JP4756212B2 - Method for producing levoglucosan - Google Patents

Method for producing levoglucosan Download PDF

Info

Publication number
JP4756212B2
JP4756212B2 JP2005515319A JP2005515319A JP4756212B2 JP 4756212 B2 JP4756212 B2 JP 4756212B2 JP 2005515319 A JP2005515319 A JP 2005515319A JP 2005515319 A JP2005515319 A JP 2005515319A JP 4756212 B2 JP4756212 B2 JP 4756212B2
Authority
JP
Japan
Prior art keywords
water
levoglucosan
soluble saccharide
maltotetraose
maltose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005515319A
Other languages
Japanese (ja)
Other versions
JPWO2005044833A1 (en
Inventor
憲司 ▲高▼橋
晴生 加我
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanazawa University NUC
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Kanazawa University NUC
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanazawa University NUC, National Institute of Advanced Industrial Science and Technology AIST filed Critical Kanazawa University NUC
Priority to JP2005515319A priority Critical patent/JP4756212B2/en
Publication of JPWO2005044833A1 publication Critical patent/JPWO2005044833A1/en
Application granted granted Critical
Publication of JP4756212B2 publication Critical patent/JP4756212B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H3/00Compounds containing only hydrogen atoms and saccharide radicals having only carbon, hydrogen, and oxygen atoms
    • C07H3/10Anhydrosugars, e.g. epoxides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H1/00Processes for the preparation of sugar derivatives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Saccharide Compounds (AREA)

Description

本発明は、レボグルコサンの製造方法、特に安価な糖類を原料として、触媒を使用することなく、高収率でレボグルコサンを製造する方法に関するものである。  The present invention relates to a method for producing levoglucosan, and more particularly, to a method for producing levoglucosan in a high yield without using a catalyst using an inexpensive saccharide as a raw material.

グルコースを分子内脱水してなるレボグルコサン(即ち、1,6−アンヒドロ−β−D−グルコピラノース)は、医用材料の原料、生分解性プラスチックの原料として有用である。しかしながら、レボグルコサンは、非常に高価であるため、安価で大量に製造できる技術が求められている。  Levoglucosan obtained by intramolecular dehydration of glucose (that is, 1,6-anhydro-β-D-glucopyranose) is useful as a raw material for medical materials and a raw material for biodegradable plastics. However, since levoglucosan is very expensive, there is a need for a technique that can be manufactured in a large amount at a low cost.

従来、真空加熱炉やマイクロ波を用いて、セルロース又は細かく粉砕した木材を急速加熱して熱分解することで、グルコースから水分子が1分子脱離したレボグルコサンが生成することが知られている(特公平6−72003号公報参照)。しかしながら、この場合、レボグルコサンの収率は2〜6%程度と低く、収率を更に向上させる必要がある。ここで、レボグルコサンの収率が低い原因としては、目的とするレボグルコサンが熱的に不安定であるため、生成したレボグルコサンが反応器外部へ取り出される前に2次熱分解されることが考えられる。この問題を解決する対策としては、流通系反応器を用い、反応時間を制御して、2次熱分解を抑制する手法が考えられる。しかしながら、水に不溶のセルロース系物質を連続的に流通系反応器に供給することは、困難である。  Conventionally, it is known that levoglucosan in which one molecule of water molecule is desorbed from glucose is generated by rapidly heating and thermally decomposing cellulose or finely pulverized wood using a vacuum heating furnace or microwave ( (See Japanese Patent Publication No. 6-72003). However, in this case, the yield of levoglucosan is as low as 2 to 6%, and it is necessary to further improve the yield. Here, the reason why the yield of levoglucosan is low is that the target levoglucosan is thermally unstable, and thus it is considered that the generated levoglucosan is subjected to secondary pyrolysis before being taken out of the reactor. As a countermeasure for solving this problem, a method of suppressing secondary thermal decomposition by using a flow reactor and controlling the reaction time can be considered. However, it is difficult to continuously supply water-insoluble cellulosic material to the flow reactor.

これに対し、セルロースや木材等の固体物質を用いるよりも、セルロースの構成物質である水溶性のグルコースを用いる方が、反応操作が格段に容易となる。しかしながら、真空加熱炉等を用いてグルコースを急速加熱しても、レボグルコサンが生成しないことが報告されている。  On the other hand, rather than using a solid substance such as cellulose or wood, the reaction operation becomes much easier when water-soluble glucose, which is a constituent of cellulose, is used. However, it has been reported that levoglucosan is not produced even when glucose is rapidly heated using a vacuum heating furnace or the like.

一方、亜臨界又は超臨界状態の水を用いると、酸や塩基触媒を用いることなく反応が進行する例がいくつか報告されている。例えば、超臨界水を用いて、レトロアルドール縮合反応により、グルコースからエリスロース及びグリコールアルデヒドを生成させる方法が提案されている。ここで、亜臨界又は超臨界状態においては、溶媒である水のみで反応が進行するという特徴がある。  On the other hand, some cases have been reported in which the reaction proceeds without using an acid or a base catalyst when subcritical or supercritical water is used. For example, a method has been proposed in which erythrose and glycol aldehyde are produced from glucose by retroaldol condensation reaction using supercritical water. Here, in the subcritical or supercritical state, the reaction proceeds only with water as a solvent.

本発明の目的は、上記従来技術の問題を解決し、2次熱分解を抑制しつつ、レボグルコサンを高収率で製造する方法を提供することにある。  The object of the present invention is to provide a method for producing levoglucosan in a high yield while solving the problems of the above prior art and suppressing secondary thermal decomposition.

本発明者は、上記目的を達成するために鋭意検討した結果、水溶性の糖類を含む水を超臨界状態又は亜臨界状態にすることで、レボグルコサンが生成することを見出し、本発明を完成させるに至った。  As a result of diligent studies to achieve the above object, the present inventors have found that levoglucosan is produced by bringing water containing a water-soluble saccharide into a supercritical state or a subcritical state, thereby completing the present invention. It came to.

即ち、本発明のレボグルコサンの製造方法は、マルトース、マルトトリオース及びマルトテトラオースを含有し、これらマルトース、マルトトリオース及びマルトテトラオースの合計含有量が50質量%以上である水溶性の糖類を超臨界状態又は亜臨界状態の水中で反応させることを特徴とする。 That is, the method for producing levoglucosan of the present invention comprises maltose, maltotriose and maltotetraose, and a water-soluble saccharide having a total content of these maltose, maltotriose and maltotetraose of 50% by mass or more. It is characterized by reacting in supercritical or subcritical water.

また、前記水溶性の糖類中のマルトース、マルトトリオース及びマルトテトラオースの合計含有量が80質量%以上であることが好ましい。 The total content of maltose, maltotriose and maltotetraose in the water-soluble saccharide is preferably 80 % by mass or more.

本発明のレボグルコサンの製造方法の他の好適例においては、反応容器として流通式反応器を用い、前記水溶性の糖類を該流通式反応器に連続的に供給する。この場合、水溶性糖類の反応時間の制御が容易で、生成したレボグルコサンの2次熱分解を好適に抑制することができる。  In another preferred embodiment of the method for producing levoglucosan of the present invention, a flow reactor is used as a reaction vessel, and the water-soluble saccharide is continuously supplied to the flow reactor. In this case, it is easy to control the reaction time of the water-soluble saccharide, and secondary thermal decomposition of the produced levoglucosan can be suitably suppressed.

本発明によれば、安価な水溶性の糖類を超臨界状態又は亜臨界状態の水中で反応させることにより、高価なレボグルコサンを容易に且つ高収率で製造することができる。  According to the present invention, expensive levoglucosan can be produced easily and in high yield by reacting an inexpensive water-soluble saccharide in supercritical or subcritical water.

図1は、実施例で用いた反応装置の概略図である。FIG. 1 is a schematic view of a reaction apparatus used in Examples.

以下に、本発明を詳細に説明する。本発明のレボグルコサンの製造方法は、マルトース、マルトトリオース及びマルトテトラオースを含有し、これらマルトース、マルトトリオース及びマルトテトラオースの合計含有量が50質量%以上である水溶性の糖類を超臨界状態又は亜臨界状態の水中で反応させることを特徴とする。本発明の製造方法においては、水溶性の糖類を用いるため、セルロース等の水に不要な原料を用いた場合よりも、反応操作が非常に容易である。また、触媒を使用しないため、反応混合物からの触媒の除去が不要である。 The present invention is described in detail below. The method for producing levoglucosan according to the present invention comprises supercritical water-soluble saccharides containing maltose, maltotriose and maltotetraose, and the total content of these maltose, maltotriose and maltotetraose is 50% by mass or more. It is characterized by reacting in water in a state or subcritical state. In the production method of the present invention, since a water-soluble saccharide is used, the reaction operation is much easier than when a raw material unnecessary for water such as cellulose is used. Further, since no catalyst is used, it is not necessary to remove the catalyst from the reaction mixture.

本発明のレボグルコサンの製造方法においては、超臨界状態又は亜臨界状態の水を用いる。ここで、超臨界状態の水(即ち、超臨界水)とは、臨界点(374℃、22MPa)以上の温度及び圧力状態の水をさす。また、亜臨界状態の水(即ち、亜臨界水)とは、臨界点未満で且つ臨界点近傍の領域にある水をさす。本発明においては、水が超臨界状態又は亜臨界状態にある限り、特に限定されるものではないが、水の温度は、200〜450℃の範囲が好ましく、水の圧力は、5〜30MPaの範囲が好ましい。更に、かかる超臨界状態又は亜臨界状態の水に水溶性の糖類をさらす時間、即ち、反応時間は、特に限定されるものではないが、0.5〜12秒の範囲が好ましい。なお、本発明のレボグルコサンの製造方法においては、水の温度及び圧力に応じて、反応時間を適宜選択することにより、レボグルコサンの2次熱分解を抑制して、高収率でレボグルコサンを得ることができる。  In the method for producing levoglucosan of the present invention, supercritical or subcritical water is used. Here, water in a supercritical state (that is, supercritical water) refers to water in a temperature and pressure state at a critical point (374 ° C., 22 MPa) or more. Further, subcritical water (ie, subcritical water) refers to water that is less than the critical point and is in the vicinity of the critical point. In the present invention, the water temperature is not particularly limited as long as the water is in a supercritical state or a subcritical state, but the water temperature is preferably in the range of 200 to 450 ° C. A range is preferred. Furthermore, the time for which the water-soluble saccharide is exposed to such supercritical or subcritical water, that is, the reaction time is not particularly limited, but is preferably in the range of 0.5 to 12 seconds. In addition, in the manufacturing method of levoglucosan of this invention, the secondary thermal decomposition of levoglucosan is suppressed by selecting reaction time suitably according to the temperature and pressure of water, and levoglucosan can be obtained with a high yield. it can.

本発明のレボグルコサンの製造方法において、原料として用いる水溶性の糖類は、水に可溶で少なくとも分子中にグルコピラノース単位を含むここで、分子中にグルコピラノース単位を含む水溶性の糖類としては、単糖類であるグルコースの他、マルトース、スクロース、セルビオース、ラクトース等の2糖類、マルトトリオース等の3糖類、マルトテトラオース等の4糖類、マルトペンタオース等の5糖類、マルトヘキサオース等の6糖類、マルトヘプタオース等の7糖類、更には水溶性デンプン等が挙げられる。これらの中でも、レボグルコサンの収率の観点から、比較的低分子量でグルコピラノース単位のみからなるグルコース、マルトース、マルトトリオース及びマルトテトラオースが好ましい。なお、本発明で使用する水溶性の糖類は、マルトース、マルトトリオース及びマルトテトラオースを含有することを要する。水溶性糖類が2種以上の糖類の混合物からなる場合、該混合物は安価であるため、原料コストの観点から好ましい。なお、超臨界水又は亜臨界水中の水溶性糖類の濃度は、特に限定されるものではないが、5〜30 g/Lの範囲が好ましい。 In the method for producing levoglucosan of the present invention, the water-soluble saccharide used as a raw material is soluble in water and contains at least a glucopyranose unit in the molecule . Here, as a water-soluble saccharide containing a glucopyranose unit in the molecule, in addition to glucose which is a monosaccharide, disaccharides such as maltose, sucrose, cellobiose and lactose, trisaccharides such as maltotriose, maltotetraose and the like 4 saccharides, 5 saccharides such as maltopentaose, 6 saccharides such as maltohexaose, 7 saccharides such as maltoheptaose, and further water-soluble starch. Among these, from the viewpoint of the yield of levoglucosan, glucose, maltose, maltotriose and maltotetraose having a relatively low molecular weight and consisting only of glucopyranose units are preferable. The water-soluble saccharide used in the present invention needs to contain maltose, maltotriose and maltotetraose. When the water-soluble saccharide is composed of a mixture of two or more saccharides, the mixture is preferable from the viewpoint of raw material cost because it is inexpensive. The concentration of the water-soluble saccharide in supercritical water or subcritical water is not particularly limited, but is preferably in the range of 5 to 30 g / L.

本発明のレボグルコサンの製造方法において原料である上記水溶性の糖類は、マルトース、マルトトリオース及びマルトテトラオースを含有し、これらマルトース、マルトトリオース及びマルトテトラオースの合計含有量が50質量%以上であり、更に、グルコース含むのが好ましい。また更に、上記水溶性の糖類は、マルトース、マルトトリオース及びマルトテトラオースを合計80質量%以上含むのがより一層好ましい。原料中のマルトース、マルトトリオース及びマルトテトラオースの合計含有率が50質量%以上の場合、レボグルコサンの収率が更に向上し、例えば、グルコースのみを原料とする場合よりも、収率が著しく向上する。 In the manufacturing method of levoglucosan of the present invention, the water-soluble saccharide as a raw material, maltose, contains maltotriose and maltotetraose, these maltose, the total content of maltotriose and maltotetraose 50 mass% above, still preferably contains glucose. Furthermore, the water-soluble sugars, maltose, contain the maltotriose and maltotetraose total of 80 mass% or more is even more preferred. When the total content of maltose, maltotriose and maltotetraose in the raw material is 50% by mass or more, the yield of levoglucosan is further improved. For example, the yield is remarkably improved as compared with the case of using only glucose as the raw material. To do.

本発明の製造方法では、反応容器として流通式反応器を用い、該流通式反応器に上記水溶性糖類を連続的に供給するのが好ましい。反応容器として流通式反応器を用いた場合、水溶性糖類の反応時間の制御が容易で、生成したレボグルコサンの2次熱分解を抑制して、収率を向上させることができる。  In the production method of the present invention, it is preferable to use a flow reactor as a reaction vessel and continuously supply the water-soluble saccharide to the flow reactor. When a flow reactor is used as the reaction vessel, it is easy to control the reaction time of the water-soluble saccharide, and the secondary thermal decomposition of the produced levoglucosan can be suppressed to improve the yield.

本発明の製造方法によれば、反応条件(温度、圧力、時間)を適宜選択することにより、10%以上の高い収率でレボグルコサンを得ることができる。ここで、反応生成物からレボグルコサンを分離する方法は、特に限定されず、公知の方法で分離することができる。  According to the production method of the present invention, levoglucosan can be obtained with a high yield of 10% or more by appropriately selecting reaction conditions (temperature, pressure, time). Here, the method for separating levoglucosan from the reaction product is not particularly limited, and can be separated by a known method.

以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。  Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.

図1に示す反応装置を用いて、レボグルコサンを製造した。図中、水用タンク1から液体クロマトグラフ用高圧ポンプ2Aにより供給される水は、電気ヒーター3Aで予備加熱されて反応器4に送られる。なお、水としては、アルゴンバブリングにより脱気された超純水を用い、予備加熱により水は臨界温度近傍まで加熱される。また、原料タンク5から液体クロマトグラフ用高圧ポンプ2Bにより、原料として室温の水溶性糖類を反応器4に供給する。予備加熱された水と水溶性糖類は反応器4で混合される。反応器4中の水は、電気ヒーター3Bで所定の温度に加熱され、また、背圧調整弁6により所定の圧力に加圧され、超臨界水又は亜臨界水となる。反応器4から流出した反応混合物は、冷却水が流通している二重式冷却器7で冷却された後、背圧調整弁6を通って、外部に取り出される。  Levoglucosan was produced using the reaction apparatus shown in FIG. In the drawing, water supplied from a water tank 1 by a high pressure pump 2A for liquid chromatography is preheated by an electric heater 3A and sent to a reactor 4. As water, ultrapure water deaerated by argon bubbling is used, and the water is heated to near the critical temperature by preheating. Further, water-soluble saccharide at room temperature is supplied as a raw material from the raw material tank 5 to the reactor 4 by a high pressure pump 2B for liquid chromatography. The preheated water and the water-soluble saccharide are mixed in the reactor 4. The water in the reactor 4 is heated to a predetermined temperature by the electric heater 3B, and pressurized to a predetermined pressure by the back pressure adjusting valve 6 to become supercritical water or subcritical water. The reaction mixture flowing out from the reactor 4 is cooled by a double cooler 7 through which cooling water flows, and then taken out through the back pressure regulating valve 6.

参考例1〜12)
原料の水溶性糖類としてグルコースを用い、圧力26 MPaで、表1に示す温度及び反応時間で、超臨界水又は亜臨界水中でグルコースを反応させた。なお、反応器中のグルコースの濃度は、9 g/Lである。得られた反応生成物の定性分析は、高速液体クロマトグラフィー及びガスクロマトグラフィーで行った。また、定量分析は、高速液体クロマトグラフィーで行った。ガスクロマトグラフィーの検出器としてはFID検出器を用いた。高速液体クロマトグラフィーの検知器としてはRI検知器を用い、検量線から未反応のグルコース濃度及び生成したレボグルコサンの濃度を決定した。圧力:26 MPa一定で,温度を変えたときの結果を表1に示す。
( Reference Examples 1-12)
Glucose was reacted in supercritical water or subcritical water at a pressure of 26 MPa and a temperature and reaction time shown in Table 1 using glucose as a raw material water-soluble saccharide. The glucose concentration in the reactor is 9 g / L. Qualitative analysis of the obtained reaction product was performed by high performance liquid chromatography and gas chromatography. The quantitative analysis was performed by high performance liquid chromatography. An FID detector was used as a detector for gas chromatography. An RI detector was used as a detector for high performance liquid chromatography, and the concentration of unreacted glucose and the concentration of produced levoglucosan were determined from a calibration curve. Table 1 shows the results when the pressure was kept constant at 26 MPa and the temperature was changed.

Figure 0004756212
Figure 0004756212

表1から、超臨界及び亜臨界の水中でグルコースを分子内脱水反応することで、レボグルコサンが得られることが分かる。また、温度及び反応時間を適宜選択することで、10質量%以上の高収率でレボグルコサンを製造できることが分かる。  From Table 1, it can be seen that levoglucosan can be obtained by intramolecular dehydration reaction of glucose in supercritical and subcritical water. Moreover, it turns out that levoglucosan can be manufactured with the high yield of 10 mass% or more by selecting temperature and reaction time suitably.

次に、種々の温度で、圧力を変化させた場合のレボグルコサンの収率の変化を表2に示す。反応時間は総て2秒で行った。  Next, Table 2 shows changes in the yield of levoglucosan when the pressure is changed at various temperatures. The total reaction time was 2 seconds.

Figure 0004756212
Figure 0004756212

温度一定で、圧力を変化させた場合、いずれの温度でも低い圧力でレボグルコサンの収率が急激に高くなった。最大収率は温度:320℃、圧力:7MPaのときであった。したがって、レボグルコサンの収率を増大させるために、反応器の圧力を高くする必要がないため、実用化の際に有利である。  When the temperature was constant and the pressure was changed, the yield of levoglucosan rapidly increased at a low pressure at any temperature. The maximum yield was when the temperature was 320 ° C. and the pressure was 7 MPa. Therefore, it is not necessary to increase the pressure of the reactor in order to increase the yield of levoglucosan, which is advantageous in practical use.

(実施例33〜35、及び参考例36)
次に、表3に示す組成の単糖及びオリゴ糖混合物を原料として用い、反応温度:360℃、反応時間:1秒、圧力:26MPaの条件で、上記と同様にして超臨界水又は亜臨界水中で反応させた。結果を表3に示す。
(Examples 33 to 35 and Reference Example 36)
Next, using a mixture of monosaccharides and oligosaccharides having the composition shown in Table 3 as raw materials, supercritical water or subcritical water in the same manner as described above, under the conditions of reaction temperature: 360 ° C., reaction time: 1 second, and pressure: 26 MPa. Reacted in water. The results are shown in Table 3.

Figure 0004756212
Figure 0004756212

表3から、グルコース、マルトース、マルトトリオース及びマルトテトラオースを合計30質量%以上含む単糖及びオリゴ糖の混合物を原料とすることで、高収率でレボグルコサンを得られることが分かる。また、原料中のマルトース、マルトトリオース及びマルトテトラオースの合計含有率が50質量%以上の場合(実施例33、34及び35)、レボグルコサンの収率が向上し、原料中のマルトース、マルトトリオース及びマルトテトラオースの合計含有率が80質量%以上の場合(実施例33及び35)、レボグルコサンの収率が更に向上することが分かる。  From Table 3, it can be seen that levoglucosan can be obtained in high yield by using a mixture of monosaccharides and oligosaccharides containing glucose, maltose, maltotriose and maltotetraose in total of 30% by mass or more as raw materials. When the total content of maltose, maltotriose and maltotetraose in the raw material is 50% by mass or more (Examples 33, 34 and 35), the yield of levoglucosan is improved, and maltose and maltotri in the raw material are improved. It can be seen that the yield of levoglucosan is further improved when the total content of aus and maltotetraose is 80% by mass or more (Examples 33 and 35).

本発明の製造方法によれば、医用材料の原料、生分解性プラスチックの原料として有用なレボグルコサンを、高い収率で製造することができる。  According to the production method of the present invention, levoglucosan useful as a raw material for medical materials and a raw material for biodegradable plastics can be produced in high yield.

Claims (4)

水溶性の糖類を超臨界状態又は亜臨界状態の水中で分子内脱水反応させるレボグルコサンの製造方法において、
前記水溶性の糖類が、マルトース、マルトトリオース及びマルトテトラオースを含有し、
前記水溶性の糖類中のマルトース、マルトトリオース及びマルトテトラオースの合計含有量が50質量%以上である
ことを特徴とするレボグルコサンの製造方法
In the process for producing levoglucosan, wherein a water-soluble saccharide is subjected to intramolecular dehydration reaction in supercritical or subcritical water ,
The water-soluble saccharide contains maltose, maltotriose and maltotetraose,
The total content of maltose, maltotriose and maltotetraose in the water-soluble saccharide is 50% by mass or more.
A method for producing levoglucosan characterized by the above .
前記水溶性の糖類中のマルトース、マルトトリオース及びマルトテトラオースの合計含有量が80質量%以上であることを特徴とする請求項1に記載のレボグルコサンの製造方法。Levoglucosan method according to claim 1, wherein the maltose in the water-soluble saccharide, the total content of maltotriose and maltotetraose at least 80 mass%. 前記水溶性の糖類が、更にグルコースを含有することを特徴とする請求項1又は2に記載のレボグルコサンの製造方法。 The method for producing levoglucosan according to claim 1 or 2 , wherein the water-soluble saccharide further contains glucose . 流通式反応器を用い、前記水溶性の糖類を該流通式反応器に連続的に供給することを特徴とする請求項1に記載のレボグルコサンの製造方法。  The method for producing levoglucosan according to claim 1, wherein the water-soluble saccharide is continuously supplied to the flow reactor using a flow reactor.
JP2005515319A 2003-11-06 2004-11-05 Method for producing levoglucosan Expired - Fee Related JP4756212B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005515319A JP4756212B2 (en) 2003-11-06 2004-11-05 Method for producing levoglucosan

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003377070 2003-11-06
JP2003377070 2003-11-06
JP2005515319A JP4756212B2 (en) 2003-11-06 2004-11-05 Method for producing levoglucosan
PCT/JP2004/016435 WO2005044833A1 (en) 2003-11-06 2004-11-05 Process for producing levoglucosan

Publications (2)

Publication Number Publication Date
JPWO2005044833A1 JPWO2005044833A1 (en) 2007-11-29
JP4756212B2 true JP4756212B2 (en) 2011-08-24

Family

ID=34567127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005515319A Expired - Fee Related JP4756212B2 (en) 2003-11-06 2004-11-05 Method for producing levoglucosan

Country Status (2)

Country Link
JP (1) JP4756212B2 (en)
WO (1) WO2005044833A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5267964B2 (en) * 2006-02-20 2013-08-21 独立行政法人産業技術総合研究所 Method for producing anhydrosugar
EP2386562A4 (en) * 2009-01-07 2012-08-08 Nat Inst Of Advanced Ind Scien Halogen-substituted saccharide, method for producing same, reaction composition of same and device for producing same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0795900A (en) * 1993-09-29 1995-04-11 Kobe Steel Ltd Method for reacting and/or decomposing monosaccharide and/or oligosaccharide

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0795900A (en) * 1993-09-29 1995-04-11 Kobe Steel Ltd Method for reacting and/or decomposing monosaccharide and/or oligosaccharide

Also Published As

Publication number Publication date
JPWO2005044833A1 (en) 2007-11-29
WO2005044833A1 (en) 2005-05-19

Similar Documents

Publication Publication Date Title
Ameri et al. Vapor-permeation-aided esterification of isopropanol/propionic acid using NaA and PERVAP® 2201 membranes
AU3399100A (en) Process for the manufacture of furfural
US9187574B2 (en) Microprocessing for preparing a polycondensate
EP2203401B1 (en) Method for preparing mesoporous carbonised materials from polysaccharides
WO2006138434A2 (en) Heat recovery from a biomass heat source
Cheng et al. Molybdenum phosphide, a new hydrazine decomposition catalyst: Microcalorimetry and FTIR studies
CN108348898A (en) Catalyst system for manufacturing glycol and method
JP5317057B2 (en) Process for producing anhydrosugars in ionic liquids
JP4756212B2 (en) Method for producing levoglucosan
US20190345185A1 (en) Continuous process for hydrogenation of maltose to maltitol
JP6846509B2 (en) Method for producing oligomannuronedioic acid
JP5267964B2 (en) Method for producing anhydrosugar
EP2027160B1 (en) Process for preparing randomly-bonded polysaccharides
WO2016194901A1 (en) Method for producing furfural
CN109897019A (en) A method of preparing furfuryl alcohol by furfural liquid phase hydrogenation is carried out using copper-based catalysts
JPH09507246A (en) Method for producing alkyl polyglycoside
BR112019000890B1 (en) PROCESS FOR PRODUCING ETHYLENE GLYCOL AND PROPYLENE GLYCOL FROM A SORBITOL FEED
JP6789736B2 (en) Method for Producing Sugar Carboxylic Acid Using Nickel Catalyst
Freire et al. Thermal analysis and drying kinetics of olive bagasse
EP1578708B1 (en) Process for preparating alkali- and heat-stable sugar alcohol compositions and a sorbitol composition
CN110963964A (en) Continuous synthesis method of piroctone
JP4996233B2 (en) Method for producing alkyl galactoside
CN109433196A (en) The preparation and the application in anhydride maleique catalytic hydrogenation reaction of supported ruthenium base hydrogenation catalyst
González-Avila et al. Assessment of reducing sugars production from agro-industrial wastes by batch and semicontinuous subcritical water hydrolysis
JPH0795900A (en) Method for reacting and/or decomposing monosaccharide and/or oligosaccharide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071003

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080130

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20101006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20101006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110303

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110303

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110511

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees