JP4757072B2 - Fuel injection valve - Google Patents

Fuel injection valve Download PDF

Info

Publication number
JP4757072B2
JP4757072B2 JP2006090316A JP2006090316A JP4757072B2 JP 4757072 B2 JP4757072 B2 JP 4757072B2 JP 2006090316 A JP2006090316 A JP 2006090316A JP 2006090316 A JP2006090316 A JP 2006090316A JP 4757072 B2 JP4757072 B2 JP 4757072B2
Authority
JP
Japan
Prior art keywords
fuel injection
valve
movable core
injection valve
yoke member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006090316A
Other languages
Japanese (ja)
Other versions
JP2007263014A (en
Inventor
忠雄 土屋
耕司 園田
学 東海林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keihin Corp
Original Assignee
Keihin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keihin Corp filed Critical Keihin Corp
Priority to JP2006090316A priority Critical patent/JP4757072B2/en
Priority to PCT/JP2007/052196 priority patent/WO2007122841A1/en
Priority to EP07708220A priority patent/EP2000661B1/en
Priority to US12/294,385 priority patent/US7891585B2/en
Publication of JP2007263014A publication Critical patent/JP2007263014A/en
Application granted granted Critical
Publication of JP4757072B2 publication Critical patent/JP4757072B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fuel-Injection Apparatus (AREA)

Description

本発明は,主として内燃機関の燃料供給系に使用される燃料噴射弁に関し,特に,燃料噴孔の内端に連なる弁座に着座可能の弁体と,この弁体を着座方向に付勢する戻しばねと,通電により前記弁体を内開き方向に作動する電磁アクチュエータと,前記弁体から電磁アクチュエータの可動コアに至る可動部組立体を通電により伸長させる磁歪アクチュエータとを備える燃料噴射弁に関する。   The present invention relates to a fuel injection valve mainly used in a fuel supply system of an internal combustion engine, and in particular, a valve body that can be seated on a valve seat connected to an inner end of a fuel injection hole, and urges the valve body in a seating direction. The present invention relates to a fuel injection valve including a return spring, an electromagnetic actuator that operates the valve body in an inward opening direction by energization, and a magnetostrictive actuator that extends by energization a movable part assembly that extends from the valve body to a movable core of the electromagnetic actuator.

従来,磁界を印加・解除することで磁歪素子を素早く伸縮させて弁体を開閉する磁歪アクチュエータを備える燃料噴射弁は,特許文献1及び2に開示されるように既に知られている。
特開2002−295330号公報 特開2000−257527号公報
Conventionally, a fuel injection valve including a magnetostrictive actuator that opens and closes a valve body by quickly expanding and contracting a magnetostrictive element by applying and releasing a magnetic field is already known as disclosed in Patent Documents 1 and 2.
JP 2002-295330 A JP 2000-257527 A

ところで,特許文献1に開示されるものは,磁歪アクチュエータの磁歪素子を,弁体を囲繞する中空円筒状に形成し,この磁歪素子の,弁座側の一端を弁ハウジングに固着し,その他端を弁体に連結して,内開き式に構成したものであるが,こうしたものでは,磁歪素子の中空化により,その伸長量を充分得ることが困難であり,実際に要求される伸長量を得るには,極めて長い磁歪素子が必要となり,燃料噴射弁の長大化を招くと共に,弁体を含む可動部の重量増加により,可動部の応答性が低下したり,可動部と固定部との当接部の摩耗量が増加してしまう。   By the way, what is disclosed in Patent Document 1 is that a magnetostrictive element of a magnetostrictive actuator is formed in a hollow cylindrical shape surrounding a valve body, and one end on the valve seat side of this magnetostrictive element is fixed to a valve housing, and the other end However, it is difficult to obtain a sufficient amount of extension due to the hollowing of the magnetostrictive element. To achieve this, an extremely long magnetostrictive element is required, leading to an increase in the length of the fuel injection valve, and due to an increase in the weight of the movable part including the valve body, the response of the movable part is reduced, The amount of wear at the contact portion increases.

また特許文献2に開示されるものは,中実の磁歪素子を使用し,弁体を含む可動部が小型化しているものゝ,外開き構造となっているので,燃料噴孔の外方に位置する弁体の弁部が,望む燃料の噴霧フォームの形成が困難である。   In addition, what is disclosed in Patent Document 2 uses a solid magnetostrictive element, and the movable part including the valve body is downsized. It is difficult for the valve part of the valve body to be formed to form the desired fuel spray foam.

さらに特許文献1及び2に開示されたものは,磁歪アクチュエータのみの伸縮で弁体を開閉するために,消費電力が大きくなってしまう。   Further, the devices disclosed in Patent Documents 1 and 2 open and close the valve body only by expansion and contraction of the magnetostrictive actuator, resulting in an increase in power consumption.

本発明は,かゝる事情に鑑みてなされたもので,電磁アクチュエータと,中実の磁歪素子を備える磁歪アクチュエータとを組み合わせて,内開き式で応答性が良好であり,しかも省電力で作動可能な燃料噴射弁を提供することを目的とする。   The present invention has been made in view of such circumstances, and is a combination of an electromagnetic actuator and a magnetostrictive actuator having a solid magnetostrictive element. An object is to provide a possible fuel injection valve.

上記目的を達成するために,本発明は,燃料噴孔の内端に連なる弁座に着座可能の弁体と,この弁体を着座方向に付勢する戻しばねと,通電により前記弁体を内開き方向に作動する電磁アクチュエータと,前記弁体から電磁アクチュエータの可動コアに至る可動部組立体を通電により伸長させる磁歪アクチュエータとを備える燃料噴射弁であって,前記磁歪アクチュエータを,前記弁体と前記電磁アクチュエータの可動コアに非磁性体の中間部材を介して一体に連結されるヨーク部材との間に,それらを連結するように設けられる中実の磁歪素子と,前記弁体及びヨーク部材間に,前記磁歪素子に弁体の軸方向の圧縮予荷重を付与するように接続される予荷重ばねと,前記弁体,可動コア,磁歪素子及び予荷重ばねを収容してそれらとの間に,前記燃料噴孔に連なる燃料流路を形成する弁ハウジングに取り付けられて,通電により前記磁歪素子を前記予荷重に抗して伸長させる第2コイルとで構成したことを第1の特徴とする。   In order to achieve the above object, the present invention provides a valve body that can be seated on a valve seat connected to the inner end of the fuel injection hole, a return spring that biases the valve body in the seating direction, and the valve body by energization. A fuel injection valve comprising: an electromagnetic actuator that operates in an inward opening direction; and a magnetostrictive actuator that extends a movable part assembly extending from the valve body to a movable core of the electromagnetic actuator by energization, wherein the magnetostrictive actuator is connected to the valve body. A solid magnetostrictive element provided so as to connect the movable core of the electromagnetic actuator to a movable core of the electromagnetic actuator via a non-magnetic intermediate member, the valve body and the yoke member A preload spring connected to apply a compressive preload in the axial direction of the valve body to the magnetostrictive element, and the valve body, the movable core, the magnetostrictive element, and the preload spring between them. In Wherein mounted on a valve housing defining a fuel passage connected to the fuel injection hole, and the first, characterized in that the magnetostrictive element is constituted by a second coil for expanding against the preload energized.

また本発明は,第1の特徴に加えて,前記前記ヨーク部材の外周に,前記可動コア及びヨーク部材より大径で,前記弁ハウジングの内周面に摺動自在に嵌合するジャーナル部を形成したことを第2の特徴とする。   According to the present invention, in addition to the first feature, a journal portion having a diameter larger than that of the movable core and the yoke member and slidably fitted to the inner peripheral surface of the valve housing is provided on the outer periphery of the yoke member. The formation is a second feature.

さらに本発明は,第2の特徴に加えて,前記中間部材の両端面に,同軸状に並ぶ一対の連結軸を一体に突設し,これら連結軸を,前記可動コア及びヨーク部材の,前記中間部材に対向する端面に設けられる連結孔にそれぞれ圧入することにより,可動コア,中間部材及びヨーク部材を一体に連結したことを第3の特徴とする。   In addition to the second feature of the present invention, a pair of coaxially arranged connecting shafts are integrally projected on both end faces of the intermediate member, and these connecting shafts are connected to the movable core and the yoke member, respectively. A third feature is that the movable core, the intermediate member, and the yoke member are integrally connected by press-fitting each into a connection hole provided in an end surface facing the intermediate member.

さらにまた本発明は,第3の特徴に加えて,前記中間部材と,前記可動コア及びヨーク部材との各圧入部を溶接したことを第4の特徴とする。   Furthermore, in addition to the third feature, the present invention has a fourth feature in which the press-fitting portions of the intermediate member, the movable core, and the yoke member are welded.

さらにまた本発明は,第4の特徴に加えて,可動コア及びヨーク部材の外周に,前記連結軸の外周面に向かって凹入する凹部をそれぞれ形成し,これら凹部の底壁を溶接により前記連結軸にそれぞれ溶接したことを第5の特徴とする。   Furthermore, in addition to the fourth feature of the present invention, the outer periphery of the movable core and the yoke member are respectively formed with recesses that are recessed toward the outer peripheral surface of the connecting shaft, and the bottom walls of these recesses are welded to the outer wall. A fifth feature is that each of the connecting shafts is welded.

さらにまた本発明は,第2の特徴に加えて,前記可動コア,中間部材及びヨーク部材からなる可動コア組立体に,その軸方向両端面を連通して燃料を通過させる一連の通孔を設けたことを第6の特徴とする。   In addition to the second feature of the present invention, the movable core assembly comprising the movable core, the intermediate member, and the yoke member is provided with a series of through holes through which both end surfaces in the axial direction communicate to allow fuel to pass. This is the sixth feature.

本発明の第1の特徴によれば,第2コイルへの通電による磁歪素子の伸長によって,可動部組立体を伸長させることができる。したがって,弁体を開弁すべく電磁アクチュエータを作動するときは,第2コイルに通電して可動部組立体を素早く伸長させば,その分,電磁アクチュエータの可動コアの開弁ストロークを減少させることになるから,弁体の開弁応答性を高めることができる。   According to the first feature of the present invention, the movable part assembly can be extended by extending the magnetostrictive element by energizing the second coil. Therefore, when the electromagnetic actuator is operated to open the valve body, the opening stroke of the movable core of the electromagnetic actuator can be reduced correspondingly by energizing the second coil and quickly extending the movable part assembly. Therefore, the valve opening response of the valve element can be improved.

また弁体の開弁中も,磁歪アクチュエータを適宜作動することにより,弁体の開度,即ち燃料噴射量の調整が可能である。したがって,エンジンの要求特性に対応して応答性と燃料噴射率を得ることができる。特に,弁体の開度を増加させるときは,第2コイルへの通電量や通電遮断を行うので,省電力化を図ることができる。   Further, even when the valve element is opened, the opening degree of the valve element, that is, the fuel injection amount can be adjusted by appropriately operating the magnetostrictive actuator. Therefore, it is possible to obtain responsiveness and fuel injection rate corresponding to the required characteristics of the engine. In particular, when increasing the opening degree of the valve body, the amount of power supplied to the second coil and the power supply interruption are performed, so that power saving can be achieved.

しかも,磁歪アクチュエータでは,弁体及び可動コア間を連結するように設けられる中実の磁歪素子を備えるので,磁歪アクチュエータの大型化を回避しながら,可動部組立体に充分な伸長量を与えることができる。   In addition, since the magnetostrictive actuator includes a solid magnetostrictive element provided so as to connect the valve body and the movable core, it is possible to provide a sufficient extension amount to the movable part assembly while avoiding an increase in the size of the magnetostrictive actuator. Can do.

さらに弁体は開弁時,内開き状態となるから,弁体に邪魔させることなく,所望形状の噴霧フォームを得ることができる。   Furthermore, since the valve body is in an inwardly open state when the valve is opened, a spray foam having a desired shape can be obtained without disturbing the valve body.

電磁アクチュエータの可動コアと,磁歪アクチュエータのヨーク部材とは,非磁性体の中間部材を介して一体に連結されるので,第1及び第2アクチュエータの作動状態でも,可動コア内の磁束と,ヨーク部材内の磁束との干渉を中間部材により遮断して,各アクチュエータの良好な作動状態を確保することができる。   Since the movable core of the electromagnetic actuator and the yoke member of the magnetostrictive actuator are integrally connected via a non-magnetic intermediate member, the magnetic flux in the movable core and the yoke can be obtained even in the operating state of the first and second actuators. Interference with the magnetic flux in the member can be blocked by the intermediate member, and a good operating state of each actuator can be ensured.

本発明の第2の特徴によれば,磁性体の中間部材のジャーナル部が弁ハウジングの内周面を摺動することで,可動コア及びヨーク部材と弁ハウジングとの各間の側隙を常に均一にすることができて,磁気特性の安定化を図ることができる。また可動コア及びヨーク部材の弁ハウジングとの摩擦を極力防ぎ,したがって特別な耐摩耗処理を施すことなく,それらの耐久性を高めることができる。しかも非磁性体の中間部材は,耐摩耗性の高い素材を自由に選ぶことができるから,それ自身の耐久性をも容易に確保することができる。   According to the second feature of the present invention, the journal portion of the magnetic intermediate member slides on the inner peripheral surface of the valve housing, so that the side gaps between the movable core and the yoke member and the valve housing are always maintained. It can be made uniform and the magnetic characteristics can be stabilized. Further, the friction between the movable core and the yoke member with the valve housing can be prevented as much as possible, and therefore the durability thereof can be enhanced without performing any special wear resistance treatment. Moreover, since the non-magnetic intermediate member can be freely selected from a material having high wear resistance, its own durability can be easily secured.

本発明の第3の特徴によれば,中間部材を介して可動コア及びヨーク部材間を,それらの同軸精度を高めつゝ簡単に連結することができる。   According to the third feature of the present invention, it is possible to easily connect the movable core and the yoke member via the intermediate member while improving their coaxial accuracy.

本発明の第4の特徴によれば,前記中間部材と,前記可動コア及びヨーク部材との各圧入部の連結強度を高めることができる。   According to the 4th characteristic of this invention, the connection intensity | strength of each press fit part of the said intermediate member, the said movable core, and a yoke member can be raised.

本発明の第5の特徴によれば,可動コア及びヨーク部材の各凹部の比較的薄い底壁を,中間部材の連結軸に溶接するので,極めて少ない入熱により良好な溶接が可能となり,その結果,溶接熱による,可動コア,中間部材及びヨーク部材の三者の同軸精度の狂いを回避することができると共に,摺動部の硬度低下を防ぎ,耐摩耗性を確保することができる。   According to the fifth feature of the present invention, since the relatively thin bottom walls of the concave portions of the movable core and the yoke member are welded to the connecting shaft of the intermediate member, good welding is possible with very little heat input. As a result, it is possible to avoid a deviation in the coaxial accuracy between the movable core, the intermediate member, and the yoke member due to welding heat, and to prevent a decrease in the hardness of the sliding portion and to ensure wear resistance.

本発明の第6の特徴によれば,中間部材のジャーナル部に邪魔されることなく,燃料は可動コア組立体内をスムーズに通過することができ,燃料の圧入損失を抑えることができる。   According to the sixth aspect of the present invention, the fuel can smoothly pass through the movable core assembly without being obstructed by the journal portion of the intermediate member, and the press-fitting loss of the fuel can be suppressed.

本発明の実施の形態を,添付図面に示す本発明の好適な実施例に基づいて以下に説明する。   Embodiments of the present invention will be described below on the basis of preferred embodiments of the present invention shown in the accompanying drawings.

図1は本発明のエンジン用燃料噴射弁の縦断側面図,図2は図1の2部拡大図,図3は図1の3部拡大図,図4は図3の4−4線断面図,図5は図3の5−5線断面図,図6は同燃料噴射弁における予荷重ばねの一部拡大側面,図7は同燃料噴射弁における第1及び第2コイルの駆動回路図,図8は同燃料噴射弁の第1作動態様説明図,図9は同燃料噴射弁の第2作動態様説明図,図10は本発明の別の実施例を示す,図3との対応図である。   1 is a longitudinal side view of an engine fuel injection valve according to the present invention, FIG. 2 is an enlarged view of part 2 of FIG. 1, FIG. 3 is an enlarged view of part 3 of FIG. 1, and FIG. 5 is a sectional view taken along line 5-5 of FIG. 3, FIG. 6 is a partially enlarged side view of a preload spring in the fuel injection valve, FIG. 7 is a drive circuit diagram of first and second coils in the fuel injection valve, FIG. 8 is a diagram illustrating a first operation mode of the fuel injection valve, FIG. 9 is a diagram illustrating a second mode of operation of the fuel injection valve, and FIG. 10 is a diagram corresponding to FIG. 3 showing another embodiment of the present invention. is there.

先ず,図1〜図3において,符号Iは,エンジンのシリンダヘッドに装着される直噴用燃料噴射弁である。尚,この燃料噴射弁Iに関する説明において,「前」とは燃料噴孔3側を言い,「後」とは燃料入口側を言う。   First, in FIGS. 1 to 3, reference numeral I denotes a direct injection fuel injection valve mounted on a cylinder head of an engine. In the description of the fuel injection valve I, “front” refers to the fuel injection hole 3 side, and “rear” refers to the fuel inlet side.

この燃料噴射弁Iの弁ハウジングHは,前端壁に円錐状の弁座2及びその中心に開口する燃料噴孔3を有する有底円筒状の弁座部材1と,この弁座部材1の後端部に嵌合して液密に結合される弁案内筒4(磁性体)と,この弁案内筒4の後端部に嵌合して液密に結合される磁歪ハウジング筒5(非磁性体)と,この磁歪ハウジング筒5の後端部に嵌合して液密に結合されるコアハウジング筒6(磁性体)と,このコアハウジング筒6の後端部に嵌合して液密に結合される中間筒7(非磁性体),この中間筒7の後端部に嵌合して液密に結合される中空円筒状の固定コア8(磁性体)と,この固定コア8の後端部に液密に結合される燃料入口筒9とからなっている。   A valve housing H of the fuel injection valve I includes a bottomed cylindrical valve seat member 1 having a conical valve seat 2 on the front end wall and a fuel injection hole 3 opened at the center thereof, and a rear of the valve seat member 1. A valve guide tube 4 (magnetic material) fitted to the end and liquid-tightly coupled, and a magnetostrictive housing tube 5 fitted to the rear end of the valve guide tube 4 and liquid-tightly coupled (non-magnetic) Body), a core housing cylinder 6 (magnetic body) that is fitted to the rear end portion of the magnetostrictive housing cylinder 5 and is liquid-tightly coupled thereto, and is fitted to the rear end portion of the core housing cylinder 6 to be liquid-tight. An intermediate cylinder 7 (non-magnetic body) coupled to the hollow cylinder, a hollow cylindrical fixed core 8 (magnetic body) fitted to the rear end portion of the intermediate cylinder 7 and liquid-tightly coupled, and the fixed core 8 It consists of a fuel inlet tube 9 which is liquid-tightly coupled to the rear end.

燃料入口筒9には,高圧の燃料を供給する燃料分配管(図示せず)が接続されるようになっており,弁ハウジングHの内部は,この燃料入口筒9から前記燃料噴孔3に至る燃料流路となる。   A fuel distribution pipe (not shown) for supplying high-pressure fuel is connected to the fuel inlet cylinder 9, and the inside of the valve housing H is connected to the fuel injection hole 3 from the fuel inlet cylinder 9. It becomes the fuel flow path to reach.

弁案内筒4には,弁座2に着座し得る球状の弁部を前端に有するニードル状の弁体10が,その外周に筒状の燃料流路を確保するようにして収容される。この弁体10の開閉,即ち弁座2に対する離座及び着座により弁ハウジングH内の高圧燃料の燃料噴孔3からの噴射が制御される。   A needle-like valve body 10 having a spherical valve portion that can be seated on the valve seat 2 at the front end is accommodated in the valve guide cylinder 4 so as to secure a cylindrical fuel flow path on the outer periphery thereof. The valve body 10 is opened and closed, that is, separated from and seated on the valve seat 2 to control the injection of the high-pressure fuel in the valve housing H from the fuel injection hole 3.

この弁体10の中間部には,弁案内筒4の内周面に摺動自在に支承されるジャーナル部12が形成され,このジャーナル部12の外周には,それの前後両端面間を連通して燃料を通過させる面取り部が設けられる。   A journal portion 12 that is slidably supported on the inner peripheral surface of the valve guide cylinder 4 is formed in an intermediate portion of the valve body 10, and the front and rear end surfaces of the journal portion 12 communicate with each other on the outer periphery. Thus, a chamfer for passing the fuel is provided.

磁歪ハウジング筒5には,円筒状の予荷重ばね13(非磁性体)と,その内側に配置される磁歪素子組立体14とが収容される。磁歪素子組立体14は,中実で円柱状の内側超磁歪素子15と,それを囲繞するように配置される円筒状の外側超磁歪素子16と,これら内側及び外側超磁歪素子15,16間に配置される中間筒部17a,この中間筒部17a(非磁性体)の前端に形成されて外側超磁歪素子16の前端を支承する前端部材17b(磁性体)及び,中間筒部17aの後端に形成されて内側超磁歪素子15の後端を支承する後端部材17c(磁性体)よりなる変位伝達部材17とで構成される。この変位伝達部材17は,内側超磁歪素子15及び外側超磁歪素子16を実質上,相互に軸方向に連結することになる。   The magnetostrictive housing cylinder 5 accommodates a cylindrical preload spring 13 (non-magnetic body) and a magnetostrictive element assembly 14 disposed inside thereof. The magnetostrictive element assembly 14 includes a solid and cylindrical inner giant magnetostrictive element 15, a cylindrical outer giant magnetostrictive element 16 disposed so as to surround the inner giant magnetostrictive element 15, and a space between the inner and outer giant magnetostrictive elements 15 and 16. An intermediate cylindrical portion 17a disposed at the front end, a front end member 17b (magnetic body) formed at the front end of the intermediate cylindrical portion 17a (non-magnetic body) and supporting the front end of the outer giant magnetostrictive element 16, and a rear end of the intermediate cylindrical portion 17a The displacement transmitting member 17 is formed of a rear end member 17c (magnetic body) that is formed at the end and supports the rear end of the inner giant magnetostrictive element 15. The displacement transmitting member 17 substantially connects the inner giant magnetostrictive element 15 and the outer giant magnetostrictive element 16 to each other in the axial direction.

前記コアハウジング筒6には,可動コア24(磁性体)の前端に中間部材23(非磁性体)を介してヨーク部材22(磁性体)を連結してなる可動コア・ヨーク部材結合体25が収容される。   The core housing cylinder 6 has a movable core / yoke member combined body 25 in which a yoke member 22 (magnetic body) is connected to a front end of a movable core 24 (magnetic body) via an intermediate member 23 (nonmagnetic body). Be contained.

可動コア24及び中間部材23の外周には,それぞれ隆起して前記中間筒7及びコアハウジング筒6の内周面に摺動自在に嵌合する環状のジャーナル部18,19が形成される。これにより可動コア・ヨーク部材結合体25の,傾きがない安定した摺動姿勢を保つことができる。また可動コア24と中間筒7,ヨーク部材22とコアハウジング筒6の各側隙を常に均一にすることができて,磁気特性の安定化を図ることができる。また可動コア24と中間筒7,ヨーク部材22とコアハウジング筒6の各間の摩擦を極力防ぎ,したがって特別な耐摩耗処理を施すことなく,それらの耐久性を高めることができる。しかも非磁性体の中間部材23は,耐摩耗性の高い素材を自由に選ぶことができるから,それ自身の耐久性をも容易に確保することができる。   On the outer periphery of the movable core 24 and the intermediate member 23, annular journal portions 18 and 19 are formed so as to protrude and slidably fit to the inner peripheral surfaces of the intermediate cylinder 7 and the core housing cylinder 6. As a result, the movable core / yoke member assembly 25 can be maintained in a stable sliding posture without inclination. Further, the side gaps of the movable core 24 and the intermediate cylinder 7, the yoke member 22 and the core housing cylinder 6 can be made uniform at all times, and the magnetic characteristics can be stabilized. Further, friction between the movable core 24 and the intermediate cylinder 7 and between the yoke member 22 and the core housing cylinder 6 can be prevented as much as possible, and therefore, their durability can be enhanced without performing any special wear resistance treatment. Moreover, since the non-magnetic intermediate member 23 can freely select a material with high wear resistance, it is possible to easily ensure its own durability.

図4及び図5において,可動コア・ヨーク部材結合体25を構成するヨーク部材22,中間部材23及び可動コア24の連結構造について説明する。中間部材23の軸方向両端面には,同軸状に並ぶ一対の小径の連結軸23a,23bが一体に形成される。一方,可動コア24及びヨーク部材22の,中間部材23に対向する端面には連結孔24b,22bが設けられ,これら連結孔24b,22bに上記連結軸23a,23bをそれぞれ圧入することで三者22〜24が一体に連結される。こうすることで,可動コア24及びヨーク部材22間は,それらの同軸精度を高めつゝ容易に連結することができる。   4 and 5, the connecting structure of the yoke member 22, the intermediate member 23, and the movable core 24 constituting the movable core / yoke member combination 25 will be described. A pair of small-diameter connecting shafts 23 a and 23 b arranged in a coaxial manner are integrally formed on both axial end surfaces of the intermediate member 23. On the other hand, connecting holes 24b and 22b are provided on the end surfaces of the movable core 24 and the yoke member 22 facing the intermediate member 23, and the connecting shafts 23a and 23b are press-fitted into the connecting holes 24b and 22b, respectively. 22-24 are connected integrally. By doing so, the movable core 24 and the yoke member 22 can be easily connected while improving their coaxial accuracy.

また可動コア24及びヨーク部材22の外周には,上記連結軸23a,23bの外周面に向かって凹入する複数の凹部24b,22bをそれぞれ形成されており,これら凹部24b,22bの底壁が連結軸23a,23bの外周部にそれぞれ溶接される。その溶接は,レーザ溶接が好適である。こうすることで,中間部材23と,前記可動コア24及びヨーク部材22との各圧入部の連結強度を高めることができる。しかも,可動コア24及びヨーク部材22の各凹部24b,22bの比較的薄い底壁を,中間部材23の連結軸23a,23bに溶接するには,極めて少ない入熱で足りるので,溶接熱による,可動コア24,中間部材23及びヨーク部材22の三者の同軸精度の狂いを回避することができる。   A plurality of recesses 24b and 22b are formed on the outer periphery of the movable core 24 and the yoke member 22 so as to be recessed toward the outer peripheral surfaces of the connecting shafts 23a and 23b, and the bottom walls of these recesses 24b and 22b are formed. Each of the connecting shafts 23a and 23b is welded to the outer periphery. The welding is preferably laser welding. By doing so, it is possible to increase the connection strength of each press-fitting portion between the intermediate member 23 and the movable core 24 and the yoke member 22. In addition, since a relatively small heat input is sufficient to weld the relatively thin bottom walls of the concave portions 24b and 22b of the movable core 24 and the yoke member 22 to the connecting shafts 23a and 23b of the intermediate member 23, the welding heat causes It is possible to avoid a deviation in the coaxial accuracy between the movable core 24, the intermediate member 23, and the yoke member 22.

こうして構成される可動コア・ヨーク部材結合体25には,その前後両端面間を連通して燃料を通過させる一連の通孔26が設けられる。したがって可動コア24のジャーナル部18及び中間部材23のジャーナル部19に邪魔されることなく,燃料は可動コア・ヨーク部材結合体25内をスムーズに通過することができ,燃料の圧入損失を抑えて,良好な燃料噴射特性を維持することができる。   The movable core / yoke member assembly 25 configured in this way is provided with a series of through holes 26 that allow the fuel to pass between the front and rear end surfaces. Therefore, the fuel can smoothly pass through the movable core / yoke member assembly 25 without being obstructed by the journal portion 18 of the movable core 24 and the journal portion 19 of the intermediate member 23, and the press-fitting loss of the fuel can be suppressed. , Good fuel injection characteristics can be maintained.

再び図2において,前記前端部材17bは,変位伝達部材17の中間筒部17aの中空部に連続するガイド孔20有しており,このガイド孔20に,前記弁体10の後端に形成される小径軸部10aと,この小径軸部10a及び内側超磁歪素子15間に介装される第1調心部材21(磁性体)とが摺動自在に嵌合される。この第1調心部材21とガイド孔20の内周面との間には,第1調心部材21の傾きを許容する間隙が設けられる。そして第1調心部材21は,前端面が球状凸面21aに形成されていて,常に前記小径軸部10aの後端の平坦面10bの中心部に当接するようになっている。したがって,内側超磁歪素子15の,第1調心部材21との当接端面が多少とも傾いていても,それに応じて第1調心部材21も傾くが,第1調心部材21の球状凸面21aの小径軸部10aの平坦面10bとの当接関係に変化は生じないようになっている。   In FIG. 2 again, the front end member 17b has a guide hole 20 continuous with the hollow portion of the intermediate cylindrical portion 17a of the displacement transmitting member 17, and is formed in the guide hole 20 at the rear end of the valve body 10. The small-diameter shaft portion 10a and the first aligning member 21 (magnetic body) interposed between the small-diameter shaft portion 10a and the inner giant magnetostrictive element 15 are slidably fitted. A gap is provided between the first aligning member 21 and the inner peripheral surface of the guide hole 20 to allow the first aligning member 21 to tilt. The first aligning member 21 has a spherical convex surface 21a at the front end surface, and is always in contact with the central portion of the flat surface 10b at the rear end of the small diameter shaft portion 10a. Therefore, even if the contact end surface of the inner giant magnetostrictive element 15 with the first aligning member 21 is slightly inclined, the first aligning member 21 is also inclined accordingly, but the spherical convex surface of the first aligning member 21 No change occurs in the contact relationship between the small diameter shaft portion 10a of 21a and the flat surface 10b.

一方,前記ヨーク部材22は,第2調心部材28を介して前記外側超磁歪素子16の後端に当接するように配置される。第2調心部材28は,前記後端部材17cを摺動可能に受容するガイド孔28aを有すると共に,後端面が球状凸面28bに形成されており,この球状凸面28bと,前記ヨーク部材22の前端面に形成された円錐状凹面22cとが当接している。したがって,外側超磁歪素子16の,第2調心部材28との当接端面が多少とも傾いていても,それに応じて第2調心部材28も傾くが,第2調心部材28の球状凸面28bがヨーク部材22の円錐状凹面22cとの当接関係に変化は生じないようになっている。   On the other hand, the yoke member 22 is disposed so as to contact the rear end of the outer giant magnetostrictive element 16 via the second alignment member 28. The second alignment member 28 has a guide hole 28a for slidably receiving the rear end member 17c, and the rear end surface is formed into a spherical convex surface 28b. The spherical convex surface 28b and the yoke member 22 The conical concave surface 22c formed on the front end surface is in contact. Therefore, even if the contact end surface of the outer giant magnetostrictive element 16 with the second aligning member 28 is slightly inclined, the second aligning member 28 is also inclined accordingly, but the spherical convex surface of the second aligning member 28 No change occurs in the abutting relationship of 28b with the conical concave surface 22c of the yoke member 22.

而して,第1及び第2調心部材21,28の協働により,予荷重ばね13が前記ヨーク部材22及び弁体10を介して磁歪素子組立体14に付与する予荷重の作用線を磁歪素子組立体14の軸線に沿わせることができ,これにより磁歪素子組立体14には,その伸長時でも無用なサイドスラストが加わることを回避して,その耐久性の向上を図ることができる。   Thus, by the cooperation of the first and second aligning members 21 and 28, the action line of the preload applied to the magnetostrictive element assembly 14 by the preload spring 13 via the yoke member 22 and the valve body 10 is obtained. It is possible to follow the axis of the magnetostrictive element assembly 14, thereby avoiding unnecessary side thrust from being applied to the magnetostrictive element assembly 14 even when the magnetostrictive element assembly 14 is extended, thereby improving its durability. .

前記予荷重ばね13は,図6に示すように,非磁性のばね鋼板製の,多数の透孔27,27…が穿設されたパンチングプレートを円筒状に丸めて,対向端同士を接合してなるもので,その軸方向両端部には,前記内側超磁歪素子15及び外側超磁歪素子16に所定の軸方向圧縮荷重を付与した状態で,前記弁体10の後端部と,前記ヨーク部材22の前端部とが装置圧入され,そして溶接されることにより,強固に固着される。而して,予荷重ばね13は,内側超磁歪素子15及び外側超磁歪素子16に軸方向の圧縮予荷重を付与して,所定量圧縮変形した状態に保持する。   As shown in FIG. 6, the preload spring 13 is made by rolling a punching plate made of a non-magnetic spring steel plate having a large number of through holes 27, 27,. The axially opposite ends of the valve body 10 and the yoke are provided with predetermined axial compressive loads applied to the inner giant magnetostrictive element 15 and the outer giant magnetostrictive element 16. The front end portion of the member 22 is firmly press-fitted and welded to be firmly fixed. Thus, the preload spring 13 applies an axial compressive preload to the inner giant magnetostrictive element 15 and the outer giant magnetostrictive element 16 and holds them in a state of being compressed and deformed by a predetermined amount.

上記構成の予荷重ばね13は,全体が磁歪素子組立体14の外周に近接するよう小径に形成することが可能となり,可動コア24から弁体10に至る可動部組立体43をコンパクトに構成することができる。しかも予荷重ばね13は,その内部に磁歪素子組立体14を収容することで,磁歪素子組立体14を保護し,その耐久性を確保することができ,のみならず磁歪素子組立体14は,予荷重ばね13と共に弁ハウジングHにも収容されることになるから,外気の温度や湿度の影響を受けないで済む。またヨーク部材22及び弁体10間の芯ずれがあっても,それを予荷重ばね13の弾性変形により許容し,磁歪素子組立体14に余分な付加をかけることがないから,磁歪素子組立体14の安定した作動を確保することができる。   The preload spring 13 having the above configuration can be formed with a small diameter so that the entire preload spring 13 is close to the outer periphery of the magnetostrictive element assembly 14, and the movable part assembly 43 extending from the movable core 24 to the valve body 10 is compactly configured. be able to. Moreover, the preload spring 13 accommodates the magnetostrictive element assembly 14 in the inside thereof, thereby protecting the magnetostrictive element assembly 14 and ensuring its durability. Since it is housed in the valve housing H together with the preload spring 13, it is not affected by the temperature and humidity of the outside air. Further, even if there is a misalignment between the yoke member 22 and the valve body 10, it is allowed by elastic deformation of the preload spring 13, and no extra addition is applied to the magnetostrictive element assembly 14. 14 stable operations can be ensured.

前記内側超磁歪素子15及び外側超磁歪素子16は,それぞれ軸方向に重ねられる複数の素子ブロック15a,15a;16a,16aで構成されると共に,各素子ブロック15a,15a;16a,16a間にはシム29,30が介装される。   The inner giant magnetostrictive element 15 and the outer giant magnetostrictive element 16 are each composed of a plurality of element blocks 15a, 15a; 16a, 16a that are stacked in the axial direction, and between the element blocks 15a, 15a; 16a, 16a. Shims 29 and 30 are interposed.

このように,各超磁歪素子15,16を,複数の素子ブロックに分割,積層することで,磁歪素子組立体14の所望の伸長量を確保しながら,各超磁歪素子15,16の耐久性の向上を図ることができ,しかも各素子ブロック15a,15a;16a,16a間に介装されるシム29,30の厚みを変えることにより,磁歪素子組立体14の長さを簡単に調整することができる。   As described above, each of the magnetostrictive elements 15 and 16 is divided into a plurality of element blocks and stacked, so that a desired extension amount of the magnetostrictive element assembly 14 is secured and the durability of each of the magnetostrictive elements 15 and 16 is secured. In addition, the length of the magnetostrictive element assembly 14 can be easily adjusted by changing the thickness of the shims 29, 30 interposed between the element blocks 15a, 15a; 16a, 16a. Can do.

前記可動コア24は,弁体10の弁座2への着座状態において,前記固定コア8の下端面に所定の開弁ストロークに対応する間隙αを存して対向するように配置される。固定コア8は,その前後両端面を連通する中空部8aを有しており,この中空部8aに,可動コア24を,弁体10の閉弁方向に付勢するコイル状の戻しばね31と,この戻しばね31にセット荷重を付与すべく,その固定端を支持するパイプ状のリテーナ32とが設けられ,このリテーナ32は,螺合もしくは圧入により中空部8aの内周面に固着される。   The movable core 24 is disposed so as to face the lower end surface of the fixed core 8 with a gap α corresponding to a predetermined valve opening stroke when the valve body 10 is seated on the valve seat 2. The fixed core 8 has a hollow portion 8a communicating with both front and rear end faces thereof, and a coil-shaped return spring 31 for urging the movable core 24 in the valve closing direction of the valve body 10 in the hollow portion 8a. In order to apply a set load to the return spring 31, a pipe-like retainer 32 that supports the fixed end thereof is provided, and the retainer 32 is fixed to the inner peripheral surface of the hollow portion 8a by screwing or press-fitting. .

前記コアハウジング筒6の後端部から固定コアの前端部にかけて,それらの外周に第1コイル組立体35が配設される。この第1コイル組立体35は,コアハウジング筒6の後端部から固定コアの前端部にかけて,それらの外周面に嵌合される第1ボビン36と,その外周に巻装される第1コイル37とからなっており,この第1コイル組立体35を収容する第1コイルハウジング筒38(磁性体)がコアハウジング筒6及び固定コア8間を連結するように配置される。   A first coil assembly 35 is disposed on the outer periphery from the rear end portion of the core housing tube 6 to the front end portion of the fixed core. The first coil assembly 35 includes a first bobbin 36 fitted to the outer peripheral surface of the core housing tube 6 from the rear end portion to the front end portion of the fixed core, and a first coil wound around the outer periphery. 37, and a first coil housing cylinder 38 (magnetic body) that accommodates the first coil assembly 35 is disposed so as to connect between the core housing cylinder 6 and the fixed core 8.

而して,前記第1固定コア8,可動コア24,第1コイル組立体35,コアハウジング筒6及び第1コイルハウジング筒38は,戻しばね31と協働して弁体10を開閉する電磁アクチュエータA1を構成する。第1コイル37への通電時には,それにより生ずる磁束が固定コア8,第1コイルハウジング筒38,コアハウジング筒6及び可動コア24を順次走り,その磁力により可動コア24を戻しばね31のセット荷重に抗して固定コア8側に吸引させ,弁体10を開弁させることができる。   Thus, the first fixed core 8, the movable core 24, the first coil assembly 35, the core housing cylinder 6 and the first coil housing cylinder 38 cooperate with the return spring 31 to open and close the valve body 10. The actuator A1 is configured. When the first coil 37 is energized, a magnetic flux generated by the first coil 37 sequentially travels through the fixed core 8, the first coil housing cylinder 38, the core housing cylinder 6, and the movable core 24. Therefore, the valve body 10 can be opened by suction to the fixed core 8 side.

前記磁歪ハウジング筒5の外周には,前記両超磁歪素子15,16に対応して第2コイル組立体40が配設される。この第2コイル組立体40は,磁歪ハウジング筒5の外周面に嵌合される第2ボビン41と,その外周に巻装される第2コイル42とからなっており,この第2コイル組立体40を収容する第2コイルハウジング筒44(磁性体)が前記弁案内筒4及びコアハウジング筒6間を連結するように配置される。   A second coil assembly 40 is disposed on the outer periphery of the magnetostrictive housing cylinder 5 so as to correspond to both the giant magnetostrictive elements 15 and 16. The second coil assembly 40 includes a second bobbin 41 fitted to the outer peripheral surface of the magnetostrictive housing cylinder 5 and a second coil 42 wound around the outer periphery. A second coil housing cylinder 44 (magnetic body) that accommodates 40 is disposed so as to connect between the valve guide cylinder 4 and the core housing cylinder 6.

而して,前記内側超磁歪素子15,外側超磁歪素子16,変位伝達部材17,予荷重ばね13,ヨーク部材22,第2コイル組立体40,コアハウジング筒6及び第2コイルハウジング筒44により,弁体10から可動コア24に至る一体可動部の可動部組立体43の有効長を変え得る磁歪アクチュエータA2が構成される。第2コイル42への通電時には,それにより生ずる磁束が第2コイルハウジング筒44,弁案内筒4,両超磁歪素子15,16,ヨーク部材22及びコアハウジング筒6を順次走ることにより,両超磁歪素子15,16に磁界が印加され,その磁界の強さに応じて両超磁歪素子15,16が軸方向に伸長し,可動部組立体43の有効長を延ばすことができる。その際,両超磁歪素子15,16は,変位伝達部材17を介して実質上,相互に軸方向に連結されるので,両超磁歪素子15,16の軸方向の伸びは加算され,それが可動部組立体43の有効長の伸びとなる。これにより磁歪素子組立体14の小型化を図りつゝ,所望の伸長量を確保することができる。   Thus, the inner giant magnetostrictive element 15, the outer giant magnetostrictive element 16, the displacement transmitting member 17, the preload spring 13, the yoke member 22, the second coil assembly 40, the core housing cylinder 6 and the second coil housing cylinder 44. , A magnetostrictive actuator A2 that can change the effective length of the movable part assembly 43 of the integral movable part from the valve body 10 to the movable core 24 is configured. When the second coil 42 is energized, the magnetic flux generated thereby runs through the second coil housing cylinder 44, the valve guide cylinder 4, the two giant magnetostrictive elements 15, 16, the yoke member 22 and the core housing cylinder 6 in sequence, thereby A magnetic field is applied to the magnetostrictive elements 15 and 16, and both the giant magnetostrictive elements 15 and 16 extend in the axial direction according to the strength of the magnetic field, so that the effective length of the movable part assembly 43 can be extended. At this time, since both the giant magnetostrictive elements 15 and 16 are substantially connected to each other in the axial direction via the displacement transmitting member 17, the elongation in the axial direction of both the giant magnetostrictive elements 15 and 16 is added. The effective length of the movable part assembly 43 is increased. As a result, the magnetostrictive element assembly 14 can be miniaturized and a desired extension amount can be secured.

ところで,弁ハウジングHの一部を構成して,可動コア・ヨーク部材結合体25を収容するコアハウジング筒6(磁性体)は,第1コイル37を収容する第1コイルハウジング(磁性体)と,第2コイル42を収容する第2コイルハウジング(磁性体)とを連結するように配置され,電磁アクチュエータA1及び磁歪アクチュエータA2の共通する磁路に利用されるので,部品点数の削減,延いては構造の簡素化及びコンパクト化に寄与することができる。   By the way, the core housing cylinder 6 (magnetic body) that constitutes a part of the valve housing H and accommodates the movable core / yoke member assembly 25 is composed of the first coil housing (magnetic body) that accommodates the first coil 37. The second coil housing (magnetic body) that accommodates the second coil 42 is disposed so as to be coupled to the magnetic path common to the electromagnetic actuator A1 and the magnetostrictive actuator A2, thereby reducing and extending the number of components. Can contribute to the simplification and compactness of the structure.

また電磁アクチュエータA1の可動コア24と,磁歪アクチュエータA2の一部を構成するヨーク部材22とは,非磁性体の中間部材23を介して一体に連結されて可動コア・ヨーク部材結合体25を構成するので,両アクチュエータA1,A2の作動状態でも,可動コア24内の磁束と,ヨーク部材22内の磁束との干渉を中間部材23により遮断して,各アクチュエータA1,A2の良好な作動状態を確保することができる。   The movable core 24 of the electromagnetic actuator A1 and the yoke member 22 constituting a part of the magnetostrictive actuator A2 are integrally connected via a nonmagnetic intermediate member 23 to form a movable core / yoke member combination 25. Therefore, even when the actuators A1 and A2 are in the operating state, the interference between the magnetic flux in the movable core 24 and the magnetic flux in the yoke member 22 is blocked by the intermediate member 23, so that each actuator A1 and A2 is in a good operating state. Can be secured.

前記第1ボビン36には,第1コイル37に連なる第1給電端子45を支持する第1カプラ47が一体に形成され,また第2コイルハウジング筒44には,第2コイル42に連なる第2給電端子46を支持する第2カプラ48が一体に成形される。   The first bobbin 36 is integrally formed with a first coupler 47 that supports a first power supply terminal 45 that is connected to the first coil 37, and a second coil housing cylinder 44 is connected to the second coil 42. A second coupler 48 that supports the power supply terminal 46 is integrally formed.

図7に示すように,第1コイル37及び第2コイル42には,第1駆動回路51及び第2駆動回路52をそれぞれ介して電子制御ユニット53が接続され,電子制御ユニット53は,エンジンの燃料噴射時期や運転状態を検出する各種センサ(図示せず)からの出力信号に基づいて第1駆動回路51及び第2駆動回路52をそれぞれ個別に駆動制御し,第1及び第2コイル37,42の通電時期及び通電量を個別に制御するようになっている。その際,特に,第1コイル37への通電は,電磁アクチュエータA1の作動遅れを見込んで,第2コイル42への通電より先行して開始される。こうすることで,電磁アクチュエータA1の応答性の,磁歪アクチュエータA2の応答性より低い分を補うことができる。   As shown in FIG. 7, an electronic control unit 53 is connected to the first coil 37 and the second coil 42 via a first drive circuit 51 and a second drive circuit 52, respectively. The first drive circuit 51 and the second drive circuit 52 are individually driven and controlled based on output signals from various sensors (not shown) for detecting the fuel injection timing and the operation state, and the first and second coils 37, The energization timing and energization amount of 42 are individually controlled. At that time, in particular, the energization of the first coil 37 is started prior to the energization of the second coil 42 in consideration of the operation delay of the electromagnetic actuator A1. By doing so, it is possible to compensate for the lower response of the electromagnetic actuator A1 than the response of the magnetostrictive actuator A2.

次に,この燃料噴射弁Iの作動について説明する。
<第1作動態様(図8参照)>
この第1作動態様では,第1及び第2コイル37,42の非通電時における可動コア24の固定コア8に対するストローク間隙をαとしたとき,磁歪アクチュエータA2の作動による可動部組立体43の伸長量βは,β≧α,例えばβ=αに設定される。これを利用して,弁体10の開閉応答性の向上を図る。
〔閉弁モード〕
第1及び第2コイル37,42は非通電状態にあり,弁体10は,戻しばね31の付勢力により弁座2に着座した閉弁位置に保持されている。
〔開弁開始モード〕
先ず,第1コイル37に通電し,やゝ遅れて第2コイル42に通電する。しかしながら,第1コイル37を含む電磁アクチュエータA1の応答性は,第2コイル42を含む磁歪アクチュエータA2の応答性より若干低いので,実際には,可動コア24の固定コア8側への吸引動作が開始する前に,磁歪素子組立体14の伸長が発生し,その結果,前記β=αの関係から,可動コア24は,弁体10の閉弁位置を保持したまゝで固定コア8に早期に吸着されることになり,弁体10の開弁準備を早めることができる。
〔開弁モード〕
第1コイル37の励起により可動コア24の固定コア8への吸着が確保される。そこで第2コイル42への通電を遮断すると,予荷重ばね13のセット荷重により磁歪素子組立体14が即座にβ=α収縮して初期状態に戻るので,弁体10は素早く弁座2からβ=α分だけ離座することになり,開弁応答性が向上する。したがって,弁ハウジングH内部に待機していた高圧の燃料を,所望時期に燃料噴孔3からエンジンの燃焼室に噴射することができる。しかも第2コイルへ42への通電遮断により,省電力化を図ることができる。
Next, the operation of the fuel injection valve I will be described.
<First operation mode (see FIG. 8)>
In this first operation mode, when the stroke gap of the movable core 24 with respect to the fixed core 8 when the first and second coils 37 and 42 are not energized is α, the extension of the movable part assembly 43 due to the operation of the magnetostrictive actuator A2. The quantity β is set such that β ≧ α, for example β = α. By utilizing this, the open / close response of the valve body 10 is improved.
(Valve closed mode)
The first and second coils 37 and 42 are in a non-energized state, and the valve body 10 is held in the valve-closed position in which the valve body 10 is seated on the valve seat 2 by the urging force of the return spring 31.
[Valve opening start mode]
First, the first coil 37 is energized, and the second coil 42 is energized after a short delay. However, since the responsiveness of the electromagnetic actuator A1 including the first coil 37 is slightly lower than the responsiveness of the magnetostrictive actuator A2 including the second coil 42, actually, the attracting operation of the movable core 24 toward the fixed core 8 side is not performed. Before starting, the magnetostrictive element assembly 14 expands. As a result, from the relationship of β = α, the movable core 24 quickly moves to the fixed core 8 while maintaining the valve closing position of the valve body 10. Therefore, preparation for opening the valve body 10 can be accelerated.
(Valve open mode)
By the excitation of the first coil 37, the adsorption of the movable core 24 to the fixed core 8 is ensured. Therefore, when the energization of the second coil 42 is cut off, the magnetostrictive element assembly 14 immediately contracts by β = α due to the set load of the preload spring 13 and returns to the initial state. = Leaves the seat by α, which improves the valve opening response. Therefore, the high-pressure fuel that has been waiting inside the valve housing H can be injected from the fuel injection hole 3 into the combustion chamber of the engine at a desired time. Moreover, it is possible to save power by cutting off the energization to the second coil 42.

ところで,弁体10の開弁は,弁体10が弁座2から弁ハウジングH内方へ変位することで生じる内開きであるから,燃料噴孔3からの燃料噴射により形成される噴霧フォームを,弁体10の弁部に邪魔されることなく,良好に形成することができる。
〔閉弁開始モード〕
第1コイル37の通電を遮断すると共に,第2コイル42に通電する。而して,第2コイル42への通電により磁歪素子組立体14が直ちにα伸長することで,弁体10を素早く閉弁させ,燃料噴射を停止することができる。
〔閉弁モード〕
第2コイル42への通電をも遮断して,磁歪素子組立体14を初期状態に収縮させる。この段階では,可動コア24及び固定コア8間から残留磁気は消失もしくは激減しているから,磁歪素子組立体14と同時に,戻しばね31のセット荷重により可動コア24を固定コア8から引き離して,弁体10の閉弁状態を確実に保持することができる。
By the way, the opening of the valve body 10 is an inward opening caused by the displacement of the valve body 10 from the valve seat 2 to the inside of the valve housing H. Therefore, a spray foam formed by fuel injection from the fuel injection hole 3 is used. , Can be satisfactorily formed without being obstructed by the valve portion of the valve body 10.
(Valve closing start mode)
While energizing the first coil 37 is cut off, the second coil 42 is energized. Thus, when the magnetostrictive element assembly 14 is immediately expanded by the energization of the second coil 42, the valve body 10 can be quickly closed and the fuel injection can be stopped.
(Valve closed mode)
The energization of the second coil 42 is also cut off, and the magnetostrictive element assembly 14 is contracted to the initial state. At this stage, since the residual magnetism has disappeared or drastically decreased between the movable core 24 and the fixed core 8, the movable core 24 is pulled away from the fixed core 8 by the set load of the return spring 31 simultaneously with the magnetostrictive element assembly 14. The valve closed state of the valve body 10 can be reliably maintained.

尚,前記開弁モードにおいては,第2コイル42への通電量を点線で示すように適当に減少もしくはゼロに制御して,磁歪素子組立体14を適当量伸長させれば,弁体10の開度を下げて,燃料噴射量を減少させることができると共に,省電力化に寄与し得る。
<第2作動態様(図9参照)>
この第2作動態様では,第1及び第2コイル37,42の非通電時における可動コア24の固定コア8に対するストローク間隙をαとしたとき,磁歪アクチュエータA2の作動による可動部組立体43の伸長量βは,β<α,例えばβ=α/2に設定される。これを利用して,特に弁体10の開弁応答性の向上を図ると共に,燃料噴射量の可変を可能にする。
〔閉弁モード〕
第1及び第2コイル37,42は非通電状態にあり,弁体10は,戻しばね31の付勢力により弁座2に着座した閉弁位置に保持されている。この状態では,可動コア24及び固定コア8間には,弁体10の最大開弁ストロークに相当する間隙αが生じている。
〔開弁開始モード〕
先ず,第1コイル37に通電し,やゝ遅れて第2コイル42に通電する。しかしながら,第1コイル37を含む電磁アクチュエータA1の応答性は,第2コイル42を含む磁歪アクチュエータA2の応答性より若干低いので,実際には,可動コア24の固定コア8側への吸引動作が開始する前に,磁歪素子組立体14がβ=α/2だけ伸長し,その結果,可動コア24及び固定コア8間のストローク間隙がαからα/2に減少し,これにより第1コイル37の励起による可動コア24の固定コア8への吸着を早めることができる。
〔大開弁モード〕
第1コイル37への通電を続行し,第2コイルへの通電は遮断する。第1コイル37への通電続行により,可動コア24を前記作用により可動コア24を直ちに固定コア8に吸着させて,弁体10を開弁させるが,それと同時に,第2コイルへの通電遮断により磁歪素子組立体14の前記伸びα/2が消失するので,結局,弁体10は最大ストローク量α弁座2から離座して全開状態となり,燃料噴孔3から多量の燃料を噴射することができる。しかも第2コイルへ42への通電遮断により,省電力化を図ることができる。
〔小開弁モード〕
第1コイル37への通電を維持し,第2コイルへの通電を再開する。すると,可動コア24を固定コア8に吸着させた状態で,磁歪素子組立体14が再びα/2だけ伸長するため,弁体10はα/2だけ弁座2に近接して半開き状態となり,燃料噴孔3から燃料噴射量を半減させることができる。
〔閉弁開始モード〕
第2コイル42への通電を保持した状態で第1コイル37への通電を遮断する。その結果,弁体10は前記半開き状態から戻しばね31の付勢力により弁座2に着座することになるから,閉弁衝撃が少なく,弁体10の振動を防ぐことができる。
〔閉弁モード〕
最後に第2コイル42への通電をも遮断する。それに伴ない可動部組立体43は収縮するが,弁体10の戻しばね31の付勢力による閉弁状態に変化はない。
In the valve opening mode, if the amount of energization to the second coil 42 is appropriately reduced or controlled to zero as indicated by the dotted line and the magnetostrictive element assembly 14 is extended by an appropriate amount, the valve element 10 The amount of fuel injection can be reduced by lowering the opening, and this can contribute to power saving.
<Second operation mode (see FIG. 9)>
In this second operation mode, when the stroke gap with respect to the fixed core 8 of the movable core 24 when the first and second coils 37 and 42 are not energized is α, the extension of the movable part assembly 43 due to the operation of the magnetostrictive actuator A2. The quantity β is set such that β <α, for example β = α / 2. By utilizing this, the valve opening response of the valve body 10 is improved, and the fuel injection amount can be varied.
(Valve closed mode)
The first and second coils 37 and 42 are in a non-energized state, and the valve body 10 is held in the valve-closed position in which the valve body 10 is seated on the valve seat 2 by the urging force of the return spring 31. In this state, a gap α corresponding to the maximum valve opening stroke of the valve body 10 is generated between the movable core 24 and the fixed core 8.
[Valve opening start mode]
First, the first coil 37 is energized, and the second coil 42 is energized after a short delay. However, since the responsiveness of the electromagnetic actuator A1 including the first coil 37 is slightly lower than the responsiveness of the magnetostrictive actuator A2 including the second coil 42, actually, the attracting operation of the movable core 24 toward the fixed core 8 side is not performed. Before starting, the magnetostrictive element assembly 14 is extended by β = α / 2, so that the stroke gap between the movable core 24 and the fixed core 8 is reduced from α to α / 2, thereby the first coil 37. Adsorption of the movable core 24 to the fixed core 8 by the excitation of can be accelerated.
(Large valve opening mode)
The energization to the first coil 37 is continued, and the energization to the second coil is cut off. By continuing the energization to the first coil 37, the movable core 24 is immediately adsorbed to the fixed core 8 by the above action, and the valve body 10 is opened. At the same time, the energization to the second coil is interrupted. Since the elongation α / 2 of the magnetostrictive element assembly 14 disappears, the valve body 10 is separated from the maximum stroke amount α valve seat 2 to be fully opened, and a large amount of fuel is injected from the fuel injection hole 3. Can do. Moreover, it is possible to save power by cutting off the energization to the second coil 42.
[Small valve opening mode]
Energization of the first coil 37 is maintained, and energization of the second coil is resumed. Then, in a state where the movable core 24 is attracted to the fixed core 8, the magnetostrictive element assembly 14 is again expanded by α / 2, so that the valve body 10 is close to the valve seat 2 by α / 2 and is in a half-open state. The fuel injection amount from the fuel injection hole 3 can be halved.
(Valve closing start mode)
The energization to the first coil 37 is cut off while the energization to the second coil 42 is maintained. As a result, the valve body 10 is seated on the valve seat 2 by the urging force of the return spring 31 from the half-open state, so that the valve closing impact is small and vibration of the valve body 10 can be prevented.
(Valve closed mode)
Finally, the power supply to the second coil 42 is also cut off. As a result, the movable part assembly 43 contracts, but the valve closing state due to the urging force of the return spring 31 of the valve body 10 is not changed.

次に,図10に示す本発明の別の実施例について説明する。   Next, another embodiment of the present invention shown in FIG. 10 will be described.

この別の実施例では,予荷重ばね13が非磁性鋼板製のベローズ体で構成され,その軸方向両端開口部に前記ヨーク部材22及び弁体10の端部がそれぞれ圧入して溶接され,予荷重ばね13の内部は密閉状とされる。その他の構成は,前実施例と同様であるので,図10中,前実施例と対応する部分には同一の参照符号を付して,重複する説明を省略する。   In this alternative embodiment, the preload spring 13 is formed of a non-magnetic steel bellows body, and the end portions of the yoke member 22 and the valve body 10 are press-fitted and welded to the openings at both ends in the axial direction. The inside of the load spring 13 is sealed. Since other configurations are the same as those of the previous embodiment, portions corresponding to those of the previous embodiment in FIG. 10 are denoted by the same reference numerals, and redundant description is omitted.

この実施例によれば,予荷重ばね13の内部を密閉状にすることで,磁歪素子組立体14を,弁ハウジングH内の燃料から遮断して,各超磁歪素子15,16の性能劣化を抑制することができる。   According to this embodiment, the inside of the preload spring 13 is hermetically sealed so that the magnetostrictive element assembly 14 is cut off from the fuel in the valve housing H, so that the performance degradation of each of the giant magnetostrictive elements 15 and 16 is reduced. Can be suppressed.

本発明は上記実施例に限定されるものではなく,その要旨を逸脱しない範囲で種々の設計変更が可能である。例えば,前記α及びβの関係や作動態様は,エンジンの要求特性に応じて自由に変えることができる。   The present invention is not limited to the above embodiment, and various design changes can be made without departing from the scope of the invention. For example, the relationship and operation mode of α and β can be freely changed according to the required characteristics of the engine.

本発明のエンジン用燃料噴射弁の縦断側面図。The longitudinal section side view of the fuel injection valve for engines of the present invention. 図1の2部拡大図。FIG. 2 is an enlarged view of part 2 of FIG. 1. 図1の3部拡大図。3 is an enlarged view of part 3 of FIG. 図3の4−4線断面図。FIG. 4 is a sectional view taken along line 4-4 of FIG. 図3の5−5線断面図。FIG. 5 is a sectional view taken along line 5-5 of FIG. 同燃料噴射弁における予荷重ばねの一部拡大側面。A partially enlarged side view of a preload spring in the fuel injection valve. 同燃料噴射弁における第1及び第2コイルの駆動回路図。The drive circuit diagram of the 1st and 2nd coil in the fuel injection valve. 同燃料噴射弁の第1作動態様説明図。Explanatory drawing of the 1st operation | movement aspect of the fuel injection valve. 同燃料噴射弁の第2作動態様説明図。Explanatory drawing of the 2nd operation | movement aspect of the fuel injection valve. 本発明の別の実施例を示す,図3との対応図。FIG. 4 is a view corresponding to FIG. 3 showing another embodiment of the present invention.

符号の説明Explanation of symbols

I・・・・・燃料噴射弁
H・・・・・弁ハウジング
A1・・・・電磁アクチュエータ
A2・・・・磁歪アクチュエータ
2・・・・・弁座
3・・・・・燃料噴孔
10・・・・弁体
13・・・・予荷重ばね
15・・・・中実の磁歪素子(内側超磁歪素子)
19・・・・ジャーナル部
22・・・・ヨーク部材
22a・・・連結孔
22b・・・凹部
23・・・・中間部材
23a,23b・・・連結軸
24・・・・可動コア
24a・・・連結孔
24b・・・凹部
25・・・・可動コア組立体
31・・・・戻しばね
37・・・・第1コイル
38・・・・第1コイルハウジング筒
42・・・・第2コイル
43・・・・第2コイルハウジング筒
I ... Fuel injection valve H ... Valve housing A1 ... Electromagnetic actuator A2 ... Magnetostrictive actuator 2 ... Valve seat 3 ... Fuel injection hole 10 ... ... Valve element 13 ... Preload spring 15 ... Solid magnetostrictive element (inner giant magnetostrictive element)
19 ··· Journal portion 22 ··· Yoke member 22a ··· Connection hole 22b ··· concave portion 23 ··· Intermediate members 23a and 23b · · · Connection shaft 24 ··· movable core 24a ··· · Connection hole 24b ··· concave portion 25 ··· movable core assembly 31 ··· return spring 37 ··· first coil 38 ··· first coil housing tube 42 ··· second coil 43... Second coil housing cylinder

Claims (6)

燃料噴孔(3)の内端に連なる弁座(2)に着座可能の弁体(10)と,この弁体(10)を着座方向に付勢する戻しばね(31)と,通電により前記弁体(10)を内開き方向に作動する電磁アクチュエータ(A1)と,前記弁体(10)から電磁アクチュエータ(A1)の可動コア(24)に至る可動部組立体(43)を通電により伸長させる磁歪アクチュエータ(A2)とを備える燃料噴射弁であって,
前記磁歪アクチュエータ(A2)を,前記弁体(10)と前記電磁アクチュエータ(A1)の可動コア(24)に非磁性体の中間部材(23)を介して一体に連結されるヨーク部材(22)との間に,それらを連結するように設けられる中実の磁歪素子(15)と,前記弁体(10)及びヨーク部材(22)間に,前記磁歪素子(15)に弁体(10)の軸方向の圧縮予荷重を付与するように接続される予荷重ばね(13)と,前記弁体(10),可動コア(24),磁歪素子(15)及び予荷重ばね(13)を収容してそれらとの間に,前記燃料噴孔(3)に連なる燃料流路を形成する弁ハウジング(H)に取り付けられて,通電により前記磁歪素子(15)を前記予荷重に抗して伸長させる第2コイル(42)とで構成したことを特徴とする燃料噴射弁。
A valve body (10) that can be seated on a valve seat (2) connected to the inner end of the fuel injection hole (3), a return spring (31) that biases the valve body (10) in the seating direction, The electromagnetic actuator (A1) that operates the valve element (10) in the inward opening direction and the movable part assembly (43) extending from the valve element (10) to the movable core (24) of the electromagnetic actuator (A1) by energization A fuel injection valve comprising a magnetostrictive actuator (A2)
A yoke member (22) for integrally connecting the magnetostrictive actuator (A2) to the movable core (24) of the valve body (10) and the electromagnetic actuator (A1) via a nonmagnetic intermediate member (23). Between the valve element (15) and the yoke member (22), and between the valve element (15) and the valve element (10). And a preload spring (13) connected so as to apply an axial compression preload, and the valve element (10), movable core (24), magnetostrictive element (15) and preload spring (13). Between them, the magnetostrictive element (15) is attached to a valve housing (H) that forms a fuel flow passage connected to the fuel injection hole (3) and extends against the preload when energized. And the second coil (42) to be configured Fuel injection valve that.
請求項1記載の燃料噴射弁において,
前記ヨーク部材(22)の外周に,前記可動コア(24)及びヨーク部材(22)より大径で,前記弁ハウジング(H)の内周面に摺動自在に嵌合するジャーナル部(19)を形成したことを特徴とする燃料噴射弁。
The fuel injection valve according to claim 1, wherein
A journal portion (19) having a larger diameter than the movable core (24) and the yoke member (22) on the outer periphery of the yoke member (22) and slidably fitted to the inner peripheral surface of the valve housing (H). The fuel injection valve characterized by forming.
請求項2記載の燃料噴射弁において,
前記中間部材(23)の両端面に同軸状に並ぶ一対の連結軸(23a,23b)を一体に突設し,これら連結軸(23a,23b)を,前記可動コア(24)及びヨーク部材(22)の,前記中間部材(23)に対向する端面に設けられる連結孔(24a,22a)にそれぞれ圧入することにより,可動コア(24),中間部材(23)及びヨーク部材(22)を一体に連結したことを特徴とする燃料噴射弁。
The fuel injection valve according to claim 2,
A pair of connecting shafts (23a, 23b) arranged coaxially on both end faces of the intermediate member (23) are integrally projected, and these connecting shafts (23a, 23b) are connected to the movable core (24) and the yoke member ( 22), the movable core (24), the intermediate member (23), and the yoke member (22) are integrated with each other by press-fitting into connection holes (24a, 22a) provided on the end faces of the intermediate member (23) facing the intermediate member (23). A fuel injection valve connected to the fuel injection valve.
請求項3記載の燃料噴射弁において,
前記中間部材(23)と,前記可動コア(24)及びヨーク部材(22)との各圧入部を溶接したことを特徴とする燃料噴射弁。
The fuel injection valve according to claim 3,
A fuel injection valve, wherein the press-fitting portions of the intermediate member (23), the movable core (24) and the yoke member (22) are welded.
請求項4記載の燃料噴射弁において,
可動コア(24)及びヨーク部材(22)の外周に,前記連結軸(23a,23b)の外周面に向かって凹入する凹部(24b,22b)をそれぞれ形成し,これら凹部(24b,22b)の底壁を溶接により前記連結軸(23a,23b)にそれぞれ溶接したことを特徴とする燃料噴射弁。
The fuel injection valve according to claim 4, wherein
Recesses (24b, 22b) that are recessed toward the outer peripheral surface of the connecting shaft (23a, 23b) are formed on the outer periphery of the movable core (24) and the yoke member (22), respectively. A fuel injection valve characterized in that the bottom wall of each is welded to the connecting shaft (23a, 23b) by welding.
請求項2記載の燃料噴射弁において,
前記可動コア(24),中間部材(23)及びヨーク部材(22)からなる可動コア組立体(25)に,その軸方向両端面を連通して燃料を通過させる一連の通孔(26)を設けたことを特徴とする燃料噴射弁。
The fuel injection valve according to claim 2,
A series of through-holes (26) for allowing fuel to pass through the movable core assembly (25) composed of the movable core (24), the intermediate member (23) and the yoke member (22) through both axial end surfaces thereof. A fuel injection valve provided.
JP2006090316A 2006-03-29 2006-03-29 Fuel injection valve Expired - Fee Related JP4757072B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006090316A JP4757072B2 (en) 2006-03-29 2006-03-29 Fuel injection valve
PCT/JP2007/052196 WO2007122841A1 (en) 2006-03-29 2007-02-08 Fuel injection valve
EP07708220A EP2000661B1 (en) 2006-03-29 2007-02-08 Fuel injection valve
US12/294,385 US7891585B2 (en) 2006-03-29 2007-02-08 Fuel injection valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006090316A JP4757072B2 (en) 2006-03-29 2006-03-29 Fuel injection valve

Publications (2)

Publication Number Publication Date
JP2007263014A JP2007263014A (en) 2007-10-11
JP4757072B2 true JP4757072B2 (en) 2011-08-24

Family

ID=38636242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006090316A Expired - Fee Related JP4757072B2 (en) 2006-03-29 2006-03-29 Fuel injection valve

Country Status (1)

Country Link
JP (1) JP4757072B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8236889B2 (en) 2009-05-15 2012-08-07 Kemira Chemicals, Inc. Polymeric defoamer additive
JP6069759B2 (en) * 2012-11-05 2017-02-01 株式会社ケーヒン Electromagnetic fuel injection valve

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2600881B2 (en) * 1989-01-17 1997-04-16 日産自動車株式会社 Fuel injection valve
JPH08177677A (en) * 1994-12-27 1996-07-12 Nissan Motor Co Ltd Fuel injection valve

Also Published As

Publication number Publication date
JP2007263014A (en) 2007-10-11

Similar Documents

Publication Publication Date Title
EP2570648B1 (en) Electromagnetic fuel-injection valve
EP1602821A1 (en) Fuel injection valve
WO2020110881A1 (en) Solenoid
EP2000661B1 (en) Fuel injection valve
JP7006571B2 (en) solenoid
JP2007016769A (en) Fuel injection valve
JP4757073B2 (en) Fuel injection valve
US20050161537A1 (en) Fuel injection valve
EP2103803B1 (en) Electromagnetic fuel injection valve
JP2009103050A (en) Electromagnetic drive device
JP2000262076A (en) Ultra magnetostrictive actuator
JP4757072B2 (en) Fuel injection valve
JP4810273B2 (en) Fuel injection valve
JP2011099358A (en) Fuel injection valve
JP2017141725A (en) High pressure fuel supply pump
US6557823B2 (en) Electromagnetic valve
WO2021193355A1 (en) Solenoid valve
JP7088131B2 (en) solenoid
JP2010133490A (en) Solenoid valve
JP5786819B2 (en) solenoid valve
JP2003318024A (en) Solenoid and solenoid valve
JP2006307647A (en) Solenoid fuel injection valve
EP1749982A2 (en) Electromagnetically driven valve
JP3823435B2 (en) Engine fuel injection valve
JP2006144566A (en) Fuel injection valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110525

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110531

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees