JP4759189B2 - Coordinate input device - Google Patents

Coordinate input device Download PDF

Info

Publication number
JP4759189B2
JP4759189B2 JP2001284542A JP2001284542A JP4759189B2 JP 4759189 B2 JP4759189 B2 JP 4759189B2 JP 2001284542 A JP2001284542 A JP 2001284542A JP 2001284542 A JP2001284542 A JP 2001284542A JP 4759189 B2 JP4759189 B2 JP 4759189B2
Authority
JP
Japan
Prior art keywords
coordinate input
optical
light
fan
fulcrum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001284542A
Other languages
Japanese (ja)
Other versions
JP2003091358A (en
Inventor
健 平林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2001284542A priority Critical patent/JP4759189B2/en
Publication of JP2003091358A publication Critical patent/JP2003091358A/en
Application granted granted Critical
Publication of JP4759189B2 publication Critical patent/JP4759189B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、光学式の座標入力装置に関し、特に大面積の座標入力面から指などで入力するのに好都合な座標入力装置に関するものである。
【0002】
【従来の技術】
表示された画像に対応して指や差し棒などで入力する装置として、代表的にはタッチパネルが広く利用されている。この入力方式には、静電容量方式、抵抗膜方式、超音波方式、光学式などがあり、それぞれの特徴を活かし目的、使用環境に応じて使い分けられている。
大画面の表示装置、例えば大型フラットディスプレイや投影表示装置、の応用の拡大、さらに電子黒板やテレビ会議システムの機能拡充の要請から、大面積型の座標入力技術が重要となっている。
【0003】
この大型化では、方式による技術限界や経済性などの面から光学式の座標入力装置が利用され、特開平11−85399号公報に光走査型タッチパネルが開示されている。この技術は、角形基板の隣合う2隅にそれぞれ光走査ユニットを設け、同ユニットから走査された光が角形基板の残りの3辺に設けた再帰性反射体から反射され同ユニットに戻り、その光を検出するようになっている。指などで光が遮断されると、各光走査ユニットから見た遮断の方向を検出し、光走査ユニット間の距離を基に遮断された位置を算出し、その座標が入力されるようになっている。この光学式の座標入力装置は、非常に大型の座標入力にも適用でき、しかも構成が単純化されているので、入力面積当たりの価格も比較的安価に実現できる。
【0004】
【発明が解決しようとする課題】
この光走査し、光遮断位置を検出する座標入力装置は、光走査の原点から反射点までの距離をかなり大きくとれるので、入力面の大面積化が容易に実現できる。しかし、光走査の原点から反射点までの距離が大きくなる程、即ち座標入力の範囲、面積が大きくなる程、光の出射の方向と座標入力面との平行度に要求される条件が厳しくなる。
【0005】
即ち、光が走査する平面と座標入力の平面とが所定の間隔を保持して平行になるように、光の出射方向を調整する精度は、座標入力面積とともに高精度が要求される。
従来は、発光素子、受光素子、ポリゴンミラーを搭載したユニットの面を支持する3点での高さ調整により、光学走査面と座標入力面との間隔及び平行度とを併行して調整していた。個々点の高さ調整を順に繰り返しながら所定の間隔と平行度に追い込んで行くため、非常に手間が掛かる。場合によっては、追い込みきれずに、程々で妥協せざるを得ないこともある。
本発明はこのよう問題を鑑み、間隔と平行度の調整が容易な光学式座標入力装置を提供するものである。
【0006】
【課題を解決するための手段】
上記問題を解決するため、本発明の第1の発明は、座標入力面に平行な扇状の光を出射する光源部と受光部とを有する光学ユニット本体を基板上に配備して成る2組の光学ユニットが所定の間隔を維持し当該座標入力面の一縁側の近傍に設置されると共に、当該2組の光学ユニットにおけるそれぞれの当該光源部から出射した光が当該座標入力面の当該一縁側以外の他縁側の周囲に設置された光反射部によって反射されて当該受光部のそれぞれへ結像することで複数の光路が形成され、且つ当該複数の光路中の光遮蔽点のそれぞれの結像位置と当該2組の光学ユニットの当該所定の間隔から当該光遮蔽点の座標を求める座標入力装置であって、前記光学ユニットを保持する平板状の保持部と、前記扇状の光平面の要に対応する位置を支点として含むと共に、前記基板を貫通して先端部が前記保持部に係合して前記光学ユニット本体を支持する支点支持部と、前記扇状の光平面の光軸に平行で前記支点を含む第一の直線と当該第一の直線に当該光平面上で直角な第二の直線とに係る当該支点以外の各直線上に対応する位置を含むと共に、前記保持部及び前記基板を係止して前記光学ユニット本体の支持に供される複数の支持部と、を有する調整手段を備え、前記調整手段は、前記支点支持部の前記先端部における前記保持部への係合部分の位置及び方向の設定、並びに前記複数の支持部における当該保持部及び前記基板の間の距離寸法の設定が調整可能であることにより、前記支点を中心として前記扇状の光平面と前記座標入力面との平行度を調整できることを特徴とする。
【0007】
本発明の第2の発明は、上記座標入力装置において、前記光源部は、出射する前記扇状の光平面の扇を成す拡がり角度を可変できることを特徴とする。
【0008】
本発明の第3の発明は、上記何れかの座標入力装置において、前記支点支持部及び前記複数の支持部は、前記基板をシーソー動作させて前記保持部へ締結保持可能であると共に、当該基板及び当該保持部を押圧可能なスプリングが付設された調整ネジであることを特徴とする。
【0009】
本発明の第4の発明は、上記何れかの座標入力装置において、前記支点支持部は、前記基板を貫通して先端部が前記保持部に設けられた位置決め用の穴周囲の壁部に接触係合して前記光学ユニット本体を支持するために当該光学ユニット本体に一体的に設けられた突起物であり、前記調整手段は、前記突起物の前記先端部における前記保持部の前記穴周囲の壁部への接触係合部分の位置及び方向の設定が調整可能であることを特徴とする。
【0010】
以下の実施形態(実施例)では、光源部が発光素子7、受光部が受光素子11、光反射部が反射部3(A)、3(B)、3(C)、支点支持部が突起物17、複数の支持部が調整ネジ17(A)、17(B)、17(C)、調整手段が保持部14と突起物17と調整ネジ17(A)、17(B)、17(C)とによる構成、にそれぞれ対応している。
【0011】
【発明の実施の形態】
本発明の全体構成の一例を、図1に概念的に示した。
座標入力面1の下側の左右両端に光学ユニット2(A)、2(B)が設置されている。各光学ユニット2からは扇状の平面光が座標入力面1と平行な方向に出射され、座標入力面1の上で光学ユニット2(A)、2(B)の光路が重なり合う領域を形成する。
【0012】
図で座標入力面1の左右および上側に反射部3(A)、3(B)、3(C)が設置されている。光学ユニット2から出射した扇状の光は反射部3で光を出射した光学ユニット2の方向へ反射される。反射部3はシート内部に高密度の三面体キューブを配置し、入射光を光学ユニット2の方向へ反射する再帰性反射シートが用いられている。又、図1の反射部3は三辺に沿って直線状に示してあるが、形状や配置は座標入力面1にもよって最適な形態を設定すればよい。
【0013】
反射部3から反射され、光学ユニット2へ再帰した光は、光学ユニット2内の受光部へ結像される。受光部にはラインセンサなどが用いられる。
例えば、指などで座標入力面にタッチすると扇状の平面光の一部が遮光され、光学ユニット2(A)、2(B)はそれぞれの光路での遮光の方角に対応する光学像を受光部が検知する。
【0014】
各光学ユニット2の受光部の検知信号は演算部4へ入力し、光学ユニット2(A)、2(B)からの遮光の方角に関する情報と、予め入力された光学ユニット2(A)と2(B)との距離に関する情報とから三角測量の原理により遮光位置、即ち座標値を演算する。演算された座標値はインターフェース部5を介してPC6へ出力される。また光学ユニット2を制御する信号は逆に演算部4から各光学ユニット2へ送られ、発光、受光の制御をする。
【0015】
本発明では、光学ユニット2内のレンズ系(後述する)で扇状の平面光を作っておき、座標入力面1への光学ユニット2の設置の時には、座標入力面1と扇状の平面光との平行度、即ち光学ユニット2の平面との調整さえ行えばよい。原理的には平面は3点で規定できるので、座標入力面1と光学ユニット2の底面の3点位置での高さ(間隔)調整をすれば良いことになる。しかも、その内の1点を扇状の平面光の要に対応する位置に選び、支点として作用させれば、座標入力面1と光学ユニット2とが平行になるよう調整すると、その間隔は自然に決まるようにできる。
【0016】
残りの2点を、扇状の平面光の光軸と平行な支点を含む直線上に1点とその直線と直角で支点を含む直線上にもう1点に選べば、さらに調整が容易になる。この場合の2点のそれぞれの役割は、座標入力面1と光軸との調整及び扇状の平面光の左右の平行バランスの調整と独立したものとなるので、調整は単純化される。
【0017】
前記の説明の3点での調整に限らず、調整の作業性、精度、調整後の安定性などのために調整点を増加させて行うことが可能である。また、図1の座標入力面1と2組の光学ユニット2とを基本構成単位と考え、この単位構成を複数組み合わせて構成した座標入力装置にしてもよい。例えば、入力面が湾曲して一平面に収まらない座標入力装置には、基本構成単位で複数分割して、全体で座標入力装置として機能させても良いことは言うまで
もない。
【0018】
【実施例】
図2に、光学ユニット2の光学系の配置例を示した。図2(a)は光学系を側面から見た図、(b)はその正面の図である。発光素子7から出射した光は拡散レンズ8により一定の幅(厚み)を持ち、直線状に拡がる拡散光である。
【0019】
この拡散光はハーフミラー9で直角方向に折り曲げられた平面光となり、座標入力面1(図1)と平行に進行する光、即ち扇状の平面光となる。この平面光は反射部3(図1)の再帰性反射シートから反射され光学ユニット2に戻ってくる。
【0020】
戻ってきた光はハーフミラー9を通過し、結像レンズ10によって受光素子11へ結像され、光電変換され、結像状態に対応した信号を演算部へ出力する。
その受光素子11としては、結像状態から遮光位置の方角を検知するようにラインセンサやCCDなどが用いられる。
【0021】
光学系の配置はこの例に限られるものではなく、例えば発光素子7、拡散レンズ8、ハーフミラー9を座標入力面1と平行に配置し、結像レンズ10、受光素子11の配置を直角方向に設置しても構わぬことは言うまでもない。また、座標入力面1と平行な扇状の平面光の要の位置とは、その扇形の見掛け上の頂点に対応する位置である。
【0022】
光学ユニット2の調整機構について、一つの例として図3の部分斜視図と図4のその上面図を用いて説明する。光学ユニット2は光学ユニット本体12と基板13とで構成され、相互に固定されている。なお、光学ユニット本体12には先に述べた図2のような光学系が内蔵されている。一方、座標入力面1には、それに連続して保持部14が設けられている。基本的には、保持部14の平面に対する基板13の面を3本の調整ネジ17で高さと平行度を調整して、扇状平面光15を座標入力面1に平行に設定する。
【0023】
図3の実施例では、特に好ましい例として、扇状平面光15の要に相当する位置で基板13の下側に支点となる突起物16を設けている。この突起物16に対して、更に好ましい例として保持部14に図5に示すような穴18や凹部を設ければ、突起物16の保持部14上の位置決めが容易に行え、結局、扇状平面光15の要と座標入力面1との位置合わせが一義的になされることになる。
【0024】
次に、調整ネジ17について説明する。図3、図4の実施例では、特に好ましい例として、突起物16と調整ネジ17(B)とを結ぶ線が扇状平面光15の光軸と平行であり、突起物16と調整ネジ17(A)、17(C)とが光軸に垂直な線上にある。
この実施例の場合には、支点となる突起物16に対して調整ネジ17(B)を調整すると扇状平面光15の仰ぎ角のみを調整することになる。調整ネジ17(A)、17(C)を調整すると扇状平面光15の左右のバランス(座標入力面1に対する平行度)のみを変えることになる。扇状平面光15の仰ぎ角、左右のバランスを個々に独立して調整するので、調整作業は単純化できる。
【0025】
調整ネジ17と基板13との間での作用力は、調整ネジ17(C)は上方向からのスプリング圧により下方に押さえつけられ、他の調整ネジ17(A)、17(B)は反対に下方から上方に向けてスプリング圧がかかるようにする。上方からの押圧に対して、突起物16を支点としたシーソー動作をする。
また、調整ネジ17にピッチが粗と密の2種類のネジを組み込み、粗調整と最終段階の微量調整とでネジを使い分ける効率的且つ高精度の調整も可能である。
更に、突起物16の高さを調整可能に、例えばネジ込み方式にしてもよい。
【0026】
図3、図4、図5は、好ましい実施例として説明したものであり、例えば、突起部16が扇状平面光15の要の位置と一致しない例、各調整ネジ17と突起物16との配列が直線上にない例など、本発明に含まれることは言うまでもない。
【0027】
【発明の効果】
本発明の第1の発明に係る座標入力装置によれば、扇状の光平面と座標入力面との平行度を調整可能な調整手段を設けており、具体的には光学ユニット本体を支持するための扇の要に相当する位置(支点)を含む支点支持部の先端部における保持部への係合部分の位置及び方向の設定を調整することで光を扇状に出射する要位置の座標入力面に対する位置、高さが設定され、更に、扇の要位置以外の最少2点の位置の高さを相互に調整できるように、支持部の一部(第一の直線上の位置を含む)による高さ調整で座標入力面に対する扇状の光平面の仰角を設定し、且つ支持部の他部(第二の直線上の位置を含む)による高さ調整で座標入力面に対する扇状の光平面の左右バランスを設定できるため、調整作業が単純化されて扇状の平面光を出射する光学系の調整と座標入力面への合わせ込みとを別々に行うことができ、座標入力装置の製造が容易になる。第2の発明に係る座標入力装置によれば、扇状の平面光の拡がり角度が可変なので、多様な座標入力面への対応が容易になる。典型的な例は、座標入力面の左右の両隅に光学ユニットを設置する場合の45度の拡がり角度であり、係る拡がり角度を可変にすれば様々な状況に対応でき、例えば座標入力面の形状に合わせて拡がり角度を選択できる。第3の発明に係る座標入力装置によれば、支点支持部及び各支持部を汎用的な調整ネジとして、基板をシーソー動作させて締結保持する以外、基板及び保持部を押圧可能なスプリングが付設されたタイプのものを用いるため、シーソー動作を伴う調整(光平面の仰角、左右バランス)を精度良く行うことができる。第4の発明に係る座標入力装置によれば、支点支持部について、基板を貫通して先端部が保持部に設けられた位置決め用の穴周囲の壁部に接触係合して光学ユニット本体を支持するために光学ユニット本体に一体的に設けられた突起物としており、突起物の先端部における保持部の穴周囲の壁部への接触係合部分の位置及び方向の設定を調整できるため、構造上簡易に作製できる。
【図面の簡単な説明】
【図1】本発明の全体構成の一例を、概念的に示した図である。
【図2】本発明の光学ユニットの光学系の配置例を示した図である。
【図3】光学ユニットの調整機構の一例を部分斜視図で示した図である。
【図4】図3の例を上面図で示した図である。
【図5】保持部の位置決め用の穴の断面図である。
【符号の説明】
1 座標入力面
2 光学ユニット
3 反射部
4 演算部
5 インターフェース部
6 PC
7 発光素子
8 拡散レンズ
9 ハーフミラー
10 結像レンズ
11 受光素子
12 光学ユニット本体
13 基板
14 保持部
15 扇状平面光
16 突起物
17 調整ネジ
18 穴
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical coordinate input device, and more particularly to a coordinate input device convenient for inputting with a finger or the like from a large-area coordinate input surface.
[0002]
[Prior art]
A touch panel is typically widely used as a device for inputting with a finger or a pointing stick corresponding to a displayed image. This input method includes an electrostatic capacity method, a resistive film method, an ultrasonic method, an optical method, and the like, which are selectively used according to the purpose and the use environment by utilizing the respective characteristics.
Large-area coordinate input technology is important because of the expansion of applications of large-screen display devices, such as large flat displays and projection display devices, and further enhancement of functions of electronic blackboards and video conference systems.
[0003]
In this enlargement, an optical coordinate input device is used from the viewpoints of technical limitations and economics, and an optical scanning touch panel is disclosed in Japanese Patent Application Laid-Open No. 11-85399. In this technique, an optical scanning unit is provided at each of the two adjacent corners of the rectangular substrate, and the light scanned from the unit is reflected from the retroreflectors provided on the remaining three sides of the rectangular substrate and returned to the unit. It is designed to detect light. When light is blocked by a finger or the like, the direction of blocking seen from each optical scanning unit is detected, the blocked position is calculated based on the distance between the optical scanning units, and the coordinates are input. ing. This optical coordinate input device can also be applied to very large coordinate input, and since the configuration is simplified, the price per input area can be realized relatively inexpensively.
[0004]
[Problems to be solved by the invention]
Since the coordinate input device that performs optical scanning and detects the light blocking position can take a considerably large distance from the origin of the optical scanning to the reflection point, the area of the input surface can be easily increased. However, the greater the distance from the light scanning origin to the reflection point, that is, the greater the coordinate input range and area, the more severe the requirements for the parallelism between the light exit direction and the coordinate input surface. .
[0005]
That is, the accuracy of adjusting the light emission direction is required to be high with the coordinate input area so that the plane in which the light scans and the plane for coordinate input are parallel to each other while maintaining a predetermined distance.
Conventionally, the distance between the optical scanning surface and the coordinate input surface and the parallelism are adjusted by adjusting the height at three points that support the surface of the unit on which the light emitting element, light receiving element, and polygon mirror are mounted. It was. Since the adjustment of the heights of the individual points is repeated in order and driven to a predetermined interval and parallelism, it is very laborious. In some cases, you can't keep up and you have to compromise.
In view of such a problem, the present invention provides an optical coordinate input device in which the interval and parallelism can be easily adjusted.
[0006]
[Means for Solving the Problems]
In order to solve the above-described problem, the first invention of the present invention provides two sets of optical unit bodies each having a light source unit that emits fan-shaped light parallel to the coordinate input surface and a light receiving unit arranged on a substrate . The optical unit is installed in the vicinity of one edge side of the coordinate input surface while maintaining a predetermined interval, and the light emitted from each light source unit in the two sets of optical units is the one edge side of the coordinate input surface. a plurality of optical paths by being reflected imaged to each of the light receiving portion by the light reflecting portion disposed around the other edge side are formed other than, and each of the imaging of the plurality of light shielding point in the optical path from the position and the predetermined interval of the two sets of optical units a coordinate input device asking you to coordinates of the light shielding point, a flat holding portion for holding the optical unit, the fan-shaped light plane The position corresponding to the main point of the fulcrum And a fulcrum support part that penetrates the substrate and engages the holding part to support the optical unit body, and includes a fulcrum that is parallel to the optical axis of the fan-shaped optical plane and includes the fulcrum. Including a position corresponding to each straight line other than the fulcrum related to the first straight line and the second straight line perpendicular to the first straight line on the optical plane, and locking the holding portion and the substrate. A plurality of support portions provided to support the optical unit main body, and the adjustment means includes a position and a direction of an engagement portion with the holding portion at the distal end portion of the fulcrum support portion. By adjusting the setting and the setting of the distance dimension between the holding unit and the substrate in the plurality of support units, the parallelism between the fan-shaped light plane and the coordinate input surface with the fulcrum as a center is set. It can be adjusted.
[0007]
According to a second aspect of the present invention, in the coordinate input device, the light source unit can vary a spread angle that forms a fan of the fan-shaped light plane to be emitted.
[0008]
According to a third aspect of the present invention, in any one of the coordinate input devices described above, the fulcrum support portion and the plurality of support portions can be fastened and held to the holding portion by operating the substrate as a seesaw. And an adjusting screw provided with a spring capable of pressing the holding portion.
[0009]
According to a fourth aspect of the present invention, in any one of the coordinate input devices described above, the fulcrum support portion passes through the substrate and a tip portion contacts a wall portion around a positioning hole provided in the holding portion. A protrusion integrally provided on the optical unit main body for engaging and supporting the optical unit main body, and the adjusting means is provided around the hole of the holding portion at the tip of the protrusion. The setting of the position and direction of the contact engaging part with respect to a wall part is adjustable, It is characterized by the above-mentioned.
[0010]
In the following embodiments (examples), the light source part is the light emitting element 7, the light receiving part is the light receiving element 11, the light reflecting part is the reflecting part 3 (A), 3 (B), 3 (C), and the fulcrum support part is the protrusion. Object 17, a plurality of support portions are adjusting screws 17 (A), 17 (B), 17 (C), and an adjusting means is a holding portion 14, a projection 17, and adjusting screws 17 (A), 17 (B), 17 ( And C).
[0011]
DETAILED DESCRIPTION OF THE INVENTION
An example of the overall configuration of the present invention is conceptually shown in FIG.
Optical units 2 (A) and 2 (B) are installed at the left and right ends of the lower side of the coordinate input surface 1. Each optical unit 2 emits fan-shaped planar light in a direction parallel to the coordinate input surface 1 to form a region where the optical paths of the optical units 2 (A) and 2 (B) overlap on the coordinate input surface 1.
[0012]
In the drawing, reflecting portions 3 (A), 3 (B), and 3 (C) are installed on the left and right and upper sides of the coordinate input surface 1. The fan-shaped light emitted from the optical unit 2 is reflected by the reflecting unit 3 in the direction of the optical unit 2 that emitted the light. The reflection unit 3 uses a retroreflective sheet that arranges a high-density trihedral cube inside the sheet and reflects incident light toward the optical unit 2. Further, the reflection part 3 of FIG. 1 is shown in a straight line along the three sides, the shape and arrangement may be set an optimum form by also coordinate input surface 1.
[0013]
The light reflected from the reflecting unit 3 and returned to the optical unit 2 forms an image on the light receiving unit in the optical unit 2. A line sensor or the like is used for the light receiving unit.
For example, when the coordinate input surface is touched with a finger or the like, a part of the fan-shaped plane light is shielded, and the optical units 2 (A) and 2 (B) receive optical images corresponding to the light shielding directions in the respective optical paths. Is detected.
[0014]
The detection signal of the light receiving unit of each optical unit 2 is input to the calculation unit 4, information on the light shielding direction from the optical units 2 (A) and 2 (B), and the optical units 2 (A) and 2 input in advance. The light shielding position, that is, the coordinate value is calculated from the information regarding the distance to (B) by the principle of triangulation. The calculated coordinate value is output to the PC 6 via the interface unit 5. Conversely, a signal for controlling the optical unit 2 is sent from the arithmetic unit 4 to each optical unit 2 to control light emission and light reception.
[0015]
In the present invention, a fan-shaped plane light is created by a lens system (described later) in the optical unit 2, and when the optical unit 2 is installed on the coordinate input surface 1, the coordinate input surface 1 and the fan-shaped plane light are All that is necessary is to adjust the parallelism, that is, the plane of the optical unit 2. In principle, since the plane can be defined by three points, it is only necessary to adjust the height (interval) at the three point positions on the coordinate input surface 1 and the bottom surface of the optical unit 2. Moreover, if one of the points is selected as a position corresponding to the center of the fan-shaped plane light and acts as a fulcrum, when the coordinate input surface 1 and the optical unit 2 are adjusted to be parallel, the interval is naturally It can be in the Let 's that Kemah.
[0016]
If the remaining two points are selected as one point on a straight line including a fulcrum parallel to the optical axis of the fan-shaped plane light and another point on a straight line including the fulcrum at a right angle to the straight line, the adjustment is further facilitated. Since the roles of the two points in this case are independent of the adjustment of the coordinate input surface 1 and the optical axis and the adjustment of the left and right parallel balance of the fan-shaped plane light, the adjustment is simplified.
[0017]
The adjustment is not limited to the three points described above, but can be performed by increasing the number of adjustment points for adjustment workability, accuracy, stability after adjustment, and the like. Further, the coordinate input surface 1 and the two sets of optical units 2 in FIG. 1 may be considered as basic structural units, and a coordinate input device configured by combining a plurality of the unit configurations may be used. For example, a coordinate input device whose input surface is curved and does not fit on one plane may be divided into a plurality of basic structural units and function as a coordinate input device as a whole.
[0018]
【Example】
FIG. 2 shows an arrangement example of the optical system of the optical unit 2. FIG. 2A is a view of the optical system as viewed from the side, and FIG. 2B is a front view thereof. Light emitted from the light emitting element 7 is diffused light having a certain width (thickness) by the diffusion lens 8 and spreading linearly.
[0019]
This diffused light becomes plane light bent in the right-angle direction by the half mirror 9, and becomes light that travels parallel to the coordinate input surface 1 (FIG. 1), that is, fan-shaped plane light. This planar light is reflected from the retroreflective sheet of the reflecting portion 3 (FIG. 1) and returns to the optical unit 2.
[0020]
The returned light passes through the half mirror 9, is imaged on the light receiving element 11 by the imaging lens 10, is photoelectrically converted, and outputs a signal corresponding to the imaging state to the arithmetic unit.
As the light receiving element 11, a line sensor, a CCD, or the like is used so as to detect the direction of the light shielding position from the imaging state.
[0021]
The arrangement of the optical system is not limited to this example. For example, the light emitting element 7, the diffusion lens 8, and the half mirror 9 are arranged in parallel to the coordinate input surface 1, and the arrangement of the imaging lens 10 and the light receiving element 11 is perpendicular. Needless to say, it can be installed in the station. Further, the main position of the fan-shaped plane light parallel to the coordinate input surface 1 is a position corresponding to the apparent vertex of the fan shape.
[0022]
The adjustment mechanism for the optical unit 2, have been explained use the top view of a partial perspective view and FIG. 4 of FIG. 3 as an example. The optical unit 2 includes an optical unit body 12 and a substrate 13 and is fixed to each other. Note that the optical unit body 12 incorporates the optical system as shown in FIG. On the other hand, the holding unit 14 is provided on the coordinate input surface 1 continuously. Basically, the height and parallelism of the surface of the substrate 13 with respect to the plane of the holding portion 14 are adjusted by three adjusting screws 17 so that the fan-shaped plane light 15 is set parallel to the coordinate input surface 1.
[0023]
In the embodiment of FIG. 3, as a particularly preferable example, a protrusion 16 serving as a fulcrum is provided on the lower side of the substrate 13 at a position corresponding to the main part of the fan-shaped planar light 15. As a more preferable example of the protrusion 16, if a hole 18 or a recess as shown in FIG. 5 is provided in the holding portion 14, the protrusion 16 can be easily positioned on the holding portion 14. Positioning of the key of the light 15 and the coordinate input surface 1 is uniquely performed.
[0024]
Next, the adjustment screw 17 will be described. 3 and 4, as a particularly preferable example, the line connecting the protrusion 16 and the adjustment screw 17 (B) is parallel to the optical axis of the fan-shaped planar light 15, and the protrusion 16 and the adjustment screw 17 ( A) and 17 (C) are on a line perpendicular to the optical axis.
In the case of this embodiment, when the adjustment screw 17 (B) is adjusted with respect to the projection 16 serving as a fulcrum, only the elevation angle of the fan-shaped planar light 15 is adjusted. When the adjustment screws 17 (A) and 17 (C) are adjusted, only the left and right balance (parallelism with respect to the coordinate input surface 1) of the fan-shaped planar light 15 is changed. Since the elevation angle and the left / right balance of the fan-shaped planar light 15 are independently adjusted, the adjustment work can be simplified.
[0025]
The acting force between the adjusting screw 17 and the substrate 13 is that the adjusting screw 17 (C) is pressed downward by the spring pressure from above, and the other adjusting screws 17 (A) and 17 (B) are opposite. Apply spring pressure from below to above. A seesaw operation is performed with the protrusion 16 as a fulcrum in response to pressing from above.
In addition, two types of screws with coarse and dense pitches are incorporated in the adjustment screw 17 so that efficient and highly accurate adjustment can be made by using the screw for coarse adjustment and final adjustment in a small amount.
Further, the height of the protrusion 16 may be adjustable, for example, a screw-in method.
[0026]
3, 4, and 5 are described as a preferred embodiment. For example, the protrusion 16 does not coincide with the main position of the fan-shaped planar light 15, the arrangement of the adjustment screws 17 and the protrusions 16. Needless to say, this is included in the present invention, such as an example in which is not on a straight line.
[0027]
【The invention's effect】
According to the coordinate input device of the first aspect of the present invention, the adjusting means capable of adjusting the parallelism between the fan-shaped light plane and the coordinate input surface is provided, and specifically for supporting the optical unit main body. The coordinate input surface of the position where light is emitted in a fan shape by adjusting the setting of the position and direction of the engagement portion with the holding portion at the tip of the fulcrum support portion including the position (fulcrum) corresponding to the main point of the fan The position and height are set, and the height of the position of at least two points other than the essential position of the fan can be adjusted to each other, depending on a part of the support part (including the position on the first straight line) The elevation angle of the fan-shaped optical plane with respect to the coordinate input surface is set by height adjustment, and the height of the fan-shaped optical plane with respect to the coordinate input surface is adjusted by height adjustment by the other part of the support part (including the position on the second straight line). because it can set the balance, adjustment is simplified exits the planar optical fan-shaped Ki De be performed and included combined to adjust the coordinate input plane of the optical system separately for facilitates manufacture of the coordinate input device. According to the coordinate input device according to the second aspect of the invention, since the spread angle of the fan-shaped plane light is variable, it is easy to deal with various coordinate input surfaces. A typical example is a 45 degree spread angle when optical units are installed at both the left and right corners of the coordinate input surface. If the spread angle is made variable, various situations can be dealt with. The spread angle can be selected according to the shape. According to the coordinate input device of the third aspect of the present invention, the fulcrum support part and each support part are used as general-purpose adjustment screws, and a spring that can press the board and the holding part is attached, except that the board is fastened by a seesaw operation Since the above-mentioned type is used, adjustment (seeing the elevation angle of the light plane, left / right balance) with the seesaw operation can be performed with high accuracy. According to the coordinate input device of the fourth invention, the fulcrum support portion penetrates the substrate and the tip portion is in contact engagement with the wall portion around the positioning hole provided in the holding portion, so that the optical unit main body is Since it is a protrusion integrally provided in the optical unit main body to support, the setting of the position and direction of the contact engagement portion to the wall portion around the hole of the holding portion at the tip of the protrusion can be adjusted. Easy to manufacture due to its structure.
[Brief description of the drawings]
FIG. 1 is a diagram conceptually showing an example of the overall configuration of the present invention.
FIG. 2 is a view showing an arrangement example of an optical system of the optical unit of the present invention.
FIG. 3 is a partial perspective view illustrating an example of an adjustment mechanism of the optical unit.
FIG. 4 is a top view of the example of FIG. 3;
FIG. 5 is a cross-sectional view of a hole for positioning the holding portion.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Coordinate input surface 2 Optical unit 3 Reflection part 4 Calculation part 5 Interface part 6 PC
7 Light emitting element 8 Diffusing lens 9 Half mirror 10 Imaging lens 11 Light receiving element 12 Optical unit body 13 Substrate 14 Holding part 15 Fan-shaped plane light 16 Projection 17 Adjustment screw 18 Hole

Claims (4)

座標入力面に平行な扇状の光を出射する光源部と受光部とを有する光学ユニット本体を基板上に配備して成る2組の光学ユニットが所定の間隔を維持し該座標入力面の一縁側の近傍に設置されると共に、当該2組の光学ユニットにおけるそれぞれの当該光源部から出射した光が当該座標入力面の当該一縁側以外の他縁側の周囲に設置された光反射部によって反射されて当該受光部のそれぞれへ結像することで複数の光路が形成され、且つ当該複数の光路中の光遮蔽点のそれぞれの結像位置と当該2組の光学ユニットの当該所定の間隔から当該光遮蔽点の座標を求める座標入力装置であって、
前記光学ユニットを保持する平板状の保持部と、前記扇状の光平面の要に対応する位置を支点として含むと共に、前記基板を貫通して先端部が前記保持部に係合して前記光学ユニット本体を支持する支点支持部と、前記扇状の光平面の光軸に平行で前記支点を含む第一の直線と当該第一の直線に当該光平面上で直角な第二の直線とに係る当該支点以外の各直線上に対応する位置を含むと共に、前記保持部及び前記基板を係止して前記光学ユニット本体の支持に供される複数の支持部と、を有する調整手段を備え、
前記調整手段は、前記支点支持部の前記先端部における前記保持部への係合部分の位置及び方向の設定、並びに前記複数の支持部における当該保持部及び前記基板の間の距離寸法の設定が調整可能であることにより、前記支点を中心として前記扇状の光平面と前記座標入力面との平行度を調整できることを特徴とする座標入力装置。
Two sets of optical units comprising the optical unit main body deployed on a substrate having a light source portion and a light receiving portion for emitting light of the fan-shaped parallel to the coordinate input surface maintains a predetermined interval of those the coordinate input surface disposed near one edge Rutotomoni, reflected by the two pairs of light reflection portion where light emitted from each of the light source unit installed around the other edge side than the one edge side of the coordinate input surface of the optical unit and a is a plurality of optical paths by imaging the respective said light receiving portion is formed, and the predetermined intervals of the plurality of respective image forming position and the two sets of optical units of the light shielding point in the optical path a coordinate input device asking you to coordinates of the light-shielding point,
The optical unit includes a flat plate-like holding portion that holds the optical unit and a position corresponding to the essential part of the fan-shaped optical plane as a fulcrum, and the tip portion penetrates the substrate and engages the holding portion. The fulcrum support part that supports the main body, the first straight line that is parallel to the optical axis of the fan-shaped optical plane and includes the fulcrum, and the second straight line that is perpendicular to the first straight line on the optical plane. Including a position corresponding to each straight line other than the fulcrum, and a plurality of support portions that are used to support the optical unit main body by locking the holding portion and the substrate,
The adjusting means is configured to set a position and a direction of an engaging portion of the fulcrum support portion with respect to the holding portion at the tip portion, and to set a distance dimension between the holding portion and the substrate in the plurality of support portions. A coordinate input device characterized in that, by being adjustable, parallelism between the fan-shaped light plane and the coordinate input surface can be adjusted around the fulcrum .
請求項1記載の座標入力装置において、前記光源部は、出射する前記扇状の光平面の扇を成す拡がり角度を可変できることを特徴とする座標入力装置。 The coordinate input device according to claim 1, wherein the light source unit is capable of varying a spread angle forming a fan of the fan-shaped light plane to be emitted . 請求項1又は2記載の座標入力装置において、前記支点支持部及び前記複数の支持部は、前記基板をシーソー動作させて前記保持部へ締結保持可能であると共に、当該基板及び当該保持部を押圧可能なスプリングが付設された調整ネジであることを特徴とする座標入力装置。 3. The coordinate input device according to claim 1, wherein the fulcrum support portion and the plurality of support portions can fasten and hold the substrate to the holding portion by performing a seesaw operation, and press the substrate and the holding portion. A coordinate input device characterized by being an adjusting screw with a possible spring attached thereto . 請求項1又は2記載の座標入力装置において、前記支点支持部は、前記基板を貫通して先端部が前記保持部に設けられた位置決め用の穴周囲の壁部に接触係合して前記光学ユニット本体を支持するために当該光学ユニット本体に一体的に設けられた突起物であり、
前記調整手段は、前記突起物の前記先端部における前記保持部の前記穴周囲の壁部への接触係合部分の位置及び方向の設定が調整可能であることを特徴とする座標入力装置。
3. The coordinate input device according to claim 1, wherein the fulcrum support portion penetrates through the substrate and a tip end portion is in contact engagement with a wall portion around a positioning hole provided in the holding portion, and the optical A protrusion integrally provided on the optical unit main body to support the unit main body,
The coordinate input device characterized in that the adjustment means can adjust the setting of the position and direction of the contact engagement portion with the wall portion around the hole of the holding portion at the tip portion of the protrusion .
JP2001284542A 2001-09-19 2001-09-19 Coordinate input device Expired - Fee Related JP4759189B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001284542A JP4759189B2 (en) 2001-09-19 2001-09-19 Coordinate input device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001284542A JP4759189B2 (en) 2001-09-19 2001-09-19 Coordinate input device

Publications (2)

Publication Number Publication Date
JP2003091358A JP2003091358A (en) 2003-03-28
JP4759189B2 true JP4759189B2 (en) 2011-08-31

Family

ID=19107841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001284542A Expired - Fee Related JP4759189B2 (en) 2001-09-19 2001-09-19 Coordinate input device

Country Status (1)

Country Link
JP (1) JP4759189B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103870067A (en) * 2012-12-07 2014-06-18 株式会社理光 Coordinate detector and electronic information board system
CN105637457B (en) * 2013-10-31 2018-08-28 精工爱普生株式会社 Light ejecting device and image display system

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5466609B2 (en) * 2010-09-24 2014-04-09 株式会社日立ソリューションズ Optical position detection device and retroreflector unit
CN102129333A (en) * 2011-03-24 2011-07-20 广州视睿电子科技有限公司 Adjustable optical touch screen of sensitization
JP6111706B2 (en) * 2013-02-01 2017-04-12 セイコーエプソン株式会社 Position detection apparatus, adjustment method, and adjustment program
JP6163921B2 (en) 2013-07-08 2017-07-19 株式会社リコー Coordinate detection device and electronic information board system
WO2016056102A1 (en) * 2014-10-09 2016-04-14 日立マクセル株式会社 Image projection device
WO2016063323A1 (en) 2014-10-20 2016-04-28 Necディスプレイソリューションズ株式会社 Infrared light adjustment method and position detection system
JP2018106724A (en) * 2018-01-12 2018-07-05 Necディスプレイソリューションズ株式会社 Program and calibration method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4033582B2 (en) * 1998-06-09 2008-01-16 株式会社リコー Coordinate input / detection device and electronic blackboard system
JP2000353047A (en) * 1999-06-10 2000-12-19 Ricoh Co Ltd Coordinate input device
JP2001014091A (en) * 1999-06-30 2001-01-19 Ricoh Co Ltd Coordinate input device
JP2001084105A (en) * 1999-09-10 2001-03-30 Ricoh Co Ltd Coordinate inputting/detecting system
JP2001092595A (en) * 1999-09-20 2001-04-06 Fujitsu General Ltd Optical scanning type tough panel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103870067A (en) * 2012-12-07 2014-06-18 株式会社理光 Coordinate detector and electronic information board system
CN103870067B (en) * 2012-12-07 2017-04-12 株式会社理光 Coordinate detector and electronic information board system
CN105637457B (en) * 2013-10-31 2018-08-28 精工爱普生株式会社 Light ejecting device and image display system

Also Published As

Publication number Publication date
JP2003091358A (en) 2003-03-28

Similar Documents

Publication Publication Date Title
US6654007B2 (en) Coordinate input and detection device and information display and input apparatus
US8243015B2 (en) Virtual data entry device
US8791923B2 (en) Touching device, laser source module, and laser source structure thereof
EP1059605A2 (en) Optical unit for detecting object and coordinate input apparatus using the same
US8838410B2 (en) Coordinate input apparatus
JP4054847B2 (en) Optical digitizer
JP4759189B2 (en) Coordinate input device
JP2015060296A (en) Spatial coordinate specification device
US20110084938A1 (en) Touch detection apparatus and touch point detection method
WO2018216619A1 (en) Contactless input device
JP2005107607A (en) Optical position detecting apparatus
US20120218225A1 (en) Optical scanning type touch apparatus and operation method thereof
US7034809B2 (en) Coordinate input apparatus
US8780084B2 (en) Apparatus for detecting a touching position on a flat panel display and a method thereof
JP4023979B2 (en) Optical digitizer
JP2002149328A (en) Coordinate input device
JP2001175415A (en) Coordinate inputting/detecting device
US20110037733A1 (en) Image display apparatus for detecting position
JP6315127B2 (en) Input device, aerial image interaction system, and input method
JP2001331265A (en) Coordinate detecting device
JP3837804B2 (en) Optical digitizer
JP2001290584A (en) Optical digitizer
WO2024079832A1 (en) Interface device
WO2022201693A1 (en) Controller and tracking system
JP2001282446A (en) Lens, coordinate input/detecting device using the same and information display input device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080909

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101012

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110524

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110606

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees