JP4758246B2 - Functional composite material having ceramic-enclosed metal with closed cell structure and method for producing the same - Google Patents

Functional composite material having ceramic-enclosed metal with closed cell structure and method for producing the same Download PDF

Info

Publication number
JP4758246B2
JP4758246B2 JP2006037278A JP2006037278A JP4758246B2 JP 4758246 B2 JP4758246 B2 JP 4758246B2 JP 2006037278 A JP2006037278 A JP 2006037278A JP 2006037278 A JP2006037278 A JP 2006037278A JP 4758246 B2 JP4758246 B2 JP 4758246B2
Authority
JP
Japan
Prior art keywords
ceramic
metal
particles
composite material
cell structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006037278A
Other languages
Japanese (ja)
Other versions
JP2007217727A (en
Inventor
哲 岸本
良雄 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2006037278A priority Critical patent/JP4758246B2/en
Publication of JP2007217727A publication Critical patent/JP2007217727A/en
Application granted granted Critical
Publication of JP4758246B2 publication Critical patent/JP4758246B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本願発明は、金属皮膜でセラミックスを内包させたクローズドセル構造を有する機能性複合材料とその製造方法に関する。   The present invention relates to a functional composite material having a closed cell structure in which ceramics are encapsulated with a metal film and a method for producing the same.

セラミックスは、高い圧縮強度、剛性、強度、耐熱性、種々の電子特性などに優れた特徴を有し、これを生かして、建築材料や自動車部品、鋳物の鋳型、電子部品など様々な用途に利用されている。セラミックス素材に関する技術も年々進歩しており、組成やプロセスの改良による特性の改善の他、異種材料との複合化により、セラミックスが本来持つ上記の優れた特性を生かしつつ、新たな特性を付加して機能性を高めた新規材料の創製などが積極的に進められている。中でも、セラミックス材料の弱点である靭性を改善する技術の開発は、その利用分野を広め、従来にない高機能材料を生み出す可能性を秘めており、重要な課題の一つである。   Ceramics have excellent characteristics such as high compressive strength, rigidity, strength, heat resistance, and various electronic properties, and can be used for various applications such as building materials, automotive parts, casting molds, and electronic parts. Has been. The technology related to ceramic materials is also progressing year by year. In addition to improving the characteristics by improving the composition and process, by combining with different materials, new characteristics are added while taking advantage of the excellent characteristics inherent in ceramics. The creation of new materials with improved functionality has been actively promoted. Above all, the development of technology to improve toughness, which is a weak point of ceramic materials, is one of the important issues because it has the potential to broaden its application field and produce unprecedented high-performance materials.

この課題を解決するための技術として、セラミックス粒子を焼結する前に加圧工程を導入して成型することにより、焼結後の欠陥を低減して靭性を向上させる技術が提案されている(特許文献1)。   As a technique for solving this problem, there has been proposed a technique for reducing defects after sintering and improving toughness by introducing a pressurizing step before sintering the ceramic particles and molding the ceramic particles ( Patent Document 1).

また、セラミックス粒子を用いた材料開発技術としては、金属マトリックスの中にセラミックス粒子を分散させて焼結することにより、セラミックスが有する諸特性に加えて、金属材料が有する延性、展性による高靭性化を付与する技術が提示され(特許文献2〜7)、また、粒子状の材料に金属を薄くコーティングし、それを静水圧加圧して多面体に変形させた後、金属を焼結することにより異種物質を内包するクローズドセル構造金属材料の製造方法が提示されている(特許文献8)。   In addition, as a material development technology using ceramic particles, by dispersing ceramic particles in a metal matrix and sintering, in addition to the properties of ceramics, high toughness due to ductility and malleability of metal materials (Patent Documents 2 to 7). Further, a metal is thinly coated on a particulate material, and is hydrostatically pressurized to deform into a polyhedron, and then the metal is sintered. A manufacturing method of a closed cell structure metal material containing a foreign substance has been proposed (Patent Document 8).

さらに、金属被覆粒子を加圧しながら加熱し、焼結する技術が提案されている(特許文献9)。
特開2000−128648号公報 特開2004−175626号公報 特開2003−78083号公報 特開平5−43964号公報 特開平8−73965号公報 特開平5−163502号公報 特開2000−225457号公報 特許第3486667号公報 特開2004−197187号公報
Furthermore, a technique for heating and sintering metal-coated particles while applying pressure has been proposed (Patent Document 9).
JP 2000-128648 A JP 2004-175626 A JP 2003-78083 A JP-A-5-43964 JP-A-8-73965 JP-A-5-163502 JP 2000-225457 A Japanese Patent No. 3486667 JP 2004-197187 A

しかしながら、従来の、焼結する前に加圧して成形する方法においては、剛体球であるセラミックス粒子の集合を加圧処理しても埋めきれない空隙が存在してしまい、また元々延性、展性を有しない粒子の集合であることから、靭性の改善に限界があった。   However, in the conventional method of forming by pressing before sintering, there are voids that cannot be filled even if the aggregate of ceramic particles, which are hard spheres, is pressed, and are inherently ductile and malleable. There is a limit to the improvement of toughness because it is an aggregate of particles that do not have any.

また、金属マトリックス中にセラミックス粒子を分散させて焼結する方法では、金属とセラミックス粒子の間の接着性の問題による空隙の発生を回避することが出来ないために、強度、剛性の点で問題があった。それを回避するために金属の含有量を増加させて空隙
を金属で埋め込むことが考えられるが、金属の割合が高くなってしまうために、セラミックスの長所の一つである軽量化やセラミックスの機能を犠牲にするという問題があった。
In addition, in the method in which ceramic particles are dispersed in a metal matrix and sintered, voids due to adhesion problems between the metal and ceramic particles cannot be avoided, so there is a problem in terms of strength and rigidity. was there. In order to avoid this, it is conceivable to increase the metal content and fill the voids with metal. However, since the proportion of the metal increases, the weight reduction and ceramic functions that are one of the advantages of ceramics There was a problem of sacrificing.

さらにまた、粒子に金属をコーティングしそれを加圧して粒子が細密充填するように多面体に変形させる特許文献8記載の方法では、静水圧加圧時に変形しないセラミックス粒子を使用した場合に粒子間の空隙を十分に埋めることが出来ず、粒子を加熱しながら加圧する特許文献9の技術でも同様に粒子間の空隙を十分に埋めることが出来ないので、この両技術においても靭性や強度を十分に向上できないという問題があった。   Furthermore, in the method described in Patent Document 8 in which metal is coated on the particles and pressed to deform into a polyhedron so that the particles are densely packed, when ceramic particles that do not deform when hydrostatic pressure is applied are used, Since the voids cannot be sufficiently filled, and the technology of Patent Document 9 in which the particles are pressurized while heating cannot be filled in the voids between the particles, the toughness and the strength are sufficient in both of these technologies. There was a problem that it could not be improved.

本願発明は、このような事情に鑑みてなされたものであり、セラミックスの欠点である靭性を改善した、金属とセラミックスの複合材料の製造方法を提供することを課題としている。   This invention is made | formed in view of such a situation, and makes it the subject to provide the manufacturing method of the composite material of a metal and ceramics which improved the toughness which is a fault of ceramics.

本願発明は、第1に、セラミックス粒子に金属をコーティングする工程、コーティングしたセラミックス粒子に加圧処理を施す工程、加熱処理によりコーティングさせた金属を接合する工程の3工程を含む、セラミックス内包型クローズドセル構造金属を有する機能性複合材料の製造方法において、セラミックス粒子の弾性率が、粒子の状態で圧縮試験をし荷重を最大断面積で除した値を応力とし、応力―ひずみ曲線の直線部分より得られる擬似的な弾性率の値が、40MPa以上で、コーティングされた前記金属のヤング率の値以下の範囲であって、バルク状態におけるヤング率が60〜220GPaの範囲にある前記金属をコーティングしたセラミックス粒を100〜400MPaの圧力により一部破壊変形させ、空隙率を4.2%以下にすることを特徴としている。
The present invention first includes a ceramic-enclosed closed type comprising three steps: a step of coating a ceramic particle with a metal, a step of applying pressure treatment to the coated ceramic particle, and a step of bonding a metal coated by heat treatment. In the method of manufacturing a functional composite material having a cell structure metal, the elastic modulus of ceramic particles is the value obtained by compressing the load in the state of the particles and dividing the load by the maximum cross-sectional area. The obtained pseudo elastic modulus value is 40 MPa or more and is less than or equal to the Young's modulus value of the coated metal, and the Young's modulus in the bulk state is coated in the range of 60 to 220 GPa. Ceramic grains are partially broken and deformed by a pressure of 100 to 400 MPa, and the porosity is 4.2% or less. It is characterized in that.

本願発明は、第に、第1の手段のセラミックス粒子として、多孔質のセラミックス粒子を使用することを特徴としている。
The present invention, in the second, as ceramics particles of the first means is characterized by the use of ceramic particles of the porous.

本願発明は、第に、第の多孔質のセラミックス粒子に代えて、セラミックス前駆体を含浸させた粒子を原料とし、第1の発明と同様の処理をすることを特徴としている。
The present invention, in the third, in place of the ceramic particles of the second porous particles impregnated with the ceramic precursor as a raw material, is characterized in that the same processing as in the first invention.

本願発明は、第に、加熱工程を2段階以上とし、最後の加熱を、金属の融点の50%以上100%未満の温度範囲で行うことを特徴とする。
本願発明は、第に、セラミックス内包型クローズドセル構造金属を有する機能性複合材料が、第1からのうちの何れかに記載の製造方法により製造されたものであることを特徴としている。
The present invention, in the fourth, the heating step is 2 or more stages, the last heating, and carrying out in a temperature range of less than 50% to 100% of the melting point of the metal.
Fifth , the present invention is characterized in that a functional composite material having a ceramic-encapsulated closed cell structure metal is manufactured by the manufacturing method according to any one of the first to fourth aspects.

本願の第1の発明によれば、セラミックス内包型クローズドセル構造金属を有する機能性複合材料の製造工程において、原料を易変形性のセラミックス粒子とすることにより、空隙の少ない複合材料の製造が可能になり、高強度、高剛性、高靭性、かつ軽量の機能性複合材料を提供することが出来る。   According to the first invention of the present application, in the production process of a functional composite material having a ceramic-encapsulated closed cell structure metal, it is possible to produce a composite material with few voids by using easily deformable ceramic particles as a raw material. Thus, a functional composite material having high strength, high rigidity, high toughness, and light weight can be provided.

本願の第の発明によれば、セラミックス粒子として、多孔質のセラミックス粒子を原料とすることにより、空隙の少ない複合材料の製造が可能になり、高強度、高剛性、高靭性、かつ軽量の機能性複合材料を提供することが出来る。
According to the second invention of the present application, it is possible to produce a composite material with few voids by using porous ceramic particles as the ceramic particles, and high strength, high rigidity, high toughness, and light weight. A functional composite material can be provided.

本願の第の発明によれば、セラミックス内包型クローズドセル構造金属を有する機能性複合材料の製造工程が、セラミックス前駆体を含浸させた粒子を原料とすることにより、空隙の少ない複合材料の製造が可能になり、高強度、高剛性、高靭性、かつ軽量の機能性複合材料を提供することが出来る。
According to the third invention of the present application, the production process of the functional composite material having a ceramic-encapsulated closed cell structure metal uses a particle impregnated with a ceramic precursor as a raw material to produce a composite material with less voids. Therefore, a functional composite material having high strength, high rigidity, high toughness, and light weight can be provided.

本願の第の発明によれば、高温加熱により金属とセラミックスの密着性が向上するので、更に高強度、高剛性、高靭性の機能性複合材料を提供することが出来る。
According to the fourth invention of the present application, the adhesiveness between the metal and the ceramic is improved by high-temperature heating, so that a functional composite material having higher strength, higher rigidity, and higher toughness can be provided.

本願の第の発明によれば、高強度、高剛性、高靭性、かつ軽量のセラミックス内包型クローズドセル構造金属を有する機能性複合材料を提供することができ、高性能の電子基板材料(放熱材料)や靭性の高い構造材料の開発が可能になる。
According to the fifth invention of the present application, it is possible to provide a functional composite material having a high-strength, high-rigidity, high-toughness, and lightweight ceramic-enclosed closed-cell structure metal. Materials) and structural materials with high toughness.

まず、本願発明の概要を説明する。図1は、本願発明の概念を示した図である。易変形性のセラミックス粒子又はセラミックス前駆体を含浸させた粒子の表面を金属でコーティングする。これに加圧処理を施して粒子同士を接合させて成型体(グリーン体)を作製する。この際、当該原料粒子は変形しやすいので多角形に変形し、お互いに面で接触するようになる。これを電気炉や通電加熱法、放電プラズマ焼結法などにより加熱すると、粒界金属が融合してセル壁となり、金属をセル壁としてセラミックスを内包するクローズドセル構造材料が完成する。さらに、このセラミックスを内包するクローズドセル構造材料を高温にて加熱すると、金属とセラミックスの原子が相互に拡散するので強固に接合し、さらに靭性を高めることができる。本願出願では、この加熱前及び加熱後の、金属をセル壁としてセラミックスを内包するクローズドセル構造を「セラミックス内包型クローズドセル構造金属」と言う。通常の高密度のセラミックス粒子を用いた場合、セラミックス粒子は高い剛性を有するため、焼結前の成形過程で加圧しても図1のような粒子の変形は発生せず、従って、粒界の空隙を埋めることは出来ない。   First, an outline of the present invention will be described. FIG. 1 is a diagram showing the concept of the present invention. The surface of the easily deformable ceramic particles or the particles impregnated with the ceramic precursor is coated with a metal. This is subjected to pressure treatment to join the particles together to produce a molded body (green body). At this time, since the raw material particles are easily deformed, they are deformed into polygons and come into contact with each other on the surface. When this is heated by an electric furnace, an electric heating method, a discharge plasma sintering method or the like, the grain boundary metals are fused to form a cell wall, and a closed cell structure material containing the ceramic with the metal as the cell wall is completed. Further, when the closed cell structure material containing the ceramic is heated at a high temperature, the atoms of the metal and the ceramic diffuse to each other, so that they can be firmly bonded and the toughness can be further increased. In the present application, the closed cell structure that encloses the ceramic with the metal as the cell wall before and after the heating is referred to as “ceramic inclusion type closed cell structure metal”. When ordinary high-density ceramic particles are used, the ceramic particles have high rigidity, and therefore, deformation of the particles as shown in FIG. 1 does not occur even when pressure is applied in the molding process before sintering. The gap cannot be filled.

次に、本願発明の詳細を説明する。   Next, details of the present invention will be described.

本願発明の「易変形性」とは、加圧による変形を生じやすく、変形後もその形状を保てることを言う。易変形性の材料としては、具体的には、多孔質のセラミックスやセラミックス前駆体を含浸させた材料などが例示される。ここで、「多孔質」とは、固体基材の表面及び内部に多数の微小空孔及び微小空隙を有することを言う。ここでの微小空孔及び微小空隙は例えば、多数の微粒子の凝集した粒子の表面及び内部の結晶粒界に存在する微小空隙、及びこの多結晶粒子又は単結晶粒子の集合体から造粒して作られる造粒物中の粒子間に生成する空隙及び空孔などを含む。「多孔質のセラミックス粒子」とは、粒子表面及び内部に多数の空孔及び空隙を有するセラミックス粒子のことである。この粒子の粒径は、500μm以下の範囲内であることが好ましい。500μmを超えると、金属コーティングの膜を厚くしなければならず、製造工程が冗長化する虞がある。粒子表面及び内部の空孔及び空隙の総体積は、粒子の全体積の2〜80%の範囲内であることが好ましく、2〜50%の範囲内であることが更に好ましい。空孔及び空隙の総体積が全体積の2%未満では十分な変形による空孔及び空隙の充填効果が得られない可能性がある。80%を超えると、コーティング中に粒子全体が粉砕したり、加圧後の成形品に空孔及び空隙が残る懸念がある。加圧成形前の粒子表面及び内部に存在する空孔及び空隙の径は、粒子径の1〜5%の範囲内の大きさであることが好ましい。空孔及び空隙の径が粒径の1%未満では変形が不十分であり、粒子間の空隙を十分埋めることが出来ないため、最終品の強度が不十分になる可能性がある。粒径の5%を超えると、加圧成形後も最終品中に空隙が多く残留してしまう懸念、加圧時において成形品全体に著しい変形が生じる可能性がある。使用で
きるセラミックスの組成は特に限定されない。例えば、アルミナ、ジルコニア、チタニア、窒化アルミニウム、窒化ホウ素、ムライト等を使用することができる。多孔質セラミックス粒子は例えば、合成時の自然凝集や、微粒のセラミックス粒子の圧縮成形、樹脂との混合後の圧縮成形後の脱脂など、既知の方法で製造することができる。
The “easily deformable” of the present invention means that deformation due to pressure is likely to occur and the shape can be maintained even after deformation. Specific examples of easily deformable materials include porous ceramics and materials impregnated with ceramic precursors. Here, “porous” means having a large number of micropores and microvoids on the surface and inside of the solid substrate. The micropores and microvoids here are, for example, granulated from the micropores present on the surface and internal grain boundaries of a large number of fine particles, and aggregates of the polycrystalline or single crystal particles. It includes voids and vacancies generated between particles in the granulated material to be produced. “Porous ceramic particles” are ceramic particles having a large number of pores and voids on the surface and inside of the particles. The particle size of the particles is preferably in the range of 500 μm or less. If it exceeds 500 μm, the thickness of the metal coating must be increased, and the manufacturing process may become redundant. The total volume of pores and voids inside and on the particle surface is preferably in the range of 2 to 80%, more preferably in the range of 2 to 50% of the total volume of the particles. If the total volume of the pores and voids is less than 2% of the total volume, the effect of filling the voids and voids due to sufficient deformation may not be obtained. If it exceeds 80%, the entire particles may be pulverized in the coating, or there is a concern that pores and voids remain in the molded product after pressing. It is preferable that the diameter of the void | hole and space | gap which exist in the particle | grain surface before press molding, and an inside is a magnitude | size within the range of 1-5% of a particle diameter. If the diameter of the pores and voids is less than 1% of the particle size, deformation is insufficient and the voids between the particles cannot be sufficiently filled, and the strength of the final product may be insufficient. If it exceeds 5% of the particle size, there is a concern that a large amount of voids may remain in the final product even after pressure molding, and there is a possibility that significant deformation will occur in the entire molded product during pressing. The composition of the ceramic that can be used is not particularly limited. For example, alumina, zirconia, titania, aluminum nitride, boron nitride, mullite, or the like can be used. The porous ceramic particles can be produced by known methods such as natural aggregation during synthesis, compression molding of fine ceramic particles, and degreasing after compression molding after mixing with a resin.

本願発明の「セラミックス前駆体」とは、加熱によりセラミックスを生成する原料のことを言う。具体例としては、ポリカルボシランやポリメタロキサンなどが挙げられる。これらは公知の方法で製造することができる。「セラミックス前駆体を含浸させた粒子」は、上記のようにして製造したセラミックス前駆体を適当な溶媒に溶解又は溶融させ、常圧又は減圧環境下の含浸処理により前駆体をセラミックスや金属、ポリマー等の多孔質粒子などの中に含浸させて製造することができ、この粒子の粒径は、多孔質セラミックス粒子の場合と同じ範囲となる。前記多孔質セラミックス粒子の空隙率が50%以上で加圧後の成型品に空孔および空隙が残ったり、加熱処理で強度が十分発現しない場合は、とくに前駆体を含浸した粒子は好適に使用することができる。   The “ceramic precursor” of the present invention refers to a raw material for producing ceramics by heating. Specific examples include polycarbosilane and polymetalloxane. These can be produced by known methods. “Particles impregnated with a ceramic precursor” are obtained by dissolving or melting the ceramic precursor produced as described above in an appropriate solvent, and impregnating the precursor with ceramic, metal, or polymer under an atmospheric pressure or reduced pressure environment. It can be produced by impregnating in porous particles such as the same, and the particle size of these particles is in the same range as in the case of porous ceramic particles. When the porosity of the porous ceramic particles is 50% or more and voids and voids remain in the molded product after pressurization or the strength is not sufficiently developed by the heat treatment, the particles impregnated with the precursor are particularly preferably used. can do.

本願発明の製造方法における原料である、易変形性の「多孔質セラミックス粒子」及び「セラミックス前駆体を含浸させた粒子」は、加圧処理により一部が破壊変形するものが好ましい。これらの粒子は次の加熱処理工程により焼結及び/又は含浸されたセラミックス前駆体の熱分解縮合物がバインダーの役割を果たすことにより焼結する。粒子の状態で圧縮試験をし、荷重を最大断面積で除した値を応力とし、応力−ひずみ曲線の直線部分より得られる擬似的な弾性率が、40MPa以上コーティングされた金属のヤング率以下の範囲内であることが好ましい。この値がコーティングされた金属のヤング率を超えると、加圧時における粒子の破壊変形が不十分であるために、十分な空隙充填効果が得られない可能性がある。この値が40MPa未満だと、粒子自体の強度が不十分であるために、最終品の靭性が不十分となる懸念がある。   The easily deformable “porous ceramic particles” and “particles impregnated with a ceramic precursor”, which are raw materials in the production method of the present invention, are preferably those that are partially deformed by pressure treatment. These particles are sintered by the thermal decomposition condensate of the ceramic precursor that has been sintered and / or impregnated in the subsequent heat treatment step serving as a binder. A compression test is performed in the state of particles, and the value obtained by dividing the load by the maximum cross-sectional area is taken as stress, and the pseudo elastic modulus obtained from the linear portion of the stress-strain curve is less than the Young's modulus of the coated metal of 40 MPa or more. It is preferable to be within the range. If this value exceeds the Young's modulus of the coated metal, there is a possibility that sufficient void filling effect may not be obtained due to insufficient fracture deformation of the particles during pressing. If this value is less than 40 MPa, the strength of the particles themselves is insufficient, and there is a concern that the toughness of the final product will be insufficient.

セラミックス粒子表面にコーティングする金属に関しては特に制限はない。金属は単一元素からなるものであっても、複数の種類の元素からなる合金であっても使用することができる。最終製品の靭性を向上させるためには、当該金属のバルク状態におけるヤング率が、60〜220GPaの範囲内であることが好ましい。ヤング率が220GPaを超えると最終製品の靭性が不十分なる虞がある。ヤング率が60GPa未満だと、加圧時にコーティング金属が破損してクローズドセル構造を形成しない懸念がある。金属の具体例としては、アルミニウム、チタン、ニッケル、金、白金、パラジウム、クロムなどの単一元素からなるもの、ニッケル−リン合金、ジュラルミン、ステンレスなどの合金を例示することができる。粒子表面にコーティングする方法は、既知の技術を利用することができる。例えば、真空蒸着法、化学蒸着法(CVD法)、物理蒸着法(PVD法)、電気メッキ法、Spin Coating法、溶融法などを例示することができる。この中では、電気メッキ法、特に無電解メッキ法が、簡易性と大量生産性の点で好ましいが、これに限定されることはない。コーティングする膜厚は、金属種、セラミックス粒子の粒子径、用途などによって好ましく設定することができるが、コーティング前の粒子の直径の2〜80%の範囲内であることが好ましい。膜厚がコーティング前の粒子の直径の2%未満だと、金属の添加効果が十分に発揮されず、焼結体の靭性が不十分になる虞がある。膜厚が80%を超えると、金属が変形しにくくなり、また金属の種類によっては焼結体の比重が高くなってしまい、材料の軽量化に問題が生じる可能性がある。
コーティングしたセラミックス粒子又はセラミックス前駆体を含浸させた粒子に「加圧処理を施す」工程は、圧力が粒子粉末に等方的にかかる方式が好ましい。具体的には、静水圧加圧により加圧成形するのが好ましい。粒子粉体を変形しやすい容器に入れ、それを静水圧下で加圧することにより成形するのが効果的である。圧力は、コーティングした金属の厚さにもよるが、100〜400MPaの範囲内であることが好ましい。圧力が100Pa未満では粒子の破壊変形が十分に進まないため、焼結体の空隙を十分に埋めること
が出来ず、最終製品の強度、剛性、靭性が弱化する可能性がある。400Paを超えると、コーティング粒子の変形が大き過ぎて、コーティング金属のセル壁を破壊する可能性がある。
「加熱処理を施す工程」は、既知の加熱方法により行うことができるが、特に加圧成形品を電気炉で加熱する方式、粒子又は加圧成形品を放電プラズマ中で加熱する方式、及び粒子又は加圧成形品に通電することで加熱する方式からなる群の方式から選択される1種
類以上の加熱方式で行うことが、コーティング金属の接合を確実にする点で好ましい。「電流を用いた加熱処理」とは、放電プラズマ中で加熱する方式、又は通電することで加熱する方式を言う。加熱工程における加熱温度は、コーティング金属の融点の90%以上100%未満の温度の範囲内であることが好ましい。融点の90%未満では粒界のコーティング金属が十分に接合しないため、最終品の強度が不十分になる可能性がある。100%以上だと、金属は溶融してクローズドセル構造を形成しない懸念がある。また、加熱処理は、加圧成形後の加熱処理の他に、コーティングした粒子又は加圧成形した成形品をセラミックス又はグラファイトの両端を開いている容器内に入れ、これに荷重をかけながら電流を連続的に印加、又はパルス状に印加することにより行うことができ、これらを組み合わせて行うことも出来る。この方法は、短時間で焼結できるという点でメリットがある。セラミックスの前駆体の粒子を原料とした場合、加熱工程を、大気中、不活性ガス中、及び真空中からなる群の環境下から選ばれる1種類以上の環境下で行うことにより、コーティングした金属を接合すると同時に、当該前駆体をセラミックスに変換することができる。不活性ガスは、ヘリウム、ネオン、アルゴンなど既知のものを使用することができる。大気中、不活性ガス中にて行う場合のガス圧は、1〜1013.25hPaの範囲内であ
ることが大気中の成分との反応や安全性の点で好ましい。
加熱工程を2段階以上とし、最後の加熱を、金属の融点の50%以上100%未満の温度範囲で行うことにより、金属とセラミックスの界面における原子の相互拡散が生じるために密着性が上がり、また、加熱工程の環境を変えることによる化学反応により強度、剛性、靭性が更に向上した、セラミックス内包型クローズドセル構造金属を有する機能性複合材料を製造することができる。
There is no particular limitation on the metal coated on the ceramic particle surface. Even if a metal consists of a single element, it can be used even if it is an alloy which consists of several types of elements. In order to improve the toughness of the final product, the Young's modulus in the bulk state of the metal is preferably in the range of 60 to 220 GPa. If the Young's modulus exceeds 220 GPa, the toughness of the final product may be insufficient. When the Young's modulus is less than 60 GPa, there is a concern that the coating metal is damaged during pressurization and a closed cell structure is not formed. Specific examples of the metal include those composed of a single element such as aluminum, titanium, nickel, gold, platinum, palladium, and chromium, and alloys such as nickel-phosphorus alloy, duralumin, and stainless steel. A known technique can be used as a method of coating the particle surface. For example, a vacuum vapor deposition method, a chemical vapor deposition method (CVD method), a physical vapor deposition method (PVD method), an electroplating method, a Spin Coating method, a melting method and the like can be exemplified. Among them, the electroplating method, particularly the electroless plating method is preferable in terms of simplicity and mass productivity, but is not limited thereto. The film thickness to be coated can be preferably set depending on the metal species, the particle diameter of the ceramic particles, the application, etc., but is preferably in the range of 2 to 80% of the diameter of the particles before coating. If the film thickness is less than 2% of the diameter of the particles before coating, the effect of adding metal is not sufficiently exhibited, and the toughness of the sintered body may be insufficient. If the film thickness exceeds 80%, the metal is difficult to deform, and the specific gravity of the sintered body increases depending on the type of metal, which may cause a problem in weight reduction of the material.
The step of “pressurizing” the coated ceramic particles or the particles impregnated with the ceramic precursor is preferably a method in which the pressure is applied isotropically to the particle powder. Specifically, it is preferable to perform pressure molding by hydrostatic pressure. It is effective to form the particle powder by placing it in a container that is easily deformed and pressurizing it under hydrostatic pressure. The pressure is preferably in the range of 100 to 400 MPa, although it depends on the thickness of the coated metal. If the pressure is less than 100 Pa, the fracture deformation of the particles does not proceed sufficiently, so that the voids of the sintered body cannot be sufficiently filled, and the strength, rigidity, and toughness of the final product may be weakened. If it exceeds 400 Pa, the deformation of the coating particles is too large, and the cell walls of the coating metal may be destroyed.
The “step of performing the heat treatment” can be performed by a known heating method. In particular, a method of heating a pressure-formed product in an electric furnace, a method of heating particles or a pressure-formed product in discharge plasma, and particles Alternatively, it is preferable to use one or more heating methods selected from the group of methods consisting of a method of heating by energizing the pressure-molded product in order to ensure the bonding of the coating metal. “Heat treatment using current” refers to a method of heating in discharge plasma or a method of heating by energization. The heating temperature in the heating step is preferably in the range of 90% or more and less than 100% of the melting point of the coating metal. If it is less than 90% of the melting point, the coating metal at the grain boundary is not sufficiently bonded, so that the strength of the final product may be insufficient. If it is 100% or more, there is a concern that the metal will not melt and form a closed cell structure. In addition to the heat treatment after pressure molding, the heat treatment is carried out by placing the coated particles or the pressure-molded molded article in a container having both ends of ceramics or graphite open, and applying a load to this while applying a load. It can be performed by applying continuously or in a pulsed manner, or a combination thereof. This method is advantageous in that it can be sintered in a short time. When the ceramic precursor particles are used as raw materials, the heating process is carried out in one or more environments selected from the group consisting of air, inert gas, and vacuum, thereby coating the coated metal. At the same time as bonding, the precursor can be converted into ceramics. As the inert gas, known ones such as helium, neon, and argon can be used. The gas pressure in the atmosphere and in an inert gas is preferably in the range of 1 to 101.25 hPa from the viewpoint of reaction with components in the atmosphere and safety.
By making the heating process into two or more stages and performing the final heating in a temperature range of 50% or more and less than 100% of the melting point of the metal, the interdiffusion of atoms at the interface between the metal and the ceramic occurs, thereby improving the adhesion, In addition, a functional composite material having a ceramic-encapsulated closed-cell structure metal that has been further improved in strength, rigidity, and toughness by a chemical reaction by changing the environment of the heating process can be produced.

金属でコーティングした易形性セラミックス粒子に加圧処理を施すことなく、それを金属など導電性の閉じた容器に入れ、その容器ごと放電プラズマ中に入れる、又はその容器に通電することにより容器ごと加熱することにより、その容器内部に高温高圧状態を発生させ、加圧成形と加熱焼結の両方の効果を1工程で得ることが出来る。この場合における「導電性」とは、電荷(キャリア)の移動度(μe)が100(cm/V/s)以上の
ことを言う。容器を構成する材料は、例えばグラファイト、タングステンやタンタルなど耐熱性を持つものであれば何れも使用することができる。
Without applying pressure to easily-formable ceramic particles coated with metal, put them in a conductive closed container such as metal and put them in a discharge plasma or energize the containers. By heating, a high temperature and high pressure state is generated inside the container, and the effects of both pressure molding and heat sintering can be obtained in one step. “Conductivity” in this case means that the mobility (μ e ) of charges (carriers) is 100 (cm 2 / V / s) or more. Any material can be used as the material constituting the container as long as it has heat resistance such as graphite, tungsten, and tantalum.

本願発明により、直径数μmから数cmのセラミックスを内包するクローズドセル構造金属を有する複合材料を作製することができ、以下の「機能性複合材料」の実現が可能になる。本願出願で言う「機能性複合材料」は、例えば以下のような、従来のセラミックスの機能に金属の特性を付加させたものを例示することができる。
(1)高比強度、高圧縮強度、高靱性、高剛性の複合材料が得られ, 構造物の軽量化が可能となる。
(2)熱伝導率や熱膨張係数を目的の数値に制御したクローズドセル構造金属材料を作製することができ、これを応用して高性能の電子基板材料( 放熱材料) を製造することができる。
(3)導電性のあるセラミックス系の構造材料が得られ, 剛性の高い導電性材料が得られる。
(4)良好な吸音性や制振性を有する構造材料の開発が可能になる。
(5)セルの大きさや物理的、機械的、電気的性質を厚さ方向や長さ方向に徐々に変化させたクローズドセル構造金属材料( 傾斜機能クローズドセル構造金属材料)も作製できる。
According to the present invention, a composite material having a closed cell structure metal enclosing ceramics having a diameter of several μm to several cm can be manufactured, and the following “functional composite material” can be realized. The “functional composite material” referred to in the present application can be exemplified by a material obtained by adding metal characteristics to the function of a conventional ceramic as follows.
(1) A composite material with high specific strength, high compressive strength, high toughness and high rigidity can be obtained, and the weight of the structure can be reduced.
(2) Closed cell structure metal materials with controlled thermal conductivity and coefficient of thermal expansion can be fabricated, and high-performance electronic substrate materials (heat dissipating materials) can be manufactured by applying this. .
(3) Conductive ceramic structural materials can be obtained, and highly rigid conductive materials can be obtained.
(4) It is possible to develop a structural material having good sound absorption and damping properties.
(5) A closed cell structure metal material (gradient function closed cell structure metal material) in which the cell size, physical, mechanical, and electrical properties are gradually changed in the thickness direction and the length direction can also be produced.

もちろんこれらに限定されることはなく、金属とセラミックスの融合による相乗効果を発現する新規機能性物質も含まれる。   Of course, it is not limited to these, The novel functional substance which expresses the synergistic effect by fusion of a metal and ceramics is also contained.

次に、本願発明の具体的態様を実施例にて説明する。もちろん、本発明がこれらの例示に限定されることはない。   Next, specific embodiments of the present invention will be described with reference to examples. Of course, the present invention is not limited to these examples.

<実施例1>
平均粒径1.5μm のアルミナ粒子の凝集粉体(入手元:フルヤ金属)を、ふるいで分粒した平均粒径100μmのアルミナ多孔質体粒子表面に、無電解メッキによりニッケル−リン合金を約μmの厚さにコーティングした。メッキ条件は、メッキ液1L中にニッケル5重量部を有するNi−P(3重量% )無電解メッキ液を用い75℃ で所定のメッキになるまで無電解メッキを行った。このコーティング粒子を、放電プラズマ焼結装置( 住友石炭鉱業製)のグラファイト製のダイの中に充填し、両端をグラファイト製のパンチにて押さえ、当該焼結装置に装着し、5Paまで減圧してから630℃で3分間加熱し、内部にセラミックス(アルミナ)を内包するクローズドセル構造体を製造した。この材料の密度は2.51g/cmであった。このクローズドセル構造体の断面の走査型電子顕微鏡( 機種名:トプコン社製SM−510 )による観察結果を図2に示す。空隙率はこの観察像から求めた。材料の強度の評価については、約10mmx20mmの矩形型の試験片を作製し、支点間隔を15mmとして3点曲げ試験を行い、破壊荷重より表面における最大引っ張り応力を算出した。結果を表1に示した。
<実施例2>
平均粒径300μmの多孔質セラミックス粒子(シリコンカーバイド系球状多孔質体)表面に、実施例1と同様にして無電解メッキによりニッケル−リン合金を約4μmの厚さにコーティングした。これをシリコンゴム製のカプセルの中に充填し、等方静水圧負荷装置(アプライドパワージャパン製)を用いて2000気圧に加圧して、直径約10mm, 長さ約10mmの押し固めた状態の円筒形グリーン体を製造した後、放電プラズマ焼結装置(住友石炭鉱業製)により、630℃で3分間加熱処理して金属セル内部にセラミックス(シリコンカーバイド系セラミックス)を内包するクローズドセル構造体が製造された。この材料の密度は2.89g/cm だった。このクローズドセル構造体の断面の走査型電子顕微鏡(機種名:トプコン社製SM−510)による観察結果を図3に示す。空隙率はこの観察像から求めた。実施例1と同様にして材料強度を評価した。結果を表1に示した。
<実施例3>
平均分子量約3000のポリカルボシランの20重量%トルエン溶液をチタニア球状多孔質体に常圧で含浸後乾燥することにより、平均粒径200ミクロンのセラミックス前駆体を含浸させた粒子を作製した。当該粒子表面に、実施例1と同様にして、無電解メッキによりニッケル−リン合金を約4μmの厚さにコーティングした。コーティングした粒子粉末をシリコンゴム製のカプセルの中に充填し、等方静水圧負荷装置(アプライドパワージャパン製)を用いて2000気圧に加圧して、直径約10mm 、長さ約10mmの押し固めた状態の円筒形グリーン体を製造した。これを電気炉に入れて10−2Paまで減圧し、850℃ の温度で1時間加熱することにより、金属セル内部にセラミックス(チタニアとシリコンカーバイト系セラミックス)を内包するクローズドセル構造体が製造された。この材料の密度は3.30g/cmであった。このクローズドセル構造体の断面を図4に示した。この観察像から空隙率を求めた。実施例1と同様にして材料強度を評価した。結果を表1に示した。
<比較例1>
セラミックス(ジルコニア)の粒子(平均粒径100μm。入手元:フィリッチュジャパン)の表面に、実施例1と同様にして無電解メッキによりニッケル− リン合金を約4μmの厚さにコーティングした。このコーティング粒子を放電プラズマ焼結装置(住友石炭鉱業製)のグラファイト製のダイの中に充填し、グラファイトのパンチで固定した。それを当該焼結装置に装填し、5Paまで減圧してから、630℃ で15分間加熱することにより、金属セル内部にセラミックス( ジルコニア)を内包するクローズドセル構造体が製造された。この密度は3.56g/cmであった。このクローズドセル構造体の断面を図5に示した。この観察像から空隙率を求めた。実施例1と同様にして、材料強度を評価し、結果を表1に示した。
<Example 1>
A nickel-phosphorous alloy is formed by electroless plating on the surface of an alumina porous body particle having an average particle diameter of 100 μm obtained by sieving agglomerated powder of alumina particles having an average particle diameter of 1.5 μm (source: Furuya Metal) Coated to a thickness of about μm . As the plating conditions, electroless plating was performed at 75 ° C. until a predetermined plating thickness was obtained using a Ni—P (3% by weight) electroless plating solution having 5 parts by weight of nickel in 1 L of the plating solution. The coating particles are filled in a graphite die of a discharge plasma sintering apparatus (manufactured by Sumitomo Coal Mining), both ends are pressed with a graphite punch, mounted on the sintering apparatus, and the pressure is reduced to 5 Pa. To 630 ° C. for 3 minutes to produce a closed cell structure containing ceramic (alumina) inside. The density of this material was 2.51 g / cm 3 . The observation result of the cross section of the closed cell structure by a scanning electron microscope (model name: SM-510 manufactured by Topcon Corporation) is shown in FIG. The porosity was determined from this observed image. For the evaluation of the strength of the material, a rectangular test piece of about 10 mm × 20 mm was prepared, a three-point bending test was performed with a fulcrum interval of 15 mm, and the maximum tensile stress on the surface was calculated from the breaking load. The results are shown in Table 1.
<Example 2>
The surface of porous ceramic particles (silicon carbide spherical porous body) having an average particle size of 300 μm was coated with a nickel-phosphorus alloy to a thickness of about 4 μm by electroless plating in the same manner as in Example 1. This is filled into a silicone rubber capsule, pressurized to 2000 atmospheres using an isotropic hydrostatic load device (Applied Power Japan), and a compacted cylinder with a diameter of about 10 mm and a length of about 10 mm. After manufacturing the green body, a closed cell structure with ceramics (silicon carbide ceramics) in the metal cell is manufactured by a discharge plasma sintering device (manufactured by Sumitomo Coal Mining) at 630 ° C for 3 minutes. It was done. The density of this material was 2.89 g / cm 3 . The observation result of the cross section of the closed cell structure by a scanning electron microscope (model name: SM-510 manufactured by Topcon Corporation) is shown in FIG. The porosity was determined from this observed image. The material strength was evaluated in the same manner as in Example 1. The results are shown in Table 1.
<Example 3>
A 20% by weight toluene solution of polycarbosilane having an average molecular weight of about 3000 was impregnated into a titania spherical porous body at normal pressure and then dried to prepare particles impregnated with a ceramic precursor having an average particle diameter of 200 microns. The surface of the particles was coated with a nickel-phosphorus alloy to a thickness of about 4 μm by electroless plating in the same manner as in Example 1. The coated particle powder was filled into a silicone rubber capsule and pressed to 2000 atm using an isotropic hydrostatic load device (Applied Power Japan) and pressed and compacted with a diameter of about 10 mm and a length of about 10 mm. A cylindrical green body in a state was produced. This is put into an electric furnace, depressurized to 10 −2 Pa, and heated at 850 ° C. for 1 hour to produce a closed cell structure containing ceramics (titania and silicon carbide ceramics) inside the metal cell. It was done. The density of this material was 3.30 g / cm 3 . A cross section of this closed cell structure is shown in FIG. The porosity was determined from this observed image. The material strength was evaluated in the same manner as in Example 1. The results are shown in Table 1.
<Comparative Example 1>
The surface of ceramics (zirconia) particles (average particle size 100 μm, source: Philrichu Japan) was coated with a nickel-phosphorus alloy to a thickness of about 4 μm by electroless plating in the same manner as in Example 1. The coating particles were filled in a graphite die of a discharge plasma sintering apparatus (manufactured by Sumitomo Coal Mining) and fixed with a graphite punch. This was loaded into the sintering apparatus, and the pressure was reduced to 5 Pa, followed by heating at 630 ° C. for 15 minutes to produce a closed cell structure containing ceramics (zirconia) inside the metal cell. This density was 3.56 g / cm 3 . A cross section of this closed cell structure is shown in FIG. The porosity was determined from this observed image. The material strength was evaluated in the same manner as in Example 1, and the results are shown in Table 1.

以上の結果から、セラミックス粒子(ジルコニア粒子)に金属をコーティングして焼結したものよりも、易変形性の多孔質セラミックス(アルミナ)やセラミックス前駆体を含浸させた粒子に金属をコーティングして焼結した試料の方が14倍から240倍ほど強度が高
くなっていることが確認され、本願発明の効果が確認された。
Based on the above results, it is possible to coat and sinter the particles impregnated with easily deformable porous ceramics (alumina) or ceramic precursor, rather than the ceramic particles (zirconia particles) coated with metal and sintered. It was confirmed that the bonded sample was 14 to 240 times stronger in strength, and the effect of the present invention was confirmed.

請求項1記載の発明の概念を示した図である。It is the figure which showed the concept of the invention of Claim 1. アルミナをニッケル−リン合金で内包化したクローズドセル構造金属を有する機能性複合材料の走査型電子顕微鏡写真である。It is a scanning electron micrograph of a functional composite material having a closed cell structure metal in which alumina is encapsulated with a nickel-phosphorus alloy. シリコンカーバイド系セラミックスをニッケル−リン合金で内包化したクローズドセル構造金属を有する機能性複合材料の走査型電子顕微鏡写真である。It is a scanning electron micrograph of a functional composite material having a closed cell structure metal in which silicon carbide ceramics are encapsulated with a nickel-phosphorus alloy. チタニアとシリコンカーバイド系セラミックスをニッケル−リン合金で内包化したクローズドセル構造金属を有する機能性複合材料の走査型電子顕微鏡写真である。It is a scanning electron micrograph of a functional composite material having a closed cell structure metal in which titania and silicon carbide ceramics are encapsulated with a nickel-phosphorus alloy. 比較例として用いたジルコニアをニッケル−リン合金で内包化したクローズドセル構造金属を有する機能性複合材料の走査型電子顕微鏡写真である。It is a scanning electron micrograph of the functional composite material which has the closed cell structure metal which included the zirconia used as the comparative example by the nickel- phosphorus alloy.

Claims (5)

セラミックス粒子に金属をコーティングする工程、コーティングしたセラミックス粒子に加圧処理を施す工程、加熱処理によりコーティングさせた金属を接合する工程の3工程を含む複合材料の製造方法において、前記セラミックス粒子の弾性率が、粒子の状態で圧縮試験をし荷重を最大断面積で除した値を応力とし、応力―ひずみ曲線の直線部分より得られる擬似的な弾性率の値が、40MPa以上で、コーティングされた前記金属のヤング率の値以下の範囲であって、バルク状態におけるヤング率が60〜220GPaの範囲にある前記金属をコーティングしたセラミックス粒子を100〜400MPaの圧力により一部破壊変形させ、空隙率を4.2%以下にすることを特徴とするセラミックス内包型クローズドセル構造金属を有する機能性複合材料の製造方法。 In a method for producing a composite material comprising a step of coating a metal on ceramic particles, a step of applying pressure treatment to the coated ceramic particles, and a step of bonding metal coated by heat treatment , the elastic modulus of the ceramic particles However, the value obtained by performing a compression test in the state of particles and dividing the load by the maximum cross-sectional area is defined as stress, and the value of the pseudo elastic modulus obtained from the linear portion of the stress-strain curve is 40 MPa or more. The ceramic particles coated with the metal having a Young's modulus in the range below the value of the Young's modulus of the metal and in the range of 60 to 220 GPa in bulk are partially broken and deformed by a pressure of 100 to 400 MPa, and the porosity is 4 having a ceramic-encapsulating the closed cell structure metal, characterized by .2% or less Method for producing a potential composite material. 前記セラミックス粒子として、多孔質のセラミックス粒子を使用することを特徴とする、請求項1記載のセラミックス内包型クローズドセル構造金属を有する機能性複合材料の製造方法。 2. The method for producing a functional composite material having a ceramic-encapsulated closed cell structure metal according to claim 1, wherein porous ceramic particles are used as the ceramic particles. 請求項の多孔質のセラミックス粒子に代えて、セラミックス前駆体を含浸させた粒子を原料とし、請求項1と同様の処理をすることを特徴とする、セラミックス内包型クローズドセル構造金属を有する機能性複合材料の製造方法。 A function having a ceramic-encapsulated closed-cell structure metal, characterized in that, instead of the porous ceramic particles of claim 2 , particles impregnated with a ceramic precursor are used as raw materials, and the same treatment as in claim 1 is performed. For producing a conductive composite material. 加熱工程を2段階以上とし、最後の加熱を、金属の融点の50%以上100%未満の温度範囲で行うことを特徴とする、請求項1からのうちのいずれかに記載の、セラミックス内包型クローズドセル構造金属を有する機能性複合材料の製造方法。 The ceramic inclusion according to any one of claims 1 to 3 , wherein the heating step is performed in two or more stages, and the final heating is performed in a temperature range of 50% or more and less than 100% of the melting point of the metal. A method for producing a functional composite material having a closed-cell structure metal. 請求項1からのうちのいずれかに記載の製造方法により製造されたことを特徴とする、セラミックス内包型クローズドセル構造金属を有する機能性複合材料。
Characterized in that it is manufactured by the method according to any of claims 1 4, functional composite material having a ceramic-encapsulating the closed cell structure metal.
JP2006037278A 2006-02-14 2006-02-14 Functional composite material having ceramic-enclosed metal with closed cell structure and method for producing the same Expired - Fee Related JP4758246B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006037278A JP4758246B2 (en) 2006-02-14 2006-02-14 Functional composite material having ceramic-enclosed metal with closed cell structure and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006037278A JP4758246B2 (en) 2006-02-14 2006-02-14 Functional composite material having ceramic-enclosed metal with closed cell structure and method for producing the same

Publications (2)

Publication Number Publication Date
JP2007217727A JP2007217727A (en) 2007-08-30
JP4758246B2 true JP4758246B2 (en) 2011-08-24

Family

ID=38495326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006037278A Expired - Fee Related JP4758246B2 (en) 2006-02-14 2006-02-14 Functional composite material having ceramic-enclosed metal with closed cell structure and method for producing the same

Country Status (1)

Country Link
JP (1) JP4758246B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106216672B (en) * 2016-07-07 2017-12-26 四川天塬增材制造材料有限公司 A kind of Metal toughened ceramic matric composite part increases material preparation method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62113768A (en) * 1985-11-11 1987-05-25 株式会社ノリタケカンパニーリミテド Method of sintering silicon nitride
JPS62275067A (en) * 1987-05-16 1987-11-30 日本碍子株式会社 Manufacture of silicon nitride sintered body
JPH03265573A (en) * 1990-03-15 1991-11-26 Isuzu Ceramics Kenkyusho:Kk High-strength ceramics and production thereof
JPH0598311A (en) * 1990-03-19 1993-04-20 Isuzu Motors Ltd Sintered composite and its production

Also Published As

Publication number Publication date
JP2007217727A (en) 2007-08-30

Similar Documents

Publication Publication Date Title
Wat et al. Bioinspired nacre-like alumina with a bulk-metallic glass-forming alloy as a compliant phase
EP1432840A2 (en) Discontinuous carbon fiber reinforced metal matrix composite
JP4261130B2 (en) Silicon / silicon carbide composite material
JP2006001232A (en) Composite having high heat conduction/low heat expansion and manufacturing process of the same
JP2006524173A (en) High thermal conductivity heat sink
Xu et al. Bioinspired nacre‐like ceramic with nickel inclusions fabricated by electroless plating and spark plasma sintering
JP2004010978A (en) Heat-dissipating material with high thermal conductivity and its manufacturing process
Bajpai et al. Investigation and testing of mechanical properties of Al-nano SiC composites through cold isostatic compaction process
JP2004197153A (en) Diamond-metal composite material and method for manufacturing the same
KR100638479B1 (en) Fabrication method of bulk amorphous alloy and bulk amorphous composite by spark plasma sintering
El-Hadek et al. Fracture properties of SPS tungsten copper powder composites
JP4758246B2 (en) Functional composite material having ceramic-enclosed metal with closed cell structure and method for producing the same
US5930581A (en) Method of preparing complex-shaped ceramic-metal composite articles and the products produced thereby
JP4596855B2 (en) Metal-ceramic composite structure and electrode member for plasma generation comprising the same
WO2022085134A1 (en) Diamond-based composite material, method for manufacturing same, heat dissipation member, and electronic device
JP2004015261A (en) Diaphragm for electro-acoustic converter
JP7418779B2 (en) Electrode materials for electrical discharge machining or heat sinks for semiconductors, and methods of manufacturing them
JP2015140456A (en) Composite material, semiconductor device, and method for manufacturing composite material
JP5117085B2 (en) Metal-ceramic composite material and manufacturing method thereof
Namazu et al. Influence of polymer infiltration and pyrolysis process on mechanical strength of polycarbosilane-derived silicon carbide ceramics
JPH08104575A (en) Composite material and its production
JP2010202902A (en) Metallic composite material and method of manufacturing the same
JP2004169064A (en) Copper-tungsten alloy, and method of producing the same
JP2995661B2 (en) Manufacturing method of porous cemented carbide
JPS59143347A (en) Manufacture of material for semiconductor substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110531

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110602

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees