JP4756844B2 - Converter lens - Google Patents

Converter lens Download PDF

Info

Publication number
JP4756844B2
JP4756844B2 JP2004295832A JP2004295832A JP4756844B2 JP 4756844 B2 JP4756844 B2 JP 4756844B2 JP 2004295832 A JP2004295832 A JP 2004295832A JP 2004295832 A JP2004295832 A JP 2004295832A JP 4756844 B2 JP4756844 B2 JP 4756844B2
Authority
JP
Japan
Prior art keywords
lens
magnification
lens group
lens unit
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004295832A
Other languages
Japanese (ja)
Other versions
JP2006106538A (en
JP2006106538A5 (en
Inventor
玲 岩間
則廣 難波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2004295832A priority Critical patent/JP4756844B2/en
Publication of JP2006106538A publication Critical patent/JP2006106538A/en
Publication of JP2006106538A5 publication Critical patent/JP2006106538A5/ja
Application granted granted Critical
Publication of JP4756844B2 publication Critical patent/JP4756844B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • G02B15/177Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a negative front lens or group of lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/143Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only
    • G02B15/1435Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only the first group being negative
    • G02B15/143503Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only the first group being negative arranged -+-
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/143Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only
    • G02B15/1435Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only the first group being negative
    • G02B15/143507Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only the first group being negative arranged -++

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Lenses (AREA)

Description

本発明はコンバータレンズに関し、例えばデジタルカメラ、ビデオカメラ等の撮影レンズをマスターレンズとして、その物体側に装着するコンバータレンズに関するものである。   The present invention relates to a converter lens, for example, a converter lens that is mounted on the object side of a photographing lens such as a digital camera or a video camera as a master lens.

デジタルカメラ、ビデオカメラ等の撮影レンズの物体側に装着して、撮影範囲を変えられるコンバータレンズには、焦点距離を長くし、望遠効果を高めるテレコンバータレンズや、焦点距離を短くし、撮影画角を広くするワイドコンバータレンズがある。   A converter lens that can be mounted on the object side of a photographic lens such as a digital camera or video camera to change the photographic range is a teleconverter lens that increases the focal length and enhances the telephoto effect. There is a wide converter lens that widens the corners.

これら2つの機能を1つの系で実現するコンバータレンズが、例えば特許文献1に開示されている。特許文献1に開示されたコンバータレンズは、マスターレンズへの装着する向きを逆にすることにより、テレコンバータレンズとワイドコンバータレンズとを切り替えるものである。   A converter lens that realizes these two functions in one system is disclosed in Patent Document 1, for example. The converter lens disclosed in Patent Document 1 switches between a teleconverter lens and a wide converter lens by reversing the mounting direction to the master lens.

また、特許文献2では、正の屈折力の第1レンズ群、負の屈折力の第2レンズ群、負の屈折力の第3レンズ群の3群構成のコンバータレンズで、第1レンズ群と第2レンズ群を移動させることで、アフォーカル倍率を1.6〜2倍まで変倍を行う例が開示されている。   In Patent Document 2, a converter lens having a three-group configuration including a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens group having a negative refractive power, An example in which the afocal magnification is changed from 1.6 to 2 times by moving the second lens group is disclosed.

特許文献3では、正の屈折力の第1レンズ群、負の屈折力の第2レンズ群、正の屈折力の第3レンズ群の3群構成のコンバータレンズで、第2レンズ群のみを移動させることで変倍を行う例が開示されている。   In Patent Document 3, only the second lens group is moved by a converter lens having a three-group configuration including a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens group having a positive refractive power An example in which zooming is performed by doing is disclosed.

特許文献4では、正の屈折力の第1レンズ群、負の屈折力の第2レンズ群、正の屈折力の第3レンズ群の3群構成のコンバータレンズで、少なくとも2つの群を移動させることで変倍を行う例が開示されている。
特開平7−64164号公報 特開2000−292695号公報 特開昭53−27044号公報 特開平9−5625号公報
In Patent Document 4, at least two groups are moved by a converter lens having a three-group configuration including a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens group having a positive refractive power. An example of performing zooming by this is disclosed.
JP-A-7-64164 JP 2000-292695 A JP-A-53-27044 Japanese Patent Laid-Open No. 9-5625

特許文献1は、ワイドコンバータレンズとテレコンバータレンズとを使い分ける際にマスターレンズに装着しなおす手間があり、使い勝手の点で課題がある。   In Patent Document 1, there is a trouble of reattaching to the master lens when properly using the wide converter lens and the teleconverter lens, and there is a problem in terms of usability.

特許文献2は、等倍を含んだ変倍ができる構成となっていないことや、変倍比が1.25倍と小さい等の課題がある。   Patent Document 2 has problems such as not having a configuration capable of zooming including the same magnification, and a zooming ratio as small as 1.25 times.

特許文献3は、第2レンズ群だけを移動させて変倍を行っているため、アフォーカル系を維持しながら連続的にアフォーカル倍率を変えることができない。また、第1レンズ群が1枚構成であるため、倍率色収差補正の点でも課題がある。   Since Patent Document 3 performs zooming by moving only the second lens group, the afocal magnification cannot be continuously changed while maintaining the afocal system. In addition, since the first lens group has a single lens configuration, there is a problem in terms of correcting chromatic aberration of magnification.

特許文献4は、正・負・正の3群構成において、最も低いアフォーカル倍率から最も高いアフォーカル倍率への変倍に際し、第2レンズ群が不動で、第1レンズ群及び第3レンズ群を物体側へ移動させて変倍する例が開示されている。この例では、第2レンズ群が固定となっているため、最も高いアフォーカル倍率を大きくしようとすると、第1レンズ群の移動量が大きくなる。その結果、最も高いアフォーカル倍率のときの全長が長くなる。また、前玉径は最も高いアフォーカル倍率の状態での軸外光線が通過する高さで決まるため、全長が長くなることは前玉径が大きくなることにつながる。このため、高い変倍比の実現にあたって、全長及び前玉径の小型化の点で課題がある。   In Patent Document 4, in the three-group configuration of positive, negative, and positive, the second lens group does not move during zooming from the lowest afocal magnification to the highest afocal magnification, and the first lens group and the third lens group An example of changing the magnification by moving the lens to the object side is disclosed. In this example, since the second lens group is fixed, an attempt to increase the highest afocal magnification increases the amount of movement of the first lens group. As a result, the total length at the highest afocal magnification becomes long. Further, since the front lens diameter is determined by the height through which the off-axis light beam passes at the highest afocal magnification, an increase in the total length leads to an increase in the front lens diameter. For this reason, in realizing a high zoom ratio, there is a problem in terms of downsizing the overall length and the front lens diameter.

また特許文献4には、正・負・正の3群構成において、最も低いアフォーカル倍率から最も高いアフォーカル倍率への変倍に際し、第1レンズ群が不動で、第2レンズ群を像側へ移動させ、第3レンズ群を像側に凸の軌跡を描くように移動させて変倍する例も開示されている。この例では、第1レンズ群が固定であるため、第2レンズ群が変倍機能を有する群となる。このような構成で、最も高いアフォーカル倍率を大きくしようとすると、第2レンズ群が像側へ大きく移動しなければならなくなるため、最も低いアフォーカル倍率の状態での第2レンズ群と第3レンズ群の間隔を縮めることができなくなる。その結果、最も低いアフォーカル倍率時の全長を縮めることが困難となり、このときの軸外光線が通過する高さが大きくなるため、前玉径の小型化の点でも課題がある。   In Patent Document 4, in the three-group configuration of positive, negative, and positive, when zooming from the lowest afocal magnification to the highest afocal magnification, the first lens group is stationary, and the second lens group is moved to the image side. An example of changing the magnification by moving the third lens group so as to draw a convex locus on the image side is also disclosed. In this example, since the first lens group is fixed, the second lens group is a group having a zooming function. In such a configuration, if the highest afocal magnification is to be increased, the second lens group has to move greatly to the image side, so the second lens group and the third lens group in the state of the lowest afocal magnification are the same. It becomes impossible to reduce the distance between the lens groups. As a result, it becomes difficult to reduce the total length at the lowest afocal magnification, and the height at which the off-axis light beam passes at this time is increased, so there is also a problem in terms of downsizing the front lens diameter.

本発明は、これらの従来例を考慮してなされたもので、所望の変倍比を得つつも、小型のズームコンバータレンズを実現することを目的とする。   The present invention has been made in consideration of these conventional examples, and an object thereof is to realize a small zoom converter lens while obtaining a desired zoom ratio.

本発明は、マスターレンズの前方(撮影レンズがマスターレンズの場合は物体(被写体)側)に装着し、マスターレンズの焦点距離を変換可能なコンバータレンズにおいて、前方より順に、負の屈折力の第1レンズ群、正の屈折力の第2レンズ群、負の屈折力の第3レンズ群を有し、最も低いアフォーカル倍率から最も高いアフォーカル倍率への変倍に際し、前記第1レンズ群と前記第2レンズ群が共に互いの間隔を変化させつつ前方へ単調移動することを特徴としている。そして、最も低いアフォーカル倍率から最も高いアフォーカル倍率への変倍の際の第1レンズ群の移動量をM1、最も低いアフォーカル倍率の状態での全長をTDwとするとき、
−0.752≦M /TD ≦−0.314
なる条件を満足することを特徴としている。
The present invention is a converter lens that is attached to the front of the master lens (on the object (subject) side when the photographing lens is a master lens) and can convert the focal length of the master lens. A first lens group, a second lens group having a positive refractive power, and a third lens group having a negative refractive power, and when changing the magnification from the lowest afocal magnification to the highest afocal magnification, Both the second lens groups are monotonously moved forward while changing the interval between them. When the moving amount of the first lens unit at the time of zooming from the lowest afocal magnification to the highest afocal magnification is M1, and the total length in the state of the lowest afocal magnification is TDw,
−0.752 ≦ M 1 / TD W ≦ −0.314
It is characterized by satisfying the following conditions.

本発明によれば、所望の変倍比を得つつ、小型のズームコンバータレンズを提供できる。   According to the present invention, it is possible to provide a small zoom converter lens while obtaining a desired zoom ratio.

図1を用いて、本発明のコンバータレンズの基本構成について説明する。   The basic configuration of the converter lens of the present invention will be described with reference to FIG.

図1において、Cはコンバータレンズ、Mは撮影レンズであるマスターレンズを示している。コンバータレンズCは、図1に示すように、マスターレンズMの前方(撮影レンズの物体側)に装着することで、マスターレンズMの焦点距離を変換する役割を果たしている。マスターレンズM中のGは光学的ローパスフィルターや赤外カットフィルター等の各種光学フィルター、フェースプレート等に対応して光学設計上設けられたの光学ブロックである。IPは像面であり、CCDセンサやCMOSセンサ等の固体撮像素子が配置される。   In FIG. 1, C represents a converter lens, and M represents a master lens which is a photographing lens. As shown in FIG. 1, the converter lens C is attached in front of the master lens M (on the object side of the photographing lens), thereby playing a role of converting the focal length of the master lens M. G in the master lens M is an optical block provided for optical design corresponding to various optical filters such as an optical low-pass filter and an infrared cut filter, a face plate, and the like. IP is an image plane on which a solid-state imaging device such as a CCD sensor or a CMOS sensor is arranged.

コンバータレンズCは、負の屈折力(光学的パワー=焦点距離の逆数)の第1レンズ群L1、正の屈折力の第2レンズ群L2、負の屈折力の第3レンズ群L3から構成される。本実施例では、アフォーカル系を維持しながら、連続的にアフォーカル倍率を変化させるために、第1レンズ群L1と第2レンズ群L2とを移動させることで変倍を行っている。具体的には、最も低いアフォーカル倍率から最も高いアフォーカル倍率への変倍に際し、第1レンズ群L1及び第2レンズ群L2を共に、互いの間隔を変化させながら単調に前方へ移動させている。   The converter lens C includes a first lens unit L1 having negative refractive power (optical power = reciprocal of focal length), a second lens unit L2 having positive refractive power, and a third lens unit L3 having negative refractive power. The In the present embodiment, zooming is performed by moving the first lens unit L1 and the second lens unit L2 in order to continuously change the afocal magnification while maintaining the afocal system. Specifically, at the time of zooming from the lowest afocal magnification to the highest afocal magnification, both the first lens unit L1 and the second lens unit L2 are moved forward monotonously while changing the mutual distance. Yes.

本実施例のコンバータレンズは、最も低いアフォーカル倍率のとき、第1レンズ群L1で負の屈折力の前群LFwを構成し、第2レンズ群L2と第3レンズ群L3とで全体として正の屈折力の後群LRwを構成すると考えると、ワイドコンバータレンズと同様のパワー配置とみなせる。また、最も高いアフォーカル倍率のとき、第1レンズ群L1と第2レンズL2とで全体として正の屈折力の前群LFtを構成し、第3レンズ群L3で負の屈折力の後群LRtを構成すると考えると、テレコンバータレンズと同様のパワー配置とみなせる。このように、本実施例のコンバータレンズは、第1レンズ群L1と第2レンズ群L2とを適切に移動させることにより、ワイドコンバータレンズとテレコンバータレンズの効果を両立させるコンバータレンズを実現できる。以後、最も低いアフォーカル倍率を最小倍率、最も高いアフォーカル倍率を最大倍率と呼ぶこととする。   In the converter lens of this example, when the afocal magnification is the lowest, the first lens unit L1 forms a front group LFw having a negative refractive power, and the second lens unit L2 and the third lens unit L3 are positive as a whole. If it is considered that the rear group LRw of this refractive power is constituted, it can be regarded as a power arrangement similar to that of the wide converter lens. At the highest afocal magnification, the first lens unit L1 and the second lens L2 form a front group LFt having a positive refractive power as a whole, and the third lens unit L3 has a rear group LRt having a negative refractive power. It can be considered that the power arrangement is the same as that of the teleconverter lens. Thus, the converter lens of the present embodiment can realize a converter lens that achieves both the effects of the wide converter lens and the teleconverter lens by appropriately moving the first lens group L1 and the second lens group L2. Hereinafter, the lowest afocal magnification is referred to as the minimum magnification, and the highest afocal magnification is referred to as the maximum magnification.

次に、移動群と移動方向の作用効果について説明する。   Next, the effect of the moving group and the moving direction will be described.

本実施例のコンバータレンズは、第1レンズ群L1と第2レンズ群L2の間隔と、第2レンズ群L2と第3レンズ群L3の間隔の大小関係を変えることで、最小倍率から最大倍率への変倍を行っている。   The converter lens of the present embodiment changes from the minimum magnification to the maximum magnification by changing the size relationship between the distance between the first lens group L1 and the second lens group L2 and the distance between the second lens group L2 and the third lens group L3. The zooming is done.

具体的には、前述したように、最小倍率から最大倍率への変倍に際し、正の屈折力の第2レンズ群を前方へ移動させて、第1レンズ群L1と第2レンズ群L2の間隔を小さくし、第2レンズ群L2と第3レンズ群L3の間隔を大きくすることによって変倍を行っている。そして、第2レンズ群L2の移動により変化したアフォーカルの度合いを、第1レンズ群L1を移動させることで補償している。   Specifically, as described above, when changing the magnification from the minimum magnification to the maximum magnification, the second lens unit having a positive refractive power is moved forward, and the distance between the first lens unit L1 and the second lens unit L2 is reached. Is reduced and the distance between the second lens unit L2 and the third lens unit L3 is increased to perform zooming. Then, the afocal degree changed by the movement of the second lens unit L2 is compensated by moving the first lens unit L1.

アフォーカル系を維持しながら高変倍比を得るためには、最大倍率の状態での第1レンズ群L1と第2レンズ群L2の間隔が狭すぎては好ましくなく、ある程度の広さを持たせる必要がある。   In order to obtain a high zoom ratio while maintaining the afocal system, it is not preferable that the distance between the first lens unit L1 and the second lens unit L2 in the maximum magnification state is too small, and a certain amount of space is provided. It is necessary to let

そこで、本実施例では、最小倍率から最大倍率への変倍に際し、最小倍率の状態での全長の増大を抑え、アフォーカル系を維持しながら変倍を行うために、第1レンズ群L1を前方へ移動させている。   Therefore, in this embodiment, when changing the magnification from the minimum magnification to the maximum magnification, the first lens unit L1 is used to suppress the increase in the total length in the state of the minimum magnification and perform the magnification while maintaining the afocal system. It is moving forward.

第1レンズ群L1を移動させる場合の注意点について述べる。第2レンズ群L2の移動量が極端に大きい場合には、第2レンズ群L2の移動分以上に最小倍率の状態での第1レンズ群L1と第2レンズ群L2の間隔を大きく確保せねばならないため、最小倍率の状態での全長が過大となる。また、それに加えて、画角の広い最小倍率の状態で前玉径が決定されるため、前玉径の小型化の点で好ましくない。更に、第2レンズ群L1の移動に伴うアフォーカル度合いの変化(くずれ)も大きくなるため、それを補償する第1レンズ群L1の移動量も大きくしなければならない。   Points to note when moving the first lens unit L1 will be described. When the amount of movement of the second lens unit L2 is extremely large, it is necessary to ensure a large interval between the first lens unit L1 and the second lens unit L2 in the state of the minimum magnification more than the amount of movement of the second lens unit L2. Therefore, the total length at the minimum magnification is excessive. In addition, since the front lens diameter is determined with the minimum magnification having a wide angle of view, it is not preferable in terms of downsizing the front lens diameter. Furthermore, since the change (displacement) in the afocal degree accompanying the movement of the second lens unit L1 also increases, the amount of movement of the first lens unit L1 that compensates for it must also be increased.

そこで、本実施例では、第2レンズ群L2を、変倍機能を有するレンズ群、第1レンズ群L1を、アフォーカル系を維持する機能を有するレンズ群とし、第1レンズ群L1の移動量を以下の条件を満たすようにした。   Therefore, in this embodiment, the second lens unit L2 is a lens unit having a zooming function, the first lens unit L1 is a lens unit having a function of maintaining an afocal system, and the amount of movement of the first lens unit L1 The following conditions were satisfied.

−0.752≦M-0.752 ≦ M 1 /TD/ TD W ≦−0.314≦ −0.314 (1)(1)

ここで、Mは、最小アフォーカル倍率から最大アフォーカル倍率への変倍の際の第1レンズ群L1の移動量、TDは最小アフォーカル倍率の状態でのコンバータレンズCの全長である。ただし、移動量に関しては、光軸上の後方(マスターレンズ側、撮影レンズの場合は像側)への移動を正方向とする。 Here, M 1 is, the amount of movement of the first lens unit L1 at the time of zooming from a minimum afocal magnification to a maximum afocal magnification, TD w is the total length of the converter lens C in the state of minimum afocal magnification . However, regarding the amount of movement, the forward movement on the optical axis (the master lens side or the image side in the case of a taking lens) is the positive direction.

条件式(1)は、第1レンズ群L1の移動量と最小倍率の状態での全長を規定する式である。   Conditional expression (1) is an expression that defines the total amount of the first lens unit L1 in the state of movement and minimum magnification.

条件式(1)の上限を超えると、第1レンズ群L1の移動量が大きくなり、所望の変倍比を得るための移動量の適切な関係を維持するためには、第2レンズ群L1も大きく物体側へ移動させなければならない。その結果、第2レンズ群L2の過大な移動量を見越し、最小倍率の状態での第1レンズ群L1と第2レンズ群L2の距離を十分長く確保しなければならないため、最小倍率の状態での全長が過大となる。また、これに起因して、最小倍率の状態での第1レンズ群L1を通過する軸外光線の高さが高くなるので、前玉径の小型化の点でも好ましくない。   When the upper limit of conditional expression (1) is exceeded, the amount of movement of the first lens unit L1 increases, and in order to maintain an appropriate relationship of the amount of movement to obtain a desired zoom ratio, the second lens unit L1 Must be moved to the object side. As a result, an excessive amount of movement of the second lens unit L2 is anticipated, and the distance between the first lens unit L1 and the second lens unit L2 in the minimum magnification state must be sufficiently long. The total length of becomes excessive. Further, due to this, the height of the off-axis light beam passing through the first lens unit L1 in the state of the minimum magnification becomes high, which is not preferable in terms of reducing the front lens diameter.

一方、条件式(1)の下限を超えると、第1レンズ群L1の移動量が小さくなり、所望の変倍比を得るためには、第2レンズ群L2の移動により生じたアフォーカルの度合いの変動を十分補正しきれなくなるので好ましくない。   On the other hand, when the lower limit of conditional expression (1) is exceeded, the amount of movement of the first lens unit L1 becomes small, and in order to obtain a desired zoom ratio, the degree of afocal caused by the movement of the second lens unit L2 This is not preferable because the fluctuation of the above cannot be corrected sufficiently.

本実施例のコンバータレンズは、このように第1レンズ群L1の移動量を適切に設定することにより、アフォーカル系を維持しながら、連続的にアフォーカル倍率を変化させ、前玉径の小型化と高変倍比化の両立を図っている。   In the converter lens of this embodiment, by appropriately setting the moving amount of the first lens unit L1 in this way, the afocal magnification is continuously changed while maintaining the afocal system, and the front lens diameter is small. To achieve both high speed and high zoom ratio.

マスターレンズMが単焦点レンズであった場合、本実施例のコンバータレンズCをマスターレンズMに装着することで、全体としてズームレンズとして使用することが可能となる。また、本実施例のコンバータレンズは、等倍を含むアフォーカル倍率が可変のコンバータであるため、マスターレンズMとしてズームレンズに装着した場合、ズームレンズの広角端をさらに広角化させることができると共に、ズームレンズの望遠端ではさらに望遠効果を高めることが可能となる。後述する数値実施例では、マスターレンズMとして、物体側から順に、負・正・正の屈折力の3つのレンズ群で構成された図2に示すようなズームレンズを用いている。   When the master lens M is a single focus lens, the converter lens C of this embodiment is attached to the master lens M, so that it can be used as a zoom lens as a whole. In addition, since the converter lens of the present embodiment is a converter having a variable afocal magnification including equal magnification, when the zoom lens is mounted as the master lens M, the wide angle end of the zoom lens can be further widened. The telephoto effect can be further enhanced at the telephoto end of the zoom lens. In a numerical example to be described later, as the master lens M, a zoom lens as shown in FIG. 2 composed of three lens groups of negative, positive, and positive refractive power in order from the object side is used.

なお、以上の説明では第2レンズ群L2の移動により変化したアフォーカルの度合いを、第1レンズ群L1を物体側へ移動させることで補償する形態を示している。しかし本発明のコンバータレンズはこのような形態に限らず、第3レンズ群L3を移動させることにより、第1レンズ群L1と第2レンズ群L2の距離と第2レンズ群L2と第3レンズ群L3の距離の大小関係を変え、最小倍率から最大倍率へ変倍することも可能である。   In the above description, the form in which the degree of afocal change caused by the movement of the second lens unit L2 is compensated by moving the first lens unit L1 toward the object side is shown. However, the converter lens of the present invention is not limited to such a form, and the distance between the first lens group L1 and the second lens group L2, the second lens group L2, and the third lens group can be moved by moving the third lens group L3. It is also possible to change the size relationship of the distance of L3 to change the magnification from the minimum magnification to the maximum magnification.

後述する数値実施例1〜5に示すコンバータレンズの各レンズ群の構成について説明する。   The configuration of each lens group of the converter lens shown in Numerical Examples 1 to 5 described later will be described.

まず、各数値実施例で共通する点について説明する。   First, common points in each numerical example will be described.

本実施例のコンバータレンズは、第1レンズ群L1は屈折力が強い(大きい)ため、レンズ群内で軸上色収差及び倍率色収差の補正が必要となる。そこで、各数値実施例では第1レンズ群L1に少なくとも1枚の正レンズを有するように構成している。これにより、軸上色収差、倍率色収差が補正され、コンバータレンズCを装着したことによる色にじみの増加を最低限に抑えられるというメリットがある。   In the converter lens of this embodiment, since the first lens unit L1 has a strong (large) refractive power, it is necessary to correct axial chromatic aberration and lateral chromatic aberration in the lens unit. Therefore, in each numerical example, the first lens unit L1 is configured to have at least one positive lens. Accordingly, there is an advantage that the longitudinal chromatic aberration and the lateral chromatic aberration are corrected, and an increase in color blur due to the mounting of the converter lens C can be minimized.

正の屈折力の第2レンズ群L2は、少なくとも2枚の正レンズを有するように構成している。第2レンズ群L2の正の屈折力を2枚の正レンズで分担することで、各レンズの屈折力が弱まり、レンズの曲率半径を緩く(大きく)設定できるようになるため、球面収差の補正に効果的である。また、正の屈折力の第2レンズ群L2中に少なくとも1枚の負レンズを有するよう構成することで、軸上色収差、倍率色収差が補正され、コンバータレンズCを装着したことによる色にじみの増加を抑制している。   The second lens unit L2 having a positive refractive power is configured to have at least two positive lenses. Since the positive refractive power of the second lens unit L2 is shared by the two positive lenses, the refractive power of each lens is weakened and the radius of curvature of the lens can be set to be loose (large), thereby correcting spherical aberration. It is effective. In addition, by including at least one negative lens in the second lens unit L2 having a positive refractive power, the axial chromatic aberration and the lateral chromatic aberration are corrected, and the color blur increases due to the mounting of the converter lens C. Is suppressed.

第3レンズ群L3は、第1レンズ群L1や第2レンズ群L3に比べて屈折力が弱いため、単レンズで構成することが可能であり、これによりレンズ構成の簡素化を図っている。   Since the third lens unit L3 has a weak refractive power compared to the first lens unit L1 and the second lens unit L3, it can be configured with a single lens, thereby simplifying the lens configuration.

次に各数値実施例のコンバータレンズの具体的な構成について説明する。   Next, a specific configuration of the converter lens of each numerical example will be described.

図3は、数値実施例1のコンバータレンズCをマスターレンズMに装着した状態での断面図である。   FIG. 3 is a cross-sectional view in a state where the converter lens C of Numerical Example 1 is attached to the master lens M.

図3において、第1レンズ群L1は、前方より後方へ順に、前方に凸面を向けた負メニスカスレンズ11、両凹形状の負レンズ12、前方に凸面を向けた正メニスカスレンズ13で構成している。負メニスカスレンズ11は、画角変化の大きい光学系において、高変倍比化したときにコマ収差・非点収差・像面湾曲など諸収差の発生を抑えるために有効である。   In FIG. 3, the first lens unit L1 includes, in order from the front to the rear, a negative meniscus lens 11 having a convex surface facing forward, a biconcave negative lens 12, and a positive meniscus lens 13 having a convex surface facing forward. Yes. The negative meniscus lens 11 is effective for suppressing the occurrence of various aberrations such as coma, astigmatism, and field curvature when the zoom ratio is increased in an optical system having a large change in the angle of view.

第2レンズ群L2は、前方から後方へ順に、両凸形状の2枚の正レンズ21,22、前方に凸面を向けた負メニスカスレンズ23で構成している。   The second lens unit L2 includes, in order from the front to the rear, two biconvex positive lenses 21 and 22, and a negative meniscus lens 23 having a convex surface forward.

第3レンズ群L3は、両凹形状の負レンズ31で構成している。   The third lens unit L3 includes a biconcave negative lens 31.

図9は、数値実施例2のコンバータレンズCをマスターレンズMに装着した状態での断面図である。   FIG. 9 is a cross-sectional view in a state where the converter lens C of Numerical Example 2 is attached to the master lens M.

図9において、第1レンズ群L1は、前方より後方へ順に、前方に凸面を向けた負メニスカスレンズ11、両凹形状の負レンズ12、両凸形状の正レンズ13で構成している。数値実施例2では、第1レンズ群L1内に非球面を用いることで、前玉径の小型化と歪曲収差補正を両立させた例である。また、正レンズ13は両凸形状とすることで、正メニスカス形状では補正が困難だった最大倍率の状態における像面湾曲のアンダー傾向を補正しやすくしている。   In FIG. 9, the first lens unit L1 includes a negative meniscus lens 11, a biconcave negative lens 12, and a biconvex positive lens 13 having a convex surface directed forward from the front to the rear. In Numerical Example 2, an aspheric surface is used in the first lens unit L1, thereby reducing both the front lens diameter and correcting distortion. In addition, the positive lens 13 has a biconvex shape, so that it is easy to correct the under tendency of the curvature of field at the maximum magnification, which was difficult to correct with the positive meniscus shape.

第2レンズ群L2は、前方から後方へ順に、両凸形状の2枚の正レンズ21,22、前方に凸面を向けた負メニスカスレンズ23で構成している。   The second lens unit L2 includes, in order from the front to the rear, two biconvex positive lenses 21 and 22, and a negative meniscus lens 23 having a convex surface forward.

第3レンズ群L3は、前方に凹面を向けた負メニスカスレンズ31で構成している。   The third lens unit L3 includes a negative meniscus lens 31 having a concave surface facing forward.

図15は、数値実施例3のコンバータレンズCをマスターレンズMに装着した状態での断面図である。数値実施例3は、第2レンズ群L2の屈折力を強めることで、最大倍率の状態での全長を短縮した例である。   FIG. 15 is a cross-sectional view of the converter lens C of Numerical Example 3 attached to the master lens M. Numerical Example 3 is an example in which the total length in the maximum magnification state is shortened by increasing the refractive power of the second lens unit L2.

図15において、第1レンズ群L1は、前方より後方へ順に、前方に凸面を向けた負メニスカスレンズ11、両凹形状の負レンズ12、前方に凸面を向けた正メニスカスレンズ13で構成している。また、数値実施例2と同様、第1レンズ群L1に非球面を用いることで、前玉径の小型化と歪曲収差の補正を両立させている。   In FIG. 15, the first lens unit L1 includes, in order from the front to the rear, a negative meniscus lens 11 having a convex surface forward, a biconcave negative lens 12, and a positive meniscus lens 13 having a convex surface forward. Yes. Similarly to Numerical Example 2, the use of an aspherical surface for the first lens unit L1 makes it possible to reduce the size of the front lens and correct distortion.

第2レンズ群L2は、前方から後方へ順に、両凸形状の2枚の正レンズ21,22、前方に凸面を向けた負メニスカスレンズ23で構成している。   The second lens unit L2 includes, in order from the front to the rear, two biconvex positive lenses 21 and 22, and a negative meniscus lens 23 having a convex surface forward.

第3レンズ群L3は、前方に凹面を向けた負メニスカスレンズ31で構成している。   The third lens unit L3 includes a negative meniscus lens 31 having a concave surface facing forward.

図21は、数値実施例4のコンバータレンズCをマスターレンズMに装着した状態での断面図である。   FIG. 21 is a cross-sectional view in a state where the converter lens C of Numerical Example 4 is attached to the master lens M.

図21において、第1レンズ群L1は、前方より後方へ順に、前方に凸面を向けた負メニスカスレンズ11、両凹形状の負レンズ12、両凸形状の正レンズ13で構成している。   In FIG. 21, the first lens unit L1 includes a negative meniscus lens 11, a biconcave negative lens 12, and a biconvex positive lens 13 with a convex surface facing forward, in order from the front to the rear.

第2レンズ群L2は、前方から後方へ順に、両凸形状の正レンズ21、前方に凸面を向けた正メニスカスレンズ22、前方に凸面を向けた負メニスカスレンズ23で構成している。正レンズ22を、前方に凸面を向けたメニスカス形状とすることで、像面湾曲のアンダー傾向を補正する効果を持たせている。   The second lens unit L2 includes, in order from the front to the rear, a biconvex positive lens 21, a positive meniscus lens 22 having a convex surface forward, and a negative meniscus lens 23 having a convex surface forward. The positive lens 22 has a meniscus shape with a convex surface facing forward, thereby providing an effect of correcting the under-trend of field curvature.

第3レンズ群L3は、前方に凹面を向けた負メニスカスレンズ31で構成している。そして、この負レンズ31に非球面を用いることで歪曲の補正を行っている。第3レンズ群L3は最も径が小さいので、非球面加工コストの削減にも効果的である。   The third lens unit L3 includes a negative meniscus lens 31 having a concave surface facing forward. Then, distortion is corrected by using an aspherical surface for the negative lens 31. Since the third lens unit L3 has the smallest diameter, it is effective in reducing the aspherical processing cost.

図27は、数値実施例5のコンバータレンズCをマスターレンズMに装着した状態での断面図である。   FIG. 27 is a cross-sectional view of the converter lens C of Numerical Example 5 attached to the master lens M.

図27において、第1レンズ群L1は、前方より後方へ順に、前方に凸面を向けた負メニスカスレンズ11、両凹形状の負レンズ12、前方に凸面を向けた正メニスカスレンズ22で構成している。本数値実施例でも、第1レンズ群L1に非球面を用いることで、小型化と歪曲収差の補正を両立させている。   In FIG. 27, the first lens unit L1 includes, in order from the front to the rear, a negative meniscus lens 11 having a convex surface forward, a biconcave negative lens 12, and a positive meniscus lens 22 having a convex surface forward. Yes. Also in the present numerical example, by using an aspherical surface for the first lens unit L1, both miniaturization and correction of distortion are achieved.

第2レンズ群L2は、前方から後方へ順に、両凸形状の2枚の正レンズ21,22、両凹形状の負レンズ23で構成している。また、第2レンズ群L2に非球面を用いることで、高次の像面湾曲の補正を容易にしている。   The second lens unit L2 includes, in order from the front to the rear, two biconvex positive lenses 21 and 22 and a biconcave negative lens 23. Further, by using an aspherical surface for the second lens unit L2, correction of higher-order field curvature is facilitated.

第3レンズ群L3は、前方に凹面を向けた負メニスカスレンズ31で構成している。負レンズ33を両凹形状とすることで、最小倍率の状態における像面湾曲のアンダー傾向を補正することが可能となる。   The third lens unit L3 includes a negative meniscus lens 31 having a concave surface facing forward. By making the negative lens 33 into a biconcave shape, it becomes possible to correct an under tendency of field curvature in the state of the minimum magnification.

次に本発明のコンバータレンズが満足すべき好ましい条件について説明する。本実施例のコンバータレンズは以下の条件式を満足している。   Next, preferable conditions that the converter lens of the present invention should satisfy will be described. The converter lens of the present example satisfies the following conditional expression.

ここで、fは第1レンズ群L1の焦点距離、fは第2レンズ群L2の焦点距離、f1Pは第1レンズ群L1中の正レンズ13の焦点距離、f2Nは第2レンズ群L2中の負レンズ23の焦点距離、mは最小アフォーカル倍率、mは最大アフォーカル倍率、Mは最小アフォーカル倍率から最大アフォーカル倍率への変倍の際の第2レンズ群L2の移動量(光軸上後方への移動を正方向)、e1tは最大アフォーカル倍率の状態での第1レンズ群L1の後側主点と第2レンズ群L2の前側主点の間隔、TDは最大アフォーカル倍率の状態でコンバータレンズCの全長、TDは最小アフォーカル倍率の状態でのコンバータレンズCの全長、fFtは最大アフォーカル倍率の状態での第1レンズ群L1と第2レンズ群L2の合成焦点距離、r,rはそれぞれ第1レンズ群L1中で最も前方に位置するレンズの前方及び後方の面の曲率半径である。 Here, f 1 is the focal length of the first lens unit L1, f 2 is the focal length of the second lens unit L2, f 1P is the focal length of the positive lens 13 of the first lens unit L1, f 2N second lens focal length of the negative lens 23 in the group L2, m w is the minimum afocal magnification, m t is the maximum afocal magnification, M 2 is the second lens group upon zooming from a minimum afocal magnification to a maximum afocal magnification A moving amount of L2 (moving backward on the optical axis in the positive direction), e 1t is a distance between the rear principal point of the first lens unit L1 and the front principal point of the second lens unit L2 in the state of the maximum afocal magnification. , TD t is the full length of the converter lens C in the state of the maximum afocal magnification, TD w is the full length of the converter lens C in the state of the minimum afocal magnification, and f Ft is the first lens unit L1 in the state of the maximum afocal magnification. And the second lens unit L2 Focal length, r 1, r 2 are each radius of curvature of the anterior and posterior surfaces of the lens positioned most forward in the first lens unit L1.

条件式(2)は、第1レンズ群L1中の正レンズの焦点距離を規定する条件、すなわち第1レンズ群L1中の正レンズの屈折力を規定する条件である。第1レンズ群L1中の正レンズの焦点距離と第1レンズ群L1の焦点距離の関係は、最大倍率と最小倍率に依存しない関係であるため、最大倍率と最小倍率で規格化している。   Conditional expression (2) is a condition that defines the focal length of the positive lens in the first lens unit L1, that is, a condition that defines the refractive power of the positive lens in the first lens unit L1. Since the relationship between the focal length of the positive lens in the first lens unit L1 and the focal length of the first lens unit L1 is a relationship that does not depend on the maximum magnification and the minimum magnification, it is normalized by the maximum magnification and the minimum magnification.

条件式(2)の下限を超えると、第1レンズ群L1中の正レンズの屈折力が過大となるため、第1レンズ群L1の屈折力を所定の値に保つためには、負レンズの屈折力も増大させなければならない。これにより、各レンズの曲率半径がきつく(小さく)なるため、軸外光線の入射角と射出角の角度変動が大きくなり、特に最小倍率の状態でのコマ収差や非点収差の補正が困難となるので好ましくない。一方、条件式(2)の上限を超えると、正レンズの屈折力が小さすぎるため、色収差補正が不十分となり、色にじみの原因となる。   If the lower limit of conditional expression (2) is exceeded, the refractive power of the positive lens in the first lens unit L1 becomes excessive, and in order to keep the refractive power of the first lens unit L1 at a predetermined value, The refractive power must also be increased. As a result, the radius of curvature of each lens becomes tight (small), and the angle fluctuation of the incident angle and the exit angle of off-axis rays becomes large, and it is difficult to correct coma and astigmatism especially at the minimum magnification. This is not preferable. On the other hand, when the upper limit of conditional expression (2) is exceeded, the refractive power of the positive lens is too small, so that chromatic aberration correction becomes insufficient, causing color blurring.

条件式(3)は、第2レンズ群L2中の負レンズの屈折力を規定する条件である。第2レンズ群L2中の負レンズの焦点距離と第2レンズ群L2の焦点距離の関係は、最大倍率と最小倍率に依存しない関係であるため、最大倍率と最小倍率で規格化している。   Conditional expression (3) is a condition that defines the refractive power of the negative lens in the second lens unit L2. Since the relationship between the focal length of the negative lens in the second lens unit L2 and the focal length of the second lens unit L2 is a relationship that does not depend on the maximum magnification and the minimum magnification, it is standardized by the maximum magnification and the minimum magnification.

条件式(3)の下限を超えると、第2レンズ群L2中の負レンズの屈折力が過大となるため、第2レンズ群L2の屈折力を所定の値に保つためには、正レンズの屈折力も増大させなければならない。これにより、各レンズの曲率半径がきつくなるため、軸外光線の入射角と射出角の角度変動が大きくなり、特に最大倍率の状態でのコマ収差や非点収差補正が困難となるので好ましくない。一方、条件式(3)の上限を超えると、負レンズの屈折力が小さすぎるため、色収差補正が不十分となり、色にじみの原因となる。   If the lower limit of the conditional expression (3) is exceeded, the refractive power of the negative lens in the second lens unit L2 becomes excessive, and in order to keep the refractive power of the second lens unit L2 at a predetermined value, The refractive power must also be increased. As a result, the radius of curvature of each lens becomes tight, so that the fluctuations in the incident angle and exit angle of off-axis rays become large, and it is difficult to correct coma and astigmatism particularly at the maximum magnification. . On the other hand, if the upper limit of conditional expression (3) is exceeded, the refractive power of the negative lens is too small, so that chromatic aberration correction becomes insufficient, causing color blurring.

条件式(4)は、最小倍率から最大倍率への変倍の際の第1レンズ群L1の移動量に対する第2レンズ群L2の移動量を規定した条件である。   Conditional expression (4) is a condition that defines the amount of movement of the second lens unit L2 with respect to the amount of movement of the first lens unit L1 upon zooming from the minimum magnification to the maximum magnification.

条件式(4)の下限を超えると、第2レンズ群L2の移動量が小さくすぎるため、所望の変倍比が得られない。一方、条件式(4)の上限を超えると、第2レンズ群L2の移動量が過大となるため、最小倍率の状態での第1レンズ群L1と第2レンズ群L2の間隔を第2レンズ群L2の移動量を見込み、十分広くとらなければならない。その結果、最小倍率の状態でコンバータレンズCの全長が過大となるだけでなく、最小倍率の状態で第1レンズ群L1を通過する軸外光線の高さを小さくできないため、最小倍率の状態で前玉径が決定され、前玉径の小型化の点で好ましくない。   If the lower limit of conditional expression (4) is exceeded, the amount of movement of the second lens unit L2 is too small, and a desired zoom ratio cannot be obtained. On the other hand, if the upper limit of conditional expression (4) is exceeded, the amount of movement of the second lens unit L2 becomes excessive, so the distance between the first lens unit L1 and the second lens unit L2 at the minimum magnification is set to the second lens unit. In view of the amount of movement of the group L2, it must be sufficiently wide. As a result, not only the total length of the converter lens C becomes excessive in the minimum magnification state, but also the height of the off-axis light beam passing through the first lens unit L1 cannot be reduced in the minimum magnification state. The front ball diameter is determined, which is not preferable in terms of downsizing the front ball diameter.

条件式(5)は、第1レンズ群L1中の最も前方に配置されたレンズ(負レンズ11)の形状因子を規定する条件である。   Conditional expression (5) is a condition that defines the shape factor of the lens (negative lens 11) disposed in the forefront in the first lens unit L1.

条件式(5)の下限を超えると、負レンズ11の形状は前方に凹面を向けた負レンズとなり、軸外光線と負レンズ11の物体側の面とのなす角が大きくなるため、歪曲収差の補正の点で好ましくない。一方、条件式(5)の上限を超えると、所望の変倍比を得るために、レンズ11の後方の面の曲率半径を小さくせねばならず、オーバー側の球面収差が発生するので好ましくない。   If the lower limit of conditional expression (5) is exceeded, the shape of the negative lens 11 becomes a negative lens with a concave surface facing forward, and the angle formed between the off-axis light beam and the object-side surface of the negative lens 11 becomes large. It is not preferable in terms of correction. On the other hand, if the upper limit of conditional expression (5) is exceeded, in order to obtain a desired zoom ratio, the radius of curvature of the rear surface of the lens 11 must be reduced, and over-side spherical aberration occurs, which is not preferable. .

条件式(6)は、最大倍率の状態での第1レンズ群L1と第2レンズ群L2の合成焦点距離に対する第1レンズ群L1の後側主点と第2レンズ群L2の前側主点の間隔を規定する条件である。   Conditional expression (6) indicates that the rear principal point of the first lens unit L1 and the front principal point of the second lens unit L2 with respect to the combined focal length of the first lens unit L1 and the second lens unit L2 at the maximum magnification state. This is a condition that defines the interval.

条件式(6)の下限を超えると、最大倍率の状態での第1レンズ群L1と第2レンズ群L2の主点間隔が小さくなるため、所望の最大倍率を得るためには、第1レンズ群の屈折力を強めなければならない。これにより、ペッツバール和がプラス側に増大し、像面湾曲のアンダー傾向が強まり好ましくない。   If the lower limit of the conditional expression (6) is exceeded, the distance between the principal points of the first lens unit L1 and the second lens unit L2 in the maximum magnification state becomes small. Therefore, in order to obtain a desired maximum magnification, the first lens The power of the group must be strengthened. As a result, the Petzval sum increases to the plus side, and the under-curve tendency of field curvature is increased, which is not preferable.

一方、条件式(6)の上限を超えると、最大倍率の状態での第1レンズ群L1と第2レンズ群L2の間隔が長くなり、最大倍率の状態で全長が過大となるだけでなく、最小倍率の状態で第1レンズ群L1を通過する軸外光線の高さより最大倍率の状態で第1レンズ群L1を通過する軸外光線の高さが高くなり、前玉径の小型化の点で好ましくない。   On the other hand, if the upper limit of conditional expression (6) is exceeded, the distance between the first lens unit L1 and the second lens unit L2 in the maximum magnification state becomes long, and the total length becomes excessive in the maximum magnification state. The height of the off-axis light beam that passes through the first lens unit L1 at the maximum magnification is higher than the height of the off-axis light beam that passes through the first lens unit L1 at the minimum magnification. It is not preferable.

条件式(7)は、最小倍率の状態でのコンバータレンズCの全長に対する最大倍率の状態でのコンバータレンズCの全長を規定する条件である。   Conditional expression (7) is a condition that defines the total length of the converter lens C in the maximum magnification state relative to the total length of the converter lens C in the minimum magnification state.

条件式(7)の下限を超えると、最大倍率の状態での全長が短いため、所望の変倍比を得るには、第2レンズ群L2が大きく前方に移動して変倍しなければならない。このため、第2レンズ群L2の移動量を確保するよう、最小倍率の状態で第1レンズ群L1と第2レンズ群L2の間隔を広げなければならず、この結果、最小倍率の状態での全長が過大となるだけでなく、第1レンズ群L1を通過する軸外光線の高さが高くなるため、最小倍率の状態で前玉径が決定され、前玉径の小型化の点でも好ましくない。   If the lower limit of conditional expression (7) is exceeded, the total length in the maximum magnification state is short, and in order to obtain a desired zoom ratio, the second lens unit L2 must move greatly forward and zoom. . For this reason, the interval between the first lens unit L1 and the second lens unit L2 must be widened in the state of the minimum magnification so as to ensure the amount of movement of the second lens unit L2, and as a result, in the state of the minimum magnification. Not only is the total length excessive, but the height of the off-axis light beam that passes through the first lens unit L1 increases, so that the front lens diameter is determined at the minimum magnification, which is also preferable in terms of reducing the front lens diameter. Absent.

一方、条件式(7)の上限を超えると、最大倍率の状態での全長が過大となり、最小倍率の状態で第1レンズ群L1を通過する軸外光線の高さより最大倍率の状態で第1レンズ群L1を通過する軸外光線の高さが高くなるため、前玉径の小型化の点で好ましくなく。   On the other hand, if the upper limit of conditional expression (7) is exceeded, the total length in the maximum magnification state becomes excessive, and the first magnification in the maximum magnification state is higher than the height of the off-axis light beam passing through the first lens unit L1 in the minimum magnification state. Since the height of the off-axis light beam passing through the lens unit L1 is increased, it is not preferable in terms of reducing the front lens diameter.

特に前玉径の小型化のためには、条件式(1)と条件式(7)を両立することが好ましい。   In particular, it is preferable to satisfy both conditional expression (1) and conditional expression (7) in order to reduce the front lens diameter.

条件式(8)は、第1レンズ群L1の移動量に対する第1レンズ群L1の焦点距離を規定した条件である。   Conditional expression (8) defines the focal length of the first lens unit L1 with respect to the movement amount of the first lens unit L1.

条件式(8)の下限を超えると、第1レンズ群L1の屈折力が強まるため、ペッツバール和がプラス側に増大し、像面湾曲のアンダー傾向が強まり好ましくない。一方、条件式(8)の上限を超えると、第1レンズ群L1の屈折力が弱まるため、所望の変倍比を得るには、最小倍率の状態で第1レンズ群L1と第2レンズ群L2の間隔を増大させなければならない。このため、最小倍率の状態で全長が過大となるだけでなく、第1レンズ群L1を通過する軸外光線の高さが高くなるため、最小倍率の状態で前玉径が決定され、前玉径の小型化の点でも好ましくない。   Exceeding the lower limit of conditional expression (8) is not preferable because the refractive power of the first lens unit L1 increases, and the Petzval sum increases to the plus side, which tends to increase the under tendency of field curvature. On the other hand, if the upper limit of conditional expression (8) is exceeded, the refractive power of the first lens unit L1 is weakened. Therefore, in order to obtain a desired zoom ratio, the first lens unit L1 and the second lens unit are in a state of minimum magnification. The interval of L2 must be increased. For this reason, not only the total length becomes excessive in the state of the minimum magnification, but also the height of the off-axis light beam passing through the first lens unit L1 increases, so that the front lens diameter is determined in the state of the minimum magnification, and the front lens It is not preferable also from the point of size reduction.

条件式(9)は、第2レンズ群L2の移動量に対する第2レンズ群L2の焦点距離を規定した条件である。   Conditional expression (9) is a condition that defines the focal length of the second lens unit L2 with respect to the movement amount of the second lens unit L2.

条件式(9)の下限を超えると、第2レンズ群L2の屈折力が強まるため、ペッツバール和がプラス側に増大し、像面湾曲のアンダー傾向が強まり好ましくない。一方、条件式(9)の上限を超えると、第2レンズ群L2の屈折力が弱まるため、所望の変倍比を得るには、第1レンズ群L1と第2レンズ群L2の間隔を増大させなければならない。このため、最小倍率の状態で全長が過大となるだけでなく、最小倍率の状態で第1レンズ群L1を通過する軸外光線の高さが高くなるため、最小倍率の状態で前玉径が決定され、前玉径の小型化の点でも好ましくない。   Exceeding the lower limit of conditional expression (9) is not preferable because the refractive power of the second lens unit L2 increases, and the Petzval sum increases to the plus side, which tends to increase the under tendency of field curvature. On the other hand, if the upper limit of conditional expression (9) is exceeded, the refractive power of the second lens unit L2 will be weakened. Therefore, in order to obtain a desired zoom ratio, the distance between the first lens unit L1 and the second lens unit L2 is increased. I have to let it. For this reason, not only the total length becomes excessive in the state of the minimum magnification, but also the height of the off-axis light beam that passes through the first lens unit L1 in the state of the minimum magnification becomes high. This is also not preferable in terms of reducing the front lens diameter.

次に数値実施例1〜5の数値データを示す。各数値実施例において、iは前方(物体側)からの面の順番を表し、Riは第i番目の面(第i面)の曲率半径、Diは第i面と第(i+1)面の間隔、Niとνiはそれぞれ第i番目の部材のd線を基準とした屈折率、アッベ数である。f,Fno,ωは、それぞれ焦点距離、Fナンバー、半画角を表すが、マスターレンズMに装着した状態でのものである。   Next, numerical data of numerical examples 1 to 5 will be shown. In each numerical example, i represents the order of surfaces from the front (object side), Ri is the radius of curvature of the i-th surface (i-th surface), and Di is the distance between the i-th surface and the (i + 1) -th surface. , Ni and νi are the refractive index and Abbe number based on the d-line of the i-th member, respectively. f, Fno, and ω represent the focal length, the F number, and the half angle of view, respectively, but are attached to the master lens M.

また、マスターレンズMの数値実施例において、第i面はコンバータレンズCを装着しない状態での第i番目の面であり、RMiは第i面の曲率半径、DMiは第i面と第(i+1)面の間隔、NMiとνMiはそれぞれ第i番目の部材のd線を基準とした屈折率、アッベ数である。f,Fno,ωは、それぞれマスターレンズ単体での焦点距離、Fナンバー、半画角である。マスターレンズの数値データにおいて、像側の複数の平面は光学ブロックGを構成する面である。なお、マスターレンズの数値データは数値実施例1〜5で共通である。   In the numerical example of the master lens M, the i-th surface is the i-th surface without the converter lens C, RMi is the radius of curvature of the i-th surface, DMi is the i-th surface and the (i + 1) -th surface. ) Surface spacings, NMi and νMi are the refractive index and Abbe number based on the d-line of the i-th member, respectively. f, Fno, and ω are the focal length, F number, and half angle of view of the master lens alone. In the numerical data of the master lens, a plurality of planes on the image side are surfaces constituting the optical block G. The numerical data of the master lens is common to the numerical examples 1 to 5.

非球面形状は、光軸方向にX軸、光軸と垂直方向にH軸、光の進行方向を正とし、Rを近軸曲率半径、Kを円錐定数、B,C,D,Eを各々非球面係数としたとき、   The aspherical shape is the X axis in the optical axis direction, the H axis in the direction perpendicular to the optical axis, the light traveling direction is positive, R is the paraxial radius of curvature, K is the conic constant, and B, C, D, and E are respectively When the aspheric coefficient is used,

なる式で表している。 It is expressed by the following formula.

マスターレンズMがズームレンズの場合、本実施例のコンバータレンズは、広角端から望遠端までマスターレンズMの焦点距離が変化するのに対し、最小アフォーカル倍率からアフォーカル倍率1をはさみ、最大アフォーカル倍率まで変化するため、光学系全体としての焦点距離はこれらの組み合わせにより決定される。この組み合わせを以下の表1に示す。   When the master lens M is a zoom lens, the focal length of the master lens M changes from the minimum afocal magnification to the maximum afocal magnification 1 while the focal length of the master lens M changes from the wide-angle end to the telephoto end. Since it changes to the focal magnification, the focal length of the entire optical system is determined by a combination of these. This combination is shown in Table 1 below.

表1において、コンバータレンズCが最も低いアフォーカル倍率の状態で、マスターレンズMが広角端の場合をzoom1としている。zoom1の組み合わせでは、マスターレンズMの広角端をさらに広角化させることが可能となる。また、コンバータレンズCが最も高いアフォーカル倍率の状態で、マスターレンズが望遠端の場合をzoom3としている。zoom3の組み合わせは、マスターレンズMの望遠端の焦点距離を更に長くすることが可能となる。   In Table 1, the case where the converter lens C has the lowest afocal magnification and the master lens M is at the wide-angle end is defined as zoom1. In the zoom1 combination, the wide angle end of the master lens M can be further widened. Also, zoom 3 is set when the converter lens C is at the highest afocal magnification and the master lens is at the telephoto end. The combination of zoom 3 can further increase the focal length of the telephoto end of the master lens M.

図4〜8,10〜14,16〜20,22〜26,28〜32はそれぞれ、表1のzoom1〜zoom5の各組み合わせの状態での数値実施例1〜5のコンバータレンズをマスターレンズに装着した状態での諸収差図である。   4 to 8, 10 to 14, 16 to 20, 22 to 26, and 28 to 32 are attached to the master lens with the converter lenses of Numerical Examples 1 to 5 in the combinations of zoom 1 to zoom 5 in Table 1, respectively. It is an aberration diagram in the state.

また、前述の各条件式と数値実施例の関係を表2に示す。   Table 2 shows the relationship between the above-described conditional expressions and numerical examples.

(数値実施例1)
f=5.63〜 32.12 Fno= 2.86 〜 5.06 2ω=15.72゜〜76.46゜
R 1 = 86.466 D 1 = 2.00 N 1 = 1.603112 ν 1 = 60.6
R 2 = 43.785 D 2 = 14.00
R 3 = -589.317 D 3 = 3.00 N 2 = 1.603112 ν 2 = 60.6
R 4 = 75.047 D 4 = 2.00
R 5 = 115.595 D 5 = 3.50 N 3 = 1.922860 ν 3 = 18.9
R 6 = 215.141 D 6 = 可変
R 7 = 65.806 D 7 = 5.50 N 4 = 1.603112 ν 4 = 60.6
R 8 = -124.415 D 8 = 0.10
R 9 = 55.260 D 9 = 4.50 N 5 = 1.603112 ν 5 = 60.6
R10 = -828.380 D10 = 0.10
R11 = 573.631 D11 = 2.00 N 6 = 1.846660 ν 6 = 23.9
R12 = 75.519 D12 = 可変
R13 = -124.973 D13 = 1.50 N 7 = 1.603112 ν 7 = 60.6
R14 = 131.474 D14 = 可変
(Numerical example 1)
f = 5.63-32.12 Fno = 2.86-5.06 2ω = 15.72 °-76.46 °
R 1 = 86.466 D 1 = 2.00 N 1 = 1.603112 ν 1 = 60.6
R 2 = 43.785 D 2 = 14.00
R 3 = -589.317 D 3 = 3.00 N 2 = 1.603112 ν 2 = 60.6
R 4 = 75.047 D 4 = 2.00
R 5 = 115.595 D 5 = 3.50 N 3 = 1.922860 ν 3 = 18.9
R 6 = 215.141 D 6 = variable
R 7 = 65.806 D 7 = 5.50 N 4 = 1.603112 ν 4 = 60.6
R 8 = -124.415 D 8 = 0.10
R 9 = 55.260 D 9 = 4.50 N 5 = 1.603112 ν 5 = 60.6
R10 = -828.380 D10 = 0.10
R11 = 573.631 D11 = 2.00 N 6 = 1.846660 ν 6 = 23.9
R12 = 75.519 D12 = variable
R13 = -124.973 D13 = 1.50 N 7 = 1.603112 ν 7 = 60.6
R14 = 131.474 D14 = variable

(マスターレンズ)
fm=8.03〜 22.85 FNom= 2.86 〜 5.06 2ω=21.97°〜57.83゜
RM1 = 63.353 DM 1 = 1.60 NM 1 = 1.683430 νM 1 = 52.4
RM 2 = 5.800 DM 2 = 2.37
RM 3 = 9.820 DM 3 = 2.00 NM 2 = 1.761821 νM 2 = 26.5
RM 4 = 20.460 DM 4 = 可変
RM 5 = 絞り DM 5 = 0.80
RM 6 = 5.974 DM 6 = 2.80 NM 3 = 1.802380 νM3 = 40.7
RM 7 = 58.781 DM 7 = 0.70 NM 4 = 1.805181 νM4 = 25.4
RM 8 = 5.189 DM 8 = 0.87
RM 9 = 18.702 DM 9 = 1.80 NM 5 = 1.603112 νM5 = 60.6
RM 10 = -18.469 DM10 = 可変
RM 11 = 17.220 DM11 = 1.90 NM 6 = 1.487490 νM6 = 70.2
RM 12 = -136.717 DM12 = 可変
RM 13 = ∞ DM13 = 0.38 NM 7 = 1.544270 νM 7 = 70.6
RM 14 = ∞ DM14 = 0.80 NM 8 = 1.494000 νM 8 = 75.0
RM 15 = ∞ DM15 = 0.40 NM 9 = 1.544270 νM 9 = 70.6
RM 16 = ∞ DM16 = 0.38 NM10 = 1.544270 νM10 = 70.6
RM 17 = ∞ DM17 = 0.50
RM 18 = ∞ DM18 = 0.50 NM11 = 1.516330 νM11 = 64.1
RM 19 = ∞
(Master lens)
fm = 8.03 to 22.85 FNom = 2.86 to 5.06 2ω = 21.97 ° to 57.83 °
RM1 = 63.353 DM 1 = 1.60 NM 1 = 1.683430 νM 1 = 52.4
RM 2 = 5.800 DM 2 = 2.37
RM 3 = 9.820 DM 3 = 2.00 NM 2 = 1.761821 νM 2 = 26.5
RM 4 = 20.460 DM 4 = variable
RM 5 = Aperture DM 5 = 0.80
RM 6 = 5.974 DM 6 = 2.80 NM 3 = 1.802380 νM3 = 40.7
RM 7 = 58.781 DM 7 = 0.70 NM 4 = 1.805181 νM4 = 25.4
RM 8 = 5.189 DM 8 = 0.87
RM 9 = 18.702 DM 9 = 1.80 NM 5 = 1.603112 νM5 = 60.6
RM 10 = -18.469 DM10 = variable
RM 11 = 17.220 DM11 = 1.90 NM 6 = 1.487490 νM6 = 70.2
RM 12 = -136.717 DM12 = variable
RM 13 = ∞ DM13 = 0.38 NM 7 = 1.544270 νM 7 = 70.6
RM 14 = ∞ DM14 = 0.80 NM 8 = 1.494000 νM 8 = 75.0
RM 15 = ∞ DM15 = 0.40 NM 9 = 1.544270 νM 9 = 70.6
RM 16 = ∞ DM16 = 0.38 NM10 = 1.544270 νM10 = 70.6
RM 17 = ∞ DM17 = 0.50
RM 18 = ∞ DM18 = 0.50 NM11 = 1.516330 νM11 = 64.1
RM 19 = ∞

非球面係数
RM2
k=-2.06688e+00
B=9.18231e-04 C=-6.44332e-06 D=6.14727e-08
RM6
k=-4.03021e-01
B=1.55298e-05 C=2.08342e-06 D=0.00000e+00
Aspheric coefficient
RM2
k = -2.06688e + 00
B = 9.18231e-04 C = -6.44332e-06 D = 6.14727e-08
RM6
k = -4.03021e-01
B = 1.55298e-05 C = 2.08342e-06 D = 0.00000e + 00

(数値実施例2)
f=5.60〜 31.73 Fno= 2.86 〜 5.06 2ω=15.92゜〜76.7゜
R 1 = 101.088 D 1 = 2.00 N 1 = 1.563839 ν 1 = 60.7
R 2 = 50.765 D 2 = 10.50
R 3 = -350.721 D 3 = 3.00 N 2 = 1.651597 ν 2 = 58.5
R 4 = 53.919 D 4 = 5.00
R 5 = 286.366 D 5 = 3.50 N 3 = 1.922860 ν 3 = 18.9
R 6 = -1760.018 D 6 = 可変
R 7 = 119.356 D 7 = 5.00 N 4 = 1.658441 ν 4 = 50.9
R 8 = -118.734 D 8 = 0.10
R 9 = 55.313 D 9 = 7.00 N 5 = 1.603112 ν 5 = 60.6
R10 = -202.074 D10 = 0.20
R11 = 220.220 D11 = 2.00 N 6 = 1.922860 ν 6 = 18.9
R12 = 80.000 D12 = 可変
R13 = -49.994 D13 = 1.50 N 7 = 1.487490 ν 7 = 70.2
R14 = -466.484 D14 = 可変
(Numerical example 2)
f = 5.60-31.73 Fno = 2.86-5.06 2ω = 15.92 °-76.7 °
R 1 = 101.088 D 1 = 2.00 N 1 = 1.563839 ν 1 = 60.7
R 2 = 50.765 D 2 = 10.50
R 3 = -350.721 D 3 = 3.00 N 2 = 1.651597 ν 2 = 58.5
R 4 = 53.919 D 4 = 5.00
R 5 = 286.366 D 5 = 3.50 N 3 = 1.922860 ν 3 = 18.9
R 6 = -1760.018 D 6 = variable
R 7 = 119.356 D 7 = 5.00 N 4 = 1.658441 ν 4 = 50.9
R 8 = -118.734 D 8 = 0.10
R 9 = 55.313 D 9 = 7.00 N 5 = 1.603112 ν 5 = 60.6
R10 = -202.074 D10 = 0.20
R11 = 220.220 D11 = 2.00 N 6 = 1.922860 ν 6 = 18.9
R12 = 80.000 D12 = variable
R13 = -49.994 D13 = 1.50 N 7 = 1.487490 ν 7 = 70.2
R14 = -466.484 D14 = variable

非球面係数
R4
k=-4.59384e-01
B=-4.92969e-07 C=-6.91713e-11 D=-3.08187e-13
マスターレンズのデータは数値実施例1と同じ
Aspheric coefficient
R4
k = -4.59384e-01
B = -4.92969e-07 C = -6.91713e-11 D = -3.08187e-13
Master lens data is the same as in Numerical Example 1

(数値実施例3)
f=5.60〜 31.58 Fno= 2.86 〜 5.06 2ω=15.98゜〜76.8゜
R 1 = 80.227 D 1 = 2.00 N 1 = 1.568832 ν 1 = 56.4
R 2 = 51.877 D 2 = 11.50
R 3 = -177.766 D 3 = 3.00 N 2 = 1.603112 ν 2 = 60.6
R 4 = 51.038 D 4 = 5.50
R 5 = 303.870 D 5 = 3.50 N 3 = 1.922860 ν 3 = 18.9
R 6 = 2150.796 D 6 = 可変
R 7 = 226.082 D 7 = 4.00 N 4 = 1.670029 ν 4 = 47.2
R 8 = -96.174 D 8 = 0.10
R 9 = 46.169 D 9 = 7.00 N 5 = 1.603112 ν 5 = 60.6
R10 = -187.282 D10 = 0.10
R11 = 161.158 D11 = 2.00 N 6 = 1.922860 ν 6 = 18.9
R12 = 73.239 D12 = 可変
R13 = -67.359 D13 = 1.50 N 7 = 1.487490 ν 7 = 70.2
R14 = 149.296 D14 = 可変
(Numerical Example 3)
f = 5.60-31.58 Fno = 2.86-5.06 2ω = 15.98 °-76.8 °
R 1 = 80.227 D 1 = 2.00 N 1 = 1.568832 ν 1 = 56.4
R 2 = 51.877 D 2 = 11.50
R 3 = -177.766 D 3 = 3.00 N 2 = 1.603112 ν 2 = 60.6
R 4 = 51.038 D 4 = 5.50
R 5 = 303.870 D 5 = 3.50 N 3 = 1.922860 ν 3 = 18.9
R 6 = 2150.796 D 6 = variable
R 7 = 226.082 D 7 = 4.00 N 4 = 1.670029 ν 4 = 47.2
R 8 = -96.174 D 8 = 0.10
R 9 = 46.169 D 9 = 7.00 N 5 = 1.603112 ν 5 = 60.6
R10 = -187.282 D10 = 0.10
R11 = 161.158 D11 = 2.00 N 6 = 1.922860 ν 6 = 18.9
R12 = 73.239 D12 = variable
R13 = -67.359 D13 = 1.50 N 7 = 1.487490 ν 7 = 70.2
R14 = 149.296 D14 = variable

非球面係数
R4
k=2.35813e-02
B=-3.20823e-07 C=-1.09681e-09 D=5.80903e-13
マスターレンズのデータは数値実施例1と同じ
Aspheric coefficient
R4
k = 2.35813e-02
B = -3.20823e-07 C = -1.09681e-09 D = 5.80903e-13
Master lens data is the same as in Numerical Example 1

(数値実施例4)
f=5.62〜 31.98 Fno= 2.86 〜 5.06 2ω=15.78゜〜76.56゜
R 1 = 109.688 D 1 = 2.00 N 1 = 1.571351 ν 1 = 53.0
R 2 = 51.029 D 2 = 12.50
R 3 = -140.197 D 3 = 3.00 N 2 = 1.603112 ν 2 = 60.6
R 4 = 91.030 D 4 = 3.00
R 5 = 309.291 D 5 = 3.50 N 3 = 1.922860 ν 3 = 18.9
R 6 = -57421.716 D 6 = 可変
R 7 = 101.143 D 7 = 5.00 N 4 = 1.651597 ν 4 = 58.5
R 8 = -71.798 D 8 = 0.10
R 9 = 46.181 D 9 = 4.00 N 5 = 1.603112 ν 5 = 60.6
R10 = 210.398 D10 = 0.70
R11 = 872.995 D11 = 2.00 N 6 = 1.846660 ν 6 = 23.9
R12 = 89.005 D12 = 可変
R13 = -1273.641 D13 = 1.50 N 7 = 1.516330 ν 7 = 64.1
R14 = 53.836 D14 = 可変
(Numerical example 4)
f = 5.62-31.98 Fno = 2.86-5.06 2ω = 15.78 °-76.56 °
R 1 = 109.688 D 1 = 2.00 N 1 = 1.571351 ν 1 = 53.0
R 2 = 51.029 D 2 = 12.50
R 3 = -140.197 D 3 = 3.00 N 2 = 1.603112 ν 2 = 60.6
R 4 = 91.030 D 4 = 3.00
R 5 = 309.291 D 5 = 3.50 N 3 = 1.922860 ν 3 = 18.9
R 6 = -57421.716 D 6 = variable
R 7 = 101.143 D 7 = 5.00 N 4 = 1.651597 ν 4 = 58.5
R 8 = -71.798 D 8 = 0.10
R 9 = 46.181 D 9 = 4.00 N 5 = 1.603112 ν 5 = 60.6
R10 = 210.398 D10 = 0.70
R11 = 872.995 D11 = 2.00 N 6 = 1.846660 ν 6 = 23.9
R12 = 89.005 D12 = variable
R13 = -1273.641 D13 = 1.50 N 7 = 1.516330 ν 7 = 64.1
R14 = 53.836 D14 = variable

非球面係数
R13
k=1.06117e+04
B=-1.76055e-06 C=-2.02794e-08 D=-4.31509e-11
マスターレンズのデータは数値実施例1と同じ
Aspheric coefficient
R13
k = 1.06117e + 04
B = -1.76055e-06 C = -2.02794e-08 D = -4.31509e-11
Master lens data is the same as in Numerical Example 1

(数値実施例5)
f=5.62〜 31.98 Fno= 2.86 〜 5.06 2ω=15.78゜〜76.56゜
R 1 = 149.989 D 1 = 2.00 N 1 = 1.603112 ν 1 = 60.6
R 2 = 57.354 D 2 = 12.50
R 3 = -117.029 D 3 = 3.00 N 2 = 1.603112 ν 2 = 60.6
R 4 = 75.293 D 4 = 1.50
R 5 = 95.418 D 5 = 3.50 N 3 = 1.846660 ν 3 = 23.9
R 6 = 327.038 D 6 = 可変
R 7 = 151.414 D 7 = 6.00 N 4 = 1.603112 ν 4 = 60.6
R 8 = -74.935 D 8 = 0.50
R 9 = 61.909 D 9 = 7.00 N 5 = 1.603112 ν 5 = 60.6
R10 = -142.249 D10 = 0.20
R11 = -201.553 D11 = 2.00 N 6 = 1.846660 ν 6 = 23.9
R12 = 149.954 D12 = 可変
R13 = -50.568 D13 = 1.50 N 7 = 1.603112 ν 7 = 60.6
R14 = -175.995 D14 = 可変
(Numerical example 5)
f = 5.62-31.98 Fno = 2.86-5.06 2ω = 15.78 °-76.56 °
R 1 = 149.989 D 1 = 2.00 N 1 = 1.603112 ν 1 = 60.6
R 2 = 57.354 D 2 = 12.50
R 3 = -117.029 D 3 = 3.00 N 2 = 1.603112 ν 2 = 60.6
R 4 = 75.293 D 4 = 1.50
R 5 = 95.418 D 5 = 3.50 N 3 = 1.846660 ν 3 = 23.9
R 6 = 327.038 D 6 = variable
R 7 = 151.414 D 7 = 6.00 N 4 = 1.603112 ν 4 = 60.6
R 8 = -74.935 D 8 = 0.50
R 9 = 61.909 D 9 = 7.00 N 5 = 1.603112 ν 5 = 60.6
R10 = -142.249 D10 = 0.20
R11 = -201.553 D11 = 2.00 N 6 = 1.846660 ν 6 = 23.9
R12 = 149.954 D12 = variable
R13 = -50.568 D13 = 1.50 N 7 = 1.603112 ν 7 = 60.6
R14 = -175.995 D14 = variable

非球面係数
R3
k=4.11111e-01
B=6.90442e-07 C=6.82468e-10 D=-1.15147e-12 E=4.36825e-16
R11
k=6.20342e+00
B=-4.72320e-07 C=-1.30507e-10 D=6.15168e-13
マスターレンズのデータは数値実施例1と同じ
Aspheric coefficient
R3
k = 4.11111e-01
B = 6.90442e-07 C = 6.82468e-10 D = -1.15147e-12 E = 4.36825e-16
R11
k = 6.20342e + 00
B = -4.72320e-07 C = -1.30507e-10 D = 6.15168e-13
Master lens data is the same as in Numerical Example 1

以上説明した本実施例のコンバータレンズによれば、マスターレンズへの着脱を行わずとも、テレコンバータレンズとワイドコンバータの機能を両立させることができる。また、色収差、球面収差、像面湾曲等の諸収差が良好に補正されているので、高画素のデジタルスチルカメラやビデオカメラ等に対応可能な、高性能かつ小型な可変倍率コンバータレンズの提供が可能である。   According to the converter lens of the present embodiment described above, the functions of the teleconverter lens and the wide converter can be made compatible without attaching to and detaching from the master lens. In addition, various aberrations such as chromatic aberration, spherical aberration, and curvature of field are well corrected. Therefore, it is possible to provide a high-performance and small variable magnification converter lens that can be used for high-pixel digital still cameras and video cameras. Is possible.

本発明のコンバータレンズの基本構成図である。It is a basic block diagram of the converter lens of this invention. マスターレンズの構成図である。It is a block diagram of a master lens. 数値実施例1のコンバータレンズをマスターレンズに装着した状態でのレンズ断面図である。It is lens sectional drawing in the state which mounted | wore the master lens with the converter lens of Numerical Example 1. FIG. 数値実施例1のzoom1の組み合わせでの収差図である。FIG. 5 is an aberration diagram for the combination of zoom1 in Numerical Example 1. 数値実施例1のzoom2の組み合わせでの収差図である。FIG. 6 is an aberration diagram for the combination of zoom2 in Numerical Example 1. 数値実施例1のzoom3の組み合わせでの収差図である。FIG. 5 is an aberration diagram for the combination of zoom3 in Numerical Example 1. 数値実施例1のzoom4の組み合わせでの収差図である。FIG. 5 is an aberration diagram for the combination of zoom4 in Numerical Example 1. 数値実施例1のzoom5の組み合わせでの収差図である。FIG. 6 is an aberration diagram for the combination of zoom5 in Numerical Example 1. 数値実施例2のコンバータレンズをマスターレンズに装着した状態でのレンズ断面図である。It is lens sectional drawing in the state which mounted | wore the master lens with the converter lens of Numerical Example 2. FIG. 数値実施例2のzoom1の組み合わせでの収差図である。FIG. 9 is an aberration diagram for a combination of zoom1 in Numerical Example 2. 数値実施例2のzoom2の組み合わせでの収差図である。FIG. 9 is an aberration diagram for a combination of zoom2 in Numerical Example 2. 数値実施例2のzoom3の組み合わせでの収差図である。FIG. 11 is an aberration diagram for a combination of zoom3 in Numerical Example 2. 数値実施例2のzoom4の組み合わせでの収差図である。FIG. 11 is an aberration diagram for a combination of zoom4 in Numerical Example 2. 数値実施例2のzoom5の組み合わせでの収差図である。FIG. 10 is an aberration diagram for the combination of zoom5 in Numerical Example 2. 数値実施例3のコンバータレンズをマスターレンズに装着した状態でのレンズ断面図である。It is lens sectional drawing in the state which mounted | wore the master lens with the converter lens of Numerical Example 3. FIG. 数値実施例3のzoom1の組み合わせでの収差図である。FIG. 11 is an aberration diagram for the combination of zoom1 in Numerical Example 3. 数値実施例3のzoom2の組み合わせでの収差図である。It is an aberration diagram in the combination of zoom2 of Numerical Example 3. 数値実施例3のzoom3の組み合わせでの収差図である。FIG. 11 is an aberration diagram for a combination of zoom3 in Numerical Example 3. 数値実施例3のzoom4の組み合わせでの収差図である。It is an aberration diagram in the combination of zoom4 of Numerical Example 3. 数値実施例3のzoom5の組み合わせでの収差図である。It is an aberration diagram in the combination of zoom5 of Numerical Example 3. 数値実施例4のコンバータレンズをマスターレンズに装着した状態でのレンズ断面図である。It is lens sectional drawing in the state which mounted | wore the master lens with the converter lens of Numerical Example 4. FIG. 数値実施例4のzoom1の組み合わせでの収差図である。FIG. 11 is an aberration diagram for a combination of zoom1 in Numerical Example 4. 数値実施例4のzoom2の組み合わせでの収差図である。FIG. 9 is an aberration diagram for a combination of zoom2 in Numerical Example 4. 数値実施例4のzoom3の組み合わせでの収差図である。FIG. 11 is an aberration diagram for a combination of zoom3 in Numerical Example 4. 数値実施例4のzoom4の組み合わせでの収差図である。FIG. 11 is an aberration diagram for a combination of zoom4 in Numerical example 4; 数値実施例4のzoom5の組み合わせでの収差図である。FIG. 11 is an aberration diagram for a combination of zoom5 in Numerical Example 4. 数値実施例5のコンバータレンズをマスターレンズに装着した状態でのレンズ断面図である。It is a lens sectional view in the state where the converter lens of Numerical Example 5 is attached to the master lens. 数値実施例5のzoom1の組み合わせでの収差図である。FIG. 11 is an aberration diagram for the combination of zoom1 in Numerical Example 5. 数値実施例5のzoom2の組み合わせでの収差図である。FIG. 11 is an aberration diagram for the combination of zoom2 in Numerical Example 5. 数値実施例5のzoom3の組み合わせでの収差図である。FIG. 10 is an aberration diagram for the combination of zoom3 in Numerical Example 5. 数値実施例5のzoom4の組み合わせでの収差図である。FIG. 11 is an aberration diagram for a combination of zoom4 in Numerical Example 5. 数値実施例5のzoom5の組み合わせでの収差図である。FIG. 11 is an aberration diagram for a combination of zoom5 in Numerical Example 5.

符号の説明Explanation of symbols

C コンバータレンズ
M マスターレンズ
L1 第1レンズ群
L2 第2レンズ群
L3 第3レンズ群
IP 結像面
G ガラスブロック
△M メリディオナル像面
△S サジタル像面
C converter lens M master lens L1 first lens group L2 second lens group L3 third lens group IP imaging surface G glass block △ M meridional image surface △ S sagittal image surface

Claims (9)

マスターレンズの前方に装着し、マスターレンズの焦点距離を変換可能なコンバータレンズにおいて、前方より順に、負の屈折力の第1レンズ群、正の屈折力の第2レンズ群、負の屈折力の第3レンズ群より構成され、最も低いアフォーカル倍率から最も高いアフォーカル倍率への変倍に際し、前記第1レンズ群と前記第2レンズ群が共に互いの間隔を変化させつつ前方へ単調移動すると共に、最も低いアフォーカル倍率から最も高いアフォーカル倍率への変倍の際の前記第1レンズ群の移動量をM、最も低いアフォーカル倍率の状態での全長をTDとするとき、
−0.752≦M /TD ≦−0.314
なる条件を満足することを特徴とするコンバータレンズ。
In a converter lens that is mounted in front of the master lens and can convert the focal length of the master lens, in order from the front, the first lens group having a negative refractive power, the second lens group having a positive refractive power, and a negative refractive power. The first lens group and the second lens group both monotonously move forward while changing the distance from each other when the magnification is changed from the lowest afocal magnification to the highest afocal magnification. In addition, when the movement amount of the first lens group at the time of zooming from the lowest afocal magnification to the highest afocal magnification is M 1 and the total length in the state of the lowest afocal magnification is TD w ,
−0.752 ≦ M 1 / TD W ≦ −0.314
A converter lens characterized by satisfying the following conditions.
前記第1レンズ群は少なくとも1つの正レンズを含み、前記第1レンズ群の焦点距離をf、前記第1レンズ群のレンズの焦点距離をf1P、最も低いアフォーカル倍率をm、最も高いアフォーカル倍率をmとするとき、

なる条件を満足することを特徴とする請求項1のコンバータレンズ。
The first lens group includes at least one positive lens, the focal length of the first lens group is f 1 , the focal length of the positive lens of the first lens group is f 1P , and the lowest afocal magnification is m w , when the highest afocal magnification m t,

The converter lens according to claim 1, wherein the following condition is satisfied.
前記第2レンズ群は少なくとも1つの負レンズを含み、前記第2レンズ群の焦点距離をf、前記第2レンズ群の負レンズの焦点距離をf2N、最も低いアフォーカル倍率をm、最も高いアフォーカル倍率をmとするとき、

なる条件を満足することを特徴とする請求項1又は2のコンバータレンズ。
The second lens group includes at least one negative lens, the focal length of the second lens group is f 2 , the focal length of the negative lens of the second lens group is f 2N , and the lowest afocal magnification is m w , when the highest afocal magnification m t,

The converter lens according to claim 1 or 2, wherein the following condition is satisfied.
最も低いアフォーカル倍率から最も高いアフォーカル倍率への変倍の際の前記第2レンズ群の移動量をMとするとき、

なる条件を満足することを特徴とする請求項1〜3いずれかのコンバータレンズ。
When the M 2 the amount of movement of the second lens group at the time of the highest magnification of the afocal magnification from the lowest afocal magnification,

The converter lens according to claim 1, wherein the following condition is satisfied.
前記第1レンズ群の最も前方のレンズの前方及び後方の面の曲率半径をそれぞれr,rとするとき、

なる条件を満足することを特徴とする請求項1〜4いずれかのコンバータレンズ。
When the radii of curvature of the front and rear surfaces of the foremost lens of the first lens group are r 1 and r 2 respectively,

The converter lens according to claim 1, wherein the following condition is satisfied.
最も低いアフォーカル倍率の状態での前記第1レンズ群の後側主点と前記第2レンズ群の前側主点の間隔をe1、最も低いアフォーカル倍率の状態での前記第1レンズ群と前記第2レンズ群の合成焦点距離をfFTとするとき、

なる条件を満足することを特徴とする請求項1〜5いずれかのコンバータレンズ。
The distance between the rear principal point of the first lens group in the state of the lowest afocal magnification and the front principal point of the second lens group is e1 t , and the first lens group in the state of the lowest afocal magnification When the combined focal length of the second lens group is fFT ,

The converter lens according to claim 1, wherein the following condition is satisfied.
最も低いアフォーカル倍率の状態での全長をTD、最も高いアフォーカル倍率の状態での全長をTDとするとき、

なる条件を満足することを特徴とする請求項1〜6いずれかのコンバータレンズ。
When the total length in the state of the lowest afocal magnification is TD W and the total length in the state of the highest afocal magnification is TD T ,

The converter lens according to claim 1, wherein the following condition is satisfied.
前記第1レンズ群の焦点距離をfとするとき、

なる条件を満足することを特徴とする請求項1〜7いずれかのコンバータレンズ。
When the focal length of the first lens group and f 1,

The converter lens according to claim 1, wherein the following condition is satisfied.
前記第2レンズ群の焦点距離をf、最も低いアフォーカル倍率から最も高いアフォーカル倍率への変倍の際の前記第2レンズ群の移動量をMとするとき、

なる条件を満足することを特徴とする請求項1〜8いずれかのコンバータレンズ。
When the focal length of the second lens group is f 2 and the amount of movement of the second lens group at the time of zooming from the lowest afocal magnification to the highest afocal magnification is M 2 ,

The converter lens according to claim 1, wherein the following condition is satisfied.
JP2004295832A 2004-10-08 2004-10-08 Converter lens Expired - Fee Related JP4756844B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004295832A JP4756844B2 (en) 2004-10-08 2004-10-08 Converter lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004295832A JP4756844B2 (en) 2004-10-08 2004-10-08 Converter lens

Publications (3)

Publication Number Publication Date
JP2006106538A JP2006106538A (en) 2006-04-20
JP2006106538A5 JP2006106538A5 (en) 2007-11-22
JP4756844B2 true JP4756844B2 (en) 2011-08-24

Family

ID=36376332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004295832A Expired - Fee Related JP4756844B2 (en) 2004-10-08 2004-10-08 Converter lens

Country Status (1)

Country Link
JP (1) JP4756844B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7808718B2 (en) * 2006-08-10 2010-10-05 FM-Assets Pty Ltd Afocal Galilean attachment lens with high pupil magnification
WO2013129274A1 (en) * 2012-03-02 2013-09-06 コニカミノルタ株式会社 Converter lens and imaging optical system
CN110989138B (en) * 2019-12-23 2021-03-19 中国科学院长春光学精密机械与物理研究所 Wide spectrum afocal optical system with large field of view
CN114740610B (en) * 2022-03-07 2024-03-29 嘉兴中润光学科技股份有限公司 Magnifying glass and imaging device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62124516A (en) * 1985-11-25 1987-06-05 Canon Inc View angle increasing method for zoom lens
JPS63253319A (en) * 1987-04-09 1988-10-20 Konica Corp Wide conversion lens
JPH0389206A (en) * 1989-08-31 1991-04-15 Sanyo Electric Co Ltd Front type conversion lens

Also Published As

Publication number Publication date
JP2006106538A (en) 2006-04-20

Similar Documents

Publication Publication Date Title
JP5651861B2 (en) Imaging lens
JP5263589B2 (en) Zoom lens system, optical apparatus equipped with the zoom lens system, and zooming method using the zoom lens system
JP4876755B2 (en) High magnification zoom lens and optical apparatus having the same
JP4909089B2 (en) Zoom lens and imaging apparatus having the same
JP5493308B2 (en) Zoom lens system and optical apparatus provided with the zoom lens system
JP4551669B2 (en) Zoom lens and imaging apparatus having the same
JP5893959B2 (en) Zoom lens
JP4794915B2 (en) Zoom lens and imaging apparatus having the same
JP2014041245A (en) Zoom lens and imaging apparatus having the same
JP2017223755A (en) Imaging optical system
JP2008257022A (en) Zoom lens
JP4173977B2 (en) Zoom lens system
JP5403315B2 (en) Zoom lens system and optical apparatus provided with the zoom lens system
JP4823680B2 (en) High magnification zoom lens
JP4847091B2 (en) Zoom lens and imaging apparatus having the same
JP4902179B2 (en) Zoom lens and imaging apparatus having the same
JP5403316B2 (en) Zoom lens system and optical apparatus provided with the zoom lens system
JP5688562B2 (en) Imaging lens
JP4585796B2 (en) Zoom lens and imaging apparatus having the same
JP5143532B2 (en) Zoom lens and imaging device
JP4537114B2 (en) Zoom lens
JP4756844B2 (en) Converter lens
JP5137715B2 (en) Teleconverter lens and imaging apparatus having the same
JP4666992B2 (en) Converter lens
JP2003131128A (en) Zoom lens

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071005

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071005

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100201

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110524

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110531

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees