JP4758590B2 - 形状による画像の特徴付け、符号化、格納およびサーチ装置および方法 - Google Patents

形状による画像の特徴付け、符号化、格納およびサーチ装置および方法 Download PDF

Info

Publication number
JP4758590B2
JP4758590B2 JP2001571324A JP2001571324A JP4758590B2 JP 4758590 B2 JP4758590 B2 JP 4758590B2 JP 2001571324 A JP2001571324 A JP 2001571324A JP 2001571324 A JP2001571324 A JP 2001571324A JP 4758590 B2 JP4758590 B2 JP 4758590B2
Authority
JP
Japan
Prior art keywords
light energy
intensity
image
fourier transform
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001571324A
Other languages
English (en)
Other versions
JP2004500665A (ja
JP2004500665A5 (ja
Inventor
クリル,リック
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Look Dynamics Inc
Original Assignee
Look Dynamics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Look Dynamics Inc filed Critical Look Dynamics Inc
Publication of JP2004500665A publication Critical patent/JP2004500665A/ja
Publication of JP2004500665A5 publication Critical patent/JP2004500665A5/ja
Application granted granted Critical
Publication of JP4758590B2 publication Critical patent/JP4758590B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/42Global feature extraction by analysis of the whole pattern, e.g. using frequency domain transformations or autocorrelation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/50Information retrieval; Database structures therefor; File system structures therefor of still image data
    • G06F16/58Retrieval characterised by using metadata, e.g. metadata not derived from the content or metadata generated manually
    • G06F16/583Retrieval characterised by using metadata, e.g. metadata not derived from the content or metadata generated manually using metadata automatically derived from the content
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/88Image or video recognition using optical means, e.g. reference filters, holographic masks, frequency domain filters or spatial domain filters
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/88Image or video recognition using optical means, e.g. reference filters, holographic masks, frequency domain filters or spatial domain filters
    • G06V10/92Image or video recognition using optical means, e.g. reference filters, holographic masks, frequency domain filters or spatial domain filters using spatial domain filters, e.g. joint transform correlators

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Library & Information Science (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Image Analysis (AREA)
  • Image Processing (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は概して光学的画像処理に関し、さらに詳細には符号化され、格納され、サーチされ、検索されおよびその他の画像と比較またはそのいずれかされる方法での画像の光学的特徴付けに関するものである。
【関連出願引用】
この特許出願は1999年6月4日米国特許商標庁に出願された米国特許出願番号第09/326、362号の一部継続出願である。
【0002】
【従来の技術】
視覚映像の形状のまたは視覚映像に変換される、数億、たぶん数十億の世界の創造的作業が存在する。このような創造的作業には、例えば、芸術的図画および絵画、商業美術、技術上の図面、写真画、映画、デジタル記録スチールおよびビデオ動画像、レーダ画像、マップ、コンピュータ発生画像、著作物、グラフィクソフトウエアコード、録音などが含まれる。このような創造的作業は全世界的にライブラリ、データベース、公的および私的コレクション、およびその他の場所に格納され、それらを見たい人々のための多くの理由が存在する。しかし、画像は、例えば客観的方法、人間の観察に依存せずおよび主観的評価で特徴付けするには文字情報より非常に困難である。従って、大量の画像を格納しかつサーチする広範なデータベースの作成は手ごわい仕事であり、コンピュータ化索引作業およびサーチによって増強する場合で結果は有用性を制限していた。例えば、ditto.com(以前はアリバ ソフト社(Arriba soft Corp.))によって実装されたビジュアルサーチエンジンは「クローラー(”crawler”)」コンピュータソフトウエアプログラムを使用してワールド ワイド ウエブ(World Wide Web)を進み、画像のサーチのウエブサイトにアクセスし、いずれかの関連文字情報とともに画像を取り込んでいる。次に、画像が小型化され、対象、内容、特性などのある種のカテゴリーによって文字情報を索引し、人間(「人間フィルタ」)によってスクリーニングおよび選択またはそのいずれかを行って、データベースの中に入力される。データベースの次のアクセスまたはサーチはキーワードまたはフレーズを入力することにより行われる。キーワードまたはフレーズはサーチエンジンアーキテクトまたはオペレータがサーチエンジンインデックス の画像を特徴付けるように選んだ多数のキーワードまたはフレーズのひとつでなければならない。例えば、サーチャーは語「蝶」に入り、サーチエンジンが語「蝶」によって索引された画像を有している場合、サーチエンジンはそれらの画像を表示する。「蝶」に基づくサーチがあまり多く、例えば、3000画像以上ヒットすると、データベースアーキテクトまたはオペレータが語「王者」に基づいて索引された画像を有する場合だけ以外、「王者(王者)」などの別の語が追加されサーチ分野を狭くする。語「王者 蝶」は分野、例えば、数百の画像、を狭める。次に、語「王者」および「蝶」に基づいて一覧表にした画像すべてを見てひとつまたは多数の考察対象があるかどうかを理解することは人間の観察者の責任である。最終的に、このようなサーチエンジンのサーチ能力は
(i)ワードデータベースアーキテクトまたは画像を描写するためのオペレータの選択、
(ii)リアルピープルが画像を見て、索引のためのキーワードを割当て、かつデータベースの選択された索引語とともに画像を入力する(現行、数百万画像)制限時間、
(iii)オペレータが索引を付けることを決定しデータベースに入れる利用可能な数億または数十億からの制限された画像、
(iv)使用者は提供された画像を自分自身で観なければならない、および
(v)使用者が、使用者が所有している参照画像を使用者が有する画像のソースまたはロケーションを見つけたい場合は、オペレータが必要とする画像を除外しなかったサーチエンジンを求めなければならず、かつ使用者はサーチエンジンによって出力された画像を参照画像と比較しなければならない、ことにより制限される。
【0003】
出願人の同時特許出願、1999年6月4日に出願された米国特許出願番号第09/326、362号にはインターネットによりまたはそれを介してアクセス可能な各種データベース、サーバ、ウエブサイトなどの内で如何にして画像が見出せるかかつ光学的相関技術を使用して参照画像と比較されるが記載されている。ただし、各種参照画像に対する突き合わせがサーチされる調整毎に、すべてのこのような利用可能なソースによるサーチが必要なことは非常に望ましくないかまたは非効率的である。勿論、このような利用可能なソースすべてに見出された画像のすべてが単一または中央データベースの中に入れ、かつその後参照画像との突き合わせのための各サーチがそのデータベースでサーチされる。このような機構は各サーチのためのすべての利用可能なソースへ進む必要性を排除することになるはずである。ただし、多くの画像は数百または数千キロバイトのデータを必要とし、従って、それは数億または数十億のデータを集めてひとつのデータベースに一緒に格納する膨大なデータ格納メモリを必要とし、かつ画像がすべて単一データベースにあったとしても、すべての参照画像に対してこのような画像すべてによってサーチすることはそれでもなお非効率的ということになろう。 にもかかわらず、任意のカタログによるサーチ時間およびリソース要件を制限する試みが、場合によってはある限られた範囲に対する利益であるが、ditto.com形式の画像サーチエンジンに関する上記少なくともいくつかの制限および非効率性を課す。各種データベース、サーバ、ウエブサイトなどの内で如何にして画像が見出せるかに対処していない出願人の同時特許出願、1999年6月4日に出願された米国特許出願番号第09/326、362号は、容易でかつ管理可能なデータベース格納、高速サーチのための最少データまたはバイトの情報、および突き合わせ比較のための容易な検索を必要とする形態で特徴付けされよう。
たとえあるとしても最少の人間の介入または参画により格納、サーチ、検索されかつ参照画像と比較される形態で画像を特徴付けるより自動化された高速装置および方法の必要性がある。
【0004】
【発明の解決しようとする課題】
従って、本発明の一般的な目的は画像に対して特有なかつデータベースで符号化、格納、およびサーチするのに適当な情報により画像を特徴付ける改良された装置および方法を提供することである。
本発明のより具体的な目的は最少のデータで画像の形状を迅速に特徴付けしかつこのような形状に関連した特性を符号化し、その結果、高速でかつ余分なコンピュータ処理電力およびメモリ容量なしでデータ格納、サーチおよび検索が行われる方法を提供することである。
本発明の別の具体的な目的は参照画像に基づいて画像のデータベースからの画像の自動化サーチおよび検索を提供することである。
【0005】
【課題を解決するための手段】
本発明のこのおよび他の利点および斬新な特徴を一部次の図面で述べ、かつ一部次の図面の説明により当業者にとって明らかになろうし、または本発明の実施により学ぶことができよう。目的および利点は添付特許請求の範囲において特に指摘した手段および組合せによって実現かつ達成される。
本明細書において実施されかつ幅広く説明したように、本発明の目的に従って前述のおよび他の目的を達成するため、本発明の方法には、前記画像の光フーリエ変換パターンを光エネルギを用いて作成するステップと、前記光エネルギのフィルタ済みパターンを作成するため、回転するスリットを用いて前記フーリエ変換パターンから該光エネルギを空間フィルタするステップと、前記光エネルギが、2つの同一のフィルタ済みパターン対に分割することにより、前記スリットの離散角配向にフィルタ済みパターンで分布されたとき、前記フィルタ済みパターン対の各々が互いにほぼ同等の光エネルギ分布の強度を有し、該フィルタ済みパターン対の各々が2つの感光素子検出器アレイ対のうち1つの上に投影するが、前記検出器アレイ対のうち1つの上に入射する前記フィルタ済みパターン対が、他の検出器アレイ対に対する実質的関係において及びフィルタ済みパターンに関して、感光素子サイズの半分だけ垂直方向と水平方向とにオフセットしており、検出器アレイ対のうち1つの中の光要素が他の検出器アレイ対中の感光素子4つに対し部分的に並設されるように前記光エネルギの強度を検出するステップと、前記検出器アレイ対双方の中の個別感光素子に入射する光エネルギの強度を検出するステップと、前記検出器アレイ対のうち1つの中の個別感光素子が検出した光エネルギの強度を、別の検出器アレイ対中の部分的に並設した感光素子の各々が検出した光エネルギと比較するステップと、前記感光素子のうち1つが検出した光エネルギの強度のうち、別の感光素子のうち任意の1つが検出した光エネルギの強度と少なくとも同じ高さのものを、光エネルギの強度のレベルとしてデータベースへ記録するのに用いるため選択するステップと、前記選択された光エネルギの強度を、サイズと配置の点で前記検出器アレイ対のうち1つに相当するデータベースアレイに、データベースへの記録用に選択された光エネルギの強度が前記検出器アレイ対のうち1つの中の個別感光素子に対して特定可能であるように記録するステップと、前記スリットの角度を回転して検出した前記選択された光エネルギの強度のうち閾値に合致又は超過するもののみを前記強度のレベルに分類し、前記分類された光エネルギの強度を、該スリットの回転角度が11.25度増加する毎に、該スリットの角度回転位置と共に前記データベースアレイに記録するステップとが含まれる。
あるいは、本発明の方法には、光学的画像の形状内容を特性描写する方法であって、画像(12’)を含む光エネルギをフーリエ変換レンズ(30)を通過させて、光エネルギの光学的フーリエ変換パターン(32)を、レンズ(30)から焦点距離(F)にある光軸(40)上のレンズ(30)の焦点面に作成することにより、画像(12’)を空間領域からフーリエ領域に変換するステップと、光軸(40)から放射状に外向きに、その周りに離散角配向で置かれたフーリエ変換パターン(32)の離散部分からだけ、光エネルギを通過させて、焦点面にあるフーリエ変換パターン(32)を空間的にフィルタ(50、52)するステップと、前記フーリエ変換パターン(32)の離散部分からのフィルタ済み光エネルギを、光学的画像(12’)の形状内容の部分に相当する空間領域光学的画像(60)に戻して投影するステップと、形状内容の前記部分に対応する空間的領域光学的画像(60)の中の、複数の種々の位置において光エネルギの強度を検出するステップと、形状内容に対応する前記部分の空間的領域光学的画像(60)の中の、前記複数の種々の位置において検出された光エネルギの強度を記録するステップと、光学(40)軸から放射状に外向きで、その回りに異なる角度方向で置かれたフーリエ変換パターン(23)の複数の別の離散部分がないときは、フーリエ変換パターン(23)をフィルタするステップと、光エネルギを投影するステップと、強度を検出するステップと、強度を記録するステップとを、繰り返すステップとが含まれる。
【0006】
前述の目的をさらに達成するため、本発明の装置には、光軸(40)上の焦点距離(F)にある焦点面と、光軸(40)が焦点面と交わる焦点とを有するフーリエ変換レンズ(30)と、フーリエ変換レンズ(30)後方の焦点面に置かれ、焦点面の複数の離散部分を通じて順に選択的に光エネルギを通すことができる光軸(40)を中心とする空間的フィルタ(50)であって、光軸(40)から外向きに放射状に且つ光軸の回りに様々の角度方向で置かれて、光エネルギが残りの焦点面を通過するのを阻止する空間的フィルタ(50)と、関連する光源(23)有しその光源(23)からの光エネルギを用いて光学的画像を作成することに対処することが出来る空間光モジュレータ(26)であって、フーリエ変換レンズ(30)を通じて光学的画像を投影してフーリエ領域の中にある光学的画像中の光エネルギのフーリエ変換パターンを形成するため、フーリエ変換レンズ(30)前方の焦点面の光軸(40)上に置かれた空間光モジュレータ(26)と、空間的フィルタ(50)が通した焦点面の離散部分からの光エネルギが空間領域に焦点を結び直す後方の焦点面から焦点距離(F)の大きさだけ後方に離れて置かれた光検出器装置(80a、80b)であって、空間的領域に焦点を結び直す光エネルギの中の光エネルギの強度パターンを検出する能力のある光検出器装置(80a、80b)と、焦点面の各離散部分から空間的フィルタ(50)を通過した画像を含む光エネルギについて、空間的領域における光エネルギの強度のパターンを記録するため、光検出器装置に接続されたコンピュータ(100)とが含まれる。
【0007】
【発明の実施の形態】
本発明による形状内容により光学的画像を特徴付け、格納し、かつ探索する光学的画像描写器10を図1に概略的に示す。この描写器10は 画像を含む幾何学的形状による画像を特徴付けし、特徴付けが画像に対して特有である。本発明の部分ではない様々な光学装置により生成された色彩および生地またはそのいずれかなどの画像のその他の特徴付けは本発明により獲得された形状特性とともに使用され、さらに画像を特徴付けかつ探索する。しかし、この説明は本発明による画像形状内容特徴付けに主に焦点を合わせる。
【0008】
基本的には、以下により詳細に説明するように、いずれかのソース(例えば、インターネット、電子式データベース、ウエブサイト、ライブラリ、スキャナ、写真、フィルムストリップ、レーダ画像、電子式スチールまたは動画ビデオカメラ、およびその他のソース)から得られるサンプル画像12が光学的画像形状描写器10に入力される。いずれかの数nのその他のサンプル画像14、...、nが矢印16および18によって表示されるように光学的画像描写器10の中への順序だった入力のため列をなして図に示される。このような連続画像12、14、...、nのいずれかの番号nの入力は手操作によりまたは好ましくは、機械的スライドハンドラ、コンピュータ画像発生器、フィルムストリッププロジェクタ、電子式スチールまたはビデオカメラなどの自動的形態で行われる。図1のボックス20は画像12、14、...、nを並設させかつ光学的画像描写器10の中に移動させることができるなんらかの装置を図式的に表す。次の説明は、ほとんど部分に対して最初の画像12のみを参照するが、それがいずれかの画像12、14、...、nに適用できることの理解により適宜的にかつ簡便に行うためである。
【0009】
さらに、いくつかのサンプル画像12、14、...、nは画像照明器21から発する光ビーム22に対して垂直な、即ち、図1で見る面に対して垂直な面で光学的画像描写器10の中に挿入される。ただし、本発明の説明、図示および理解のため、画像12、14、...、nを図1で見る面に対して平行、即ち、紙面の面に平行な面の中に投影するように示す。この同様の適宜さを説明、図示および理解の目的のため、画像12’、フーリエ変換パターン32、空間フィルタ10、フィルタ済みパターン60、および検出器格子82aおよび82bを光ビームに対して垂直なそれらのそれぞれの面から紙面の面に投影するため使用する。本発明におけるこれらの構成要素およびそれらの機能を以下により詳細にさらに説明する。
【0010】
光学的画像形状描写器10の中に入力された画像12は以下に説明する多数の光学部品を通って通過する。画像12は薄い、フーリエ変換(FT)レンズとも呼ばれる収斂レンズ30を通過する際に著しい変換を受ける。図1に示すように、レンズ30の焦点距離F(即ち、焦点面)で生じかつたとえ人間の目には画像12’として認識不可能としても、画像12’に対して特有な、サンプル画像12’のフーリエ変換は画像12’の光エネルギをフーリエ変換パターン32に再配置する。フーリエ領域の、即ち焦点面の光エネルギはフーリエ変換パターン32全体にわたって様々な空間位置に分布した光エネルギの強度、即ち、振幅によって特徴付けられる。パターン32における光エネルギ34の複雑な振幅分布は以下により詳細に説明するように、単色の、好ましくは可干渉性の光エネルギにおける画像12の光再生成である画像12’の複雑な光分布である。フーリエ変換(FT)パターン32の極めて強い光エネルギの集中は概して画像12 'の空間周波数に対応する、即ち、画像12’のともに密接なまたは遠くかけ離れた特徴が変化するかまたは同じままである。例えば、画像(図示せず)の中の格子じまの、即ち、空間領域画像に多くの小さな方形を有する布地のシャツは空間領域画像における平面状の、単色シャツ(図示せず)より高い空間周波数、即ち、単体距離当たりの変化を有することになる。さらに、バンパおよびグリル部35が小さな空間距離内に様々なエッジ、曲線、およびその他の本来的変化を有する多くの小さな小片を含んでいるのに対して、側面パネル36は大きな空間距離全体にわたってかなり滑らかかつ均一なので、空間領域画像12’における自動車のバンパおよびグリル部35などの画像の部分は画像12’における自動車の側面パネル36より高い周波数を有するはずである。空間領域画像12’より本来的なバンパおよびグリル部35などの空間領域画像のより精密な細部からの光エネルギは空間領域画像12’における自動車の側面パネル36などの画像の横目不ぞろいまたはよりあっさりした細部からの光エネルギより光中心またはフーリエ変換された画像、即ち、フーリエ領域における、画像の軸40から半径方向外側へさらに分散される傾向がある。フーリエ変換パターン32(フーリエ領域)の半径方向外側へさらに分散された光エネルギ34の振幅は、それらがFTレンズ30によって反射した後このような光エネルギがフーリエ変換(FT)パターン32の面の領域または帯域の中に、即ち、わずかの光エネルギまたは光エネルギのない帯域によって分離された極めて強い光エネルギの帯域の中に集められる以外、このような光エネルギが発せられる空間領域画像12’の対応部分の光エネルギに関連する。バンパおよびグリル部35などの画像12’の高い空間周波数部分は明るく、そして、フーリエ変換パターン32の光エネルギ34のより半径方向外側の帯域へFTレンズ30によって分散される、これら画像12’の高い空間周波数部分からの光エネルギの強度または振幅はより高く即ち、明るくなる。他方、画像12’の高い空間周波数部分は暗く、そして、フーリエ変換パターン32の光エネルギ34のより半径方向外側の帯域へFTレンズ30によって分散される、画像12’のそれらの高い空間周波数部分からの光エネルギの強度または振幅はより低く即ち、そのように明るくない。同様に、側面パネル部分36などの画像12’の低い空間周波数部分は明るく、そしてフーリエ変換パターン32の光エネルギ34のより少なく半径方向外側の帯域へFTレンズ30によって分散される画像12’のそれらの低い空間周波数部分(即ち、光軸40により近い)からの光エネルギの強度または振幅はより高く即ち、明るくなる。しかし、画像12’の低い空間周波数部分が暗く、そしてフーリエ変換パターン32の光エネルギ34のより少なく半径方向外側の帯域へFTレンズ30によって分散される画像12’のそれらの低い空間周波数部分からの光エネルギの強度または振幅はより低く、即ち、このように明るくない。
【0011】
要約すれば、画像12’から発する光のフーリエ変換パターン32は
(i)画像12’に対して特有であり、(ii)画像12’の空間周波数、即ち、微細さまたは細部を表す中心または光軸40から半径方向に分散された光エネルギ34集中の領域または帯域を含み、(iii)フーリエ変換パターン32の各空間周波数領域または帯域での光エネルギ34の強度または振幅が画像12’のそれぞれの精細なまたは粗い特徴から発する光エネルギの明るさまたは強度に対応し、かつ(iv)フーリエ変換パターン32の各空間周波数領域または帯域のこのような光エネルギ34が強度および空間位置で検出可能である。
【0012】
しかし、本発明の光学的画像形状描写器10は画像12を含む形状によって画像12を特徴付けするように設計されているため、フーリエ変換光エネルギパターン32の付加的空間フィルタを使用して様々な特定の角配向で直線的に列られる画像12’の精細な細部またこのようなより精細な細部の部分から発する光エネルギを検出しかつ取り込む。このような空間フィルタは多数の様々な方法のいずれかで達成されるが、以下により詳細に説明するように、この機能の模範的空間フィルタ50は光軸40周りの軸を回転可能なFTレンズ30の焦点面(即ちフーリエ領域に位置決めされた)不透明ロータ54の細長スリット52である。空間フィルタロータ54周りに延びる駆動ベルト58を有するモータ56として図1に図式的に描写した回転駆動装置が空間フィルタロータ54、従って、矢印59で表示したように光軸40周りにスリット52を回転させる。実際には、このようなモータ56およびベルト58を使用してもよいが、空気式駆動装置および空気ベアリング(図示せず)などの他のより効果的装置も使用できる。
【0013】
スリット52にぴったり合うフーリエ変換パターン32の光エネルギ34の部分のみが空間フィルタ50を通過する。以下により詳細に説明するように、空間フィルタ40を通過する光エネルギ54のこのような部分は、即ちスリット52の角配向に直線的にぴったり合う直線および湾曲した線の短いセグメントなどの画像12’の細部または特徴から大部分出たものを表す。図1に示すように、フーリエ領域における(即ち、焦点面での)空間フィルタ50を通過して空間領域(例えば、焦点面からの焦点距離Fで)の中に戻る光エネルギ54が伝搬すると、その結果は空間フィルタ50のスリット52に直線的にぴったり合う画像12’の特徴および線の特有の組合せを表す光エネルギ帯域62のフィルタ済みパターン60である。
【0014】
勿論、スリット52がスリット52周りに回転するのにともなって、矢印59で表示したように、スリット52が様々な角配向を有する画像12’の特徴または線に直線的にぴったりあった状態になる。このように、フィルタ済みパターン60の回折光エネルギ帯域62はスリット52の回転に沿って変化して、以下により詳細に説明するように、様々な角配向、複雑さまたは精細さ、および明るさで画像12’の様々な特徴、細部、または線を表す。
【0015】
以下により詳細に説明するように、フィルタ済みパターン60の光エネルギ
帯域62の空間的にフィルタ済みされた光エネルギがスリット52の様々な角配向のいずれかでひとつまたは多数の光検出器80aおよび80bによって検出され、処理および符号化のためコンピュータ100またはその他のマイクロプロセッサへ電子式に送られる。本発明のひとつの著しい、しかし不可欠ではない特徴にはそれぞれ別個の感光性エネルギートランスデューサ84aおよび84bの検出器アレイ82aおよび82b、ただし、前記アレイ82aおよび82bの一方が光軸40に対して他方からほとんどずらされる、の使用が含まれる。以下により詳細に説明するように、この特徴は、詳細にしかし迅速にかつひとつの光検出器で必要とされるより少ないデータ処理能力またはパワーでフィルタ済みパターン60の検出および記録を容易にする。空間的にフィルタ済みされた光ビーム61がビームスプリッタ64によって分割されてビーム61を両光検出器80aおよび80bへ送信され、その結果、フィルタ済みパターン60が両検出器アレイ82aおよび82bによって検出される。
【0016】
フィルタ済みパターン60に関する光学的情報、即ち、画像12に関する画像取り扱い装置20からの情報とともに検出器アレイ82aおよび82bのひとつまたは2つからの光エネルギ強度(I)分布のおよびスリット52の角配向(R)に関する空間フィルタ50からの情報(例えば、認識番号、ソースロケータなど)の入力により、コンピュータ100が画像12の形状内容に関して画像12の特性を符号化するようにプログラムできる。このような情報を符号化する有益なフォーマットは各画素、回転(即ち、スリット52の、従って、このような角配向にぴったりあった画像12の線の特徴の角配向)および強度(角配向Rの各画素で検出されるフィルタ済みパターン60からの光エネルギの振幅)のx、y座標位置に関する情報を含むフィルタ済みパターン60の画素によるものである。以下により詳細に説明するように、ひずみ率Xなどの探索可能なフラッグも設けられる。角配向または回転R、各画素の光エネルギ強度I、およびひずみ率Xのこのような組合せは略して「RIXel」と呼ばれる。次に、各RIXelはそれが導出された画像12のいくらかの識別子(例えば、番号、名称など)、画像12のソース位置(例えば、インターネットURL、データベースファイル、ブックタイトル、画像12の所有者など)、およびフォーマット、分解能、色彩、生地などの画像に関するいずれか他の所望情報と関連付できる。色彩および生地またはそのいずれかなどのこのような他の情報はデータベースからの入力情報であり、または色彩、生地など−画像12を探索しかつ発見するためまたはその他の画像と比較するため有益なものはなんでも−に関して同一画像12を自動的に特徴付ける光描写器からのものであってさえよい。
【0017】
上記に説明したように、形状に対して特徴付けられかつ符号化された各画像12、14、...、nに関するこのような情報のいくらか、すべて、または付加的組合せがひとつまたは多数のデータベース102へコンピュータ100によって送信される。各画像12、14、...、nに関するRIXel情報を格納するいくつかの実施例のデータベースアーキテクチャ104、106および108を図1に示すが、多くのその他のアーキテクチャおよび情報の組合せも使用できる。
図1に示した光学的画像描写器10では、画像12は例えば、画像12’で単色の、好ましくは可干渉性の光エネルギで再生成される。単色光学的画像12’の形状の画像12のこのような再生成はレーザダイオードまたはガスダイオードなどのレーザソース23からの可干渉光24のビームを照射された空間光モヂュレータ(SLM)26を用いて達成される。本発明のこの特徴は、結果として生じたフーリエ変換および空間的にフィルタ済みされたパターンが単色光によるよりぼやけているが、白色光でも実現することができる。従って、本発明の説明を単色の、好ましくは可干渉性の光エネルギに基づいて進めるが、好ましくないが白色光が適当な代替であることが理解されるべきである。空間光モヂュレータ(SLM)26は図1に図示したそれように光学的に対処可能であるか、またはそれが電気的に、例えば、ビデオカメラ(図示せず)により、またはコンピュータ(図示せず)により対処可能でかつ駆動される。当業者にとって知られているように、空間光モヂュレータは画像を空間ベースで偏光面をビーム25全体にわたって回転させることにより光25の偏光ビームに「書込む」ことができる。光学的に対処されたSLM26では、画像面が空間基盤上で偏光回転材料(通常、液晶材料)に隣接する半導体材料への入射光エネルギにより処理されるのに対して、電気的に対処可能なSLM(図示せず)では、液晶、偏光回転材料が画素ベースで画素上で電気的に処理される。いずれの場合も、可干渉光25の偏光ビームの部分がSLM26の液晶材料によって吸収されるかまたは透過するかのいずれかである。図1に示す光学的に対処されるSLM26などのいくらかのSLMでは、それが反射しかつ液晶を通過して戻り再びさらに45度回転されるとすぐ、それが液晶材料を一旦通過するのにともなって偏光の透過部分が45度回転した偏光面を有する。このように、SLM26で吸収されない偏光ビームの光は反射されかつ同じ光路27に沿ってしかし画像12’の形式でかつその偏光面が90度回転した状態でSLMから出てくる。ある種の電気的に対処されたSLMは同じ方法で、即ち、2つの通路間反射により液晶を通して偏光を2回透過させる方法で動作する一方、他のものは単純に一方向に一度液晶を通して偏光を透過させる。
【0018】
図1の実施形態において、まず、レーザソース23からの可干渉光ビーム24が偏光板28を通過してひとつの面、例えば、制限のためではないが、矢印25で表示したように面Sで偏光した光すべてでビーム25の偏光ビームを生成する。次に、S−偏光ビーム25が主にピンホール112およびレンズ114から構成されている空間フィルタ110を通過してビーム25がピンホール112に焦点を合わせる。この空間フィルタ110は良好なガウス形波面を得て、かつ必要に応じて、ビーム25のパワーを制限するため主にビーム25を適切な状態に整えるため設けられる。
【0019】
次に、ビーム25は偏光ビームスプリッタ116を通過し、スプリッタは面118でひとつの方向に偏光した光を反射して垂直方向に偏光した光を透過する。この実施例では、偏光ビームスプリッタ116はS−偏光を反射しかつP−偏光を透過し、そしてそれが光学的に対処された空間光モヂュレータ(SLM)16に向かってS−偏光ビーム25を反射するように方向を向けられる。
【0020】
同時に、レーザダイオードまたはガスダイオードなどの照明器21からの光ビーム22が画像12を照射する。当業者にとって明らかになるように、画像12を光学的画像描写器12に入れるには、以下により詳細に説明するように、陰極線管、SLMビデオ表示装置、機械式スライドプロジェクタなどによる他に多くの方法がある。簡単のため、画像12は透明体またはフィルム120上にビーム22の光路の支持体122に載置された状態で図示されている。フロストされたまたはエッチングされたガラスなどの光拡散プレート124をフィルム120の前方に配置して画像12の均一な照明を得る。次に、画像12を搬送するビーム22が光学的に対処された空間光モヂュレータ(SLM)26にレンズ126によって投影(焦点合わせ)される。空間ミラーはオプションである。それはここでは、光学系をよりコンパクトな配置に保持するためビーム22を折れ曲げるため使用される。
【0021】
SLM26に焦点合わせされた画像12を用いて、SLM26が画像12を上記に説明したように、その偏光面が90度回転した状態でSLM26から出てくる単色光ビーム25に付与または「書込み」する。従って、画像12’を搬送する可干渉光の出現ビーム27(P)はS−偏光でなくP−偏光である。その結果として、画像12’による単色光ビーム27(P)がそれによって反射されるのでなく偏光ビームスプリッタ116によってFTレンズ30へ透過される。
【0022】
上記に説明したように、収斂レンズ(30)が画像12’の単色光エネルギをFTレンズ30の焦点面で生ずるそのフーリエ変換パターン32に再分配する。従って、図1の焦点距離Fによって表示されるように、回転スリット52を有する空間フィルタ50をFTレンズ30の焦点面に位置決めしなければならない。上記に説明したように、FTレンズ30の焦点面でのフーリエ変換パターン32の光エネルギ34の複雑な振幅分布は画像12の複雑な振幅分布のフーリエ変換である。様々な空間周波数分布34の光エネルギの強度がそれらのそれぞれの空間周波数が生ずる画像12’の対応する部分の光エネルギに基づくことで、フーリエ変換パターン32は画像12’の空間周波数に基づいてフーリエ変換パターン32の中に分布した画像12’からの光エネルギのすべてを有している。上記に説明したように、フーリエ変換パターン32には頂部から下部までかつ左右対称であり、その結果、フーリエ変換パターン32の各半円が光エネルギの同一分布および強度が正確に含まれている。画像12’のより低い空間周波数からの光エネルギがフーリエ変換パターン32の中心または光軸に向かって分布する一方で、画像12’のより高い空間周波数からの光エネルギが光軸40からさらに離れてフーリエ変換パターン32の外側エッジに向かって分布している。画像12’に垂直方向に分布してそれらの様々な空間周波数を生成する画像12’の特徴からの光エネルギが同様に、フーリエ変換パターン32に垂直方向に分布する。同時に、画像12’に水平方向に分布してそれらの様々な空間周波数を生成する画像12’の特徴からの光エネルギがフーリエ変換パターン32に水平方向に分布する従って、一般に、光軸40に対していずれかの角配向に分布して画像12’に、即ち空間領域に、様々な空間周波数を生成する画像12’の特徴からの光エネルギがフーリエ変換パターン32に、即ちフーリエ領域に、それらの同一角配向に分布する。その結果として、フーリエ変換パターン32の光軸40に対して特定角配向で分布した光エネルギだけを検出することにより、このような検出がこのような特定角配向に直線的にぴったりあう画像12’の特徴または細部の特性である。各々のこのような角配向でフーリエ領域のこのような検出された光エネルギの半径方向分布が画像12’のこのような特徴または細部の複雑さまたは鋭さを表わし、一方フーリエ領域のこのような検出された光エネルギの強度が空間領域画像12’のこのような特徴または細部を表わす。
【0023】
従って、フーリエ変換パターン32のスリット52のすべての角配向での光エネルギの複合物が鋭さの複合記録、即ち、画像12’を含む角配向および線状特徴の複雑さまたは鋭さを生成する。ただし、データベースの格納、探索、かつ検索するため画像12、14、...、nの鋭い特性を符号化するためなどの最も実際的な必要性に対しては、フーリエ変換パターン12’におけるスリット52の角配向に対するこのような光エネルギ検出を記録することは必ずしも必要ではない。フーリエ変換パターン32角配向のいくらかに対してこのような光エネルギ分布を検出かつ記録して特定の画像12、14、...、nについてデータベースの格納、探索、かつ検索するため十分鋭い特性を取得することで通常、十分である。説明の目的のためであって、制限のためではないが、180度の回転における16回の11.25度のインクリメントがあるため、以下により詳細に説明するように、データ処理およびデータ格納能力を有する11.15度の角配向の使用法が使用される。ただし、一定インクリメントまたは増減インクリメントを含む、その他の離散的角インクリメントも使用される。勿論、増減インクリメントはデータ処理、格納、および探索機能を取り扱うためより多くのコンピュータ能力およびより多くの複雑なソフトウエアを必要とする。
【0024】
本発明の好ましい実施形態では、回転スリット52を有する空間フィルタ50を使用してフーリエ変換パターン32の特定角配向からの光エネルギだけがいずれかの瞬間に検出器アレイ82aおよび82bへ通過できるようにするが、これらのアレイ82aおよび82bはひとつのまたは両方の検出器80aおよび80bによってこのような光エネルギ61に含まれた光学的画像12の形状内容の検出のためフーリエ領域のスリット52を通過して空間領域へ戻る光エネルギ61の投影を可能にするよう空間フィルタ50から焦点長さFの部位に配されている。矢印59で表示したように、スリット52を有するロータ54が回転して、その結果、検出器アレイ82aおよび82bがスリット52の角配向(R)でのフーリエ変換パターン32から発せられる光エネルギ分布および強度(I)を検出できる。この機能は本発明の目的のためその他の多数の方法でも設けられる。例えば、当業者にとって理解されるように、電気的に対処可能な空間光モジュレータ(図示せず)が選択された角配向でスリットにより空間周波数を効果的に生成する空間光モジュレータの画素を順々にターンオンおよびオフすることにより空間フィルタ50のため使用される。
【0025】
不可欠ではないが、空間フィルタ50のスリット52の好ましい形状は以下に説明するように、場合によっては遮蔽された中心53を有する狭い、細長い長方形である。スリット52の幅は使用可能なまたは必要とされた光エネルギに依存する。より広いスリット52はより多くの光エネルギ34を通過させるが、画像の線または特徴の正確さが低下することになる。より狭いスリット52ではより良好な線分解能が得られるが、結果として生ずるパターン形状発生の複雑性の対応する増大がともなう。従って、これらの分解能とスリット52寸法の選択における検出可能性要件間の釣り合いを取らなければならない。さらに、楕円形などの異なる形状、またはその他の形状が画像12からの線以外のその他の形状を取り込むため使用される。
スリット52が回転するのにともなって、コンピュータ100またはその他の適切なマイクロプロセッサ回路がスリット52が角配向(R)の選択インクリメントである場合はいつでも検出器アレイ82aおよび82bによって検出された光エネルギおよび分布および強度を記録できる。
例えば、11.25度インクリメントの11.25°、22.5°、...、180°は全360°の一周全体にわたる角配向のすべての11.25度インクリメントを検出するのに効果的である。必ずしも必要ではないが、光軸40近くのフーリエ変換パターン32の光エネルギは通常最も強いが、画像12’に含まれた形状を特徴付ける画像12’の線の特徴または細部を表さないため、光軸40近くのスリット52の中心を遮蔽することが望ましい。従って、 画像12’の形状内容を表わすフーリエ変換パターン32の半径方向外側へさらに分散された領域のより少ない極めて強い光エネルギを正確にかつ精密に検出する必要がある検出器アレイ82aおよび82bの感度レベルの使用を容易にするため、それはフーリエ変換パターン32の中心40近くのより強い光エネルギをマスクまたはフィルタ済みして取るのに利益となる
【0026】
上記回転空間フィルタ処理を図2a〜c、3a〜cおよび4a〜cにより詳細に示す。例えば、空間フィルタ50のロータ54が矢印59で表示したように回転し、図2aでは0°に表わされるスリット52が垂直方向角配向になると、スリット52がスリット52にぴったりあうフーリエ変換パターン32(図1―ロータ54によって図2aでは視野から隠れている)のロータ54の部分だけを検出器アレイ82aおよび82b(図1)を通過可能にする。フーリエ変換パターン32(図1)において垂直方向に分散されるその光エネルギ34は、図2bのほぼ垂直線66、66‘などの画像12’のほぼ垂直方向に向けられた特徴または細部のすべてから元は発したものであり、かつそのすべてに対応している。上記に説明したように、画像12’のフロントバンパおよびグリル部35のそれらなどのより複雑なまたは密接に間隔をおいて配置された垂直方向部分または線66(即ち、より高い空間周波数)からの光エネルギ34が光中心または光軸40から半径方向外側へさらに分散される一方で、図2bの画像12’のトランクおよびリアバンパ部分のほぼ垂直部分または線66’などの複雑さのより少ないまたはさらに間隔をおいて配置された垂直方向部分または線(即ち、より低い空間周波数)からの光エネルギ34が光中心または光軸40からさほど遠くなく分散される。上記に説明したように、それらそれぞれの分散帯域の光エネルギ34の強度は画像12’の対応するそれぞれの垂直方向特徴66および66‘の明るさに依存する。フーリエ変換パターン32(図1)の内および近くの光エネルギ54が形状を定義するにはどちらかといえば非常に少しの画像の全体的明るさなど非常に低い空間周波数で画像12’の特徴から発するため、要求があれば、再びロータ54の中央部分53を遮蔽できる。
【0027】
上記に簡単に説明したように、図2aに示すように、スリット52通過し、かつスリット52が垂直方向に向けられた場合、それが空間領域の中に伝搬して戻った後空間フィルタ50を通過した光エネルギを検出するため、画像12’の垂直方向に向けられた特徴、部分、または線66および66‘を特徴付ける光エネルギ34がスリット52によって回折され、かつビームスプリッタ64を介して空間フィルタ50からのFTレンズ30の焦点距離Fをおいて配置される2つの検出器アレイ82aおよび82bへ投影される。図2cに示すように、スリット52による光エネルギ34の回折はスリット52を通って検出器アレイ82aおよび82b(図1)で回折のほぼ垂直方に向けられたパターン60の中に通過する光エネルギ34を再分布させる。図2cに示すように、光エネルギが帯域62に再分布される一方で、それは画像12’に含まれる空間フィルタ50によって通された形状内容のなお特有な代表物である。従って、以下により詳細に説明するように、図2cの光エネルギ帯域62が画像12’の垂直方向に向けられた形状特性を記録するため検出器アレイ82aおよび82bによって検出される。
【0028】
上記に説明したように、空間フィルタ50のスリット52が矢印59で表示したように回転する。図3aに示したスリット52の角度位置は垂直方向からほぼ45度である。回転45度の角配向Rで、スリット52を通過する光エネルギ34は図3に示すように、垂直方向からほぼ45度に方向を向けられる画像12’の特徴、部分、または線67のすべてに対応する。図3aに示すように、垂直方向からほぼ45度に方向を向けられる画像12’の湾曲した特徴、部分、または線67’の部分も、それが垂直方向からほぼ45度に方向を向けられる場合スリット52を通過する光エネルギ34に寄与する。図3aのスリット52の45度の角配向を生ずる、図3c示したフィルタ済みパターン60の光エネルギの帯域62も垂直方向からほぼ45度に方向を向けられ、かつ垂直方向からほぼ45度に方向を向けられる画像12’の形状特性66および67‘の表示である。それ故、以下に説明するように、検出器アレイ82aおよび82bによる図3cの光エネルギ帯域62の検出は画像12’の45度に方向を向けられた形状特性の符号化および記録を容易にする。
【0029】
同様の方法で、スリット52が図4aに示すように垂直方向から90度の向き、即ち、水平に回転されると、図4bに示すように、スリット52を通過する光エネルギ34が画像12’のほぼ水平方向特徴、部分、および線68のすべての特性である。ほぼ水平な画像12’の湾曲した特徴、部分、または線68’の部分も、図4aの水平方向スリット52を通過する光エネルギ34に寄与する。図4aのスリット52の水平方向角配向を生ずる、図4c示したフィルタ済みパターン60の光エネルギの帯域62もほぼ水平に方向を向けられ、かつほぼ水平に方向を向けられる画像12’の形状特性68および68‘の表示である。それ故、以下に説明するように、検出器アレイ82aおよび82bによる図4cの光エネルギ帯域62の検出は画像12’の水平方向の形状特性の符号化および記録を容易にする。
【0030】
スリット52のいずれかの特定角配向Rによりほぼその同一角配向Rを有する画像12’の形状特性すべての検出を可能になることが今では明らかである。このように、画像12’の形状特性のすべてがすべての角配向でスリット52を有するフィルタ済みパターン60の帯域62を検出することにより検出される。ただし、上記に説明したように、回転Rのある一定の選択されたインクリメント、即ち、スリット52の角配向でフィルタ済みパターン60の光エネルギ帯域62を検出するように選択することによって、画像12’の形状特性のいくらか、必ずしもすべてではないが、好ましくはほとんどを検出することがほとんどの目的のため十分である。明らかに、光エネルギ帯域62が検出されるスリット52の角配向のインクリメントが大きいほど、画像12’の検出された形状特性の精密さはより少なくなる。他方、角配向のインクリメントが小さいほど、処理されるはずのデータはより多くなる。従って、 光エネルギ帯域60が検出されかつ記録されるスリット52の角インクリメントを選択する場合、必要とされるかまたは望まれる形状特性の精密さとこのような精密さを取り扱うのに必要なデータ処理および格納の効率間の釣り合いを取ることが望ましい。例えば、制限のためではないが、約5から20度、好ましくは約11.25度の範囲のスリット52の回転インクリメントで形状特性の検出および記録がほとんどの目的のため妥当であると信じられる。
【0031】
勿論、図2a、3a、および4aに示すように、スリット52が光軸40から反対方向に半径方向外側へ延びるため、スリット52の180度、即ち、1回転の2分の1にわたる選択された角インクリメントで光エネルギ帯域62を検出しかつ記録することだけが必要である。従って、スリット52の一端が0度から180度まで回転するのにともなって、スリット52の他端が180度から360度まで回転する。従って、180度にわたる回転の選択されたインクリメントで光エネルギ帯域62を検出することにより選択されたインクリメントによって定義された選択された角配向で画像12’の形状特性すべてが検出される。
【0032】
本発明の好ましい実施形態では、スリット52を有するロータ54は連続的に回転可能である。各回転の最初の半分の間、即ち、180度にわたる間、光エネルギ帯域62が回転の11.25度インクリメント毎などの各選択されたインクリメントまたは角配向で検出かつ記録される。次に、、各回転の次の半分の間、画像取り扱い装置20が次の画像14を図1の矢印16で表示したように光学的画像描写器10へ切換える。次に、スリット52が2分の1回転するのにともなって、上記形状特性および検出プロセスは画像14について実行される。次の2分の1回転の間、次の画像が光学的画像描写器10に切換えられ、かつ特徴付け、符号化、および記録するため使用可能な追加画像nがある限り、プロセスがこの方法で無制限に循環する。
【0033】
上記に説明したように、スリット52の各角配向に対するフィルタ済みパターン60の光エネルギ帯域62の検出は画素ベースによって画素上などでの空間ベースで光エネルギの強度の表示である電気信号を検出しかつ出力する能力を有するいずれかの光検出器で達成される。例えば、当業者の能力内で十分であるため、CCD(電荷結合デバイス)アレイを有するビデオカメラまたは電子スチールカメラを使用できる。
【0034】
ただし、本発明の別の特徴は図1に示すように2つの光検出器80aおよび80bの使用であり、その各々が感光素子またはトランスデューサ84aおよび84bの、画素を形成する小さなアレイ82aおよび82bを有する。この2つの光検出器80aおよび80bは便宜上総体的に光検出器と呼ばれる場合もある。光検出器アレイ82bのひとつが2分の1画素によって垂直方向にかつ2分の1画素によって水平方向に光軸40を基準として他の光検出器アレイ82aに関してほとんどオフセットされる。2つの小さな検出器アレイ82aおよび82bのこの配列は適切なソフトウエアと組み合って最小のデータ取り扱い要件で精度よい強度および空間位置光エネルギ検出を容易にする。
【0035】
ここで、主に図1に戻ると、本発明の好ましい実施形態では、光検出器素子のアレイを有するひとつの光検出器も使用されるが、2つの検出器アレイ82aおよび82bを使用してフィルタ済みパターン60の光エネルギ帯域62を検出する。2つの検出器アレイ82aおよび82bを2つの別々の光検出器80aおよび80bの部分として図1に示すそれらのアレイ82aおよび82bを有する光検出器80aおよび80bの全組立体がひとつの光検出器装置であり、この説明明細書では総体的に単一のおよび複数の光検出器装置両方を網羅する総称的な概念における光検出器と呼ばれる場合もある。2つの検出器アレイ82aおよび82bの利点はアレイ82aおよび82bの光センサ素子84aおよび84bを光軸40またはフィルタ済みパターン60に関して相対的にずらすことにより、かつかなり簡単な比較器回路または簡単なソフトウエアアルゴリズムで、フィルタ済みパターン60の様々な位置での光エネルギの62強度が通常の単一光検出器アレイに必要とされるより少ないデータで本発明による画像形状特徴付けの目的のため十分正確にかつ精度よく検出されるということである。
【0036】
上記に説明したように、フィルタ済みパターン60を搬送する回折ビーム61はハーフシルバードミラーなどのビームスプリッタ64によって分割され、その結果、好ましい、しかし不可欠ではないが、回折ビーム61の光エネルギ約半分がビームセグメント61aとして第1検出器アレイ82aへ透過され、一方で回折ビーム61の光エネルギ他の約半分がビームセグメント61bとして第2検出器アレイ82bへ透過される。両ビームセグメント61aおよび62bは上記に説明したように、画像12’に対して特有な帯域の中にフィルタ済みされた光エネルギ62を有するフィルタ済みパターン60を搬送する。ビーム61がビームセグメント61aおよび62bに半分づつに分割されない場合は、データ格納のため強度比較および選択、比較および選択は以下により詳細に説明する、を行うため検出器アレイ82aおよび82bの一方または他方の感光素子84aおよび84bの強度出力を電気的にまたはソフトウエアで上下に調整する必要がある。検出器アレイ82aおよび82bの両方が空間フィルタ50から同一焦点距離Fに位置決めされ、従って、空間領域のほとんど同一の光エネルギ62分布が検出器アレイ82aおよび82bの両方に入射する。 ただし、光検出器80aおよび80bのひとつが他方に対して仮想上光軸40からずらされる。例えば、図1に示すように、光検出器80aの中心線86aが光ビーム61a の光軸40に合わせされ、一方光検出器80bの中心線86bは矢印88および89で表示したように、光ビーム61bの光軸40に合わせされる。具体的には、互いに仮想上並設した関係への検出器アレイ82aおよび82bの図式的投影によって図示したように(図1で第1検出器アレイ82aが用紙の面で第2検出器アレイ82bに「重なって」いる)、矢印88で表示したように第2検出器アレイ82bが感光素子84aおよび84bの幅の2分の1に等しい距離だけ垂直方向にずらされ、かつ矢印89で表示したように、感光素子84aおよび84bの2分の1の高さに等しい距離だけ水平方向にさらにオフセットされる。従って、アレイ82aの個別感光素子84aが検出器アレイ82bの4つの隣接する感光素子84bに仮想上部分的に並設する。
従って、図5のフィルタ済みパターン60とともに検出器アレイ82aおよび82bの拡大図式仮想上並設した図によって示したように、同一光エネルギ62はそれぞれの検出器アレイ82aおよび82bの対応する個別感光素子84aおよび84bには入射しない。例えば、図5に示すように、図3cからのフィルタ済みパターン60(即ち、45度まで回転した図3aのスリット52で)が検出器アレイ82aおよび82bに入射する場合、検出器アレイ82aの縦列7a、横列6aの感光素子84aに入射する光エネルギ62は検出器アレイ82bの縦列7b、横列6bの対応する感光素子84bに入射する光エネルギ62と同一でなない。実際、図5の実施例によって示すように、検出器アレイ82aの縦列7a、横列6aの感光素子84aに入射する光エネルギ62は検出器アレイ82bの縦列7b、横列6bの感光素子84bに入射する光エネルギ62より少ない。
【0037】
勿論、入射光エネルギに対する各感光素子84aおよび84bの状況は同一画像12’に対するスリット52の様々な角配向とは異なるフィルタ済みパターン60に対して変化し、かつ光学的画像描写器10によって特徴付けられた様々な元の画像12、14、...、n(図1)とは異なるフィルタ済みパターン60に対しても変化する。しかし、以下により詳細に説明するように、それぞれの仮想上ずらされた検出器アレイ82aおよび82bの部分的に並設した感光素子84aおよび84bへの様々な入射光エネルギ強度を本発明に従って使用して効率的に十分なデータで画像12、14、...、nの形状特性データを符号化かつ格納する。
【0038】
説明の目的のため、かつ制限のためではなく、次の説明ではバイトおよびデータベース格納の効率的使用のためそれぞれ感光素子84aおよび84bの16の縦列、16の横列から構成された検出器アレイ82aおよび82bを使用する。感光素子84aおよび84bはフォトダイオード、フォトセル、または感光素子に入射する光エネルギの強度の表示である電圧などの電気信号を生成するいずれか他の感光装置であってよい。各アレイの各感光素子84aおよび84bの電圧または他の信号出力は当業界において知られているように個別に読取り可能であり、かつ感光素子のアレイからのこのような信号を読取り、処理し、かつ記録する電気信号処理回路は当業界においてよく知られている。従って、感光素子のアレイからの情報を読取り、処理し、かつ記録する感光素子または電気回路の別の説明は本発明を説明するかまたは理解するのに不必要である。
【0039】
説明の目的のためであって、制限のためではないが、感光装置に入射する光エネルギ62の強度は上記に説明したように回転の180度にわたって空間フィルタ50のスリット52の回転の11.25度の角インクリメントで記録されるが、記録されなければならないということではない。11.25度の角インクリメントを使用することにより、各画像12、14、...、nのための十分な形状関連データを収集して画像の高速で、意味のある、かつ効率的な特徴付け、サーチ、および検索がもたらされ、かつ11.25度は180度を16で分割し、このようにして、情報のビットおよびデータ格納バイトを効率的に使用できる。しかし、形状特性における精密さがある程度少ないその他の角インクリメント、または形状特性における精密さがある程度少ないその他の寸法の感光アレイが本発明でもちろん使用される。
【0040】
仮想上ずらされた検出器アレイ82aおよび82bは検出器アレイ82aの比較的数の少ない大きな感光素子84a、例えば、16x16個の検出器アレイ82aのただの256個の感光素子84aにより一素子づつをベースに光エネルギ検出精度を向上させる。本発明の好ましい実施によれば、256個の位置、即ち、16x16個のアレイに対する光エネルギ強度のみにスリット52個の各角配向に対して記録される可能性がある。16x16個の検出器アレイ82aの感光素子84aの数は比較的少ないため、各感光素子84aが光エネルギ62を検出するフィルタ済みパターン60の表面領域セグメントは比較的大きい。256x256個のCCDアレイなどの多くの感光素子の検出器アレイによる通常の光検知と比較すると、各々のひとつがフィルタ済みパターン60の比較的大きな領域セグメントからの光エネルギを検出する少数の感光素子84aの明らか利点は非常に少ないデータが発生し、従って、処理されるデータが非常に少ないということである。このアプリケーションの欠点、即ち、形状内容により画像を特徴付けすることは、フィルタ済みパターン60のいくらかの小さな領域、しかし高い強度光スポットまたはエネルギー分布の、が1個以上の感光素子84aの小さな部分または表面領域に入射し、それ故、ひとつでないくつかの感光素子84a全体にわたって広がった極めて強い光エネルギを有することになる確率である。このような高強度スポットまたはゾーンは検出するために重要であるが、光エネルギがいくつかの感光素子84a全体にわたって拡散され、それによって極めて強い光エネルギを複数の感光素子84aの間に分割すると、強度信号出力が光エネルギのすべてがひとつの感光素子に入射する場合以上に低くなる。いくつかの感光素子84aからの結果として生ずるより低い強度信号出力および検出器アレイに入射する高強度光エネルギを取り込みかつ記録することのその結果としての失敗が画像12’に関する重要な形状情報、即ち、画像12’の明るさ、鮮明な細部、または線を結果として失うことになる。
【0041】
本発明によるこの問題および解決を説明するため、主に図6を参照するが、図6は上記に説明したような検出器アレイ82aのいくつかのずらされた感光素子84aと仮想上重なる検出器アレイ82aのいくつかの感光素子84aの拡大図である。図6の説明におけるいくらかの2次参照資料は図1から5に図示しかつ前述した構成要素および特徴へ向けられ、従って、それらの図面を参照することもいくらかの役に立とう。図6において、光エネルギ帯域62には 検出器アレイ82aの4つの個別感光素子84a間の境界92、94、96および98に偶然またがる極めて強い光エネルギの集中またはゾーンがあり、それらの4つの感光素子84aは縦列5a、横列3a;縦列6a、横列3a;縦列5a、横列4a;および縦列6a、横列4aにある。それらの4つの感光素子84aは便宜上Cは縦列を表し、Rは横列を表すことで、C5a−R3a、C6a−R3a、C5a−R4a、およびC6a−R4aと示す。このように、それらの4つの感光素子の残りの表面領域に入射する非常に少ない光エネルギで、C5a−R3a、C6a−R3a、C5a−R4a、およびC6a−R4aにそれらの4つの感光素子の各々によって生成された電気信号がゾーン63のそのスポットに実際に入射するより非常に少ない光エネルギ強度を表す。
【0042】
しかし、上記に説明したように、ビーム61(図1)の空間フィルタ50を通過した光エネルギの2分の1だけがビーム61aで検出器アレイ82aへ投影される。ビーム61の光エネルギ他の半分がビーム61bでビームスプリッタ64によって検出器アレイ82bへ投影される。さらに、上記に説明したように、図1に示すように、検出器アレイ82bが垂直方向ずれ88および水平方向ずれ89によって検出器アレイ84aおよび84bの寸法の2分の1だけ垂直方向にかつ水平方向に仮想上ずらされる。従って、それぞれの検出器アレイ82aおよび82bの部分を拡大し、仮想上並設してそれぞれ図示したように、ビーム61の極めて強い光エネルギの対応するスポットまたはゾーン63が検出器アレイ82bの縦列5b、横列3bにある単一感光素子84bに大幅に入射する。従って、検出器アレイ82bの感光素子C5b−R3bの電気信号出力が検出器アレイ82aのC5a−R3a、C6a−R3a、C5a−R4a、およびC6a−R4aでの4つの感光素子のいずれかによって生成された電気信号よりスポットまたはゾーン63の光エネルギに高強度の非常により多くの表示である。このようなより高強度光エネルギがスポットまたはゾーン63の光エネルギが検出器アレイ82aおよび82bによって検出される場合スリット52(図2〜4)の角配向にぴったり合わされる画像12’(図1)の特に明るい特徴、細部、または線を表すため、フィルタ済みパターン60のスポットまたはゾーン63のこのようなより高強度光エネルギを取り込みかつ記録することはと重要である。
【0043】
本発明の好ましい実施形態によれば、図5および6とともに図7に最も良く図示されるように、データアレイ130(RIXelアレイとして本明細書において置き換えられている)には検出器アレイ82aおよび82bのひとつと同様の構成がある。この説明の目的のため、RIXelアレイ130は感光素子84aの16x16個の検出器アレイ82aに整合する16x16個のアレイである。検出器アレイ82aの各感光素子84a一致するRIXel空間または部分131(ビンともと呼ばれる場合もある)が存在する。それ故、例えば、検出器アレイ82aのC7a−R5aでの感光素子84aと関連した強度IがRIXelアレイ130のC7−R5の対応する空間またはビン131に記録される。RIXel空間131に記録された強度Iが、必ずしも必要ではないが、
検出器アレイ82aの対応する感光素子84aによって生成された強度であるため、前述の文は「によって生成された(produced by)」でなく、特定の感光素子「と関連した」強度Iを参照する。それらの並設された感光素子84bのひとつまたは多数が検出器アレイ82aの対応する感光素子84aより高い強度を生成する場合は、それが検出器アレイ82bの仮想上部分的に並設された感光素子84bのひとつによって生成された強度でありうる。
【0044】
スリット52の各選択された角配向で、十分なデータ空間またはビン131がRIXelアレイ130に設けられてひとつのアレイ82aに存在するのと同数の感光素子84aからの強度信号を受け取る。ただし、別の点で迷子になった高強度情報を取り込むため、検出器アレイ82aでの各感光素子84aの電気信号出力の値を恒久的に記録する前に、それは検出器アレイ82bの部分的に並設された感光素子84bの各々によって生成された信号と比較される。この比較によって見出された最高強度信号はRIXelアレイ130の考えられる恒久的記録に対して選択されるそれである。例えば、図6に図示された高強度スポットまたはゾーン63が検出器アレイ82bのC5−R3で感光素子84bに高強度信号を生成させ、一方、検出器アレイ82aのC5a−R3a、C6a−R3a、C5a−R4a、およびC6a−R4aでの4つの感光素子84aの各々がより低い強度信号を生成する。従って、C5a−R3aに配置された感光素子84aによって生成された信号がRIXelアレイ130のC5−R3での空間131の恒久的記録のため選択される前に、それは素子C5a−R3aに部分的に並設される4つの感光素子84b、即ち、C4b−R2b、C5b−R2bC4b−R3b、およびC5b−R5bに配置される検出器アレイ82bの感光素子84bの各々によって生成された強度信号と比較される。図6から、この実施例では、それらの5つの感光素子(即ち、C5a−R3a、C4b−R3b、C5b−R2b、C4b−R3b、およびC5b−R3b)の中からの最高強度出力がRIXelデータアレイ130のC5−R3の空間131の恒久的記録のためとみなされる強度信号であることが理解される。RIXelのC5−R3のその空間131における記録のため選択される強度I信号が、検出器アレイ82aのC5a−R3aの対応する感光素子84aによってでなく検出器アレイ82bのC5b−R3bの感光素子84bによって生成されたより高い強度信号によって生成されたそれであることも図6から理解される。上記実施例のC5b−R3bの感光素子84bによって生成された強度などのこの種の比較による各選択された強度信号が自動的に記録されるのでなく恒久的記録のためであるとみなされる理由は、ある一定の強度閾値を満足するかまたは超過する強度信号だけが恒久的形状特性記録のため保持されることである。閾値強度を満足しない強度画像12’の著しい形状内容の表示ではなく、従って以下により詳細に説明するように記録されない。上記図6の実施例では、C5b−R3bの感光素子84bからの強度信号はこのような閾値をほとんどおそらく超過することになり、かつ画像12の恒久的形状特性記録のため(検出器アレイ82aのC5a−R3aの感光素子84aに対応する)RIXelアレイ130のC5−R3の空間131の強度Iとして記録されることになる。
【0045】
図6の実施例では、スポットまたはゾーン63の光エネルギが入射するアレイ82a(即ち、C6a−R3a、C5a−R4a、およびC6a−R4a)の他の3つの感光素子84aの各々がそれらの感光素子84aに部分的に並設されるアレイ82bのそれぞれの感光素子84bと比較される。このように、C6a−R3aの素子84aの信号出力がC5b−R2b、C6b−R2b、C5b−R3b、およびC6b−R3bの部分的に並設された素子84bのそれぞれの信号出力と比較され、C5a−R4aの素子84aの信号出力がC4b−R3b、C5b−R3b、C4b−R4b、およびC5b−R4bの部分的に並設された素子84bのそれぞれの信号出力と比較され、かつC6a−R4aの素子84aの信号出力がC5b−R3b、C6b−R3b、C5b−R4b、およびC6b−R4bの部分的に並設された素子84bのそれぞれの信号出力と比較される。図6の実施例の3つの構成要素のすべてにおいて、C5b−R3bの感光素子84bによって生成された強度信号が最も高い。それ故、その高強度信号が上記に説明したように、検出器アレイ82aのC5a−R3aの感光素子84aに対応するばかりでなく検出器アレイ82aのC6a−R3a、C5a−R4a、およびC6a−R4aの感光素子84aにも対応する位置131でRIXelデータベース130のため使用される。
【0046】
他方、図6の検出器アレイ82aの C7a−R5a の感光素子84aの強度信号出力のC6b−R4b、C7b−R4b、C6b−R5b、およびC7b−R5bの部分的に並設された4つの部分的に並設された感光素子84bとの比較によりそれらの4つの感光素子84bのいずれかからより大きな強度信号は見出されない。従って、C7a−R5a の感光素子84aの強度信号出力はRIXelデータベース130のC7−R5の空間131に記録するためと見なされるそれであることになる。その選択された強度信号が閾値強度を満足するかまたは超過する場合は、それがRIXelアレイ130のC7−R5でのその空間131に記録された強度Iである。
【0047】
従って、上記説明から理解されるように、小さなアレイ(例えば、16x16)は2つの並設された検出器アレイ82aおよび82bをフィルタ済みパターン60を基準として仮想上相対的に部分的にずらされたそれらのそれぞれの感光素子84aおよび84bとともに使用することにより高強度形状特徴付けデータを検出しかつ記録するため使用される。この配置は、その他の検出器アレイ82bのひとつまたは多数の部分的に並設された感光素子84bを有する検出器アレイ82aのひとつまたは多数の感光素子境界92、94、96および98にまたがるこのようなスポットまたはゾーン63のエネルギーを取り込むことにより高強度光エネルギのスポットまたはゾーン63の明瞭な検出を可能にする。2つの検出器アレイ82aおよび82bのこのずらされた、仮想上並設された使用は、検出器アレイ84aおよび84bがスポットまたはゾーン63の寸法より面積がより大きくても、フィルタ済みパターン60の特定位置でスポットまたはゾーン63に集中した高強度光エネルギ62の非常に高速な検出を容易にする。この配置の欠点には
非常に密接に間隔をおいて配置された高強度スポットまたはゾーン間の判別ができないこと、このような高エネルギースポットまたはゾーン63の精密な形状の決定ができないことが含まれ、かつスポットまたはゾーン63より大きな領域のフィルタ済みパターンを表すRIXelアレイ130における多数の空間131のこのようなスポットまたはゾーンからの高強度を記録することがこのような高強度スポットまたはゾーン63が感光素子84a間の境界をまたぐ状況を実際に隠してしまう。ただし、このような欠点はこのアプリケーションには著しいものではない。光エネルギ集中または分布を特徴付け、かつむらのない、再生可能な、かつサーチ可能な方法で位置情報とともにそれらを記録するこのような形状を取り込むこと重要であるが、それらがフィルタ済みパターンで占有する使用する実際の領域大きさに対するこのような高強度ゾーンの密接な相関はさほど重要ではない。
【0048】
実際には、本発明は、特にフーリエ変換パターン32がフィルタ済みされた光を回折するスリット52によりフィルタ済みされる図1の好ましい実施形態ではほんのひとつの検出器アレイ82aで使用される。このような回折はそれをスポットに集中させるのではなくてむしろ光エネルギを分散させやすい。それでもなお、著しくより以上の精密さが、上記に説明したように、強度Iと比較しかつ選択する些細な付加的処理により、2つのずらされ、並設された検出器アレイ82aおよび82bによってもたらされる。さらに言えば、特に、たとえ8x8個のアレイなどのより小さなアレイが使用されるとしても、より以上の精密ささえ3つまたは4つなどの2つのずらされ、並設された検出器アレイによってもたらされる。
【0049】
上記に説明したように、部分的に並設された検出器アレイ84aおよび84bの比較の間高強度信号の選択が、電圧比較器回路のネットワークによりまたはソフトウエア比較および選択プロセスによって各検出器アレイ84aおよび84bの信号出力の経路を指定するなどの当業者の能力内で十分な多数の方法で行われる。従って、このような詳細は本発明を説明または理解するためには不必要である。ただし、本発明が如何にして信号を出力するかについての説明を容易にするため、本発明では、画像12、14、...、nを形状内容による特徴付けが使用され、ここでは、例えば、制限のためではないが、スリット52の回転の11.25度の角インクリメント51で光エネルギ 検出するため2つの16x16個の2つの検出器アレイ82aおよび82bを再び示す図7の参照が行われる。上記に説明したように、コンピュータ100は、ロータ54がその軸線57に関して回転するのにともなって、スリット52の回転(R)の角インクリメント51での画像12の形状内容の表示である強度信号(I)を集めかつ統合する。以下により詳細に説明するように、回転R情報およびと関連した強度Iが「RIXel」データアレイ130にまとめられる。基本的には、コンピュータ100と画像取り扱い装置20間の情報リンク132はコンピュータ100と画像取り扱い装置20間の信号を取り扱う。例えば、コンピュータ100が画像取り扱い装置20へ信号を送って特定画像12、14、...、nを光描写器10の中に挿入する。画像取り扱い装置20からの信号が画像12の本性をコンピュータ100へ伝達し、それが挿入を終了したこれを確認する。画像本性は、任意数またはいずれか他の記号またはRIXelアレイ130およびそれがどこで見出されたかなどの画像12に関する情報、例えば、URLデータアドレス、データベースアドレス、ライブラリカタログ番号、ミュージアムコレクションなどにコンピュータ100によって関連付けられる情報である。コンピュータ100における画像12の認識により、かつロータ54が回転するのにともなって、符号器134がスリット52の角度位置を検出し、信号を通信リンク136を介してスリット52の特定角度回転位置Rの表示の信号を送るコンピュータ100へ送信する。当業者によって理解されるように、符号器134は例えば、フォトセル(図示せず)がロータ54周辺部の符号器穴138を通過するLEDまたはその他の光源(図示せず)からの光を検出する装置であってよい。符号器穴138が11.25度のインクリメント51に間隔をおいて配置されている場合は、符号器134がロータ54が新たな11.25度を回転する瞬時毎に通信リンク136を介して信号を送信する。コンピュータ100は符号器134からの信号を使用して検出器アレイ82aおよび82bからの、または検出器アレイ82aおよび82b間の別々の強度信号処理回路150からの強度情報Iの読取りをトリガして各々のこのような強度Iの読みに対するスリット52の角度回転Rの軌道を保持することができる。あるいはまた、別々の回転R信号処理回路140を使用して符号器134信号からのスリット52の角度回転位置Rを計算して 信号とともにスリット52のその回転位置R情報をコンピュータ100へ出力してロータ54が新たな11.25度の角インクリメントを回転する毎に、またはさらに言えばロータ54がいずれかの所望角インクリメントを回転する毎に、強度Iを読取ることができる。符号器穴138は強度Iがコンピュータ100によって読取られるはずの回転Rの所望角インクリメントと一致する必要はない。コンピュータ100またはマイクロプロセッサ140のいずれかが回転速度、即ち、角速度および回転位置Rの軌道をいずれかの符号器穴138間隔で保持するようにプログラムされ回転Rのいずれかの所望角配向で強度読取り信号を発生する。従って、制御装置が信号処理回路140に、またはコンピュータ100に設けられ強度Iが読取られるスリット52の回転Rの角インクリメントを変化させ得る。ただし、所望角インクリメントが終了した後光学的画像描写器10の大量生産などののため回転Rの所望角インクリメントで符号器穴138を開けることは適宜なことでありかつ簡便である。勿論、強度Iが読取られる回転Rの角インクリメントが小さいほど、データがより精密になるが、必要とされるデータ処理および格納容量もより多くなる。再び、この実施例の場合は、スリット52の180度回転の11.25度の厳密に16インクリメントが存在するため、回転Rの11.25度の角度インクリメントが選択されている。それ故、回転Rおよび強度Iを記録する16個のRIXelアレイ130が各画像12のため得られる。上記に説明したように、ロータ54が180度にわたって回転するのにともなって、スリット52の2つの半セグメントがともにフィルタ済みパターン60の360度掃引を行うため、各画像に対して、180度だけのスリット52の回転が必要とされる。勿論、ロータの角回転の軌道を保持する当業界において知られている、本発明を実行するため使用される多くの他の方法が存在する。
【0050】
上述のように、空間フィルタ50の中のスリット52が通したフィルタ済みビーム61は、オフセット検出器アレイ82a、82bの上に投影され、ここで検出器アレイ82a、82bの個別感光素子84a、84bを用いて光エネルギ分布62がリアルタイムベースで検出される。また上述のように、アレイ130の中の各RIXelに関する各角度回転刻みRにおける強度Iは、検出器アレイ82aの中の対応する感光素子84a又は、検出器アレイ82bの中の、対応する感光素子84aに部分的に並列されている4つの感光素子84bのうち1つの最高強度から選択される。
【0051】
上に簡単に述べたように、感光素子84a又は部分的に並設した感光素子84b4つのうち1ついずれかから強度Iを選択することは、コンピュータ100の中でソフトウエアを使っておこなうことが出来るが、検出器アレイ82a、82bとコンピュータ100との間に設置された別個の強度I信号処理回路150を用いておこなうのが好ましい。また、上に簡単に述べたように、強度I画像処理回路150は、一例を図8に図示するように、電圧比較回路152のアレイを用いて、又は、当業者には周知のように、マイクロプロセッサ回路(図示せず)を用いて、ハードウエアに組み込むことが出来る。図8に示すように、例示光要素84aに結合する強度Iであって、コンピュータ100に送られてRIXelアレイ130の中の対応するRIXel空間131に設置されるものは、特定の感光素子84a又は部分的に並設された感光素子84b4つのうちいずれか1つが生じた最高強度である。図8のダイアグラムにおいては、検出器アレイ82aの7a列5a行(C7a−R5a)にあるものなど、前に論じた同一感光素子84aを例として用いる(図5、6、及び7)。上で説明したように、RIXelデータアレイ130に対する入力のため、感光素子84aが生じる通常は電圧レベルの強度信号を使う前に、検出器アレイ82aの中のC7a−R5a要素84aに部分的に並設する、検出器アレイ82b中の4つの感光素子84bと比較される。上に説明したように、これら4つの部分的に並設した感光素子84bは、検出器アレイ82b中でC6b−Rb、C7b−R4b、C6b−R5b及びC7b−R5bにある。図8に示したように、C6b−R4bとC7b−R4bにある2つの要素84bの出力電圧は、これら2つの電圧のうち最高を出力するコンパレータ回路152を用いて比較され、一方C6b−R5bとC7b−R5bにある別の2つの要素84bの出力電圧は、これら2つの電圧のうち最高を出力するコンパレータ回路154を用いて比較される。コンパレータ回路152、154それぞれの出力電圧は次いで、4つの個別要素84bから最高電圧を出力するコンパレータ回路156を用いて比較される。要素84bからの最高電圧は次いで、コンパレータ158を用いて要素84a(C7a−R5a)が生じた出力電圧に対し比較される。C7a−R5aにある単一感光素子84aと、C6b−R4b、C7b−R4b、C6b−R5b及びC7b−R5bにある部分的に並設した複数の感光素子84bの束になったグループの中のどれが最高の電圧であっても、処理のため増幅器及びアナログ対デジタル(A/D)コンパータ回路160に送られ、通信リンク162を経由して強度Iとして処理され、コンピュータ100に供給される電圧である。もちろん、信号処理回路150の中には、当業者の間では周知で本発明の記述及び理解のためには詳細を論ずる必要のないその他の信号調整及び処理成分がある。また、同一結果を生じる別のコンパレータ系列もある。検出器アレイ82aのC7a−R5aにある1つの感光素子84aに結合する強度Iは、上に論じたように決定され、それは16×16検出器アレイ82aからの強度Iのうち1つに過ぎず、上述のように、コンパレータ回路150により処理され通信リンク162を経由してコンピュータ100にリアルタイムベースで送られることも心に留めなければならない。
【0052】
主として図8を参照し、副次的に図7を参照しながら、コンピュータ100が、エンコーダ134及び/又は回転R信号処理回路140から、スリット52が回転Rの所望の刻み角度に達したとの信号を受けたとき、コンピュータ100は、16×16検出器アレイ82a中の256個全ての感光素子84aに結合するコンパレータ回路150から256個の強度Iを読んで、それらをRIXelデータアレイ130の対応する空間又は記憶場所131に送り込む。例えば、図8に示す感光素子84a、即ち検出器アレイ82aのC7a−R5a、と結合する強度Iは、コンピュータ100が記憶し、対応する回転角度Rとともに、7列5行、16×16RIXelアレイ130の中のRIXel空間131に設置される。同様に、16×16検出器アレイ82aの残りの感光素子84a256個に結合する残りの256個の強度Iはコンピュータ100に記憶され、強度Iに結合する回転Rとともに、それぞれの対応するRIXelアレイ130の中のRIXel位置又は記憶場所に送られる。したがって、スリット52の選択された角度回転R刻みそれぞれについて、256個の強度Iがあり、これらが特有の回転角度Rとともに、RIXelデータベース130の中に記憶される。ここでも、回転Rに関し11.25度の刻みを用いたとき、画像12毎に16個のRIXelアレイ130があり、16個のRIXelアレイ130の各々が1つの回転方向Rを、検出器アレイ82aの中の感光素子84a256個に結合した256個の可能強度Iとともに有する。
【0053】
しかし、上に簡単に述べたように、無用データの記憶と処理を避けるため、コンピュータ100は、固有強度閾値に合致する強度IのみをRIXelアレイ130に入れる。例えば、図5と図7を参照すると、検出器アレイ82aの中には、フィルタ済みパターン60の外側にある行0a、1a、14a及び15aなど、入射光エネルギがほとんど又は全くない感光素子84aがある。また、多分C9a−R9aとC10a−R8aなど、光エネルギ62の帯の間にある感光素子84aの中には、画像12の中の形状内容の特性描写に有意であるには不十分な強度の光エネルギ62を持つものがあるかも知れない。したがって、このような強度I又は強度Iのないものは、RIXelアレイ130に記憶する必要はない。その結果、検出器アレイ82aの中の感光素子84aに結合する強度Iで一定の閾値強度レベル以下のものについては、R、I、又はXのデータを対応するRIXelアレイ130の中のRIXel位置又は記憶場所に入れない。閾値以上の強度Iについては、好適実施例にしたがうと、強度Iが分類されるレベル4つ、つまり、0、1、2又は3がある。したがって、各強度IをRIXelアレイ130に記録するには、2ビット、つまり00、01、10又は11が必要になるだけである。もちろん、4つより多いか又は少ないかいずれかの強度レベルIを用いることは、確実に本発明の境界内に入る。しかしながら、強度Iレベルが大きくなればなるほど、さらに大きなビット数を必要とする。例えば、8個の強度Iレベルは記録に3ビットが必要であろうし、16個の強度Iレベルは4ビットが必要である。
【0054】
各RIXelの「X」データ空間は、ひずみ率のため使用され、下記に詳細を記述するように、全くではないが同様の形状特性を持つ画像の検索及び発見、又は同一の画像特性を有するが、視野が少しずれた画像の発見を助ける。しかし「X」空間はまた、データベース検索において何か別の目的のため又は、回転Rのもっと高い解像度のため又は強度Iのもっと高い精度のために使用されるフラッグであることもある。本発明の好適ではあるが不可欠ではない実施例では、「X」は4個までの値−0、1、2、3を持つことが出来るので、2ビットのデータ情報を記憶することが出来る。
【0055】
好適実施例において、RIXelの中のR値は、回転Rのコード化のため4ビットを有しており、これは180度回転における11.25度刻みの回転R16個のために充分である。上述のように、強度Iのコード化に2ビットを用い、これもまた上述のように、Xひずみ率のコード化又は別のフラッグ用に2ビットを用いる。したがって、各RIXelは、丁度8ビット、即ち1バイトの情報を有する。さらに、各RIXelアレイ130には256個のRIXelつまり256バイトの情報が見込まれ、各画像12には、回転Rの11.25度刻み回転16個毎に1個のRIXelアレイ130がある。したがって、本発明の好適ではあるが不可欠ではない実施例にしたがって、16×16検出器アレイ82a、82b、スリット52の回転Rの11.25度刻み、及び16×16RIXelアレイ130を使用するとき、1つの画像12を形状内容について特性描写するには最大で4,096バイトを必要とする。
【0056】
上に簡単に述べたように、検索可能データの中にひずみの各種検索可能レベルを設けるため、RIXelの中の「X」空間をひずみ率として使うのが好適である。この[X]空間は、RIXelアレイ130の中のRIXelで別途使われていないか又は強度Iが閾値強度I以下のため満たされていないものに対して割り当てることが出来る。したがって、サーチャーが合致を見出したい画像を有するが、データベースの検索において、正確なRIXel情報を用いた場合に、データベースの中に画像12、14,……,nのため記憶されたRIXel情報の中から合致画像を見出すことが出来ないとき、サーチャーは、RIXelの中で異なるX値を規定して、検索の幅を広くし不正確な合致を探すことが出来る。
【0057】
この特性を説明するため、ここでは主として図9aと図9bを参照し、図7と8を副次的に参照する。図9aにおいて、RIXelアレイ130の、主として列0−8、行9−15で構成される部分は、RIXelアレイ130の中の幾つかのRIXel位置又は空間で例示RIXel値R、I、及びXを付けて示されている。この例において、アレイ130の中の幾つかのRIXel位置又は空間は、検出器アレイ82aの中の対応する感光素子84aに結合する強度Iが最低強度閾値に合致しないため、空白である。言い換えると、対応するこれらの感光素子84aに又は検出器アレイ82bの部分的に並設する感光素子84bのいずれかに入射する光エネルギが小さいか又は皆無である。したがって9、10、11、12、13、14、15行にある0、1、2、8列;3列の9、10、11、14、15行:4列の9、10、13、14、15;5列の9、12、13、14、15行:6列の11、12、13、14、15及び7列の10、11、12、13、14、15行はすべて空白のままなので、コンピュータ100はアレイ130のこれらの空間及び位置に最初からRIXelエントリを作成しない。ここで、RIXelアレイ130の例示RIXel空間又は位置でそれに関する強度Iが記録するに充分なもの、つまり最低閾値と同じ高さのもの、を調べると、これら各RIXel空間に入力されたR、I、及びXの値がある。例では、R=4が空間全部に満たされている。この例示RIXelアレイ130に関する強度Iは、図7に示すように、スリット52が、角度方向45度など、1つの離散回転角度Rにあるとき、1つのフィルタ済みパターン60の中にある光エネルギ帯62から来るからである。上の議論から、垂直の配向開始からの回転角度45度は、角度刻み11.25度4個分である。したがって、スリット52の45度方向における各強度Iの値に関してはR=4なので、R=4が、記録することの出来る強度Iのある各RIXel空間131に入力される。スリット52がさらに11.25度刻みで56.25度まで回転すると、新しいRIXelアレイ130が強度Iの新しい値で満たされる。しかし、図9aの例については、スリット52方向が45度なので、強度Iが記録されるのに充分なだけ高い各RIXelについてはR=4である。
【0058】
図9a及び9bの例について記録された強度レベルIは任意に、R=0からR=3まで、つまり4つの異なる強度Iレベル分類で変化するとして示されている。ひずみ率Xは、すべて最高確度レベル、つまりX=3、で示してある。上で説明したように、これら満たされたRIXelは、検出器アレイ82a,82bの中の感光素子84a又は84bが生じた正確な強度Iに基づいているからである。したがって、X=3は最高レベルの確度、つまり最小のひずみを意味する。
【0059】
これらの問題を理解するため、例えば、本発明に従って形状内容に関し、上述のように、特性描写された元の画像12を考察し、さらに、図9aのRIXelアレイ130に記憶されたこのような形状内容のRIXel特性を考察する。図9aの回転R=4に関するRIXelアレイ130は、画像12のための回転R=1−3及び5−16に関する別のRIXelアレイ、及び画像12を見出すことの出来るソース位置アドレスに関連させることの出来る画像固有識別番号(ID#)と一緒に、データベースの中に記憶される。また、ユーザは画像12のコピイを持っているが、オリジナルの設置された場所を知りたいとする。しかし、コピイは視野の中で画像が上下又は左右に少しずれている。それでも、ユーザは画像のコピイを本発明の光学的画像特性描写器10に入れると、そのコピイの形状内容の特性描写をしたRIXelデータが得られる。コピイ画像の視野内のずれがなければ、コピイの形状内容特性描写のRIXel情報は、元の画像12の形状内容特性描写と同じか又はほとんど同じである。しかし、視野内におけるコピイ画像のこのようなずれにより、コピイに関するRIXelアレイ130の中で別のRIXel空間131が満たされることとなる。つまり、図9aにおいて、元の画像12RIXelに対し、左右又は上下にずれた1つ以上のRIXel空間が満たされる。したがって、コピイ(つまり参照画像)の形状内容のRIXel特性描写を使って、元の画像12に関してデータベースに記憶されたRIXel情報に対し精密なRIXel合致を(つまりX=3ひずみレベルで)検索したとき、対応するコピイRIXel情報とRIXelアレイ130の列及び行が少し違うので、図9aの元の画像12のRIXelデータは、検索において合致とは確認されないであろう。
【0060】
この問題を解決するには、元の画像12に関するRIXelデータをRIXelアレイ130にロードするとき、RIXelアレイ130の以前には満たされなかったRIXel空間131の幾つかを、図9aに示すように、「X」値を小さく、つまりひずみを大きくして、同じ回転R値と強度I値で満たすよう、コンピュータ100をプログラムすることが出来る。例えば図9bを参照すると、ここでは、元々満たされたRIXel空間131、従ってX=3値の付いたものの輪郭を太く描いて、元々満たされたRIXel空間の設置された場所を見易くする助けとした。次いで、図9bに示したように、コンピュータ100が元は空白であったRIXel空間131の幾つかを、元々満たされた空間131から水平に3空間及び垂直に3空間131まで、R、I、及びXのRIXel値で満たした。
【0061】
厳密に言うと、図9bの挿絵において、新たに満たされたRIXel空間131の各々は、やはり同一回転R=4を保っているので、新RIXel情報は依然としてRIXel値について、スリット52のその角度方向、つまり45度方向から検索される。しかし、元の満たされた空間131から垂直又は水平に離れた追加RIXel空間131は、1段低いX値に結合しており、つまりRIXel空間131が元の満たされたRIXel空間131から遠くなるほどひずみが増加する。このようにして、元々満たされたRIXel空間131がX=3ひずみ値を持っている場合は、新たに満たされたRIXelで元々満たされたRIXel空間131から1つだけ離れた空間131は、X=2を有する。元々満たされたRIXel空間131から2つ離れた空間131はX=1、3つ離れた空間131はX=0を有する。異なるひずみ値X=2、1、又は0、を有する新RIXel空間131に割り当てる強度I値は、普通、近くの元の強度I値と同じであるが、新RIXel空間131を満たすに当たってI値を割り当てるための特殊アルゴリズムは変更することが出来る。この考えは、特定の回転Rについて、これらの強度I値を記憶するRIXelの空間位置がRIXelアレイ130の中で少しずれていても、同じ又はほとんど同じRIXel強度Iパターンの検索と発見が出来るようにするものである。こうして、もっと精密なRIXelデータに関する(つまりX=3のRIXelに関する)検索によって画像コピイに関する合致を見出さなかった上の例のユーザは、そのとき精度の劣る検索を指定することが出来る。このような精度の劣る検索は、RとIの値が同一で、異なるX、つまりひずみ値、例えば、X=2又はX=1又はX=0を持つ合致を探すことが出来る。RIXel情報の合致は、もっと精密なX=3を用いて合致が見出されなかった場合に、X=2又はX=1又はX=0を用いて、形状内容のコピイ画像特性描写について見出されるであろう。それにより、ユーザはやはり、元の画像12に関する確認と位置情報を入手することが出来る。
【0062】
元の画像12の走査コピイが、コピイの視野でずれていないときであっても、データベースに記憶された元の画像12に関するRIXelすべてが合致し得ると期待するのは、多分実際的でないであろう。したがって、サーチャーは検索ソフトウエアによって、RIXel合致の所望レベルを規定することが出来るであろう。例えば、ユーザは、RIXelの70%合致を探して、検索でRIXelの70%が合致した元の画像12、14、……、nすべてに関する確認情報を獲得することが出来る。70%レベルで検索が返す合致が多過ぎるとき、ユーザは、RIXelの80%又は90%などが合致する画像に関する確認情報のみを報告する、もっと高い、つまりもっと精密な、合致レベルを規定して別の検索をおこなうことが出来る。
【0063】
画像12に関するRIXel情報は、画像12、14、……、nについての情報の記憶、検索、回収に関しユーザが望む基準によって、図1に示すように、任意の数の配置で及び任意の題名で又は各種の別の情報と共に、形状ベクトルデータベース102を構築するためコンピュータ100により配布することが出来る。例えば、1つのデータベース構造体104は、RIXelデータを固有画像識別子(画像のID#など)の下で、画像に関する位置情報(インターネットで画像12が見つかるURLアドレスなど)、フォーマット及び解像度情報(回転の刻み、検出器アレイサイズ、及び類似のもの)、色情報(これは人手による又は自動光カラー特性描写器(本発明の一部ではない)による)肌合い情報(これもまた別の自動光肌合い特性描写器(例えば、米国特許出願09/326,362号))および類似のものとともに一覧表にする。別のデータベース配置106は、形状内容のRIXel特性描写により画像12、14、……、nすべての識別番号又は記号表示を一覧表にすることが出来る。
【0064】
これまでの記述は、本発明の原理の説明としてのみと見なされる。さらに、当業者には数多くの修正及び変更が容易に生じるので、本発明を上に示し記述したものと全く同じ構造及び処理に限定することは望まない。したがって、以下の請求項により定められるような本発明の範囲内に入る適切な修正及び等価物のすべてに対しては、訴訟をおこなうことがある。この明細書で使うとき、用語「含む」「含まれる」などは、述べられた特徴、完全体、構成部品、又はステップの存在を規定するが、1つ以上の別の特徴、完全体、構成部品、ステップ、又はそれらのグループの存在又は追加を除外するものではない。
本明細書に取り入れられかつその一部を形成する添付図面が本発明の好ましい実施形態を図示しかつ説明とともに本発明の原理を説明する役割を果たす。
【図面の簡単な説明】
【図1】 本発明による光学的画像描写器の概略線図である。
【図2】 図2a〜図2cは画像(図2b)の形状特徴に関する空間フィルタ(図2c)のスリットの垂直角配向と結果として生ずる光エネルギ(図2c)のフィルタ済みパターンと間の関係を示す図である。
【図3】 図3a〜図3cは図2a〜cに類似の図であるが、垂直方向から約50のスリットの角配向を有する図2a〜cに類似の図である。
【図4】 図4a〜図4cも図2a〜cに類似の図であるが、水平方向に回転したスリットを有する図2a〜cに類似の図である。
【図5】 光エネルギのフィルタ済みパターンを検出するため使用されるような本発明のずらされた仮想上並設した検出器格子の図式説明図である。
【図6】 隣接する感光素子間境界をまたぐ光エネルギスポットまたは領域の検出を説明する仮想上並設した検出器アレイの拡大部分の図である。
【図7】 RIXelデータアレイのため画像本性、RIXel回転、および強度データの収集を説明する機能線図である。
【図8】 RIXelデータベースに含ませる一方の検出器アレイの感光素子および他方の検出器アレイの4つの部分的に並設された感光素子の中から強度を選択する強度信号比較器回路の図式説明図である。
【図9】 図9a〜図9bは精度よいサーチのため回転、強度、およびひずみ情報を満たした空間を有しかつより低い精度のサーチのための様々なひずみ値フラッグを満たした付加空間を有するRIXelデータベースの部分を示す図である。

Claims (23)

  1. 画像を形状内容により特徴付ける方法であって、
    前記画像の光フーリエ変換パターンを光エネルギを用いて作成するステップと、
    前記光エネルギのフィルタ済みパターンを作成するため、回転するスリットを用いて前記フーリエ変換パターンから該光エネルギを空間フィルタするステップと、
    前記光エネルギが、2つの同一のフィルタ済みパターン対に分割することにより、前記スリットの離散角配向にフィルタ済みパターンで分布されたとき、前記フィルタ済みパターン対の各々が互いにほぼ同等の光エネルギ分布の強度を有し、該フィルタ済みパターン対の各々が2つの感光素子検出器アレイ対のうち1つの上に投影するが、前記検出器アレイ対のうち1つの上に入射する前記フィルタ済みパターン対が、他の検出器アレイ対に対する実質的関係において及びフィルタ済みパターンに関して、感光素子サイズの半分だけ垂直方向と水平方向とにオフセットしており、検出器アレイ対のうち1つの中の光要素が他の検出器アレイ対中の感光素子4つに対し部分的に並設されるように前記光エネルギの強度を検出するステップと、
    前記検出器アレイ対双方の中の個別感光素子に入射する光エネルギの強度を検出するステップと、
    前記検出器アレイ対のうち1つの中の個別感光素子が検出した光エネルギの強度を、別の検出器アレイ対中の部分的に並設した感光素子の各々が検出した光エネルギと比較するステップと、
    前記感光素子のうち1つが検出した光エネルギの強度のうち、別の感光素子のうち任意の1つが検出した光エネルギの強度と少なくとも同じ高さのものを、光エネルギの強度のレベルとしてデータベースへ記録するのに用いるため選択するステップと、
    前記選択された光エネルギの強度を、サイズと配置の点で前記検出器アレイ対のうち1つに相当するデータベースアレイに、データベースへの記録用に選択された光エネルギの強度が前記検出器アレイ対のうち1つの中の個別感光素子に対して特定可能であるように記録するステップと、
    前記スリットの角度を回転して検出した前記選択された光エネルギの強度のうち閾値に合致又は超過するもののみを前記強度のレベルに分類し、前記分類された光エネルギの強度を、該スリットの回転角度が11.25度増加する毎に、該スリットの角度回転位置と共に前記データベースアレイに記録するステップと、を含む方法。
  2. 前記強度のレベルを、前記スリットの回転角度が180度になるまで、回転角度が11.25度毎に増加する16箇所で記録するステップを含む請求項1に記載の方法。
  3. 光学的画像の形状内容を特性描写する方法であって、
    画像(12’)を含む光エネルギをフーリエ変換レンズ(30)を通過させて、光エネルギの光学的フーリエ変換パターン(32)を、レンズ(30)から焦点距離(F)にある光軸(40)上のレンズ(30)の焦点面に作成することにより、画像(12’)を空間領域からフーリエ領域に変換するステップと、
    光軸(40)から放射状に外向きに、その周りに離散角配向で置かれたフーリエ変換パターン(32)の離散部分からだけ、光エネルギを通過させて、焦点面にあるフーリエ変換パターン(32)を空間的にフィルタ(50、52)するステップと、
    前記フーリエ変換パターン(32)の離散部分からのフィルタ済み光エネルギを、光学的画像(12’)の形状内容の部分に相当する空間領域光学的画像(60)に戻して投影するステップと、
    形状内容の前記部分に対応する空間的領域光学的画像(60)の中の、複数の種々の位置において光エネルギの強度を検出するステップと、
    形状内容に対応する前記部分の空間的領域光学的画像(60)の中の、前記複数の種々の位置において検出された光エネルギの強度を記録するステップと、
    光学(40)軸から放射状に外向きで、その回りに異なる角度方向で置かれたフーリエ変換パターン(23)の複数の別の離散部分がないときは、フーリエ変換パターン(23)をフィルタするステップと、光エネルギを投影するステップと、強度を検出するステップと、強度を記録するステップとを、繰り返すステップとを含む方法。
  4. 検出された光エネルギの強度がそこから伝播するフーリエ変換パターン各の離散部分の位置を特定する情報を記録するステップを含む請求項3に記載の方法。
  5. フーリエ変換パターンの前記離散部分の各々について、形状内容の部分に対応する空間的領域光学的画像の中で検出された前記強度の種々の位置を特定する情報を記録するステップを含む請求項3に記載の方法。
  6. フーリエ変換パターンの前記離散部分が、光軸から、光軸に対して様々の固有角度方向で、放射状にその伸張方向に伸びる伸張領域を含む請求項3に記載の方法。
  7. 光軸の周りで回転することの出来る不透明なロータの中の伸張スリットを用いて、フーリエ変換パターンを空間的にフィルタするステップを含む請求項6に記載の方法。
  8. 空間光モジュレータを用いて、フーリエ変換パターンを空間的にフィルタするステップを含む請求項6に記載の方法。
  9. 伸張領域が、長い長方形である請求項6に記載の方法。
  10. フーリエ変換パターンの離散部分が任意の所望の形状を含む請求項6に記載の方法。
  11. フーリエ変換パターンの離散部分が、長い長方形を含む請求項10に記載の方法。
  12. フーリエ変換パターンの離散部分が、長円形を含む請求項10に記載の方法。
  13. 各離散部分の光軸に対する角度方向を特定する情報を記録するステップを含む請求項4に記載の方法。
  14. 2次元アレイの形状内容の部分のピクセル光学的画像を検出するステップと、前記強度の種々の位置を、当該強度が生じるピクセルの位置にしたがって、特定する情報を記録するステップとを含む請求項5に記載の方法。
  15. 空間的領域光学的画像に置かれた2次元光検出器アレイを用いてピクセルを検出するステップを含む請求項14に記載の方法。
  16. 光軸(40)上の焦点距離(F)にある焦点面と、光軸(40)が焦点面と交わる焦点とを有するフーリエ変換レンズ(30)と、
    フーリエ変換レンズ(30)後方の焦点面に置かれ、焦点面の複数の離散部分を通じて順に選択的に光エネルギを通すことができる光軸(40)を中心とする空間的フィルタ(50)であって、光軸(40)から外向きに放射状に且つ光軸の回りに様々の角度方向で置かれて、光エネルギが残りの焦点面を通過するのを阻止する空間的フィルタ(50)と、
    関連する光源(23)有しその光源(23)からの光エネルギを用いて光学的画像を作成することに対処することが出来る空間光モジュレータ(26)であって、フーリエ変換レンズ(30)を通じて光学的画像を投影してフーリエ領域の中にある光学的画像中の光エネルギのフーリエ変換パターンを形成するため、フーリエ変換レンズ(30)前方の焦点面の光軸(40)上に置かれた空間光モジュレータ(26)と、
    空間的フィルタ(50)が通した焦点面の離散部分からの光エネルギが空間領域に焦点を結び直す後方の焦点面から焦点距離(F)の大きさだけ後方に離れて置かれた光検出器装置(80a、80b)であって、空間的領域に焦点を結び直す光エネルギの中の光エネルギの強度パターンを検出する能力のある光検出器装置(80a、80b)と、
    焦点面の各離散部分から空間的フィルタ(50)を通過した画像を含む光エネルギについて、空間的領域における光エネルギの強度のパターンを記録するため、光検出器装置に接続されたコンピュータ(100)を含む光学的画像形状内容特性描写器。
  17. 空間的フィルタが、フーリエ変換レンズの焦点面に置かれ光軸の周りで回転するスリット付きのロータを含む請求項16に記載の光学的画像形状内容特性描写器。
  18. 空間的フィルタ(50)が、選択された角配向で回転スリット(52)により画素を順々にターンオンおよびオフする空間光モジュレータを含む請求項16に記載の光学的画像形状内容特性描写器。
  19. 光検出器装置が、空間的領域光エネルギパターンの中のそれぞれ別個のピクセル位置において光エネルギの強度を検出する個別感光素子の2次元アレイを含む請求項16の光学的画像形状内容特性描写器。
  20. 空間的領域中の光エネルギの強度パターンの中の光エネルギのピクセル強度を、ピクセル位置の相互関係と並べ、光エネルギがそこを通過して光検知器装置に達する焦点面の離散部分を特定する情報と並べて、収集し記録するためコンピュータがプログラムされている請求項19に記載の光学的画像形状内容特性描写器。
  21. 空間的領域中の光エネルギのピクセル強度が検出されたとき、空間的領域中の光エネルギのピクセル強度の収集との関連で光学的画像について特定する情報と、空間フィルタが光を通過させることの出来る複数の離散部分各々について離散部分を特定する情報と、を記録するためにもまたコンピュータがプログラムされている請求項20に記載の光学的画像形状内容特性描写器。
  22. 空間フィルタが光エネルギを通過させることの出来る離散部分各々のため記憶場所アレイのうち少なくとも1つが存在するよう、複数の2次元記憶場所アレイを有する構成のデータベースアレイを含み、2次元記憶場所アレイの各々が、光検出器中の個別感光素子に対応する記憶場所を有し、各記憶場所が、光エネルギがそこを通過して光検出器装置に達する焦点面の離散部分を特定する情報と、対応する感光素子が検出した光エネルギの強度とを受信し記憶する請求項21に記載の光学的画像形状内容特性描写器。
  23. 光エネルギがそこを通過して光検出器装置に達する焦点面の離散部分を特定する情報が、離散部分の光軸に対する角度方向を示す情報を含む請求項22に記載の光学的画像形状内容特性描写器。
JP2001571324A 2000-03-27 2000-05-23 形状による画像の特徴付け、符号化、格納およびサーチ装置および方法 Expired - Fee Related JP4758590B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/536,426 2000-03-27
US09/536,426 US6678411B1 (en) 1999-06-04 2000-03-27 Apparatus and method for characterizing, encoding, storing, and searching images by shape
PCT/US2000/014147 WO2001073681A1 (en) 2000-03-27 2000-05-23 Apparatus and method for characterizing, encoding, storing, and searching images by shape

Publications (3)

Publication Number Publication Date
JP2004500665A JP2004500665A (ja) 2004-01-08
JP2004500665A5 JP2004500665A5 (ja) 2011-05-06
JP4758590B2 true JP4758590B2 (ja) 2011-08-31

Family

ID=24138449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001571324A Expired - Fee Related JP4758590B2 (ja) 2000-03-27 2000-05-23 形状による画像の特徴付け、符号化、格納およびサーチ装置および方法

Country Status (12)

Country Link
US (1) US6678411B1 (ja)
EP (1) EP1269403B1 (ja)
JP (1) JP4758590B2 (ja)
KR (1) KR20030038537A (ja)
CN (1) CN1222903C (ja)
AT (1) ATE319139T1 (ja)
AU (2) AU5155800A (ja)
CA (1) CA2402786C (ja)
DE (1) DE60026301T2 (ja)
IL (2) IL151875A0 (ja)
RU (1) RU2238586C2 (ja)
WO (1) WO2001073681A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020122595A1 (en) * 1999-06-04 2002-09-05 Rikk Crill Apparatus and method for radial and angular or rotational analysis of images for shape content and matching
US7315833B2 (en) * 2003-01-16 2008-01-01 Rosetta Holdings, Llc Graphical internet search system and methods
CN101652626B (zh) * 2007-04-05 2011-07-13 株式会社尼康 形状测定装置及形状测定方法
CN101680953B (zh) * 2007-05-16 2014-08-13 皇家飞利浦电子股份有限公司 虚拟pet探测器和用于pet的准像素化读出方案
US7988297B2 (en) * 2007-10-19 2011-08-02 Look Dynamics, Inc. Non-rigidly coupled, overlapping, non-feedback, optical systems for spatial filtering of fourier transform optical patterns and image shape content characterization
US10051289B2 (en) 2011-11-04 2018-08-14 Qualcomm Incorporated Adaptive center band offset filter for video coding
WO2013108146A1 (en) * 2012-01-20 2013-07-25 Koninklijke Philips N.V. Light detector
JP6048025B2 (ja) 2012-09-18 2016-12-21 富士ゼロックス株式会社 分類装置及びプログラム
US9330463B2 (en) * 2012-11-29 2016-05-03 Csir Method of calibrating a camera and a system therefor
US10176148B2 (en) * 2015-08-27 2019-01-08 Microsoft Technology Licensing, Llc Smart flip operation for grouped objects
RU2659493C1 (ru) * 2017-02-10 2018-07-02 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова" (МГУ) Способ формирования каталога небесных объектов из больших массивов астрономических изображений
US11410028B2 (en) 2017-09-20 2022-08-09 Look Dynamics, Inc. Photonic neural network system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3771124A (en) * 1972-01-21 1973-11-06 Sperry Rand Corp Coherent optical processor fingerprint identification apparatus
US4218623A (en) * 1977-11-12 1980-08-19 Nippon Kogaku K.K. Device for detecting displacement of an optical image
US5216541A (en) * 1989-05-09 1993-06-01 Sumitomo Cement Company Ltd. Optical associative identifier with real time joint transform correlator
US5224173A (en) * 1991-10-29 1993-06-29 Kuhns Roger J Method of reducing fraud in connection with employment, public license applications, social security, food stamps, welfare or other government benefits

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3891968A (en) 1974-04-04 1975-06-24 Sperry Rand Corp Coherent optical processor apparatus with improved fourier transform plane spatial filter
US5761655A (en) 1990-06-06 1998-06-02 Alphatronix, Inc. Image file storage and retrieval system
JP3378032B2 (ja) 1992-08-28 2003-02-17 浜松ホトニクス株式会社 人物照合装置
JP2708683B2 (ja) 1992-10-21 1998-02-04 日本電信電話株式会社 ディジタル動画ファイルの特殊再生制御処理方法
US5659637A (en) * 1994-05-26 1997-08-19 Optical Corporation Of America Vander lugt optical correlator on a printed circuit board
US5802361A (en) 1994-09-30 1998-09-01 Apple Computer, Inc. Method and system for searching graphic images and videos
JP3431331B2 (ja) 1995-03-01 2003-07-28 株式会社日立製作所 動画像符号化装置及び動画像伝送装置並びにテレビ会議装置
JPH09135358A (ja) 1995-11-08 1997-05-20 Nec Corp 算術符号を用いた画像符号化装置
US5915250A (en) 1996-03-29 1999-06-22 Virage, Inc. Threshold-based comparison
US6026416A (en) 1996-05-30 2000-02-15 Microsoft Corp. System and method for storing, viewing, editing, and processing ordered sections having different file formats
US5987183A (en) 1997-07-31 1999-11-16 Sony Corporation Image activity data compression and decompression method and apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3771124A (en) * 1972-01-21 1973-11-06 Sperry Rand Corp Coherent optical processor fingerprint identification apparatus
US4218623A (en) * 1977-11-12 1980-08-19 Nippon Kogaku K.K. Device for detecting displacement of an optical image
US5216541A (en) * 1989-05-09 1993-06-01 Sumitomo Cement Company Ltd. Optical associative identifier with real time joint transform correlator
US5224173A (en) * 1991-10-29 1993-06-29 Kuhns Roger J Method of reducing fraud in connection with employment, public license applications, social security, food stamps, welfare or other government benefits

Also Published As

Publication number Publication date
RU2002128731A (ru) 2004-01-27
RU2238586C2 (ru) 2004-10-20
AU2000251558B2 (en) 2007-07-26
WO2001073681A1 (en) 2001-10-04
IL151875A0 (en) 2003-04-10
CN1222903C (zh) 2005-10-12
ATE319139T1 (de) 2006-03-15
AU5155800A (en) 2001-10-08
CA2402786C (en) 2010-10-26
US6678411B1 (en) 2004-01-13
DE60026301T2 (de) 2007-01-25
DE60026301D1 (de) 2006-04-27
CA2402786A1 (en) 2001-10-04
CN1454366A (zh) 2003-11-05
KR20030038537A (ko) 2003-05-16
JP2004500665A (ja) 2004-01-08
IL151875A (en) 2008-12-29
EP1269403A1 (en) 2003-01-02
EP1269403B1 (en) 2006-03-01

Similar Documents

Publication Publication Date Title
JP4758590B2 (ja) 形状による画像の特徴付け、符号化、格納およびサーチ装置および方法
JP5352591B2 (ja) フーリエ変換光学パターンの空間フィルタリングおよび画像形状コンテンツの特徴抽出を行なう非剛体結合性の重複する非フィードバック光学系
US7302100B2 (en) Method for increasing detectable light energy without changing shape content in radial and angular or rotational analysis of images for shape content and matching
AU769814B2 (en) Method and apparatus for searching for and comparing images
JPH10508107A (ja) 能動型照明及びデフォーカスに起因する画像中の相対的なぼけを用いる物体の3次元形状を決定する装置及び方法
USRE42070E1 (en) Apparatus and method for radial and angular or rotational analysis of images for shape content and matching
AU2003207576A1 (en) Apparatus and method for radial and angular or rotational analysis of images for characterising andfor matching shape content
CN1114441A (zh) 全息图像辨识系统
FR2853746A1 (fr) Procede de comparaison entre des paires d'indices materiels

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100420

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100510

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100528

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100604

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100630

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20101210

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20101217

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110209

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110314

A524 Written submission of copy of amendment under article 19 pct

Free format text: JAPANESE INTERMEDIATE CODE: A524

Effective date: 20110314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110405

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110506

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110603

R150 Certificate of patent or registration of utility model

Ref document number: 4758590

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees