JP4756374B2 - A method for measuring electronic states in semiconductors. - Google Patents

A method for measuring electronic states in semiconductors. Download PDF

Info

Publication number
JP4756374B2
JP4756374B2 JP2006255560A JP2006255560A JP4756374B2 JP 4756374 B2 JP4756374 B2 JP 4756374B2 JP 2006255560 A JP2006255560 A JP 2006255560A JP 2006255560 A JP2006255560 A JP 2006255560A JP 4756374 B2 JP4756374 B2 JP 4756374B2
Authority
JP
Japan
Prior art keywords
semiconductor
diamond
measurement
present
impurities
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006255560A
Other languages
Japanese (ja)
Other versions
JP2008078369A (en
Inventor
大輔 竹内
アーフィン クリストフ ネーベル
聡 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2006255560A priority Critical patent/JP4756374B2/en
Publication of JP2008078369A publication Critical patent/JP2008078369A/en
Application granted granted Critical
Publication of JP4756374B2 publication Critical patent/JP4756374B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Description

本発明で扱う半導体内の不純物および欠陥の電子状態測定は、半導体材料自体の評価のみならず、半導体を利用したすべての電子デバイス、光デバイスにとって重要な情報を与える。
現在様々な半導体内不純物および欠陥の電子状態測定方法が存在するが、本発明による測定方法は、従来技術では測定不可能な微量な不純物および欠陥を高感度で検出する為の簡便で非破壊な測定方法を実現でき、新たな産業分野への利用・展開が期待される。
The measurement of the electronic state of impurities and defects in the semiconductor handled in the present invention provides not only evaluation of the semiconductor material itself but also important information for all electronic devices and optical devices using the semiconductor.
Currently, there are various methods for measuring the electronic states of impurities and defects in semiconductors. The measuring method according to the present invention is a simple and non-destructive method for detecting a small amount of impurities and defects that cannot be measured by the prior art with high sensitivity. The measurement method can be realized and expected to be used and developed in new industrial fields.

半導体内の不純物および欠陥のうち、特にバンドギャップ内に準位を持つものは、その半導体材料の電気的・光学的特性に重要な影響を与える為、半導体内の不純物および欠陥の電子状態に関する測定は、デバイス設計上極めて重要な情報を与える。シリコンやガリウム砒素などについては、応用上影響の大きな不純物および欠陥の電子状態(準位)に関する測定技術が数多く開発され、それによって材料作製技術の高度化のみならず、材料処理技術の高度化、デバイス設計技術の高度化が並行して進み、今日の高度電子情報化社会の基盤技術へと結びついている。
現在、社会全体はデバイスにとって厳しい環境下での、さらなる大電力・高密度情報処理技術を要求している。そこでは、バンドギャップがシリコンやガリウム砒素よりも大きな半導体材料が持つ、耐環境性、耐絶縁性、高いキャリア移動度に根ざした信頼性の高い特性が応用上期待されている。それらに対応するワイドバンドギャップ半導体として、炭化シリコン、窒化ガリウム、酸化ジリコニウムなどが盛んに研究されているが、その先の次世代半導体材料として、さらにワイドバンドギャップでかつ単元素からなるダイヤモンドが研究されている。さらにダイヤモンドの化合物系材料として、窒化アルミニウム、窒化ボロンなどが同様に研究されている。
材料的観点から、これらの次世代半導体材料は、電子親和力の小さな材料が多い。さらにある表面状態では、電子親和力が負になる場合が報告されており、特に電子放出デバイスへの応用が有望であり、酸化ジルコニウムなどの酸化物や窒化ボロンや窒化アルミニウムなどの窒化物、ダイヤモンドやダイヤモンド状炭素などの炭素系材料の探索や開発がおこなわれている。しかし、これら新材料に対し、バンドギャップ中の不純物準位および欠陥準位に関する研究はシリコン等に比べまだ途上段階にある。特に、単元素からなるダイヤモンドは、その結晶完全性が化合物系材料に比べて格段に優れたものが報告されているが、高純度単結晶内に存在する微量な不純物および欠陥、特にボロンの汚染を測定する評価技術は、従来のシリコン等で開発されてきた技術のみでは、ワイドバンドギャップ半導体であるがための困難さが顕在化してきており、新しい技術が求められ始めている。(非特許文献1、2)
Impurities and defects in semiconductors, especially those having a level in the band gap, have an important effect on the electrical and optical properties of the semiconductor material, so measurements on the electronic states of impurities and defects in semiconductors Provides critical information for device design. For silicon, gallium arsenide, etc., many measurement technologies related to the electronic state (level) of impurities and defects that have a large impact on applications have been developed. The advancement of device design technology is progressing in parallel, which is linked to the basic technology of today's advanced electronic information society.
Currently, society as a whole is demanding more high-power, high-density information processing technology in a harsh environment for devices. In this case, the semiconductor material having a larger band gap than silicon or gallium arsenide is expected to have high reliability characteristics based on environment resistance, insulation resistance, and high carrier mobility. Silicon carbide, gallium nitride, zirconium oxide, etc. are actively studied as wide band gap semiconductors corresponding to them, but diamonds consisting of single elements with a wide band gap are further studied as the next generation semiconductor materials beyond that. Has been. Further, as a compound material of diamond, aluminum nitride, boron nitride, and the like are similarly studied.
From the viewpoint of materials, many of these next-generation semiconductor materials have a small electron affinity. In some surface states, it has been reported that the electron affinity is negative, and it is particularly promising for application to electron-emitting devices, such as oxides such as zirconium oxide, nitrides such as boron nitride and aluminum nitride, diamond and Searches and developments for carbon-based materials such as diamond-like carbon are underway. However, for these new materials, studies on impurity levels and defect levels in the band gap are still in the middle stage compared to silicon and the like. In particular, diamond composed of a single element has been reported to have a crystal perfection superior to that of compound materials. However, trace amounts of impurities and defects present in high-purity single crystals, especially boron contamination, have been reported. As for the evaluation technique for measuring the current, only the technique that has been developed with conventional silicon or the like is becoming difficult because it is a wide bandgap semiconductor, and a new technique is beginning to be demanded. (Non-patent documents 1 and 2)

ダイヤモンドは5.5eVのバンドギャップを持つ半導体であり、ボロンは正孔を供給するアクセプターとして、価電子帯頂上から上のギャップ中0.37eVにアクセプター準位を作ることが報告されている。このボロンを高感度で非破壊に検出できる簡便な測定技術が求められている(非特許文献3〜5)。一方、水素終端したダイヤモンドは負の電子親和力表面を持つことが報告されている。このような表面を利用することで、従来の半導体材料に比べて異なった特異な電子放出が観測されることが報告されている(非特許文献6、7参照)。これまでに、負の電子親和力の特徴を理解し、電子放出素子へ応用を求めた技術は多数報告例がある(特許文献1〜5)が、それを積極的に測定技術に応用した報告例は無かった。
登録2798696号 特願2003-584639号公報 特開2002-298777号公報 特開平09-161655号公報 特開平07-130981号公報 P. Hartmann et al., International Journal of Refractory Metals &Hard Materials 16 (1998) 223. R. Kravets et al., Diamond and Related Materials 13 (2004) 1785. R. Kalish et al., Applied Physics Letter 76 (2000) 757. H. Kato et al., physica status solidi (a) 202 (2005) 2122. D. Takeuchi et al., physica status solidi (a) 186 (2001) 269. F. J. Himpsel et al., Physical Review B 20 (1979) 624. J. B. Cui et al, Physical Review B 60 (1999) 16135.
Diamond is a semiconductor with a band gap of 5.5 eV, and boron has been reported to form an acceptor level at 0.37 eV in the upper gap from the top of the valence band as an acceptor for supplying holes. There is a need for a simple measurement technique that can detect boron with high sensitivity and nondestructiveness (Non-Patent Documents 3 to 5). On the other hand, hydrogen-terminated diamond has been reported to have a negative electron affinity surface. It has been reported that by using such a surface, unique electron emission different from that of conventional semiconductor materials is observed (see Non-Patent Documents 6 and 7). So far, there have been many reported examples of technologies that understand the characteristics of negative electron affinity and that have been applied to electron-emitting devices (Patent Documents 1 to 5). There was no.
Registration No.2798696 Japanese Patent Application No. 2003-584639 JP 2002-298777 A JP 09-161655 A JP 07-130981 A P. Hartmann et al., International Journal of Refractory Metals & Hard Materials 16 (1998) 223. R. Kravets et al., Diamond and Related Materials 13 (2004) 1785. R. Kalish et al., Applied Physics Letter 76 (2000) 757. H. Kato et al., Physica status solidi (a) 202 (2005) 2122. D. Takeuchi et al., Physica status solidi (a) 186 (2001) 269. FJ Himpsel et al., Physical Review B 20 (1979) 624. JB Cui et al, Physical Review B 60 (1999) 16135.

従来方法では、測定感度が不十分であったり、空間分解能を得ることが原理的に出来なかったり、高感度であるが定量評価が行えなかったり、破壊検査であったり、絶縁物(高抵抗状態)が測定できなかったり、測定のために電極付けなどの前処理が必要であったりして、高純度高抵抗ワイドバンドギャップ半導体内の微量(1015cm-3以下)の非破壊測定が簡便に行えなかった。
本発明は、これまでの知見とは全く異なる方法で、負の、あるいは非常に小さい電子親和力を積極的に利用し、高純度ワイドバンドギャップ半導体内の不純物および欠陥の電子を光励起によって効率よく検出することにより、従来技術では検出できなかった微量(1015cm-3以下)の非破壊測定を、電極付けなどの前処理無しで簡便に可能とする。実際に、負の電子親和力表面からの電子放出をこのように積極的に応用した不純物および欠陥の電子状態の評価技術はこれまで例がない。
With conventional methods, measurement sensitivity is insufficient, spatial resolution cannot be obtained in principle, high sensitivity but quantitative evaluation cannot be performed, destructive inspection, insulation (high resistance state) ) Cannot be measured, or pre-treatment such as electrode attachment is required for measurement, and nondestructive measurement of trace amounts (10 15 cm -3 or less) in high-purity high-resistance wide band gap semiconductors is easy. I could not do it.
The present invention is a method that is completely different from previous knowledge, and actively utilizes negative or very small electron affinity to efficiently detect impurities and defects in high-purity wide band gap semiconductors by photoexcitation. By doing so, non-destructive measurement of a minute amount (10 15 cm −3 or less) that could not be detected by the conventional technology can be easily performed without pretreatment such as electrode attachment. Actually, there has been no example of an evaluation technique for the electronic state of impurities and defects by positively applying electron emission from a negative electron affinity surface in this way.

本発明者らはこれらの課題に対して鋭意検討を行い、これまで誰も注目していなかった不純物や欠陥の電子が負の電子親和力表面から電子放出する原理を用いることを発案するに至った。
具体的には、ダイヤモンドの負の電子親和力状態を利用した光電子放出率測定を、ダイヤモンドのバンドギャップエネルギーよりわずかに小さい5〜5.3eVの範囲で、測定温度を室温より上にして測定し、高純度高抵抗ダイヤモンド薄膜中の1015cm-3台のボロンを、電極付けなどの前処理なしで簡便に測定できることを明らかにした。
The present inventors diligently investigated these problems and came up with the idea of using the principle that electrons of impurities and defects that had not been noticed by anyone until now are emitted from the negative electron affinity surface. .
Specifically, the photoemission rate measurement using the negative electron affinity state of diamond is measured in the range of 5 to 5.3 eV, which is slightly smaller than the band gap energy of diamond, at a measurement temperature above room temperature, It has been clarified that 10 15 cm -3 boron atoms in a high-purity, high-resistance diamond film can be easily measured without pretreatment such as electrode attachment.

すなわち、本発明は、ダイヤモンド、窒化ボロン、窒化アルミニウムから選ばれる半導体を用い、あらかじめ電子親和力を負の電子親和力状態にせしめた当該半導体の表面から、照射光によって外部光電子放出させるに際して、照射光を当該半導体のバンドギャップエネルギーより小さいエネルギーの範囲で単色化して照射し、光電子検出器によって光電子数を計数し、同時に照射光強度を計測し、当該照射光エネルギーに対する光電子放出率スペクトルを光電子放出率として計測できる装置を用いた、当該ダイヤモンド半導体内の不純物の存在を測定する半導体内の電子状態測定方法である。
また、本発明では、室温あるいは室温より高い測定温度を用いることができる。
さらに、本発明では、前記半導体として、膜厚が200ナノメートル以上であるダイヤモンド、窒化ボロン、窒化アルミニウムから選ばれる1種の薄膜を用いることができる。
That is, the present invention provides a diamond, boron nitride, a semiconductor selected from aluminum nitride, advance the electron affinity of the negative electron affinity state allowed the the semiconductor surface, upon to the external light emission by irradiating light, the irradiation light Irradiate in a monochromatic range of energy less than the band gap energy of the semiconductor, count the number of photoelectrons with a photoelectron detector, and simultaneously measure the irradiation light intensity, and use the photoelectron emission rate spectrum for the irradiation light energy as the photoelectron emission rate This is a method for measuring an electronic state in a semiconductor, in which the presence of impurities in the diamond semiconductor is measured using a device capable of measurement.
In the present invention, room temperature or a measurement temperature higher than room temperature can be used.
Furthermore, in the present invention, as the semiconductor, one kind of thin film selected from diamond, boron nitride, and aluminum nitride having a film thickness of 200 nanometers or more can be used.

本発明の半導体内不純物および欠陥の電子状態測定方法は、従来のシリコン等で開発されてきた技術のみでは、高純度ワイドバンドギャップ半導体であるがために顕在化してきた技術的課題を、新しい測定原理を用いることで解決できることを明らかにしている。
原理的に直接、対象となるバンドギャップ中の不純物および欠陥準位を検出するため、簡便であり、非破壊に従来技術で検出不可能な範囲をカバーできる。今後のワイドバンドギャップ半導体の評価技術として応用され、幅広く展開され得る基本的要素からなる方法である。
The method for measuring the electronic state of impurities and defects in a semiconductor of the present invention is a new measurement of a technical problem that has become apparent because it is a high-purity wide bandgap semiconductor only with the technology developed with conventional silicon and the like. It is clarified that it can be solved by using the principle.
In principle, since impurities and defect levels in the target band gap are directly detected, it is simple and can cover a range that cannot be detected by the conventional technique in a non-destructive manner. It is a method that consists of basic elements that can be applied to future wide band gap semiconductor evaluation technology and can be widely deployed.

本発明は、高純度ワイドバンドギャップ半導体内の不純物や欠陥準位を占める電子が光励起によって負の電子親和力表面から電子放出する原理を用いる高感度・非破壊かつ簡便な不純物・欠陥準位測定方法である。
また本発明は、微弱な励起光強度および光電子強度を扱うことができるので、絶縁物でも問題なく測定可能である。具体的には、換算電流値として最大0.1pA台である。
また本発明では、測定対象に負の電子親和力を示すダイヤモンドを用いることができる。
さらに本発明では、測定温度を測定対象に応じて任意に変えることができる。
さらに本発明では、ダイヤモンド中のボロンを高感度で検出する際ために、測定温度を400から600Kにして測定することができる。
さらに本発明では、ダイヤモンド中の補償されたボロンも含めて測定でき、高感度に測定しやすい測定原理を有している。
また本発明では、厚さ1ミクロン以上のダイヤモンド薄膜を用いることができる。
またさらに本発明では、 ダイヤモンド膜が(111)、(100),(110)面の結晶構造の単結晶やエピタキシャル膜,若しくは多結晶膜とすることができる。
The present invention is a highly sensitive, nondestructive and simple impurity / defect level measurement method using the principle that electrons occupying impurities and defect levels in a high-purity wide bandgap semiconductor are emitted from a negative electron affinity surface by photoexcitation. It is.
In addition, since the present invention can handle weak excitation light intensity and photoelectron intensity, even an insulator can be measured without any problem. Specifically, the converted current value is a maximum of 0.1 pA.
In the present invention, diamond showing a negative electron affinity can be used as a measurement target.
Furthermore, in this invention, measurement temperature can be changed arbitrarily according to a measuring object.
Furthermore, in the present invention, in order to detect boron in diamond with high sensitivity, measurement can be performed at a measurement temperature of 400 to 600K.
Furthermore, the present invention has a measurement principle that can be measured including compensated boron in diamond and is easy to measure with high sensitivity.
In the present invention, a diamond thin film having a thickness of 1 micron or more can be used.
Furthermore, in the present invention, the diamond film can be a single crystal, an epitaxial film, or a polycrystalline film having a crystal structure of (111), (100), (110) plane.

さらに本発明では、表面の一部が水素終端構造のダイヤモンドである。
本発明では、標準試料の測定結果と比較することにより、定量測定の精度を用意に確保することができる。
また本発明は、ダイヤモンド膜を10-8Torr以下の真空中、850〜1100Kの熱処理、より好ましくは900〜1050Kの熱処理により、ダイヤモンド表面の水(電解液)・炭化水素系吸着物を脱理させ清浄水素終端表面を得る処理後のダイヤモンド表面を用いることができる。
また本発明では、光電子強度測定に、電子増倍管(チャンネルトロンまたはマルチチャンネルプレート)を用いた電子計数法または試料台に流れる電流を直接あるいは増幅して測定する方法のいずれも用いることができる。
また本発明では、光強度測定に、光電子増倍管あるいはパイロ検出器、フォトダイオード、CCDのいずれも用いることができる。さらに本発明では、測定光学系を固定することにより、試料温度制御時の輻射光の影響が生じるときでも、試料温度制御停止字の光スペクトルを参照することで、容易に光電子放出率あるいは光電子放出率スペクトルを得ることができる。
Furthermore, in the present invention, a part of the surface is diamond having a hydrogen termination structure.
In the present invention, the accuracy of quantitative measurement can be readily ensured by comparing with the measurement result of the standard sample.
Further, the present invention removes water (electrolyte) / hydrocarbon adsorbent on the diamond surface by heat treatment of diamond film in a vacuum of 10 −8 Torr or less at a temperature of 850 to 1100 K, more preferably 900 to 1050 K. Then, a diamond surface after treatment for obtaining a clean hydrogen-terminated surface can be used.
In the present invention, either the electron counting method using an electron multiplier (channeltron or multichannel plate) or the method of directly or amplifying the current flowing through the sample stage can be used for photoelectron intensity measurement. .
In the present invention, any of a photomultiplier tube, a pyro detector, a photodiode, and a CCD can be used for light intensity measurement. Furthermore, in the present invention, by fixing the measurement optical system, even when the influence of the radiation light at the time of sample temperature control occurs, the photoelectron emission rate or the photoelectron emission can be easily obtained by referring to the light spectrum of the sample temperature control stop character. A rate spectrum can be obtained.

本発明において、試料表面が負の電子親和力状態を有し、かつ光電子放出を阻害するような表面汚染や表面損傷がない状態とすることが望ましい。励起する光は、対象試料のバンドギャップより小さいエネルギー範囲を走査できることが望ましい。分光器は、迷光を極力下げるため、二段以上が望ましい。スリット幅は、分解能によって選別すべきであるが、ワイドバンドギャップ半導体で使用されるべき紫外光にて50meV以上の分解能を有していることが望ましい。有限の温度であれば、不純物や欠陥の電子状態はフェルミ統計に従った占有確率を持つが、占有率を上げて検出効率を上げるために温度が高く設定できることが望ましい。あるいは、温度を変化させて占有率の変化を確認できることが望ましい。光電子計数は感度の問題から、超高真空で行われることが望ましい。
本発明で用いるダイヤモンドは、高温高圧法およびCVD法によって合成されたものであるが、いずれもマイクロ波プラズマCVD装置にてダイヤモンド表面は水素終端され、本発明で用いる10-9Torr以下の超高真空装置内にて、1000Kで水素終端を壊さずに表面吸着物を脱理させることにより、清浄水素終端表面、つまり清浄負性電子親和力表面を形成できる。励起光源にはキセノンランプを使用し、水フィルターによって赤外光を除去した後、ダブルモノクロメータにて分光し、フッ化マグネシウムビームスプリッターにて、光強度測定用光電子増倍管、および超高真空装置内の試料表面に集光して照射される。光学系はすべて真空紫外まで適用可能なものを用いている。試料から出る光電子は測定用電子増倍管からの信号をコンデンサを通じて取り出し、DC〜300MHz帯域幅を持つ高速プリアンプで増幅後、カウンターに導入して電子計数する。光電子増倍管および電子増倍管の信号は最終的にパーソナルコンピュータに取り込まれ、プログラムによって各波長に対する光電子強度が光強度で規格化され、自動計測・処理される。
In the present invention, it is desirable that the sample surface has a negative electron affinity state and does not have surface contamination or surface damage that inhibits photoelectron emission. It is desirable that the excitation light can scan an energy range smaller than the band gap of the target sample. The spectroscope is preferably two or more stages in order to reduce stray light as much as possible. The slit width should be selected according to the resolution, but it is desirable to have a resolution of 50 meV or more in the ultraviolet light to be used in the wide band gap semiconductor. If the temperature is finite, the electronic states of impurities and defects have an occupation probability according to Fermi statistics, but it is desirable that the temperature can be set high in order to increase the occupation ratio and increase the detection efficiency. Alternatively, it is desirable that the change in the occupation ratio can be confirmed by changing the temperature. Photoelectron counting is preferably performed in an ultrahigh vacuum due to sensitivity issues.
The diamond used in the present invention is synthesized by a high-temperature and high-pressure method and a CVD method. In either case, the diamond surface is hydrogen-terminated by a microwave plasma CVD apparatus, and the ultrahigh height of 10 −9 Torr or less used in the present invention is used. By removing the surface adsorbate without breaking the hydrogen termination at 1000K in a vacuum apparatus, a clean hydrogen termination surface, that is, a clean negative electron affinity surface can be formed. A xenon lamp is used as the excitation light source, infrared light is removed by a water filter, spectroscopy is performed by a double monochromator, a photomultiplier tube for measuring light intensity is measured by a magnesium fluoride beam splitter, and an ultra-high vacuum. The sample surface in the apparatus is focused and irradiated. All optical systems are applicable up to vacuum ultraviolet. The photoelectrons emitted from the sample are extracted from the signal from the electron multiplier for measurement through a capacitor, amplified by a high-speed preamplifier having a DC to 300 MHz bandwidth, introduced into a counter, and counted. The photomultiplier tube and the signal of the electron multiplier tube are finally taken into a personal computer, the photoelectron intensity for each wavelength is normalized by the light intensity by a program, and is automatically measured and processed.

本発明で用いる負の電子親和力を利用した光電子放出率測定では、光励起によって伝導帯底を電子が表面まで輸送されることが感度を決める上で重要な過程である。そのため、微量な不純物や欠陥の電子状態を高感度で検出する際には、電子の拡散長を決める電子の散乱機構が少ないことが望ましい。ただし、測定対象の不純物や欠陥濃度が著しく高い場合、電子の拡散長が短くなるのに対し、測定対象濃度は増大しているので、その積が測定感度にかかる範囲であれば、検出可能である。   In the photoelectron emission rate measurement using the negative electron affinity used in the present invention, it is an important process for determining the sensitivity that electrons are transported to the surface through the bottom of the conduction band by photoexcitation. Therefore, when detecting the electronic state of a minute amount of impurities or defects with high sensitivity, it is desirable that the number of electron scattering mechanisms that determine the electron diffusion length is small. However, if the concentration of impurities or defects to be measured is extremely high, the electron diffusion length is shortened, while the concentration to be measured is increased. is there.

電子親和力が負でなくても、運動量保存則によって小さな正の電子親和力であれば、表面より深い内部からの電子放出が可能であるため、上記の条件を満たす正の電子親和力を持った試料に対しても、本発明の方法が適用できる。   Even if the electron affinity is not negative, if the electron affinity is small due to the law of conservation of momentum, electrons can be emitted from the inside deeper than the surface. In contrast, the method of the present invention can be applied.

試料としては、高温高圧合成ダイヤモンド(001)単結晶を用いた。ダイヤモンド膜は,マイクロ波プラズマCVD装置によって表面を水素終端処理され、超高真空装置に導入された。内部のヒーターによって、一旦700℃、1時間処理され、水素終端表面上の吸着物や、水素終端表面伝導層を除去し、清浄水素終端負性電子親和力表面を用意した。
この試料を、本発明に用いる同じ超高真空装置内にある光電子放出率測定の位置に搬送した。装置の概要を図1に示す。また、本発明の測定原理を示すエネルギーバンド構造の概略図を図2に示す。図2の光励起過程Iを利用することにより、バンドギャップ中の不純物または欠陥の占有準位を、負性電子親和力(NEA)表面からの電子放出過程を経て検出することにより、直接測定できる。
図3に測定結果を示す。励起光エネルギーは5〜5.6eVである。測定温度を302Kから約50K刻みで550Kまで測定した場合の各光電子放出率スペクトルが示されている。図中、Egがダイヤモンドのバンドギャップに相当する光エネルギー位置、Egxがダイヤモンド中のバンドギャップ構造に由来する自由励起子の基底状態に相当する光エネルギー位置、そこから横光学フォノン分だけ低エネルギー側にあるaで示されている点線が、ダイヤモンドの302Kにおける低エネルギー側の主要な基礎吸収端を示し、それが測定温度550Kでa’へと、低エネルギー側に移動している様子がよく現れている。このaからa’への変化はダイヤモンドのバンドギャップの温度依存性に対応している。そして、そのa,a’よりもさらに低いエネルギー位置bから、今回の測定でダイヤモンド中のイオン化したボロンからの光電子放出率スペクトルが検出できていることがわかる。このスペクトルの強度の温度依存性、および光励起エネルギー閾値、等からボロンであることが決定される。
本試料は、高純度真性ダイヤモンド半導体として分類されるIIa形と呼ばれるものであったのだが、本発明手法によりボロンが検出された。実際に従来技術であるカソードルミネッセンス法を用いて、本試料中のボロン混入を検出することを試みた。その結果が図4である。25Kの低温にて、ダイヤモンド中にボロンが存在していることを示す束縛励起子からの発光(BETO)が観測された。自由励起子からの発光(FETO)との発光強度比から、見積もられるボロン量は1016cm-3台であることから、この程度の微量のボロンが本発明によって検出できたことがわかった。標準試料と比較することで、最終的に定量性の精度を確保することが可能である。一方、確認に用いた従来技術であるカソードルミネッセンス法では、チャージアップ、電子ビーム照射による測定中の炭素系吸着物の堆積等の問題があるため、定量的評価は不可能である。
As a sample, a high-temperature high-pressure synthetic diamond (001) single crystal was used. The diamond film was hydrogen-terminated by a microwave plasma CVD device and introduced into an ultra-high vacuum device. After treatment with an internal heater at 700 ° C for 1 hour, the adsorbate on the hydrogen-terminated surface and the hydrogen-terminated surface conductive layer were removed to prepare a clean hydrogen-terminated negative electron affinity surface.
This sample was transported to the photoelectron emission rate measurement position in the same ultrahigh vacuum apparatus used in the present invention. An outline of the apparatus is shown in FIG. Moreover, the schematic of the energy band structure which shows the measurement principle of this invention is shown in FIG. By utilizing the photoexcitation process I in FIG. 2, it is possible to directly measure the occupied level of impurities or defects in the band gap through the electron emission process from the negative electron affinity (NEA) surface.
FIG. 3 shows the measurement results. The excitation light energy is 5 to 5.6 eV. Each photoemission rate spectrum is shown when the measurement temperature is measured from 302K to 550K in steps of about 50K. In the figure, Eg is the light energy position corresponding to the band gap of diamond, Egx is the light energy position corresponding to the ground state of free excitons derived from the band gap structure in the diamond, and the low energy side by the lateral optical phonon from there. The dotted line indicated by a in Fig. 2 shows the main fundamental absorption edge on the low energy side of diamond at 302K, and it often appears that it moves to the low energy side to a 'at a measurement temperature of 550K. ing. This change from a to a ′ corresponds to the temperature dependence of the band gap of diamond. Then, it can be seen that the photoelectron emission rate spectrum from ionized boron in diamond can be detected in this measurement from the energy position b lower than a and a ′. It is determined to be boron from the temperature dependence of the intensity of this spectrum and the photoexcitation energy threshold value.
Although this sample was called type IIa classified as a high purity intrinsic diamond semiconductor, boron was detected by the method of the present invention. An attempt was made to detect boron contamination in this sample using the cathodoluminescence method, which is actually the prior art. The result is shown in FIG. Emission from bound excitons (BE TO ) indicating the presence of boron in diamond was observed at a low temperature of 25K. From the emission intensity ratio with emission from free excitons (FE TO ), the estimated amount of boron is on the order of 1016 cm −3, indicating that such a small amount of boron could be detected by the present invention. By comparing with a standard sample, it is possible to finally ensure the accuracy of quantitativeness. On the other hand, the conventional cathodoluminescence method used for confirmation has problems such as charge-up and deposition of carbon-based adsorbate during measurement by electron beam irradiation, and therefore cannot be quantitatively evaluated.

高純度アンドープCVDホモエピタキシャルダイヤモンド薄膜(001)を試料として用いた。
実施例1の精密な清浄化は行わずに、光電子放出率測定系の位置に搬送して、本発明測定方法を用いた。具体的には、測定温度573Kにて、励起光エネルギー5〜5.3eVで測定を行った。実施例1の結果(黒四角)と合わせて結果(白丸)を図5に示す。明らかにボロンに由来する電子放出率スペクトルが確認できた。一方、その強度は実施例1の場合に比べて一桁程度小さいと見積もられた。この試料について、実施例1と同様にカソードルミネッセンス法による確認測定を行ったが、実施例1と同様に低温で測定した場合、ボロンに対応する束縛励起子からの発光は観測されず、自由励起子からの発光のみであった。
以上のことから、本発明により、従来最も感度の高いとされていたカソードルミネッセンス法で通常ボロンの測定限界と考えられている1016cm-3台を超える、1015cm-3台の検出に成功したことが明らかになった。
A high purity undoped CVD homoepitaxial diamond thin film (001) was used as a sample.
The precise cleaning of Example 1 was not performed, but the sample was transported to the position of the photoelectron emission rate measurement system and the measurement method of the present invention was used. Specifically, measurement was performed at an excitation light energy of 5 to 5.3 eV at a measurement temperature of 573K. FIG. 5 shows the result (white circle) together with the result of Example 1 (black square). Obviously, the electron emission rate spectrum derived from boron was confirmed. On the other hand, the strength was estimated to be about an order of magnitude lower than that in Example 1. For this sample, confirmation measurement by the cathodoluminescence method was performed in the same manner as in Example 1. However, when measured at a low temperature as in Example 1, no luminescence from bound excitons corresponding to boron was observed, and free excitation was observed. Only light from the child was emitted.
From the above, according to the present invention, it is possible to detect 10 15 cm -3 units exceeding the 10 16 cm -3 unit, which is considered to be the measurement limit of boron in the cathodoluminescence method, which has been considered to be the most sensitive in the past. It proved successful.

これらの実施例に対して、下記比較例に示すように、従来のダイヤモンド中のボロン検出技術に比べ、著しく高い感度、定量性と簡便性を実現できた。
比較例1:
従来技術「SIMS」では、不純物の深さ分布を定量的に感度よく示すことが可能であるが、原理的に試料をスパッタしていくため、非破壊検査とはならない。また、電子状態とは無関係に検出するため、ドナー・アクセプターとして活性化しているかどうかは単独ではわからない。スパッタにイオンを用いるため、絶縁物に対しては基本的に適用できない。厳密には可能な場合もあるが、試料に帯電防止の為の様々な加工を必要とする。一般に測定後にその試料をデバイスに利用することはない。
For these examples, as shown in the following comparative examples, remarkably high sensitivity, quantitativeness, and simplicity were realized compared to the conventional boron detection technology in diamond.
Comparative Example 1:
In the conventional technique “SIMS”, it is possible to quantitatively indicate the depth distribution of impurities with high sensitivity. However, since the sample is sputtered in principle, it is not a nondestructive inspection. In addition, since it is detected regardless of the electronic state, it is not known alone whether it is activated as a donor / acceptor. Since ions are used for sputtering, it is basically not applicable to insulators. Strictly speaking, it may be possible, but the sample requires various processing for antistatic purposes. Generally, the sample is not used for a device after measurement.

比較例2:
従来技術「ホール効果」では、感度よくドナー・アクセプター濃度を定量的に測定可能である。また、補償比・補償不純物または欠陥濃度も得ることができる。しかし、空間分解能を得ることは原理的に不可能であり、電気的測定であるため、絶縁物は測定できない。厳密には、高抵抗でも測定できる交流タイプや光ホール効果測定なども存在するが、ワイドバンドギャップ半導体として、電極の形成技術のさらなる革新が必要である。なお、測定対象は自由キャリアであり、ドナー・アクセプター・その他の不純物や欠陥の総合的情報を扱っており、個々の準位を導くためには、仮定が必要である。
Comparative Example 2:
The conventional technique “Hall effect” can quantitatively measure the donor / acceptor concentration with high sensitivity. Further, a compensation ratio / compensation impurity or defect concentration can also be obtained. However, it is impossible in principle to obtain a spatial resolution, and since it is an electrical measurement, an insulator cannot be measured. Strictly speaking, there are AC type and optical Hall effect measurement that can be measured even with high resistance, but as a wide band gap semiconductor, further innovation in electrode formation technology is required. The object to be measured is free carriers, which handle comprehensive information on donors, acceptors, other impurities and defects, and assumptions are necessary to derive individual levels.

比較例3:
従来技術「FTPS(フーリエ変換光電流分光法)」でも、同等の検出可能という文献があるが、文献中では検出限界を理論的に予言しているだけで実施例に相当するデータは無い(非特許文献2)。また、手法的にも様々な解析のための条件整備が必要であり、対象物であるダイヤモンド中のボロンを直接かつルーチン的に測定できる点で本手法が優れている。
本発明の不純物若しくは欠陥を含む半導体内の電子状態測定方法及び従来の方法の特性を表1にまとめて示す。
Comparative Example 3:
Even in the conventional technology “FTPS (Fourier Transform Photocurrent Spectroscopy)”, there is a document that the detection is equivalent, but there is no data corresponding to the example only in the literature by predicting the detection limit theoretically (non- Patent Document 2). In addition, it is necessary to prepare various conditions for analysis, and this method is superior in that boron in diamond as an object can be measured directly and routinely.
Table 1 summarizes the characteristics of the method for measuring an electronic state in a semiconductor containing impurities or defects according to the present invention and the conventional method.

Figure 0004756374
FTPSはフーリエ変換光電流分光法、SIMSは二次イオン質量分析法、CLはカソードルミネッセンス法である。SIMSはイオンで試料をスパッタしながら測定するため破壊測定に分類される。CLは電子ビームを照射して発光を観測する非破壊測定であるが、試料を含む発光観測系の複雑さから、不純物や欠陥濃度と対応する発光強度の定量的取り扱いは原理的に不可能である。SIMSもCLも荷電ビームを入力源とするため、絶縁物に対しては原理的に取り扱い不可能である。極めて薄い金属膜や炭素膜被覆等で帯電防止を施す場合があるが、この場合定量的扱いの阻害要因を増やすのみで、定性的扱いを可能とするのみである。
Figure 0004756374
FTPS is Fourier transform photocurrent spectroscopy, SIMS is secondary ion mass spectrometry, and CL is cathodoluminescence. SIMS is classified as destructive measurement because it is measured while sputtering a sample with ions. CL is a nondestructive measurement that observes luminescence by irradiating an electron beam, but due to the complexity of the luminescence observation system including the sample, quantitative handling of the luminescence intensity corresponding to the impurity and defect concentrations is impossible in principle. is there. Since SIMS and CL use a charged beam as an input source, they cannot be handled in principle for insulators. There are cases where antistatic treatment is performed with a very thin metal film or carbon film coating, but in this case only qualitative treatment is possible only by increasing the obstruction factor of quantitative treatment.

本発明の半導体内不純物および欠陥の電子状態測定方法は、従来のシリコン等で開発されてきた技術のみでは、高純度ワイドバンドギャップ半導体であるがために顕在化してきた技術的課題を、新しい測定原理を用いることで解決できることを明らかにしている。
原理的に直接、対象となるバンドギャップ中の不純物および欠陥準位を検出するため、簡便であり、非破壊に従来技術で検出不可能な範囲をカバーできる。今後のワイドバンドギャップ半導体の評価技術として応用され、幅広く展開され得る基本的要素からなる方法である。
The method for measuring the electronic state of impurities and defects in a semiconductor of the present invention is a new measurement of a technical problem that has become apparent because it is a high-purity wide bandgap semiconductor only with the technology developed with conventional silicon and the like. It is clarified that it can be solved by using the principle.
In principle, since impurities and defect levels in the target band gap are directly detected, it is simple and can cover a range that cannot be detected by the conventional technique in a non-destructive manner. It is a method that consists of basic elements that can be applied to future wide band gap semiconductor evaluation technology and can be widely deployed.

本発明の方法を実現する装置構成の一例図。1 is an example of a device configuration for realizing a method of the present invention. 本発明の特徴概念図Feature conceptual diagram of the present invention 本発明の特性図Characteristics of the present invention 従来例による特性確認図Characteristics confirmation diagram using conventional example 従来例との比較特性図Comparison characteristics with conventional examples

Claims (3)

ダイヤモンド、窒化ボロン、窒化アルミニウムから選ばれる半導体を用い、あらかじめ電子親和力を負の電子親和力状態にせしめた当該半導体の表面から、照射光によって外部光電子放出させるに際して、照射光を当該半導体のバンドギャップエネルギーより小さいエネルギーの範囲で単色化して照射し、光電子検出器によって光電子数を計数し、同時に照射光強度を計測し、当該照射光エネルギーに対する光電子放出率スペクトルを光電子放出率として計測できる装置を用いた、当該半導体内の不純物の存在を測定する半導体内の電子状態測定方法。 When a semiconductor selected from diamond, boron nitride, and aluminum nitride is used and external photoelectrons are emitted from the surface of the semiconductor whose electron affinity has previously been set to a negative electron affinity state by irradiation light, the irradiation light is irradiated with the band gap energy of the semiconductor. Using a device that can irradiate in a monochromatic range with a smaller energy range, count the number of photoelectrons with a photoelectron detector, simultaneously measure the intensity of the irradiated light, and measure the photoelectron emission rate spectrum for the irradiated light energy as the photoelectron emission rate A method for measuring an electronic state in a semiconductor, wherein the presence of impurities in the semiconductor is measured. 室温あるいは室温より高い測定温度を用いる請求項1に記載した半導体内の電子状態測定方法。 The method for measuring an electronic state in a semiconductor according to claim 1, wherein a room temperature or a measurement temperature higher than room temperature is used. 前記半導体として、膜厚が200ナノメートル以上であるダイヤモンド、窒化ボロン、窒化アルミニウムから選ばれる1種の薄膜を用いる請求項1又は請求項2に記載した半導体内の電子状態測定方法。
The method for measuring an electronic state in a semiconductor according to claim 1 or 2 , wherein one kind of thin film selected from diamond, boron nitride, and aluminum nitride having a film thickness of 200 nanometers or more is used as the semiconductor.
JP2006255560A 2006-09-21 2006-09-21 A method for measuring electronic states in semiconductors. Expired - Fee Related JP4756374B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006255560A JP4756374B2 (en) 2006-09-21 2006-09-21 A method for measuring electronic states in semiconductors.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006255560A JP4756374B2 (en) 2006-09-21 2006-09-21 A method for measuring electronic states in semiconductors.

Publications (2)

Publication Number Publication Date
JP2008078369A JP2008078369A (en) 2008-04-03
JP4756374B2 true JP4756374B2 (en) 2011-08-24

Family

ID=39350133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006255560A Expired - Fee Related JP4756374B2 (en) 2006-09-21 2006-09-21 A method for measuring electronic states in semiconductors.

Country Status (1)

Country Link
JP (1) JP4756374B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2522596C2 (en) * 2012-07-31 2014-07-20 Федеральное государственное бюджетное учреждение науки Физико-технический институт им. А.И. Иоффе Российской академии наук Method of determining angle of misorientation of diamond crystallites in diamond composite
JP5991556B2 (en) 2012-12-27 2016-09-14 国立大学法人名古屋大学 Method and apparatus for measuring energy of electrons excited by sunlight

Also Published As

Publication number Publication date
JP2008078369A (en) 2008-04-03

Similar Documents

Publication Publication Date Title
Jokisaari et al. Vibrational spectroscopy of water with high spatial resolution
Scheibner et al. Inelastic scattering of low energy electrons from surfaces
US9515211B2 (en) Schottky barrier detection devices having a 4H-SiC n-type epitaxial layer
JP6204036B2 (en) Evaluation method of oxide semiconductor thin film and quality control method of oxide semiconductor thin film
Holzworth et al. Characterization of the gate oxide of an AlGaN/GaN high electron mobility transistor
Jangir et al. Correlation between surface modification and photoluminescence properties of β-Ga2O3 nanostructures
Berdermann et al. Progress in detector properties of heteroepitaxial diamond grown by chemical vapor deposition on Ir/YSZ/Si (001) wafers
JP4756374B2 (en) A method for measuring electronic states in semiconductors.
Murphy et al. Optical emission of biaxial ZnO–ZnS nanoribbon heterostructures
Lu et al. Analysis of boron in diamond with UV photoluminescence
Ramos et al. Characterization of ion beam induced polarization in scCVD diamond detectors using a microbeam probe
Kurudirek et al. Effect of annealing temperature on the photoluminescence and scintillation properties of ZnO nanorods
Rosenberg et al. Depth resolved studies of SrTiO3 defects using x-ray excited optical luminescence and cathodoluminescence
Fu et al. Study on the effects of indentation-induced dislocations on the detector performance of CdZnTe crystals
Gaubas et al. In situ variations of carrier decay and proton induced luminescence characteristics in polycrystalline CdS
JP3525674B2 (en) Apparatus and method for measuring work function or ionization potential
WO2007129596A1 (en) Energy level measuring method and energy level analyzing method
Fukushima et al. Cathodoluminescence study of radiative interface defects in thermally grown SiO2/4H-SiC (0001) structures
Kromka et al. Detection of residual molybdenum impurity in CVD diamond
JP2020040853A (en) EVALUATION METHOD OF SiC SUBSTRATE, MANUFACTURING METHOD OF SiC EPITAXIAL WAFER, AND SiC EPITAXIAL WAFER
Raulo et al. Pt-CdTe detectors spectroscopic performances and RBS and XRF interface composition analysis
Kada et al. Investigation of electrically-active deep levels in single-crystalline diamond by particle-induced charge transient spectroscopy
Mandal et al. Assessment of 4H-SiC epitaxial layers and high resistivity bulk crystals for radiation detectors
Engst et al. Bulk lifetime characterization of corona charged silicon wafers with high resistivity by means of microwave detected photoconductivity
Das et al. Deep Level and Near‐Band‐Edge Recombination in Semiconducting Antiperovskite Hg3Se2I2 Single Crystals

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110216

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110318

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110405

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110511

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110519

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees