP4759744B2 (en) 2011-08-31

Family

ID=38931384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006163854A Active JP4759744B2 (en) 2006-06-13 2006-06-13 Method for detecting contact position between railroad vehicle wheel and rail

Country Status (1)

Country Link
JP (1) JP4759744B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4814121B2 (en) * 2007-02-22 2011-11-16 三菱重工業株式会社 Measuring method of wheel load or lateral pressure
JP5253968B2 (en) * 2008-11-05 2013-07-31 公益財団法人鉄道総合技術研究所 Method for judging running stability of railway vehicles
AT510443B1 (en) * 2010-10-07 2012-04-15 Pj Messtechnik Gmbh MEASURING KIT FOR RAIL VEHICLES
JP5497619B2 (en) * 2010-12-10 2014-05-21 公益財団法人鉄道総合技術研究所 Wheel angle measuring method and wheel angle measuring device for railway vehicle
RU2566654C2 (en) * 2014-01-31 2015-10-27 Открытое Акционерное Общество "Российские Железные Дороги" Device to measure and record forces of interaction between wheel and rail
FR3034070B1 (en) * 2015-03-26 2018-07-27 Sncf Mobilites WHEEL AND FORCE MEASURING DEVICE FOR A RAILWAY VEHICLE
JP7361631B2 (en) * 2020-02-21 2023-10-16 日本製鉄株式会社 A method for measuring the contact position between a wheel of a railway vehicle and a rail, and a method for measuring lateral force on a railway vehicle using the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5116778Y1 (en) * 1970-09-09 1976-05-07
JPS5542057A (en) * 1978-09-20 1980-03-25 Sumitomo Metal Ind Ltd Method of measuring weight of wheel
JP3103144B2 (en) * 1991-07-16 2000-10-23 東海旅客鉄道株式会社 How to display the running state of a moving object
JP2825125B2 (en) * 1996-12-06 1998-11-18 日本電気株式会社 Continuous wheel load and lateral pressure measurement device for running wheels
JP4141180B2 (en) * 2002-05-22 2008-08-27 東急車輛製造株式会社 Data processing apparatus and data processing method
DE102005051498B3 (en) * 2005-10-26 2007-04-26 Deutsche Bahn Ag Measuring wheel set for railed vehicle, has four radii sensors applied on wheel disk based on requirement and/or design of wheel set, where two linear independent equations are determined for determination of forces per radius
JP2007327788A (en) * 2006-06-06 2007-12-20 Nec San-Ei Instruments Ltd Wheel load/lateral pressure sensor, measurement method therefor, and wheel load/lateral pressure measuring device and measurement method therefor, and derailment coefficient measuring device and measurement method therefor

Also Published As

Publication number Publication date
JP2007331492A (en) 2007-12-27

Similar Documents

Publication Publication Date Title
JP4759744B2 (en) Method for detecting contact position between railroad vehicle wheel and rail
CA2574051C (en) Apparatus for detecting hunting and angle of attack of a rail vehicle wheelset
US9628762B2 (en) System for imaging and measuring rail deflection
JP6650269B2 (en) How to evaluate vehicle wheel condition
JP6663267B2 (en) Method and apparatus for measuring longitudinal creep force between wheel and rail of railway vehicle
CN104006978B (en) Method for indirectly measuring acting force between railway vehicle wheel tracks
KR20170122947A (en) Trolly apparatus for measuring track irregularity having track guidance member of hydraulic type, and method for the same
JP4692517B2 (en) Method for diagnosing laying position of derailment prevention guard for railway vehicles
US20170212142A1 (en) Method And Device For Determining Absolute Speed Of A Rail Vehicle
CN105923015B (en) It is a kind of using vibration reduction platform as the rail undulatory wear traverse measurement method of inertia displacement benchmark
CN114295310A (en) Frequency-free detection vehicle for strengthening indirect bridge measurement effect and design method
CN103507832B (en) A kind of Rail inspection detecting device
KR20120042257A (en) Wheel load measuring method of the railway vehicles
JP7361631B2 (en) A method for measuring the contact position between a wheel of a railway vehicle and a rail, and a method for measuring lateral force on a railway vehicle using the same
Tsai et al. Fast inspection and identification techniques for track irregularities based on HHT analysis
WO2023007273A1 (en) A system and a method for the diagnosis of abnormal bending in railway rails, in particular at connections between railway rails
JP2008233062A (en) Method of measuring tangential force and wheel load which interact between railway vehicle wheel and rail and method of measuring axle torsion
JP5662126B2 (en) Load measuring method and load measuring apparatus
JP2008201389A (en) Method for measuring wheel load or horizontal pressure
Ham et al. New Lateral Force Measurement Method of the Wheel Plate for Railway Vehicles
Cai et al. Research on the strain gauge mounting scheme of track wheel force measurement system based on high-speed wheel/rail relationship test rig
JP4198838B2 (en) Rail vehicle running wheel inspection device
JP7207148B2 (en) Railroad vehicle track condition evaluation method and railroad vehicle bogie
RU2709704C1 (en) Method for measuring vertical load from wheel to rail and device for its implementation
Fourie Mechanisms influencing railway wheel squeal excitation in large radius curves

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110512

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4759744

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250