JP4755767B2 - Aquarium such as aquaculture pond - Google Patents

Aquarium such as aquaculture pond Download PDF

Info

Publication number
JP4755767B2
JP4755767B2 JP2001062876A JP2001062876A JP4755767B2 JP 4755767 B2 JP4755767 B2 JP 4755767B2 JP 2001062876 A JP2001062876 A JP 2001062876A JP 2001062876 A JP2001062876 A JP 2001062876A JP 4755767 B2 JP4755767 B2 JP 4755767B2
Authority
JP
Japan
Prior art keywords
water
outer peripheral
water tank
flow
aquarium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001062876A
Other languages
Japanese (ja)
Other versions
JP2002262709A (en
Inventor
茂 増田
Original Assignee
茂 増田
柴田 正志
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 茂 増田, 柴田 正志 filed Critical 茂 増田
Priority to JP2001062876A priority Critical patent/JP4755767B2/en
Publication of JP2002262709A publication Critical patent/JP2002262709A/en
Application granted granted Critical
Publication of JP4755767B2 publication Critical patent/JP4755767B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明はウナギ、鮎、ヒラメ、エビ等の水棲生物の養殖池等の水槽に関するものであり、さらに詳しくは循環により養水の浄化、濾過を図れるとともに、生産性の向上を図れる養殖池等の水槽に関する。
【0002】
【従来の技術】
従来のウナギ、鮎、ヒラメ、エビ等の養殖池等の水槽は、水深0.5〜2m前後、底面積30mm〜650mm(約10坪〜200坪)前後、外壁の外周形状が四角形、八角形、円形状で、その外壁の周辺から中央部に向かって深くなるように傾斜をつけ、その最深部に養水の栄養的富化の主因となる残餌、生物遺体、糞、シルト(以下ヘドロと言う)を1つまたは複数の水車、ポンプ等で推進力を得た水流によって集め、系外に排出あるいは沈殿濾過槽に導入する構造になっている。その一例を図3に示す。図3(a)は水槽の概略平面図、図3(b)は図3(a)におけるIII−III線概略断面図である。図において、1は水槽、2は外壁、3は底面、4は排水口、5は水車(図3(b)では省略)である。
水槽に設備された水車、ポンプ等の役割は、溶存酸素の富加および上記水流の発生を目的とし、水槽の形状、水深、底面積、水車、最深部排出口の大きさ、溶存酸素量、ヘドロの集積具合等を試みながら水車、ポンプ等の台数を決めて設置している。
【0003】
【発明が解決しようとする課題】
【0004】
しかしながら、図3に示すような水槽の場合、水槽内の水流に乱流や停滞部を生じる。その結果へドロを目的の位置に集合せしめ排出したり、適正な水流の強さを発現または水流のコントロールを容易に行うことが困難であった。例えば、図3の水槽において、外周部Eに水車5によって養水に推進力を与えた場合の水槽内の養水の動きを観ると、図4の通りである。なお、図4(a)は水槽1の概略平面図4(b)は図4(a)におけるIV−IV線概略断面図である。図において、1は水槽、2は外壁、3は底面、4は排水口である。なお、図4では水車は図示せず、省略、図4(b)では排水口は図示せず、省略しいてる。
【0005】
図4に示すように養水に外周部Eに水車によって推進力D1(破線矢印)を与えると養水は外周部Eを通過し旋廻しながら中央部Cに至る。中央部Cへヘドロの集積を図るために推進力D1を増して水流の強さが魚の遊泳力を上まわった場合、魚は中央部Cを生息域として選択することになり、魚の生息場所が高密度となり、生息環境は悪化する。そのうえ排水能力を上回る推進力を持った水流は、水槽内に乱流を引き起こし、ヘドロを散逸する。逆に、推進力D1を減じて水流の強さを弱めた場合、外周方向に生息域は拡大するものの中央部Cに至る養水も減少するため排水効果は減少し、中央部Cへヘドロの集積を図る目的は達成できない。なお、排水効果を大きくするために排水口4を大きくして排水量を増やせば、計画水深を維持するために注水量を増やすことになり、その注水方法によっては、推進力となり水流は速くなる。
これらの原理を無視して、水槽底面積を広くしても、広くした底面積の割合に飼育数は高くならない。
【0006】
以上のことから図3に示すような従来技術の水槽は外周部Eからの弱い推進力でも、中央部に推進力が到着でき、適切な流速を設定するに容易な小底面積水槽には向くが、大底面積水槽には不向きである。よって、営利目的の養殖業には設備費、管理コストなどの点で導入するには必ずしも有利にはならない。
【0007】
本発明の目的は、水流と水槽底面形状、水槽の底面積等の関係を明らかにすることによりエネルギーを効率良く使い、養水の水質を良好に維持し、且つコスト削減につながり、生産性向上の可能な養殖池等の水槽を提供するものである。
【0008】
【課題を解決するための手段】
上記目的を達成するため水槽の構造と水流、ヘドロ、魚の棲息場所等との関係を鋭意検討した結果、本発明に到達した。
本発明は、水槽の底面の勾配が水槽中央部より外周部方向に深くなる若しくは上記勾配が0度の底面構造を有すると共に、上記外周部に排水口を備え、
さらに、上記水槽に、養水の流れを水槽中央部から外周部へ向かわせる水流発生手段を設けた養殖池等の水槽(水槽の構造)である。
なお、該養殖池等の水槽の外周壁に沿って濾過設備を有するのが望ましい。この場合、水槽内を循環する養水は遠心力の原理で、ヘドロを中央部から外周部へと流れる水流と共に外周部へと運び、外周部に運ばれたヘドロは外周壁に沿って移動する。移動するヘドロは外周壁に設けられた濾過設備に導入され、分離されて排出口より排出される。
【0009】
本発明の水槽は上記のような構成を採っているので、中央部から外周全方向に向かって、且つ、全方位に均一な推進力を養水に容易に付与することができる。その水流は外周部方向に向う。一方、外周部より外周にそって水流が発生するように推進力を養水に加えると、前述の外周部方向に向う水流と反発することもなく1つの流れとなって水槽内を循環する。外周壁に沿って移動する養水中のヘドロは排水口より系外に排出することができる。
【0010】
【発明の実施の形態】
図1は本発明に係る魚の水槽の一実施形態を示す概略図(推進部は図示せず、省略)である。図1の円形水槽を用いて本発明の水槽の説明を行う。図1(a)は概略平面図、図1(b)は図1(a)におけるI−I線概略断面図である。図において、1は水槽、2は外壁、3は底面、441、442は排水口である。図に示すように、本実施形態の水槽の底面3は中央部Cが最浅で、外壁2に向かう程、深くなっている。
【0011】
水槽1の外周形状として、従来から四角形,八角形、円形状等があり、本発明における水槽1の外周形状は、限定する物ではないが特に円形水槽において効果を奏することができる。底面3の勾配、水深については特に限定するものではない。例えばヒラメは底面3に張りつくがごとく水槽低部を生息の場としており、鮎は水域全般を生息の場としている。同一魚種においても、生育過程によって魚体が大きくなり、負荷も増大する。また水槽1の底面積の大きさによっても水槽1の環境が変化する。これら魚種、生育過程での魚のサイズ等々の視点から底面3の勾配、水深を決定することとなる。また、底面3の形状としては、底面全体がフラットなもの、中央部Cの最浅部がフラットでその中央部Cの端から外壁部へ向かって徐々に傾斜しているもの、中央部Cの最浅部が道路工事中標識のようなコーン形状(断面コーン形状)で中央部Cの端から外壁部へ向かって徐々に傾斜しているものなどが適用できるが特にこれに限定されない。
【0012】
図1に示す様に、水槽中央部Cから水流発生手段(例えばポンプ)で養水に推進力A(破線矢印)を付与すると水流は中央部Cから外周全方向に向かって且つ全方位に均一に流れるが、その水流は外周部E方向に向う程、流れが弱くなる。
この時点で水流が魚の遊泳力を上まわっていれば、魚は外周部Eを選択するが図3に示した従来技術の水槽に比較して、魚の生息域は広い。ただし、外周部Eに至った水流は弱いので、外周部Eにヘドロは散逸しヘドロを充分に集積させるためには、水車等で養水に推進力D2(破線矢印)を時計回り方向に付与するのが望ましい。その結果、推進力D2は前記養水に与えた推進力A(破線矢印)と反発することなく外周壁に沿って移動する。移動したヘドロは外周壁に設けられた排水口441、442から系外に排出する。大きな水槽になると外周も長くなるので適宜、排出口の設置数を増やせばよい。
【0013】
魚にとって流速も重要な生息のための因子であるが、図1に示す本発明の水槽であれば中央部Cから外周部Eに向けての推進力Aと外周部Eから外周部Eに向けての推進力D2とが反発することなく一つの流れとなって水槽内を循環するので効率良く、更に中央部Cから外周部Eに向けての推進力と外周部Eから外周部Eに向けての推進力の調節によって流速を容易にコントロールできる。目標とする流れは水槽内をむらなく循環する流れであり、且つ容易に魚の遊泳力にあった流速を発現できる。
【0014】
なお、本発明において、外周部養水(水槽における外周部Eの領域にある養水)及び中央部養水(水槽における中央部Cの領域にある養水)に推進力を付与する手段(水流発生手段)としては、既述したポンプのほか、水車、水力など従来から用いられている手段が適用できるもので、推進力を付与できる手段であれば他の手段も適用可能である。
【0015】
図2は本発明の他の一実施形態を示す概略図である。図2の円形水槽を用いて本発明の水槽の説明を行う。
図2は本発明に係る水槽で、図2(a)は概略平面図、図2(b)は図2(a)におけるII−II線概略断面図である。図において、1は水槽、2は外壁、3は底面、Fは濾過設備、441、442は排水口である。図に示すように、本実施形態の水槽の底面3は中央部Cの最浅部が道路工事中標識のようなコーン形状(断面コーン形状)で中央部端から外壁部へ向かって徐々に傾斜している外壁2に向かう程、深くなっている。図2の水槽の直径は、限定されないが、例えば11m、高さは1m、計画水深は80cm、底面の最浅部から最深部までの勾配は1/100である。
【0016】
例えば円形の外周部Eに、本実施形態おいて設置される濾過設備を設置する効果については、以下のとおり、遠心力の原理と物質の比重に基いて説明できる。すなわち、中央部Cより外周部Eに向う様に水流を起こし、更に外周にそって水流を起こせば遠心力の原理に基づいて中心部から遠ざかろうと外へ向う力が発生する。この作用に乗って養水と共にヘドロは外周部Eに到達し、外周壁に沿って移動する。移動する養水とヘドロは外周壁に沿って設置された濾過設備に直接的に導かれることになる。図3に示した従来技術の水槽では中央部C(最深部)に設けられた排水口4より、パイプ、ポンプ等(図示せず)を利用して水槽外に設けられた濾過設備(図示せず)に導いていた。このような方法であるとヘドロがパイプ内に沈殿したり、ポンプでヘドロを細分化し、濾過に負荷を増やすことになる。
【0017】
本発明の水槽を採用すれば、養水、へドロを直接的に濾過設備に導入することで、上記従来技術の欠点を解決することができる。更に外周を移動する養水とヘドロは、比重の重い物質は底面付近を、軽い物質は上層部を浮遊しながら移動している。従って、集積物の断面は比重差に沿った順で層別された状態で濾過設備に導入することができるので、分離が容易に可能となる。
すなわち、ヘドロは外周部Eに設置された濾過設備を直接的に通過することになる。また、濾過された養水の一部は中央部Cに戻され中央部Cより外周部Eへと巡回され、これを繰り返す。一方、一部の養水は外周部Eの水流の推進力源となって濾過を繰り返しながら外周を周回する。このように、養水の濾過を実行する際に、養水の通過経路が直接的であるために、従来のように中央部Cに設けられた排水口より、ポンプ等で間接的に搬入することで固まったヘドロの散逸、設備費等は解決できる。
【0018】
本発明の濾過設備の方式として、ドラムフィルター方式、プロティンスキマ等の方式が採用できるが、これらに限定されるものではない。水槽の底面積が大きくなれば、それに比例して外周距離も長くなるので、濾過槽の数を適宜設置する。
さらに、同一魚種においても、生育過程によってその魚種の遊泳スピードが変わる。更に生育過程によって魚体が大きくなり、負荷も増大するので、濾過能力も変えなければならない。
【0019】
本発明に係る水槽では、上記の実施形態に示す様に、最深部の底面積が外周部Eに配されているため、図3に示すような従来技術の水槽の最深部の底面積より格段に広くなる。特にヒラメのように流速の速い流れには、忌避行動を示し、図3に示すような従来技術の水槽の外周部Eの流速の速い水槽では最深部付近に集まり、環境の悪化により飼育密度の低下をせざるを得ない。
上記のとおり、本発明に係る水槽であれば棲息面積を図3に示すような従来技術の水槽よりも広くすることが可能であり、更に生息場所付近の養水は生息場所直近に設置され濾過された養水と中央部Cより送られる濾過された養水の環境を生息の場とすることが可能となる。
【0020】
【実施例】
本発明の養殖池等の水槽を使用した際の養水とヘドロの動向を観察した。
図2の水槽にあらかじめ原水用ポンプPで計画水深の80cmまで水を入れ、原水用ポンプPは停止した。水槽の水が80cmであることを確認し、排水口441を計画水深の80cmを保つように設定した。更に換水量の増減に対応するための排水口442を設けた。
原水用ポンプPから送水される水をを中央部Cに導き、養水に推進力を付与できるように設備した。次に濾過設備F内に水中ポンプWPを設備し、外周部Eと中央部Cに送水でき得るように配管し、送水管Sの途中にバルブV1、V2を設け、送水される水量で外周部養水と中央部養水に推進力を付与する力を調整できるようにした。
先ず、原水ポンプPの送水量を200リットル/分に調整し、水流の観察をした。なお、水槽内の養水の旋回方向は時計回り方向とした。
その結果、中央部C付近は多少の水流は認められるも、水流は外周部Eには旋回しなかった。
次に、ポンプPの送水配管に設けたバルブV2を閉じ、バルブV1を開き、水中ポンプWPを運転し外周部養水に推進力を付与した。この結果、バルブV1で推進力を調整することで、中央部Cから外周部Eに向う養水と外周部Eを旋回する養水とは反発することなく旋回する様子を確認できた。
次に原水ポンプPの注水量を400リットル/分に増やし、送水管Sに設けた、バルブV2を開き、中央部養水の推進力を増加させ、外周部養水に推進力を付与した結果、中央部Cの原水ポンプPから送られる注水量の変動があっても、外周部養水と中央部養水の推進力を調整することによって水流の速さを容易にコントロールすることが可能となった。
【0021】
次に、ヘドロの動きを観察するため、水に沈む砂、シルト、鮎養殖の排水等を水槽に混入して、上記作業と同じ操作を行った。その結果、流速の速さによって、外周部Eに到達する時間は違うものの、砂、シルト、鮎養殖の排水中に混入していて、鮎の糞、植物遺体等のヘドロは外周壁に沿って移動する様子が確認できた。更に、外周壁に沿って移動する混入物等のヘドロは、それぞれの比重どおり水中で層位を維持した状態で層別化されて移動することも確認できた。
【0022】
層位を維持した状態で層別化されて移動する混入物は、外周壁に沿って設けられた濾過設備に、層別化されて養水と共になんなく導入することが確認できた。高度な濾過を達成するには、固体の分離、分解を防ぐために「固体は丁寧な扱い」をすることが重要であるが、従来のパイプ、ポンプ等を利用して、間接的に濾過設備を導入する方法では、固体の分離、分解は避けられないが、本発明のように、外周壁に沿って濾過設備を設けることで、直接的に濾過設備内に導くことが可能となり、間接的に導入する方法で発生する問題は容易に解決できる。更に、比重別に層別化されて導かれるために濾過方法の選択手段が多くなる。
本実施においては、沈殿方法と泡沫分離方法を利用して、比重の大きい固体は沈殿方法によって、比重の小さい物質は泡沫分離方法によって濾過できた。
【0023】
【発明の効果】
以上の通り、本発明の水槽は、養水の維持管理が容易に、かつ的確にすることができ、エネルギーを効率良く使い、養水の水質を良好に維持し、且つコスト削減につながり生産性向上が可能となる。
【図面の簡単な説明】
【図1】 本発明に係る水槽の概略図で、図1(a)は概略平面図、図1(b)は図1(a)におけるI−I線概略断面図である。
【図2】 本発明の1実施形態を示す概略図で、図2(a)は概略平面図、図2(b)は図2(a)のII−II線概略断面図である。
【図3】 従来技術の水槽を示す概略図で、図3(a)は水槽の概略平面図、図3(b)は図3(a)におけるIII−III線概略断面図である。
【図4】 従来技術の水槽を示す概略図で、図4(a)は水槽1の概略平面図図4(b)は図4(a)の概略断面図である。
【符号の説明】
1 水槽
2 外壁
3 底面
4 排水口
5 水車
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an aquarium such as an aquaculture pond for aquatic organisms such as eel, salmon, flounder, and shrimp, and more particularly, such as an aquaculture pond that can purify and filter the aquaculture by circulation and improve productivity. Related to aquarium.
[0002]
[Prior art]
Conventional aquariums such as aquaculture ponds such as eel, salmon, flounder and shrimp have a water depth of about 0.5 to 2 m, a bottom area of about 30 mm 2 to 650 mm 2 (about 10 tsubo to 200 tsubo), and the outer peripheral shape of the outer wall is square and octagonal. It is circular, and is inclined so that it deepens from the periphery of the outer wall toward the center, and the deepest part is the residual food, biological remains, feces, silt (hereinafter referred to as sludge) Are collected by a water flow obtained with one or a plurality of water turbines, pumps or the like, and discharged outside the system or introduced into a precipitation filtration tank. An example is shown in FIG. Fig.3 (a) is a schematic plan view of a water tank, FIG.3 (b) is the III-III line schematic sectional drawing in Fig.3 (a). In the figure, 1 is a water tank, 2 is an outer wall, 3 is a bottom surface, 4 is a drain port, and 5 is a water wheel (not shown in FIG. 3B).
The role of the water wheel, pump, etc. installed in the tank is for the purpose of enriching dissolved oxygen and generating the above water flow. The shape of the tank, water depth, bottom area, water wheel, size of the deepest outlet, dissolved oxygen amount, sludge The number of water turbines, pumps, etc. is determined and installed while trying to collect them.
[0003]
[Problems to be solved by the invention]
[0004]
However, in the case of a water tank as shown in FIG. 3, a turbulent flow and a stagnation part occur in the water flow in the water tank. As a result, it was difficult to collect and discharge the sludge at the target position, to express the strength of the appropriate water flow, or to easily control the water flow. For example, in the water tank of FIG. 3, the movement of the nutrient water in the water tank when a propulsive force is applied to the nutrient water by the water wheel 5 on the outer peripheral portion E is as shown in FIG. 4. 4A is a schematic plan view of the water tank 1, and FIG. 4B is a schematic cross-sectional view taken along line IV-IV in FIG. In the figure, 1 is a water tank, 2 is an outer wall, 3 is a bottom surface, and 4 is a drain outlet. In FIG. 4, the water wheel is not shown and omitted, and in FIG. 4B, the drain is not shown and is omitted.
[0005]
As shown in FIG. 4, when the driving force D1 (broken arrow) is applied to the outer peripheral portion E by the water wheel, the nourishing water passes through the outer peripheral portion E and reaches the central portion C while turning. If the driving force D1 is increased to accumulate sludge in the central part C and the strength of the water current exceeds the swimming ability of the fish, the fish will select the central part C as the habitat, It becomes dense and the habitat deteriorates. In addition, the water flow with the driving force exceeding the drainage capacity causes turbulence in the tank and dissipates sludge. Conversely, if the propulsive force D1 is decreased to reduce the strength of the water flow, the habitat expands in the outer circumferential direction, but the water supply to the central part C also decreases, so the drainage effect decreases, and the sludge to the central part C decreases. The purpose of accumulation cannot be achieved. Note that if the drainage port 4 is enlarged to increase the drainage effect and the drainage amount is increased, the water injection amount is increased in order to maintain the planned water depth, and depending on the water injection method, the water flow becomes faster.
Ignoring these principles, even if the aquarium bottom area is widened, the number of breeding does not increase to the proportion of the widened bottom area.
[0006]
From the above, the prior art aquarium as shown in FIG. 3 is suitable for a small bottom area aquarium that can reach the central portion even with a weak propulsive force from the outer peripheral portion E and is easy to set an appropriate flow rate. However, it is not suitable for large bottom area tanks. Therefore, it is not necessarily advantageous to introduce it into a commercial aquaculture industry in terms of equipment costs, management costs, and the like.
[0007]
The purpose of the present invention is to use energy efficiently by clarifying the relationship between the water flow, the shape of the bottom of the tank, the bottom area of the tank, etc., maintain good quality of nutrient water, reduce costs and improve productivity. It provides water tanks such as aquaculture ponds.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the present invention has been reached as a result of intensive studies on the relationship between the structure of the aquarium, water flow, sludge, fish habitat, and the like.
The present invention has a bottom surface structure in which the gradient of the bottom surface of the aquarium is deeper in the outer peripheral direction than the central portion of the aquarium or the gradient is 0 degrees, and a drain outlet is provided in the outer peripheral portion,
Furthermore, it is a water tank (structure of a water tank) such as an aquaculture pond provided with water flow generating means for directing the flow of nutrient water from the water tank central part to the outer peripheral part.
In addition, it is desirable to have a filtration facility along the outer peripheral wall of the water tank such as the aquaculture pond. In this case, nourishing water circulating in the water tank carries the sludge to the outer periphery along with the water flow flowing from the central portion to the outer peripheral portion on the principle of centrifugal force, and the sludge carried to the outer peripheral portion moves along the outer peripheral wall. . The moving sludge is introduced into a filtration facility provided on the outer peripheral wall, separated and discharged from a discharge port.
[0009]
Since the water tank of the present invention adopts the above-described configuration, it is possible to easily impart uniform propulsive force to the nutrient water from the central portion toward the outer periphery in all directions and in all directions. The water flow is directed toward the outer periphery. On the other hand, when a propulsive force is applied to the nutrient water so that a water flow is generated along the outer periphery from the outer peripheral portion, it circulates in the water tank as one flow without repelling the water flow toward the outer peripheral portion. Sludge in the nutrient water that moves along the outer peripheral wall can be discharged out of the system through the drain port.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a schematic view showing an embodiment of a fish tank according to the present invention (the propulsion unit is not shown and is omitted). The water tank of the present invention will be described using the circular water tank of FIG. 1A is a schematic plan view, and FIG. 1B is a schematic cross-sectional view taken along the line II in FIG. 1A. In the figure, 1 is a water tank, 2 is an outer wall, 3 is a bottom surface, and 441 and 442 are drain outlets. As shown in the figure, the bottom surface 3 of the water tank of the present embodiment has a shallowest central portion C and becomes deeper toward the outer wall 2.
[0011]
Conventionally, there are a square shape, an octagonal shape, a circular shape, and the like as the outer peripheral shape of the water tank 1, and the outer peripheral shape of the water tank 1 in the present invention is not particularly limited but can be particularly effective in a circular water tank. The gradient of the bottom surface 3 and the water depth are not particularly limited. For example, flounder sticks to the bottom surface 3 and inhabits the lower part of the aquarium. Even in the same fish species, the fish body grows and the load increases depending on the growth process. The environment of the water tank 1 also changes depending on the size of the bottom area of the water tank 1. The slope of the bottom surface 3 and the water depth are determined from the viewpoints of these fish species, the size of the fish in the growth process, and the like. Further, the shape of the bottom surface 3 is that the entire bottom surface is flat, the shallowest part of the central part C is flat and is gradually inclined from the end of the central part C toward the outer wall part, Although the shallowest part is a cone shape (cross-sectional cone shape) like a sign during road construction and is gradually inclined from the end of the central part C toward the outer wall part, it is not limited to this.
[0012]
As shown in FIG. 1, when a driving force A (broken arrow) is applied to the nutrient water from the water tank center C by a water flow generating means (for example, a pump), the water flow is uniform from the center C toward the outer periphery in all directions and in all directions. However, the water flow becomes weaker toward the outer periphery E.
If the water current exceeds the swimming ability of the fish at this point, the fish selects the outer periphery E, but the fish habitat is wider than the conventional aquarium shown in FIG. However, since the water flow that reaches the outer periphery E is weak, in order to dissipate the sludge in the outer periphery E and to sufficiently accumulate the sludge, a propulsion force D2 (broken arrow) is applied to the water nourishing with a water wheel or the like in the clockwise direction. It is desirable to do. As a result, the propulsive force D2 moves along the outer peripheral wall without repelling the propulsive force A (broken arrow) applied to the nutrient water. The moved sludge is discharged out of the system through drain outlets 441 and 442 provided on the outer peripheral wall. If the tank is large, the outer periphery becomes longer, so the number of outlets may be increased as appropriate.
[0013]
Flow rate is also an important habitat for fish, but in the case of the aquarium of the present invention shown in FIG. 1, the driving force A from the central part C to the outer peripheral part E and the outer peripheral part E to the outer peripheral part E The propulsive force D2 circulates in the water tank as a single flow without repulsion, and the propulsive force from the central portion C to the outer peripheral portion E and the outer peripheral portion E to the outer peripheral portion E are more efficient. The flow rate can be easily controlled by adjusting the propulsive force. The target flow is a flow that circulates uniformly in the aquarium, and can easily develop a flow rate suitable for the swimming ability of the fish.
[0014]
In addition, in this invention, the means (water flow) which gives a driving force to outer periphery water supply (nourishment in the area | region of the outer peripheral part E in a water tank) and center part water supply (water supply in the area | region of the center part C in a water tank) As the generating means), in addition to the pump described above, conventionally used means such as a water turbine and hydraulic power can be applied, and other means can be applied as long as they can provide propulsive force.
[0015]
FIG. 2 is a schematic view showing another embodiment of the present invention. The water tank of the present invention will be described using the circular water tank of FIG.
FIG. 2 is a water tank according to the present invention, FIG. 2 (a) is a schematic plan view, and FIG. 2 (b) is a schematic sectional view taken along line II-II in FIG. 2 (a). In the figure, 1 is a water tank, 2 is an outer wall, 3 is a bottom surface, F is a filtration facility, and 441 and 442 are drain outlets. As shown in the figure, the bottom surface 3 of the aquarium of this embodiment has a cone shape (cross-sectional cone shape) like a sign during road construction, with the shallowest portion of the central portion C being gradually inclined from the central portion end toward the outer wall portion. The deeper the outer wall 2 is, the deeper it is. Although the diameter of the water tank of FIG. 2 is not limited, for example, the height is 1 m, the height is 1 m, the planned water depth is 80 cm, and the gradient from the shallowest part to the deepest part of the bottom is 1/100.
[0016]
For example, the effect of installing the filtration equipment installed in the present embodiment on the circular outer peripheral portion E can be explained based on the principle of centrifugal force and the specific gravity of the substance as follows. That is, if a water flow is caused to move from the central portion C toward the outer peripheral portion E, and a water flow is further generated along the outer periphery, a force is generated to move outward from the central portion based on the principle of centrifugal force. Along with this action, sludge reaches the outer peripheral portion E together with the nutrient water and moves along the outer peripheral wall. The moving nutrient water and sludge are directly guided to the filtration equipment installed along the outer peripheral wall. In the prior art aquarium shown in FIG. 3, a filtration facility (not shown) provided outside the aquarium using a pipe, a pump, etc. (not shown) from the drain port 4 provided in the central part C (deepest part). Led). In such a method, sludge settles in the pipe, or the sludge is subdivided with a pump to increase the load for filtration.
[0017]
If the water tank of this invention is employ | adopted, the fault of the said prior art can be solved by introduce | transducing a nutrient water and sludge directly into a filtration installation. Furthermore, the nourishing water and sludge moving around the outer periphery move while the heavy material floats near the bottom surface and the light material floats in the upper layer. Therefore, since the cross section of the accumulation can be introduced into the filtration facility in a state of being layered in the order along the specific gravity difference, the separation can be easily performed.
That is, the sludge passes directly through the filtration equipment installed on the outer peripheral portion E. Moreover, a part of the filtered nourishing water is returned to the central part C and is circulated from the central part C to the outer peripheral part E, and this is repeated. On the other hand, some of the nutrient water becomes a driving force source of the water flow in the outer peripheral portion E and goes around the outer periphery while repeating filtration. As described above, when the nutrient water is filtered, since the nutrient water passage is direct, it is carried in indirectly by a pump or the like from the drain outlet provided in the central portion C as in the prior art. This can solve the sludge dispersal and equipment costs.
[0018]
As a method of the filtration facility of the present invention, a drum filter method, a protein skimmer, or the like can be adopted, but the method is not limited to these. As the bottom area of the water tank increases, the outer peripheral distance also increases in proportion thereto, so the number of filtration tanks is appropriately set.
Furthermore, even in the same fish species, the swimming speed of the fish species varies depending on the growth process. In addition, the growth capacity of the fish grows and the load increases, so the filtration capacity must be changed.
[0019]
In the aquarium according to the present invention, since the bottom area of the deepest part is arranged on the outer peripheral part E as shown in the above embodiment, the bottom area of the deepest part of the prior art aquarium as shown in FIG. Become wide. In particular, the flow of high flow rate such as flounder shows repellent behavior, and the water tank with high flow velocity of the outer peripheral portion E of the prior art water tank as shown in FIG. It must be reduced.
As described above, in the case of the aquarium according to the present invention, the habitat area can be made wider than that of the conventional aquarium as shown in FIG. 3, and the nourishment water near the habitat is installed near the habitat and filtered. It becomes possible to use the environment of the filtered nourishing water and the filtered nourishing water sent from the central part C as a habitat.
[0020]
【Example】
The trends of water culture and sludge were observed when using an aquarium such as the culture pond of the present invention.
The water tank P of FIG. 2 was previously filled with raw water pump P to 80 cm of the planned water depth, and the raw water pump P was stopped. After confirming that the water in the aquarium was 80 cm, the drain outlet 441 was set to maintain the planned water depth of 80 cm. Further, a drain port 442 is provided to cope with an increase or decrease in the amount of water exchange.
The water fed from the raw water pump P was led to the central part C, and the equipment was provided so that a propulsive force could be given to the nutrient water. Next, a submersible pump WP is installed in the filtration facility F, piped so that water can be fed to the outer peripheral part E and the central part C, valves V1 and V2 are provided in the middle of the water supply pipe S, It was made possible to adjust the power to give propulsive power to the nutrient water and the central nutrient water.
First, the water supply amount of the raw water pump P was adjusted to 200 liters / minute, and the water flow was observed. In addition, the turning direction of the nutrient water in the water tank was set to the clockwise direction.
As a result, although a slight water flow was recognized in the vicinity of the central portion C, the water flow did not swirl around the outer peripheral portion E.
Next, the valve V2 provided in the water supply pipe of the pump P was closed, the valve V1 was opened, the submersible pump WP was operated, and a propulsive force was imparted to the outer peripheral nutrient water. As a result, by adjusting the propulsive force with the valve V1, it was possible to confirm that the nourishing water from the central portion C toward the outer peripheral portion E and the nourishing water turning around the outer peripheral portion E were repelled.
Next, the water injection amount of the raw water pump P was increased to 400 liters / minute, the valve V2 provided in the water supply pipe S was opened, the driving force of the central water was increased, and the driving force was given to the outer peripheral water Even if there is a fluctuation in the amount of water injected from the raw water pump P in the central part C, it is possible to easily control the speed of the water flow by adjusting the driving force of the outer peripheral water and the central water supply. became.
[0021]
Next, in order to observe the movement of sludge, sand submerged in the water, silt, drainage of salmon culture, etc. were mixed in the water tank, and the same operation as the above operation was performed. As a result, although the time to reach the outer periphery E varies depending on the speed of the flow velocity, it is mixed in the wastewater of sand, silt, and agate culture, and sludge such as dredged feces and plant remains along the outer peripheral wall. I was able to confirm the movement. Furthermore, it was also confirmed that sludge such as contaminants moving along the outer peripheral wall was stratified and moved while maintaining the stratification level in water according to their specific gravity.
[0022]
It was confirmed that the contaminants that were stratified and moved while maintaining the stratification were stratified and introduced into the filtration facility provided along the outer peripheral wall together with the nutrient water. In order to achieve advanced filtration, it is important to handle solids carefully in order to prevent separation and decomposition of solids. In the method to be introduced, separation and decomposition of solids are inevitable, but by providing a filtration facility along the outer peripheral wall as in the present invention, it is possible to guide directly into the filtration facility, indirectly. Problems that occur with the method of introduction can be easily solved. Furthermore, since the stratification is performed according to specific gravity, the selection method of the filtration method increases.
In this implementation, using a precipitation method and a foam separation method, a solid having a high specific gravity can be filtered by the precipitation method, and a substance having a low specific gravity can be filtered by the foam separation method.
[0023]
【The invention's effect】
As described above, the water tank of the present invention can easily and accurately maintain and maintain nutrient water, use energy efficiently, maintain good quality of nutrient water, reduce costs, and improve productivity. Improvement is possible.
[Brief description of the drawings]
FIG. 1 is a schematic view of a water tank according to the present invention, in which FIG. 1 (a) is a schematic plan view, and FIG. 1 (b) is a schematic cross-sectional view taken along the line II in FIG.
2A and 2B are schematic views showing an embodiment of the present invention, in which FIG. 2A is a schematic plan view, and FIG. 2B is a schematic cross-sectional view taken along the line II-II in FIG.
FIG. 3 is a schematic view showing a conventional water tank, FIG. 3 (a) is a schematic plan view of the water tank, and FIG. 3 (b) is a schematic cross-sectional view taken along line III-III in FIG. 3 (a).
4 is a schematic view showing a conventional water tank, FIG. 4 (a) is a schematic plan view of the water tank 1, and FIG. 4 (b) is a schematic cross-sectional view of FIG. 4 (a).
[Explanation of symbols]
1 Water tank 2 Outer wall 3 Bottom surface 4 Drain port 5 Water wheel

Claims (1)

水棲生物が生息する養殖池等水槽であって、
水槽の底面の勾配が水槽中央部より外周部方向に深くなる若しくは上記勾配が0度の底面構造を有すると共に、
上記外周部の外周壁に排水口を備え、
さらに、上記水槽中央部に養水の流れを水槽中央部から外周部へ向かわせる水流発生手段を設け、上記外周部に当該外周部に向かった前記養水の流れを外周部より外周壁にそって向かわせる水流発生手段を設け、前記養水の流れが一つの流れとなって水槽内を循環し、
水槽の外周壁に沿って比重差に層別された状態で底面付近と上層部を移動するヘドロと養水を導入する濾過設備を少なくとも1カ所以上設置した養殖池等の水槽。
An aquarium such as an aquaculture pond inhabited by aquatic organisms,
While the slope of the bottom of the water tank is deeper in the outer peripheral direction than the center of the water tank, or the slope has a bottom structure of 0 degrees,
A drain outlet is provided on the outer peripheral wall of the outer peripheral portion,
Furthermore, a water flow generating means for directing the flow of nutrient water from the central portion of the water tank to the outer peripheral portion is provided in the central portion of the water tank, and the flow of the nourishing water toward the outer peripheral portion is arranged along the outer peripheral wall from the outer peripheral portion. Water flow generating means to direct the water, and the flow of the nutrient water becomes a single flow and circulates in the water tank ,
An aquarium such as an aquaculture pond provided with at least one filtration facility for introducing sludge and nutrient water that move near the bottom surface and the upper layer in a state of specific gravity difference along the outer peripheral wall of the aquarium.
JP2001062876A 2001-03-07 2001-03-07 Aquarium such as aquaculture pond Expired - Lifetime JP4755767B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001062876A JP4755767B2 (en) 2001-03-07 2001-03-07 Aquarium such as aquaculture pond

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001062876A JP4755767B2 (en) 2001-03-07 2001-03-07 Aquarium such as aquaculture pond

Publications (2)

Publication Number Publication Date
JP2002262709A JP2002262709A (en) 2002-09-17
JP4755767B2 true JP4755767B2 (en) 2011-08-24

Family

ID=18921954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001062876A Expired - Lifetime JP4755767B2 (en) 2001-03-07 2001-03-07 Aquarium such as aquaculture pond

Country Status (1)

Country Link
JP (1) JP4755767B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7259808B2 (en) * 2020-06-24 2023-04-18 株式会社羽根 Contaminant collecting device in aquaculture tank and method for collecting foreign matter in aquaculture tank

Also Published As

Publication number Publication date
JP2002262709A (en) 2002-09-17

Similar Documents

Publication Publication Date Title
US6932025B2 (en) Scalable fish rearing raceway system
KR101867109B1 (en) Device for farming benthic organisms such as bivalves
KR101355382B1 (en) Shrimps Farm and Construction Method thereof
KR101479840B1 (en) An aquaculture tank for biofloc system
KR102275891B1 (en) Fish farming equipment and methods
KR101950140B1 (en) Aeration tank for micro-bubble bioflavor
CN106719246A (en) Batch production shrimp ecosystem and method based on air lift circulation
JP2006217822A (en) Apparatus for culturing fishes or shellfishes and method for culturing fishes or shellfishes
KR100735830B1 (en) Building type breeding ground
CN102815755A (en) Manual flow making device and application thereof in algal bloom prevention and control
CN105994089A (en) Running water culture container system and application method thereof
CN109819926A (en) Boat-carrying circulating water culture system
CN110250088B (en) Double-channel inflow system for variable flow rate circulation and effective sewage discharge at pool bottom
JP4755767B2 (en) Aquarium such as aquaculture pond
CN107428576A (en) Moving-bed bioreactor and method for treating water
CN110036967B (en) Double-fishpond circulating water ecological fish culture system
CN111066712A (en) Immersed multi-layer aquaculture system and water circulation method
CN103285660A (en) Circulating water device for shrimp aquaculture and operating method thereof
JPH09313067A (en) Structure of culturing pond
CN205993395U (en) A kind of parallel circulation flowing water Cultivation container system
JP2005152757A (en) Honeycomb-structured water-permeable light-shielding body and water quality improvement method using it
CN109122545A (en) A kind of pond bottom blowdown water quality improvement system
JP5913717B1 (en) Sandy aquatic life culture equipment
NO20211093A1 (en) A fish farming facility comprising a water outlet cleaning device
CN207707074U (en) A kind of high-density breeding automatic cycle blowdown apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100820

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110519

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110530

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4755767

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term