JP4754441B2 - Non-contact power feeding device - Google Patents

Non-contact power feeding device Download PDF

Info

Publication number
JP4754441B2
JP4754441B2 JP2006230140A JP2006230140A JP4754441B2 JP 4754441 B2 JP4754441 B2 JP 4754441B2 JP 2006230140 A JP2006230140 A JP 2006230140A JP 2006230140 A JP2006230140 A JP 2006230140A JP 4754441 B2 JP4754441 B2 JP 4754441B2
Authority
JP
Japan
Prior art keywords
feeder
line
power
coil
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006230140A
Other languages
Japanese (ja)
Other versions
JP2008054457A (en
Inventor
治正 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP2006230140A priority Critical patent/JP4754441B2/en
Publication of JP2008054457A publication Critical patent/JP2008054457A/en
Application granted granted Critical
Publication of JP4754441B2 publication Critical patent/JP4754441B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Description

本発明は、非接触給電装置に関し、特に、複数の区間に分割された給電線の分割部分で、安定的に電力を供給することができる非接触給電装置に関するものである。   The present invention relates to a non-contact power supply device, and more particularly to a non-contact power supply device that can stably supply power at a divided portion of a power supply line divided into a plurality of sections.

非接触給電装置は、例えば、半導体工場等や液晶工場のクリーンルーム内において、発塵を最小限に抑制した搬送装置に使用されている。   The non-contact power feeding device is used for a transport device that suppresses dust generation to a minimum in a clean room of a semiconductor factory or a liquid crystal factory, for example.

このような搬送装置では、搬送物の大型化や搬送速度の高速化に伴い、有軌道搬送車やスタッカクレーンなどの搬送設備を駆動する電源の容量が増大している。
これらの設備を非接触給電で電源を供給する場合、必要とするすべての区間に対し1台の高周波電源装置で供給できれば問題はない。
しかしながら、高周波電源の容量が不足する場合、給電線(給電線路)を複数の区間に分割して負荷に電力を供給する必要がある。
In such a transport apparatus, the capacity of a power source for driving transport equipment such as a tracked transport vehicle and a stacker crane is increasing with an increase in size of a transported object and an increase in transport speed.
When power is supplied to these facilities by non-contact power supply, there is no problem as long as one high frequency power supply device can supply power to all necessary sections.
However, when the capacity of the high-frequency power supply is insufficient, it is necessary to divide the feeder line (feed line) into a plurality of sections and supply power to the load.

このように、給電線を分割する場合、分割部分の隣接する2つの給電線支持材を隙間をあけて配置し、それぞれの線路の給電線を下におろすようにし、給電線を折り返したり、あるいは高周波電源に接続する方法をとっている。
この方法では、分割部分での過渡的な給電は、2つの区間において、受電コイルが対向する部分の長さの比でそれぞれの区間から給電する電力の比率が決まる。
Thus, when dividing the feeder line, the two feeder line support members adjacent to each other in the divided portion are arranged with a gap between them, and the feeder line of each line is lowered, and the feeder line is folded, or It is connected to a high frequency power supply.
In this method, in the transient power supply in the divided portions, the ratio of the power supplied from each section is determined by the ratio of the lengths of the portions facing the power receiving coils in the two sections.

受電コイルの中央に分割部分がある場合は、2つの区間から同じ電力を受電することになるが、コイルに誘起する電力は2つの給電線から誘起する磁束のベクトルの和になり、位相が反転する場合は、最小値はゼロになる。
この区間を過渡的に通過するだけであれば大きな問題を生じないが、この場所で搬送車が停止した場合、電力不足により再起動することが困難になる。
If there is a split part at the center of the receiving coil, the same power is received from the two sections, but the power induced in the coil is the sum of the vectors of magnetic flux induced from the two feeders, and the phase is inverted. If you do, the minimum value will be zero.
If only passing through this section transiently, no major problem will occur, but if the transport vehicle stops at this location, it will be difficult to restart due to power shortage.

本発明は、上記従来の非接触給電装置が有する問題点に鑑み、複数の区間に分割された給電線の分割部分で、安定的に電力を供給することができる非接触給電装置を提供することを目的とする。   The present invention provides a non-contact power supply apparatus that can stably supply power at a divided portion of a power supply line divided into a plurality of sections in view of the problems of the conventional non-contact power supply apparatus. With the goal.

上記目的を達成するため、本発明の非接触給電装置は、コアにコイルを巻回することにより2次側の受電コイルを形成するとともに、該受電コイルに、給電線から電磁誘導により非接触で電力を供給するようにした非接触給電装置において、受電コイルのコアに独立した2つのコイルを巻回し、各コイルを独立して設けた共振回路及び整流回路にそれぞれ接続、各整流回路をその出力部分で合流させて結合し、かつ複数の給電区間に分割した給電線の分割位置に3個の給電線支持材を給電線の敷設方向に隣接して配置し、両側に並行して配設する給電線のうちの一方の給電線を、前記隣接して配置した第1番目と第2番目の給電線支持材の間で分割し、その給電線を第2番目の給電線支持材の下部に導き、他方の給電線を、前記隣接して配置した第2番目と第3番目の給電線支持材の間で分割し、その給電線を第2番目の給電線支持材の下部に導いて、両側に並行して配設する給電線の分割部を第2番目の給電線支持材の長さだけ前後にずらせるようにし、かつ、第2番目の給電線支持材の給電線の敷設方向の長さを受電コイルの長さよりも長く形成するようにしたことを特徴とする。 In order to achieve the above object, a non-contact power feeding device of the present invention forms a secondary power receiving coil by winding a coil around a core, and contacts the power receiving coil by electromagnetic induction from a power feeding line. In a non-contact power feeding apparatus configured to supply electric power, two independent coils are wound around a core of a power receiving coil, and each coil is connected to a resonance circuit and a rectifier circuit provided independently, and each rectifier circuit is connected to the coil. Three feeder support members are arranged adjacent to each other in the direction of laying the feeder lines at the dividing position of the feeder lines that are joined together at the output portion and divided into a plurality of feeder sections, and are arranged in parallel on both sides. One of the feeder lines to be divided is divided between the first and second feeder line supporting members arranged adjacent to each other, and the feeder line is below the second feeder line supporting member. And connect the other feeder to the adjacent And the second and partitioned between third feed line support was, the feed line leading to the lower portion of the second feed line support material, division of the arrangement to the feed line in parallel on both sides were to so that shifted only in the longitudinal length of the second feed line support, and, second th to form longer than the length of the power receiving coil laying length of the feed line of the feed line support characterized in that the.

本発明の非接触給電装置によれば給電区間が複数に分割される場合で、一方のコイルが給電線の分割部を横切るときでも、もう一方のコイルが他の側の給電線と対向することができ、これにより、最悪の場合でも最大電力の半分の電力を受電することができる。 According to the non-contact power feeding device of the present invention, when the power feeding section is divided into a plurality of parts, even when one coil crosses the divided part of the power feeding line, the other coil faces the power feeding line on the other side. Accordingly, half of the maximum power can be received even in the worst case.

以下、本発明の非接触給電装置の実施の形態を、図面に基づいて説明する。   Hereinafter, embodiments of the non-contact power feeding device of the present invention will be described with reference to the drawings.

図1〜図2に、本発明の非接触給電装置の一実施例を示す。
この非接触給電装置は、コア2にコイル3、4を巻回することにより2次側の受電コイル1を形成するとともに、該受電コイル1に、給電線5から電磁誘導により非接触で電力を供給するようにしている。
そして、この非接触給電装置は、受電コイル1のE型のコア2に、独立した2つのコイル3、4を巻回し、各コイル3、4を独立して設けた共振回路及び整流回路(図示省略)にそれぞれ接続するとともに、各整流回路をその出力部分で合流させて結合し、さらに、図2に示すように、複数の給電区間に分割した給電線の分割位置を、並行する給電線で前後にずらせている。
1 to 2 show an embodiment of the non-contact power feeding device of the present invention.
In this non-contact power feeding device, a coil 3 and 4 are wound around a core 2 to form a secondary power receiving coil 1, and power is supplied to the power receiving coil 1 from a power feeding line 5 by electromagnetic induction without contact. I am trying to supply.
In this non-contact power feeding device, two independent coils 3 and 4 are wound around the E-type core 2 of the power receiving coil 1, and a resonance circuit and a rectifier circuit (not shown) are provided. Are connected to each other, and the rectifier circuits are joined together at their output portions and combined, and as shown in FIG. 2, the dividing positions of the feeder lines divided into a plurality of feeder sections are connected by parallel feeder lines. It is shifted back and forth.

受電コイル1は、図1に示すように、E型のフェライトコアの3本の脚部を連結する上部連結部に、コイル3とコイル4をそれぞれ巻回している。
また、給電線5は、給電線支持材6により保持している。
コイル3とコイル4は独立した巻き線であり、1組の2次回路の共振コンデンサと整流回路(図示省略)にそれぞれ独立に接続し、整流回路の出力の直流部分で合流させて結合している。
As shown in FIG. 1, the power receiving coil 1 has a coil 3 and a coil 4 wound around an upper connecting portion that connects three legs of an E-type ferrite core.
The feeder 5 is held by a feeder support 6.
Coil 3 and coil 4 are independent windings, and are connected independently to a set of secondary circuit resonance capacitors and a rectifier circuit (not shown), combined at the DC portion of the output of the rectifier circuit, and combined. Yes.

給電線の分割部分を図2に示す。
給電線支持材6a、6b、6cを配置し、並行する給電線のうち、図示左側の給電線7a、8aは、給電線支持材6bと6cの間で分割し、その給電線を給電線支持材の下部に導く。
一方、図示右側の給電線7b、8bは、給電線支持材6aと6bの間で分割し、その給電線を給電線支持材の下部に導く。
これにより、給電線7、8の分割部は、給電線支持材6bの長さだけ前後に位置をずらすことになる。
そして、給電線支持材6bの長さを受電コイル1の長さよりも長くすることにより、例えば、一方のコイル3が分割部を横切る場合でも、もう一方のコイル4が給電線8bと対向することになるため、最悪の場合でも最大電力の半分の電力を受電することができる。
FIG. 2 shows a divided part of the feeder line.
Feed line support members 6a, 6b, and 6c are arranged, and among the parallel feed lines, the feed lines 7a and 8a on the left side of the figure are divided between the feed line support members 6b and 6c, and the feed lines are supported by the feed lines. Lead to the bottom of the material.
On the other hand, the power supply lines 7b and 8b on the right side of the figure are divided between the power supply line support members 6a and 6b, and the power supply line is guided to the lower part of the power supply line support material.
Thereby, the position of the dividing portion of the feeder lines 7 and 8 is shifted back and forth by the length of the feeder line support member 6b.
Then, by making the length of the feeder support 6b longer than the length of the power receiving coil 1, for example, even when one coil 3 crosses the divided portion, the other coil 4 faces the feeder 8b. Therefore, even in the worst case, half the maximum power can be received.

図3に示すように、給電線7は高周波電源装置10に接続し、給電線8は高周波電源装置11に接続し、給電線9は高周波電源装置12に接続している。
同様に、給電線9も給電線8との分割部は、並行する給電線で前後に位置をずらせている。
図3の実施例では、直線状に給電線を配置する例を示しているが、搬送装置が環状に配置される場合を含め、複数の給電区間に分割した給電線のすべての分割位置を、並行する給電線で前後にずらせるようにする。
As shown in FIG. 3, the power supply line 7 is connected to the high frequency power supply device 10, the power supply line 8 is connected to the high frequency power supply device 11, and the power supply line 9 is connected to the high frequency power supply device 12.
Similarly, the dividing part of the power supply line 9 and the power supply line 8 is shifted back and forth with the parallel power supply lines.
In the embodiment of FIG. 3, an example in which the feeder line is arranged in a straight line is shown, but all the dividing positions of the feeder line divided into a plurality of feeding sections are included, including the case where the transfer device is arranged in a ring shape, Shift them back and forth with parallel feeders.

なお、1つの受電コイルに2つのコイル3、4をもつ副次的な効果として、一方のコイルの共振回路あるいは整流回路に異常が生じた場合においても、残った1方の系統で電力を供給することができ、縮退運転による信頼性の高い給電システムを構成することができる。   As a secondary effect of having two coils 3 and 4 in one power receiving coil, even if an abnormality occurs in the resonance circuit or rectifier circuit of one coil, power is supplied from the remaining one system. Thus, a highly reliable power supply system by degenerate operation can be configured.

また、コイル3、4をE型のコア2の上部連結部に巻くことにより、製作を容易にする効果や、コア2の中央脚部に巻く場合に比較して受電効率をよくする効果がある。
E型のコア2の中央脚部にコイルを巻くと、磁束はコア2の脚部を通る磁束の一部がコイル部を透過したい対向する面に向かって磁束が流れる。このコイルの途中から漏れる磁束が効率の低下を招く。
一方、上部連結部にコイル3、4を巻くと、中央脚部の1つに対し2つコイルがいる短所があるが、コイル3、4を巻くコア部分での磁束の漏洩がほとんどなく、効率がよくなる。
また、中央脚部にコイルを巻く場合には、電線を捩れないように巻くため、電線の捩れを戻しながら巻くが、上部連結部では、電線をドラムから引き出しながらそのまま巻いても捩れが生じることがなく、電線の絶縁処理や保護のためのエポキシ樹脂充填なども作業性がよい特長がある。
さらに、2つのコイル3、4を用いることにより、1つのコイルあたりの巻き数を多くすることができる。巻き数が多いと、コアのフェライト材料の密度のばらつきなどの材料の製作に起因する誤差を巻き数の増減で調整しやすい利点がある。
また、電力を2つのコイルで分担するため、コイルに流れる電流が小さくなり、細い電線を使用できるため、製作上の作業性がよくなる利点もある。
In addition, winding the coils 3 and 4 around the upper connecting portion of the E-shaped core 2 has an effect of facilitating manufacture and an effect of improving the power receiving efficiency as compared with the case of winding around the central leg portion of the core 2. .
When a coil is wound around the central leg portion of the E-type core 2, the magnetic flux flows toward an opposing surface where a part of the magnetic flux passing through the leg portion of the core 2 wants to pass through the coil portion. Magnetic flux leaking from the middle of the coil causes a reduction in efficiency.
On the other hand, when the coils 3 and 4 are wound around the upper connecting portion, there is a disadvantage that there are two coils for one of the central leg portions, but there is almost no leakage of magnetic flux in the core portion around the coils 3 and 4, and efficiency Will be better.
In addition, when winding a coil around the center leg, the wire is wound so as not to be twisted, so that the wire is unwound and wound while returning the twist. There is also a feature that the workability is good, such as insulation treatment of electric wires and filling with epoxy resin for protection.
Furthermore, by using the two coils 3 and 4, the number of turns per coil can be increased. When the number of turns is large, there is an advantage that it is easy to adjust errors caused by the production of the material such as the density variation of the ferrite material of the core by increasing or decreasing the number of turns.
Moreover, since the electric power is shared by the two coils, the current flowing through the coil is reduced, and a thin electric wire can be used.

かくして、本実施例の非接触給電装置は、コアにコイルを巻回することにより2次側の受電コイルを形成するとともに、該受電コイルに、給電線から電磁誘導により非接触で電力を供給するようにした非接触給電装置において、受電コイル1のコア2に独立した2つのコイル3、4を巻回し、各コイル3、4を独立して設けた共振回路及び整流回路にそれぞれ接続するとともに、各整流回路をその出力部分で合流させて結合し、かつ複数の給電区間に分割した給電線7、8の分割位置を、並行する給電線7a、8aと給電線7b、8bとで前後にずらすことから、給電区間が複数に分割される場合で、一方のコイルが給電線の分割部を横切るときでも、もう一方のコイルが他の側の給電線と対向することができ、これにより、最悪の場合でも最大電力の半分の電力を受電することができる。   Thus, the non-contact power feeding device of the present embodiment forms a secondary power receiving coil by winding a coil around a core, and supplies power to the power receiving coil by electromagnetic induction from a power feeding line. In the non-contact power feeding apparatus configured as described above, the two independent coils 3, 4 are wound around the core 2 of the power receiving coil 1, and each coil 3, 4 is connected to a resonance circuit and a rectifier circuit provided independently, The rectifier circuits are joined and combined at their output portions, and the dividing positions of the feeder lines 7 and 8 divided into a plurality of feeder sections are shifted back and forth between the parallel feeder lines 7a and 8a and the feeder lines 7b and 8b. Therefore, in the case where the feeding section is divided into a plurality of parts, even when one coil crosses the divided part of the feeding line, the other coil can be opposed to the feeding line on the other side. Even in the case of It is possible to receiving half of the power of high-power.

以上、本発明の非接触給電装置について、その実施例に基づいて説明したが、本発明は上記実施例に記載した構成に限定されるものではなく、実施例に記載した構成を適宜組み合わせるなど、その趣旨を逸脱しない範囲において適宜その構成を変更することができる。   As mentioned above, although the non-contact electric power feeder of the present invention was explained based on the example, the present invention is not limited to the composition described in the above-mentioned example, the composition described in the example is suitably combined, etc. The configuration can be changed as appropriate without departing from the spirit of the invention.

本発明の非接触給電装置は、複数の区間に分割された給電線の分割部分で、安定的に電力を供給することができるという特性を有していることから、例えば、搬送車の再起動を確実にすることができる安定性の高い非接触給電装置の用途に好適に用いることができるほか、分岐や合流部分で給電線を分断する場合において、安定的に電力を供給する用途にも用いることができる。   The non-contact power feeding device of the present invention has a characteristic that power can be stably supplied at a divided portion of a feeder line divided into a plurality of sections. In addition to being able to be used suitably for non-contact power supply devices with high stability that can ensure reliability, it can also be used for applications that stably supply power when the power supply line is divided at a branch or junction. be able to.

本発明の非接触給電装置の一実施例を示す断面正面図である。It is a section front view showing one example of the non-contact electric supply device of the present invention. 同非接触給電装置の給電線の分割部を示す斜視図である。It is a perspective view which shows the division part of the electric power feeding line of the non-contact electric power feeder. 同給電線と高周波電源装置を示す説明図である。It is explanatory drawing which shows the said electric power feeding line and a high frequency power supply device.

1 受電コイル
2 E型のコア
3 コイル
4 コイル
5 給電線
6 給電線支持材
7 給電線
8 給電線
9 給電線
10 高周波電源装置
11 高周波電源装置
12 高周波電源装置
DESCRIPTION OF SYMBOLS 1 Power receiving coil 2 E type core 3 Coil 4 Coil 5 Feed line 6 Feed line support material 7 Feed line 8 Feed line 9 Feed line 10 High frequency power supply device 11 High frequency power supply device 12 High frequency power supply device

Claims (1)

コアにコイルを巻回することにより2次側の受電コイルを形成するとともに、該受電コイルに、給電線から電磁誘導により非接触で電力を供給するようにした非接触給電装置において、受電コイルのコアに独立した2つのコイルを巻回し、各コイルを独立して設けた共振回路及び整流回路にそれぞれ接続、各整流回路をその出力部分で合流させて結合し、かつ複数の給電区間に分割した給電線の分割位置に3個の給電線支持材を給電線の敷設方向に隣接して配置し、両側に並行して配設する給電線のうちの一方の給電線を、前記隣接して配置した第1番目と第2番目の給電線支持材の間で分割し、その給電線を第2番目の給電線支持材の下部に導き、他方の給電線を、前記隣接して配置した第2番目と第3番目の給電線支持材の間で分割し、その給電線を第2番目の給電線支持材の下部に導いて、両側に並行して配設する給電線の分割部を第2番目の給電線支持材の長さだけ前後にずらせるようにし、かつ、第2番目の給電線支持材の給電線の敷設方向の長さを受電コイルの長さよりも長く形成するようにしたことを特徴とする非接触給電装置。 In a non-contact power feeding apparatus in which a secondary power receiving coil is formed by winding a coil around a core and power is supplied to the power receiving coil by electromagnetic induction from a power feeding line in a non-contact manner. Two independent coils are wound around the core, each coil is connected to a resonance circuit and a rectifier circuit provided independently, and each rectifier circuit is joined and combined at its output, and divided into multiple power feeding sections Three feeder support members are arranged adjacent to each other in the feeding line dividing direction, and one of the feeders arranged in parallel on both sides is arranged adjacent to the feeder line. Dividing between the first and second feeder support members arranged, leading the feeder line to the lower part of the second feeder support member, and the other feeder line arranged adjacent to the first feeder line support member Split between the second and third feeder support The feed line is guided to the lower portion of the second feed line support, and in so that shifting the divided portions of the feed lines disposed in parallel on both sides only in the longitudinal length of the second feed line support And the non-contact electric power feeder characterized by forming the length of the laying direction of the feeder line of the 2nd feeder line support material longer than the length of a receiving coil .
JP2006230140A 2006-08-28 2006-08-28 Non-contact power feeding device Expired - Fee Related JP4754441B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006230140A JP4754441B2 (en) 2006-08-28 2006-08-28 Non-contact power feeding device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006230140A JP4754441B2 (en) 2006-08-28 2006-08-28 Non-contact power feeding device

Publications (2)

Publication Number Publication Date
JP2008054457A JP2008054457A (en) 2008-03-06
JP4754441B2 true JP4754441B2 (en) 2011-08-24

Family

ID=39237966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006230140A Expired - Fee Related JP4754441B2 (en) 2006-08-28 2006-08-28 Non-contact power feeding device

Country Status (1)

Country Link
JP (1) JP4754441B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5349862B2 (en) * 2008-08-08 2013-11-20 パナソニック株式会社 Power pull-in device
JP5834180B2 (en) * 2010-07-14 2015-12-16 パナソニックIpマネジメント株式会社 Power line retractor
JP5719988B2 (en) * 2010-07-14 2015-05-20 パナソニックIpマネジメント株式会社 Power line retractor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0898438A (en) * 1994-09-16 1996-04-12 Hitachi Kiden Kogyo Ltd Noncontact power supply method and system for magnetic levitation carrier
JPH10225024A (en) * 1997-02-13 1998-08-21 Ishikawajima Harima Heavy Ind Co Ltd Non-contact electric power supply facility
JPH118904A (en) * 1997-06-16 1999-01-12 Hitachi Kiden Kogyo Ltd Non-contact power supply facility for carriage
JP2002078103A (en) * 2000-08-23 2002-03-15 Tsubakimoto Chain Co Non-contact power feeder pickup, carrier and carrier system
JP4006602B2 (en) * 2004-04-22 2007-11-14 村田機械株式会社 Feed loop connection structure in contactless power feeder

Also Published As

Publication number Publication date
JP2008054457A (en) 2008-03-06

Similar Documents

Publication Publication Date Title
JP6963045B2 (en) Contactless power supply system
US10395819B2 (en) Multiple phase power converters having integrated magnetic cores for transformer and inductor windings
US8890644B2 (en) Two-phase coupled inductors which promote improved printed circuit board layout
KR101760382B1 (en) Inductor
KR20140032449A (en) High-frequency transformer
KR20110013536A (en) Plane coil
CN103348577A (en) Isolated switching power supply apparatus
US8902622B2 (en) Power supply apparatus
JP6616422B2 (en) Non-contact power feeding device
JP2015520948A (en) Three phase chalk
CN102132364A (en) Three-phase high frequency transformer
KR20150023837A (en) Contactless power supply device
CN105321677A (en) Transformer
CN103269149B (en) It is applicable to the PCB planar magnetic device of positive exciting synchronous rectification
US11749442B2 (en) Magnetic element and power module with same
JP4287495B1 (en) Three-phase high frequency transformer
CN103595220A (en) Power supply arrangement with transformer having transformer core
JP4754441B2 (en) Non-contact power feeding device
JP2005094861A (en) Contactless power feeding apparatus
JP2012161193A (en) Non-contact power supply device
US20200243256A1 (en) Transformer arrangement, circuit arrangement and method for operating a transformer arrangement
RU49646U1 (en) TRANSFORMER
KR101172592B1 (en) Power receiving module for non-contact power supply apparatus
JP2018064009A (en) Transformer and power converter including the same
WO2020203197A1 (en) Leakage transformer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110518

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110525

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees