JP4754197B2 - Titanium oxide particles, production method thereof and use thereof - Google Patents

Titanium oxide particles, production method thereof and use thereof Download PDF

Info

Publication number
JP4754197B2
JP4754197B2 JP2004233501A JP2004233501A JP4754197B2 JP 4754197 B2 JP4754197 B2 JP 4754197B2 JP 2004233501 A JP2004233501 A JP 2004233501A JP 2004233501 A JP2004233501 A JP 2004233501A JP 4754197 B2 JP4754197 B2 JP 4754197B2
Authority
JP
Japan
Prior art keywords
titanium oxide
oxide particles
particles
titanium
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004233501A
Other languages
Japanese (ja)
Other versions
JP2006052099A (en
Inventor
佳弘 寺田
充 上片野
嘉磊 賀
邦治 姫野
文章 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2004233501A priority Critical patent/JP4754197B2/en
Publication of JP2006052099A publication Critical patent/JP2006052099A/en
Application granted granted Critical
Publication of JP4754197B2 publication Critical patent/JP4754197B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Paints Or Removers (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)

Description

本発明は、光触媒として利用される酸化チタン粒子とその製造方法、該酸化チタン粒子を含む光触媒塗料に関する。   The present invention relates to titanium oxide particles used as a photocatalyst, a method for producing the same, and a photocatalyst coating material containing the titanium oxide particles.

酸化チタン(TiO)粒子は、ペイント、化粧品、食品添加物における白色顔料として広く使用されてきた。その他に、酸化チタンが示す光触媒作用により、大気汚染の原因となる窒素酸化物(NOx)の分解や水質汚濁を生じる有機溶剤の分解、環境ホルモンの分解、レジオネラ菌などの殺菌など、検討が行われている。中でもタバコなどに含まれる悪臭物質の一つであるアセトアルデヒドや酢酸成分を酸化チタン光触媒で分解する試みは広く実施されている(例えば、非特許文献1参照。)。 Titanium oxide (TiO 2 ) particles have been widely used as white pigments in paints, cosmetics and food additives. In addition, due to the photocatalytic action exhibited by titanium oxide, studies have been made on decomposition of nitrogen oxides (NOx) that cause air pollution, decomposition of organic solvents that cause water pollution, decomposition of environmental hormones, sterilization of Legionella bacteria, etc. It has been broken. In particular, attempts to decompose acetaldehyde and acetic acid components, which are one of malodorous substances contained in tobacco and the like, with a titanium oxide photocatalyst have been widely carried out (for example, see Non-Patent Document 1).

アセトアルデヒド、酢酸を酸化チタン光触媒で分解する場合、従来の酸化チタン粒子では、比表面積が大きいほど分解特性に優れている傾向があり、市販の光触媒を目的とする酸化チタン粒子では、少なくとも30m/g以上の粒子が主流である。これは分解対象物の吸着性能に優れるためである。
図解光触媒のすべて、第4章、発行所:(株)工業調査会、2003年10月30日 S.Ikeda, B.Ohtani,光化学、32,122(2001)
When decomposing acetaldehyde and acetic acid with a titanium oxide photocatalyst, the conventional titanium oxide particles tend to have superior decomposition characteristics as the specific surface area increases. With titanium oxide particles intended for commercial photocatalysts, at least 30 m 2 / Particles of g or more are mainstream. This is because the decomposition target object has excellent adsorption performance.
All illustrated photocatalysts, Chapter 4, Issued by: Industrial Research Committee, Inc., October 30, 2003 S. Ikeda, B. Ohtani, Photochemistry, 32, 122 (2001)

しかし、小粒径の酸化チタン粒子を製造するのは困難であり、また粒子自体の結晶性の低下により励起された電子・ホールの再結合が起こりやすくなり、量子効率の低下、光触媒活性の低下を招くという問題があった。   However, it is difficult to produce small-diameter titanium oxide particles, and recombination of excited electrons and holes is likely to occur due to a decrease in crystallinity of the particles themselves, resulting in a decrease in quantum efficiency and a decrease in photocatalytic activity. There was a problem of inviting.

本発明は前記事情に鑑みてなされ、従来の酸化チタン粒子に比べ結晶性が高く、光触媒作用による分解力に優れる酸化チタン粒子及びその製造方法の提供を目的とする。   This invention is made | formed in view of the said situation, and it aims at provision of the titanium oxide particle which has high crystallinity compared with the conventional titanium oxide particle, and is excellent in the decomposition power by photocatalysis, and its manufacturing method.

前記目的を達成するため、本発明は、内径φ15mmの密閉容器に無酸素下で10vol%トリエタノールアミン水溶液5mLと酸化チタン粒子50mgを入れ、懸濁させた状態で波長365nmの紫外光を照射することで測定される酸化チタン粒子表面に生成するTi3+密度が0.14〜0.7μmol/ であることを特徴とする酸化チタン粒子を提供する。
本発明の酸化チタン粒子において、10面体形状でアナターゼ型であることが好ましい。
In order to achieve the above object, the present invention irradiates ultraviolet light with a wavelength of 365 nm in a suspended state in which 5 mL of a 10 vol% triethanolamine aqueous solution and 50 mg of titanium oxide particles are put in a sealed container having an inner diameter of 15 mm and suspended. Ti 3+ density to produce titanium oxide particle surfaces to be measured by to provide titanium oxide particles, which is a 0.14~ 0.7μmol / m 2.
In the titanium oxide particles of the present invention, it is preferable to be an anatase type in a icosahedral shape.

また本発明は、反応合成管にチタン化合物の蒸気と酸素を導入し、反応合成管外部から酸水素バーナー炎で加熱し、チタン化合物を熱酸化せしめ、前記本発明に係る酸化チタン粒子を得ることを特徴とする酸化チタン粒子の製造方法を提供する。
本発明の製造方法において、チタン化合物として四塩化チタンを用いることが好ましい。
Further, the present invention introduces a titanium compound vapor and oxygen into a reaction synthesis tube, heats it from outside the reaction synthesis tube with an oxyhydrogen burner flame, and thermally oxidizes the titanium compound to obtain the titanium oxide particles according to the present invention. The manufacturing method of the titanium oxide particle characterized by these is provided.
In the production method of the present invention, it is preferable to use titanium tetrachloride as the titanium compound.

また本発明は、前記本発明に係る酸化チタン粒子を含有する光触媒塗料を提供する。   Moreover, this invention provides the photocatalyst coating material containing the titanium oxide particle which concerns on the said this invention.

本発明の酸化チタン粒子は、結晶性が高く、電子・ホールの再結合が抑制され、高効率で光触媒作用を発揮し、光触媒として優れている。
本発明の酸化チタン粒子の製造方法は、結晶性が高く、電子・ホールの再結合が抑制され、高効率で光触媒作用を発揮し、光触媒として優れた酸化チタン粒子を効率よく製造することができる。
本発明の光触媒塗料は、前記本発明の酸化チタン粒子を含むものなので、高効率で光触媒作用を発揮する塗料を提供することができる。
本発明の汚染物質分解方法は、前記本発明に係る酸化チタン粒子に励起光照射下、汚染物質を接触させて該汚染物質を分解、浄化する構成なので、高効率で光触媒作用を発揮する本発明の酸化チタン粒子によって高効率で汚染物質を分解、浄化することができる。
The titanium oxide particles of the present invention have high crystallinity, suppress recombination of electrons and holes, exhibit photocatalytic action with high efficiency, and are excellent as photocatalysts.
The method for producing titanium oxide particles of the present invention has high crystallinity, suppresses recombination of electrons and holes, exhibits photocatalysis with high efficiency, and can efficiently produce titanium oxide particles excellent as a photocatalyst. .
Since the photocatalyst coating material of the present invention contains the titanium oxide particles of the present invention, it is possible to provide a coating material that exhibits a photocatalytic action with high efficiency.
The pollutant decomposition method of the present invention is configured to decompose and purify the pollutant by bringing the titanium oxide particles according to the present invention into contact with the pollutant under irradiation of excitation light, so that the present invention exhibits high efficiency photocatalysis. The titanium oxide particles can decompose and purify pollutants with high efficiency.

本発明の酸化チタン粒子は、結晶性が高く、酸化チタン粒子表面の欠陥密度が従来の市販の酸化チタン粒子に比べて少ないことを特徴としている。
非特許文献2に記載されているように、光触媒作用は酸化チタン粒子表面で起こるため、酸化チタン粒子表面のTi3+量を比較することで再結合中心となる欠陥量を比較することができ、結晶性の良し悪しを定義できる。Ti3+量の比較は、次の方法で実施できる。内径φ15mmの密閉容器に無酸素下、例えば窒素やアルゴン雰囲気中で10vol%トリエタノールアミン水溶液5mLと酸化チタン粒子50mgを入れ、懸濁させた状態で波長365nmの紫外光を15mW/cmの照度で十分な時間照射することで、欠陥サイト(Ti4+)は還元されてTi3+となる。ここに1mol/Lメチルビオロゲン水溶液を50μL添加すると、Ti3+からMV2+に電子移動が起こり、Ti3+と等量のMV・ラジカルが生成し、溶液は青色を帯びるため、溶液の吸光度を測定することでTi3+量を算出することができる。
The titanium oxide particles of the present invention are characterized by high crystallinity and a smaller defect density on the surface of the titanium oxide particles than conventional commercially available titanium oxide particles.
As described in Non-Patent Document 2, since the photocatalytic action occurs on the surface of the titanium oxide particles, the amount of defects that become recombination centers can be compared by comparing the amount of Ti 3+ on the surface of the titanium oxide particles. The quality of crystallinity can be defined. Comparison of the amount of Ti 3+ can be performed by the following method. Absence of oxygen in a sealed container having an inner diameter of 15 mm, for example nitrogen or put 10 vol% aqueous triethanolamine 5mL titanium oxide particles 50mg in an argon atmosphere, an illuminance of 15 mW / cm 2 of ultraviolet light having a wavelength of 365nm in a suspended state in By irradiating with a sufficient time, defect sites (Ti 4+ ) are reduced to Ti 3+ . When 50 μL of 1 mol / L methyl viologen aqueous solution is added here, electron transfer occurs from Ti 3+ to MV 2+ , MV + · radicals equivalent to Ti 3+ are generated, and the solution has a blue color, so the absorbance of the solution is measured. By doing so, the amount of Ti 3+ can be calculated.

ここで算出されるTi3+量は酸化チタンの内部と表面に存在する欠陥量の和である。前記の実験条件のように酸化チタン粒子重量を揃えて比較した場合、表面欠陥量は全欠陥量から内部欠陥量を差し引いたものであり、比表面積に比例する。前記の方法で市販の酸化チタン粒子(市販粒子1〜7)と本発明の酸化チタン粒子(本発明粒子)についてTi3+量を算出し、比表面積を横軸、Ti3+量を縦軸にとったグラフを図2に示す。市販粒子と本発明の粒子のいずれの場合でも比表面積が0におけるTi3+量の外挿値はほぼ8μmol/gであり、これが内部欠陥量に相当する。Ti3+量からこの内部欠陥量を差し引いた表面欠陥量は、市販粒子と本発明の粒子のいずれの場合でも比表面積にほぼ比例して増大したが、その傾き、すなわち表面欠陥密度が市販粒子について1.2μmol/m程度であるのに対し、本発明の粒子の酸化チタン粒子の表面欠陥密度は0.7μmol/m以下であることを特徴としており、結晶性が非常に高い酸化チタン粒子であると言える。 The amount of Ti 3+ calculated here is the sum of the amount of defects existing inside and on the surface of titanium oxide. When comparing the titanium oxide particles with the same weight as in the above experimental conditions, the surface defect amount is the total defect amount minus the internal defect amount, and is proportional to the specific surface area. The Ti 3+ amount was calculated for the commercially available titanium oxide particles (commercial particles 1 to 7) and the titanium oxide particles of the present invention (present particles) according to the above method, the specific surface area was plotted on the horizontal axis, and the Ti 3+ amount was plotted on the vertical axis. The graph is shown in FIG. In both cases of the commercially available particles and the particles of the present invention, the extrapolated value of the amount of Ti 3+ at a specific surface area of 0 is approximately 8 μmol / g, which corresponds to the amount of internal defects. The amount of surface defects obtained by subtracting the amount of internal defects from the amount of Ti 3+ increased almost in proportion to the specific surface area in both cases of the commercially available particles and the particles of the present invention. The surface defect density of the titanium oxide particles of the particles of the present invention is about 1.2 μmol / m 2 , whereas the surface defect density is 0.7 μmol / m 2 or less, and the titanium oxide particles have very high crystallinity. It can be said that.

これらの市販粒子と本発明粒子について、以下に示す方法で酢酸水溶液の分解により光触媒作用を比較してみた。内径φ15mmの密閉容器に5vol%酢酸水溶液5mLと酸化チタン粒子50mgを入れ、懸濁させた状態で波長365nmの紫外光を15mW/cmの照度で照射し、1時間あたりに発生する二酸化炭素(CO)量で比較した。市販の酸化チタン粒子(市販サンプル1〜10)と本発明粒子(10面体粒子)とは、それぞれ図3に示す特性を示した。この実験条件では紫外線照射面積が一定であるため、酸化チタン粒子が受け取る励起光量が一定であり、分解量は分解対象物に対する吸着能で決定される。したがって市販粒子のような従来の酸化チタン粒子では、二酸化炭素の発生量は酸化チタン粒子の比表面積値に比例することが知られているが、本発明の酸化チタン粒子は結晶性が高く、電子・ホールの再結合を抑制し、高効率で光触媒作用を示すと考えられ、実際に分解実験を行った結果、同等の比表面積値の市販粒子に比べ2〜3倍の酢酸分解能を示した。 For these commercially available particles and the particles of the present invention, the photocatalytic action was compared by decomposing an acetic acid aqueous solution by the method described below. Carbon dioxide generated per hour by irradiating ultraviolet light with a wavelength of 365 nm with an illuminance of 15 mW / cm 2 in a suspended state with 5 mL of 5 vol% acetic acid aqueous solution and 50 mg of titanium oxide particles in a sealed container with an inner diameter of 15 mm. Comparison was made by the amount of CO 2 ). Commercially available titanium oxide particles (commercial samples 1 to 10) and the present invention particles (decahedral particles) exhibited the characteristics shown in FIG. Since the ultraviolet irradiation area is constant under this experimental condition, the amount of excitation light received by the titanium oxide particles is constant, and the amount of decomposition is determined by the ability to adsorb to the decomposition target. Therefore, in conventional titanium oxide particles such as commercially available particles, it is known that the amount of carbon dioxide generated is proportional to the specific surface area value of the titanium oxide particles, but the titanium oxide particles of the present invention have high crystallinity, -The recombination of holes is suppressed, and it is considered that the photocatalytic action is exhibited with high efficiency. As a result of actual decomposition experiments, the acetic acid resolution was 2 to 3 times that of commercially available particles having an equivalent specific surface area value.

次に、本発明の酸化チタン粒子の製造方法について説明する。
図1は本発明の製造方法において好適に用いられる酸化チタン粒子製造装置を例示する構成図であり、図1中符号1は石英ガラス管、2は酸水素バーナー、3及び4は配管、5はチタン化合物、6はバグフィルター、7はバブラーである。
反応合成管となる石英ガラス管1の下方には酸水素バーナー2が設けられている。この石英ガラス管1の入口側には、チタン化合物5を入れたバブラー7に接続されてArガスとともに気化したチタン化合物5が供給される管路3と、酸素源から酸素(O)を供給する管路4が接続されている。また石英ガラス管1の出口側は、生成した酸化チタン粒子を捕集するためのバグフィルター6を介して排気系に接続されている。
Next, the manufacturing method of the titanium oxide particle of this invention is demonstrated.
FIG. 1 is a configuration diagram illustrating a titanium oxide particle production apparatus suitably used in the production method of the present invention. In FIG. 1, reference numeral 1 is a quartz glass tube, 2 is an oxyhydrogen burner, 3 and 4 are piping, Titanium compound, 6 is a bag filter, and 7 is a bubbler.
An oxyhydrogen burner 2 is provided below the quartz glass tube 1 serving as a reaction synthesis tube. On the inlet side of the quartz glass tube 1 is connected to a bubbler 7 containing a titanium compound 5 and supplied with a titanium line 5 which is vaporized together with Ar gas, and oxygen (O 2 ) is supplied from an oxygen source. The pipeline 4 to be connected is connected. The exit side of the quartz glass tube 1 is connected to an exhaust system through a bag filter 6 for collecting the generated titanium oxide particles.

原料としては、四塩化チタン(TiCl)などのチタン化合物を用い、バブリングもしくはベイキングによって気相供給できる。原料は反応酸素と合流させ、反応合成管である石英ガラス管1に導入する。この原料には、可視光励起可能な光触媒の製造や分解力の調整を目的として、酸化チタンに、例えばP,N,Si,Bなどのドーパントを添加することができる。ドーパントを添加する場合、原料とドーパントを配管中で合流させ、石英ガラス管1に導入することができる。 As a raw material, a titanium compound such as titanium tetrachloride (TiCl 4 ) is used, and gas phase supply can be performed by bubbling or baking. The raw material is combined with the reaction oxygen and introduced into the quartz glass tube 1 which is a reaction synthesis tube. To this raw material, a dopant such as P, N, Si, or B can be added to titanium oxide for the purpose of producing a photocatalyst that can be excited by visible light and adjusting the decomposition power. When the dopant is added, the raw material and the dopant can be merged in the pipe and introduced into the quartz glass tube 1.

原料及び反応酸素を石英ガラス管1に導入し、この石英ガラス管1を外部より酸水素バーナー2の火炎で熱し、反応熱を与えることで酸化チタン粒子を合成する。例えば、四塩化チタンを原料に用いた場合、合成温度850℃以上で90%以上の反応率となる。また合成温度1500℃以上では、酸化チタン粒子の焼結が始まって、粒子の比表面積が小さくなるため、合成温度850〜1500℃の範囲内で合成を行うことが望ましい。本例示では反応合成管として石英ガラス管1を用いているが、熱的及び化学的に安定な他の材料、例えばアルミナのような熱的及び化学的に安定な材質のチューブであれば利用可能である。反応合成管のサイズは、合成管内径がφ50mm以上であると反応合成管内部の径方向温度分布が大きくなり、酸化チタン粒子の粒径分布が大きくなるので望ましくない。また反応合成管の内径が小さいと管内流速が速くなり、反応効率が落ちるので、反応合成管の内径はφ10mm以上が望ましい。また、原料及び反応酸素量を減らして管内流速を遅くすると、合成量が落ち、工業的に望ましくない。   Raw materials and reactive oxygen are introduced into the quartz glass tube 1, the quartz glass tube 1 is heated from the outside with a flame of an oxyhydrogen burner 2, and titanium oxide particles are synthesized by applying reaction heat. For example, when titanium tetrachloride is used as a raw material, the reaction rate is 90% or higher at a synthesis temperature of 850 ° C. or higher. Further, when the synthesis temperature is 1500 ° C. or higher, the sintering of the titanium oxide particles starts and the specific surface area of the particles becomes small. In this example, the quartz glass tube 1 is used as the reaction synthesis tube, but any other material that is thermally and chemically stable, for example, a tube that is thermally and chemically stable, such as alumina, can be used. It is. As for the size of the reaction synthesis tube, if the inner diameter of the synthesis tube is 50 mm or more, the radial temperature distribution inside the reaction synthesis tube becomes large, and the particle size distribution of the titanium oxide particles becomes large. Further, if the inner diameter of the reaction synthesis tube is small, the flow velocity in the tube is increased and the reaction efficiency is lowered. Therefore, the inner diameter of the reaction synthesis tube is preferably 10 mm or more. Moreover, if the raw material and the amount of reaction oxygen are reduced to slow down the flow velocity in the pipe, the amount of synthesis decreases, which is not industrially desirable.

反応合成管内の原料及び反応酸素の流速が速い方がヒートゾーン通過にかかる時間、すなわち結晶成長する時間が短くなり、粒径の小さな酸化チタン粒子を得ることができる。しかし、流速が速くなりすぎると、反応効率が大幅に落ちるので、工業的に望ましくない。四塩化チタンを原料に用い、φ32mm×2.5tの石英ガラス管を反応合成管に用い、合成温度を1230℃に設定した場合、流速150〜1500mm/minの範囲内とするのが望ましい。   When the flow rates of the raw material and reaction oxygen in the reaction synthesis tube are higher, the time required for passing through the heat zone, that is, the time for crystal growth, is shortened, and titanium oxide particles having a small particle diameter can be obtained. However, if the flow rate is too high, the reaction efficiency is greatly reduced, which is not industrially desirable. When titanium tetrachloride is used as a raw material, a quartz glass tube having a diameter of 32 mm × 2.5 t is used as a reaction synthesis tube, and the synthesis temperature is set to 1230 ° C., the flow rate is preferably in the range of 150 to 1500 mm / min.

前記例示では酸水素バーナー2を反応熱源に用いているが、酸水素バーナー2は発生熱量が高く、電気ヒーターに比べ、局所的な加熱が可能である。そのため、均一核生成に必要な熱エネルギーを容易に与えることができ、また、ヒートゾーンが狭くなることも加わり、酸化チタンの結晶成長を抑制することができる。また容易に原子の拡散移動に必要な高温を得ることができ、結晶性の高い酸化チタン粒子を合成することができる。   In the above example, the oxyhydrogen burner 2 is used as a reaction heat source. However, the oxyhydrogen burner 2 generates a large amount of heat and can be locally heated compared to an electric heater. Therefore, the thermal energy required for uniform nucleation can be easily applied, and the heat zone is narrowed, and the crystal growth of titanium oxide can be suppressed. Moreover, the high temperature required for the diffusion movement of atoms can be easily obtained, and titanium oxide particles having high crystallinity can be synthesized.

また、石英ガラス管1をガラス旋盤に固定し、回転させることで周方向の温度分布を小さくできる。回転速度は20〜70rpmが望ましい。   Further, the temperature distribution in the circumferential direction can be reduced by fixing the quartz glass tube 1 to a glass lathe and rotating it. The rotation speed is preferably 20 to 70 rpm.

合成した酸化チタン粒子を回収する方法としては、ターゲットへの堆積や、フィルターでの回収が適している。ターゲットへの堆積方法は、サーモフォレシス効果を利用し、反応合成管として用いた石英ガラス管1の下流部分に付着させる方法が有効である。石英ガラス管1の合成部分は、1000℃程度まで局所的に加熱されており、下流の加熱されていない部分は数十℃程度であり、効果的にサーモフォレシス効果が作用するので適している。また、堆積部分を水、または窒素などの気体で冷却すると、さらに堆積効率は高くなる。さらに、熱交換作用の大きなHeガスを原料及び反応酸素に混合すると、サーモフォレシス効果が高まり、堆積効率が高くなる。   As a method for recovering the synthesized titanium oxide particles, deposition on a target or recovery with a filter is suitable. As a deposition method on the target, a method of using the thermophoresis effect and adhering to the downstream portion of the quartz glass tube 1 used as a reaction synthesis tube is effective. The synthetic part of the quartz glass tube 1 is locally heated to about 1000 ° C., and the downstream unheated part is about several tens of degrees C. This is suitable because the thermophoresis effect acts effectively. Further, when the deposited portion is cooled with water or a gas such as nitrogen, the deposition efficiency is further increased. Furthermore, when a He gas having a large heat exchange action is mixed with the raw material and reactive oxygen, the thermophoresis effect is enhanced and the deposition efficiency is increased.

フィルターでの回収方法は、合成される酸化チタン微粒子の粒径が数nm〜数十nm程度であり、フィルターは目詰まりを起こしやすい。そのため、例えば、圧縮ガス(空気、窒素など)でフィルターに衝撃を与えて目詰まりした粒子を払い落とす機構を備えたバグフィルターや、機械的に目詰まりを叩き落とす機構を備えたバグフィルターを用いることが目詰まり対策に効果的である。また、前記サーモフォレシス効果による堆積とバグフィルターによる捕集とを直列に配置して、両方で酸化チタン粒子を回収すると、高い回収効率が得られるので望ましい。   In the recovery method using a filter, the titanium oxide fine particles to be synthesized have a particle size of about several nanometers to several tens of nanometers, and the filter is easily clogged. For this reason, for example, a bag filter having a mechanism that blows off clogged particles by impacting the filter with compressed gas (air, nitrogen, etc.) or a bag filter having a mechanism that mechanically knocks off the clogging is used. This is an effective countermeasure against clogging. In addition, it is desirable that the deposition by the thermophoresis effect and the collection by the bag filter are arranged in series and the titanium oxide particles are collected by both, because high collection efficiency can be obtained.

この製造方法で得られる酸化チタン粒子の結晶系はアナターゼ型であり、(001)面と(101)面からなる10面体構造をとることを特徴としている。   The crystal system of the titanium oxide particles obtained by this production method is anatase type, and is characterized by taking a decahedron structure composed of (001) plane and (101) plane.

本発明はまた、前述した本発明に係る酸化チタン粒子を含む光触媒塗料を提供する。この光触媒塗料は、前記酸化チタン粒子と、塗料成分として従来公知のバインダーや溶剤、その他の適当な添加成分を加えて調製することができ、配合するバインダー樹脂や溶剤の種類によって水性塗料、油性塗料などとすることができる。この光触媒塗料は、該塗料を被塗装面に塗布し、得られる乾燥塗膜表面に光触媒として必要十分な量の前記酸化チタン粒子が存在するように酸化チタン粒子の配合量を設定することが望ましい。本発明の光触媒塗料は、前記本発明の酸化チタン粒子を含むものなので、高効率で光触媒作用を発揮する塗膜を形成することができる。   The present invention also provides a photocatalytic coating comprising the titanium oxide particles according to the present invention described above. This photocatalyst paint can be prepared by adding the titanium oxide particles and a conventionally known binder or solvent as a paint component, and other appropriate additive components. A water-based paint or an oil-based paint can be used depending on the type of binder resin or solvent to be blended. And so on. In this photocatalyst coating, it is desirable to apply the coating to the surface to be coated, and to set the blending amount of the titanium oxide particles so that the titanium oxide particles necessary and sufficient as the photocatalyst are present on the surface of the resulting dried coating film. . Since the photocatalyst coating material of the present invention contains the titanium oxide particles of the present invention, it is possible to form a coating film that exhibits a photocatalytic action with high efficiency.

本発明はまた、本発明の汚染物質分解方法は、前記本発明に係る酸化チタン粒子に励起光照射下、汚染物質を接触させて該汚染物質を分解、浄化する汚染物質分解方法を提供する。この汚染物質分解方法において分解可能な汚染物質としては、水(排水等)や空気などの流体に含まれる各種の汚染物質が挙げられ、例えば、窒素酸化物(NOx)の分解や水質汚濁を生じる有機溶剤の分解、環境ホルモンの分解、レジオネラ菌などの殺菌、ウイルスの分解などが挙げられる。酸化チタン粒子に励起光照射下、汚染物質を接触させるための装置構成は限定されず、例えば、酸化チタン粒子を含む塗膜を形成した多数のフィンや管などの基材に紫外光などの励起光を照射しながら汚染物質を含む流体を流す構造や、部分的に漏光するように加工した光ファイバの表面に酸化チタン粒子を塗布し、この光ファイバに紫外光などの励起光を入射しつつ表面の酸化チタン塗膜に汚染物質を含む流体を接触させる構造などが好ましい。本発明の汚染物質分解方法は、高効率で光触媒作用を発揮する本発明の酸化チタン粒子によって高効率で汚染物質を分解、浄化することができる。   The present invention also provides a pollutant decomposition method of the present invention, in which a contaminant is brought into contact with titanium oxide particles according to the present invention under excitation light irradiation to decompose and purify the contaminant. Examples of pollutants that can be decomposed by this pollutant decomposition method include various pollutants contained in fluids such as water (drainage, etc.) and air. For example, nitrogen oxide (NOx) decomposition and water pollution occur. Examples include decomposition of organic solvents, decomposition of environmental hormones, sterilization of Legionella bacteria, and virus decomposition. There is no limitation on the configuration of the apparatus for bringing the titanium oxide particles into contact with the pollutant under excitation light irradiation. For example, excitation of ultraviolet light or the like on a substrate such as a large number of fins or tubes formed with a coating film containing titanium oxide particles. Titanium oxide particles are applied to the surface of an optical fiber that is made to flow a fluid containing pollutants while irradiating light, or is partially leaked, and excitation light such as ultraviolet light is incident on this optical fiber. A structure in which a fluid containing a contaminant is brought into contact with the surface titanium oxide coating film is preferable. The pollutant decomposition method of the present invention can decompose and purify pollutants with high efficiency by the titanium oxide particles of the present invention that exhibit photocatalysis with high efficiency.

[実施例1]
ガラス旋盤にφ40mmの石英ガラス管を設置し、45rpmで回転させた。そこに四塩化チタン蒸気50sccmと酸素1200sccmを導入し、石英ガラス管の外部から酸水素バーナー炎で1300℃で加熱し、酸化チタン粒子を合成した。合成した酸化チタン粒子はバグフィルターで回収した。回収した酸化チタンは10面体形状であり、BET法により比表面積を測定したところ、10.2m/gであった。
[Example 1]
A quartz glass tube with a diameter of 40 mm was placed on a glass lathe and rotated at 45 rpm. The titanium tetrachloride vapor | steam and oxygen 1200sccm were introduce | transduced there, and it heated at 1300 degreeC with the oxyhydrogen burner flame from the exterior of the quartz glass tube, and synthesize | combined the titanium oxide particle. The synthesized titanium oxide particles were collected with a bag filter. The recovered titanium oxide had a icosahedral shape, and the specific surface area measured by the BET method was 10.2 m 2 / g.

[実施例2]
ガラス旋盤にφ40mmの石英ガラス管を設置し、45rpmで回転させた。そこに四塩化チタン蒸気20sccmと酸素1200sccmを導入し、石英ガラス管の外部から酸水素バーナー炎で1300℃で加熱し、酸化チタン粒子を合成した。合成した酸化チタン粒子はバグフィルターで回収した。回収した酸化チタンは10面体形状であり、BET法により比表面積を測定したところ、32.4m/gであった。
[Example 2]
A quartz glass tube with a diameter of 40 mm was placed on a glass lathe and rotated at 45 rpm. Titanium tetrachloride vapor 20 sccm and oxygen 1200 sccm were introduced there, and heated at 1300 ° C. with an oxyhydrogen burner flame from the outside of the quartz glass tube to synthesize titanium oxide particles. The synthesized titanium oxide particles were collected with a bag filter. The recovered titanium oxide had a icosahedral shape, and the specific surface area measured by the BET method was 32.4 m 2 / g.

[実施例3及び比較例1]
実施例1及び2で得られた酸化チタン粒子と、合成温度条件とガス条件を変更し、同様の製法で得られた4種、合計6種の酸化チタン粒子(本発明粒子1〜6)について結晶性の評価を行った。SEMとXRDで確認したところ、これらの本発明粒子1〜6は10面体形状のアナターゼ型酸化チタン粒子からなることを確認した。
また市販の酸化チタン粒子(市販粒子1〜8)についても、結晶性の評価を行い比較した。内径φ15mmの密閉容器に窒素雰囲気下で10vol%トリエタノールアミン水溶液5mLと酸化チタン粒子50mgを入れ、懸濁させた状態で波長365nmの紫外光を15mW/cmの照度で48時間照射した。ここに1mol/Lメチルビオロゲン水溶液を50μL添加し、酸化チタン粒子を遠心分離した後、溶液の606nmにおける吸光度を測定した。MV・ラジカルの吸光係数を13700mol−1Lcm−1とし、酸化チタン粒子表面のTi3+密度を算出し比較した。結果を表1に示す。
[Example 3 and Comparative Example 1]
About the titanium oxide particles obtained in Examples 1 and 2, the synthesis temperature condition and the gas condition, 4 types obtained by the same production method, a total of 6 types of titanium oxide particles (present particles 1 to 6) Crystallinity was evaluated. As a result of confirmation by SEM and XRD, it was confirmed that these particles 1 to 6 of the present invention consisted of decahedral anatase-type titanium oxide particles.
In addition, the crystallinity of the commercially available titanium oxide particles (commercial particles 1 to 8) was also evaluated and compared. In a nitrogen atmosphere, 5 mL of a 10 vol% triethanolamine aqueous solution and 50 mg of titanium oxide particles were placed in a sealed container having an inner diameter of 15 mm, and irradiated with ultraviolet light having a wavelength of 365 nm at an illuminance of 15 mW / cm 2 for 48 hours. 50 μL of a 1 mol / L methyl viologen aqueous solution was added thereto, the titanium oxide particles were centrifuged, and the absorbance of the solution at 606 nm was measured. An extinction coefficient of MV + · radicals and 13700mol -1 Lcm -1, were compared to calculate the Ti 3+ density of the titanium oxide particle surfaces. The results are shown in Table 1.

Figure 0004754197
Figure 0004754197

表1から、市販粒子1〜8の表面欠陥密度は1.2μmol/m程度であるのに対し、本発明粒子1〜6の表面欠陥密度は0.7μmol/m以下となった。 From Table 1, the surface defect density of the commercially available particles 1 to 8 is about 1.2 μmol / m 2 , whereas the surface defect density of the present particles 1 to 6 is 0.7 μmol / m 2 or less.

[実施例4及び比較例2]
実施例1及び2で得られた酸化チタン粒子と、合成温度条件とガス条件を変更し、同様の製法で得られた2種、合計4種の酸化チタン粒子と市販の酸化チタン粒子について酢酸分解を行い、光触媒作用を比較した。それぞれの酸化チタン粒子50mgを内径φ15mmの密閉容器に入れ、5vol%酢酸水溶液5mLに懸濁させ、懸濁させた状態で波長365nmの紫外光を15mW/cmの照度で照射し、1時間あたりに発生する二酸化炭素(CO)量をガスクロマトグラフィーで定量した。横軸に比表面積、縦軸に二酸化炭素発生速度をとったグラフを図3に示す。なお、図3において、本発明の4種類の粒子は「●10面体粒子」としてプロットし、市販の酸化チタン粒子は「□市販サンプル1〜10」としてプロットしてある。
図3のグラフから、本発明の酸化チタン粒子は、同等の比表面積値の市販粒子に比べ、2〜3倍の酢酸分解能を有することがわかる。
[Example 4 and Comparative Example 2]
The titanium oxide particles obtained in Examples 1 and 2, the synthesis temperature condition and the gas condition were changed, and two types obtained by the same production method, a total of four types of titanium oxide particles and commercially available titanium oxide particles were decomposed with acetic acid. The photocatalytic action was compared. 50 mg of each titanium oxide particle was placed in a sealed container having an inner diameter of 15 mm, suspended in 5 mL of a 5 vol% acetic acid aqueous solution, and irradiated with ultraviolet light having a wavelength of 365 nm at an illuminance of 15 mW / cm 2 per hour. The amount of carbon dioxide (CO 2 ) generated in the gas was determined by gas chromatography. FIG. 3 is a graph in which the horizontal axis represents the specific surface area and the vertical axis represents the carbon dioxide generation rate. In FIG. 3, the four types of particles of the present invention are plotted as “• 10-hedral particles”, and the commercially available titanium oxide particles are plotted as “□ commercial samples 1 to 10”.
From the graph of FIG. 3, it can be seen that the titanium oxide particles of the present invention have an acetic acid resolution of 2 to 3 times that of commercially available particles having an equivalent specific surface area value.

本発明の製造方法に用いられる酸化チタン製造装置を例示する構成図である。It is a block diagram which illustrates the titanium oxide manufacturing apparatus used for the manufacturing method of this invention. 本発明粒子と市販粒子の比表面積値とTi3+密度の関係を示すグラフである。It is a graph which shows the relationship between the specific surface area value of this invention particle | grains and commercial particle | grains, and Ti3 + density. 本発明の実施例の結果を示し、本発明粒子と市販粒子の比表面積値とCO発生速度の関係を示すグラフである。It shows the results of Examples of the present invention, is a graph showing the relationship of the present invention particles with a specific surface area value and CO 2 evolution rate commercial particles.

符号の説明Explanation of symbols

1…石英ガラス管(反応合成管)、2…酸水素バーナー、3,4…配管、5…チタン化合物、6…バグフィルター、7…バブラー。
DESCRIPTION OF SYMBOLS 1 ... Quartz glass tube (reaction synthesis tube), 2 ... Oxyhydrogen burner, 3, 4 ... Piping, 5 ... Titanium compound, 6 ... Bag filter, 7 ... Bubbler.

Claims (5)

内径φ15mmの密閉容器に無酸素下で10vol%トリエタノールアミン水溶液5mLと酸化チタン粒子50mgを入れ、懸濁させた状態で波長365nmの紫外光を照射することで測定される酸化チタン粒子表面に生成するTi3+密度が0.14〜0.7μmol/ であることを特徴とする酸化チタン粒子。 Generated on the surface of titanium oxide particles measured by irradiating ultraviolet light with a wavelength of 365 nm in a suspended state with 5 mL of 10 vol% triethanolamine aqueous solution and 50 mg of titanium oxide particles placed in an airtight container with an inner diameter of 15 mm under no oxygen. titanium oxide particles Ti 3+ density is characterized in that it is a 0.14~ 0.7μmol / m 2. 10面体形状でアナターゼ型であることを特徴とする請求項1に記載の酸化チタン粒子。   The titanium oxide particles according to claim 1, wherein the titanium oxide particles are icosahedral and anatase type. 反応合成管にチタン化合物の蒸気と酸素を導入し、反応合成管外部から酸水素バーナー炎で加熱し、チタン化合物を熱酸化せしめ、請求項1又は2に記載の酸化チタン粒子を得ることを特徴とする酸化チタン粒子の製造方法。   3. A titanium compound particle according to claim 1 or 2 is obtained by introducing vapor and oxygen of a titanium compound into a reaction synthesis tube and heating with an oxyhydrogen burner flame from outside the reaction synthesis tube to thermally oxidize the titanium compound. A method for producing titanium oxide particles. チタン化合物として四塩化チタンを用いることを特徴とする請求項3に記載の酸化チタン粒子の製造方法。   The method for producing titanium oxide particles according to claim 3, wherein titanium tetrachloride is used as the titanium compound. 請求項1又は2に記載の酸化チタン粒子を含有する光触媒塗料。   The photocatalyst coating material containing the titanium oxide particle of Claim 1 or 2.
JP2004233501A 2004-08-10 2004-08-10 Titanium oxide particles, production method thereof and use thereof Expired - Fee Related JP4754197B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004233501A JP4754197B2 (en) 2004-08-10 2004-08-10 Titanium oxide particles, production method thereof and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004233501A JP4754197B2 (en) 2004-08-10 2004-08-10 Titanium oxide particles, production method thereof and use thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011082055A Division JP5259767B2 (en) 2011-04-01 2011-04-01 Method for evaluating crystallinity of titanium oxide particles, and method for measuring surface defect density of titanium oxide particles

Publications (2)

Publication Number Publication Date
JP2006052099A JP2006052099A (en) 2006-02-23
JP4754197B2 true JP4754197B2 (en) 2011-08-24

Family

ID=36029812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004233501A Expired - Fee Related JP4754197B2 (en) 2004-08-10 2004-08-10 Titanium oxide particles, production method thereof and use thereof

Country Status (1)

Country Link
JP (1) JP4754197B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106398505A (en) * 2016-09-28 2017-02-15 潘卫方 Bicomponent waterborne coating and preparation method thereof

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007048528A (en) * 2005-08-08 2007-02-22 Dainippon Printing Co Ltd Substrate for organic electroluminescent element, and organic electroluminescent element
JP4997552B2 (en) * 2007-06-11 2012-08-08 昭和電工株式会社 Method for producing titanium oxide particles
US8178074B2 (en) 2008-08-29 2012-05-15 Showa Denko K.K. Method for producing titanium oxide particles
JP5376893B2 (en) * 2008-10-15 2013-12-25 昭和電工株式会社 Method and apparatus for producing metal oxide particles
CN102471089B (en) 2009-08-24 2015-02-25 国立大学法人北海道大学 Metal oxide particle production method and production device
JP5669057B2 (en) 2010-03-08 2015-02-12 国立大学法人北海道大学 Method and apparatus for producing titanium oxide particles
CN111322694B (en) * 2020-03-10 2021-05-11 青岛丰特能源智控有限公司 Control method and control device of sterilization and disinfection equipment linked with air conditioner and air conditioner

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4239273B2 (en) * 1999-02-19 2009-03-18 住友化学株式会社 Rutile type titanium oxide powder for filler containing glass paste, glass paste and filler material for ribs for plasma display panel partition
JP4530238B2 (en) * 2000-04-03 2010-08-25 東邦チタニウム株式会社 Method for producing titanium oxide powder containing anatase-type titanium oxide single crystal
JP2001287996A (en) * 2000-04-03 2001-10-16 Toho Titanium Co Ltd Anatase-type titanium oxide single crystal
JP2001276615A (en) * 2000-04-03 2001-10-09 Michio Matsumura Titanium oxide powder for photocatalyst
WO2004063431A1 (en) * 2003-01-09 2004-07-29 Fujikura Ltd. Titanium oxide grain, process and apparatus for producing the same, and method of treating with the titanium oxide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106398505A (en) * 2016-09-28 2017-02-15 潘卫方 Bicomponent waterborne coating and preparation method thereof

Also Published As

Publication number Publication date
JP2006052099A (en) 2006-02-23

Similar Documents

Publication Publication Date Title
Mills et al. Thick titanium dioxide films for semiconductor photocatalysis
Kuo et al. Carbon-containing nano-titania prepared by chemical vapor deposition and its visible-light-responsive photocatalytic activity
Addamo et al. Photocatalytic thin films of TiO2 formed by a sol–gel process using titanium tetraisopropoxide as the precursor
Wu et al. Synthesis of high visible light active carbon doped TiO2 photocatalyst by a facile calcination assisted solvothermal method
Černigoj et al. Photocatalytically active TiO2 thin films produced by surfactant-assisted sol–gel processing
Qin et al. One-step fabrication of TiO2/Ti foil annular photoreactor for photocatalytic degradation of formaldehyde
Ho et al. Application of recycled lanthanum-doped TiO2 immobilized on commercial air filter for visible-light photocatalytic degradation of acetone and NO
US20050271578A1 (en) Particulate titanium oxide, method and apparatus for manufacturing the same, and treatment methods using such titanium oxide
JP4495162B2 (en) Rutile-type titanium oxide ultrafine particles
Gao et al. Improvement of photocatalytic activity of titanium (IV) oxide by dispersion of Au on TiO2
JP2001522130A (en) Articles or compositions comprising nanoscale particles and methods of using or producing said particles
Liu et al. Preparation of α-Fe2O3–TiO2/fly ash cenospheres photocatalyst and its mechanism of photocatalytic degradation
Kenanakis et al. Chemically grown TiO2 on glass with superior photocatalytic properties
Lee et al. Preparation and characterization of titanium (IV) oxide photocatalysts
Mills et al. Thick titania films for semiconductor photocatalysis
KR20210016527A (en) Nitrogen-doped TiO2 nanoparticles and their use in photocatalysts
JP4754197B2 (en) Titanium oxide particles, production method thereof and use thereof
JP2007203223A (en) Visible light-responsive titanium oxide-activated carbon composite photocatalyst and manufacturing method
Xu et al. Photocatalytic degradation of cooking fume on a TiO2-coated carbon nanotubes composite filter
CN109174075A (en) A kind of rare-earth element modified titanium dioxide nano photocatalysis material and preparation method thereof for photocatalytic degradation VOCs
Radić et al. Effect of cerium oxide doping on the photocatalytic properties of rutile TiO2 films prepared by spray pyrolysis
Samadi et al. Synthesis, characterization, and application of Nd, Zr–TiO 2/SiO 2 nanocomposite thin films as visible light active photocatalyst
JP5259767B2 (en) Method for evaluating crystallinity of titanium oxide particles, and method for measuring surface defect density of titanium oxide particles
Klongdee et al. Activity of nanosized titania synthesized from thermal decomposition of titanium (IV) n-butoxide for the photocatalytic degradation of diuron
Saroj et al. Enhancement of photocatalytic activity and regeneration of Fe-doped TiO 2 (Ti 1− x Fe x O 2) nanocrystalline particles synthesized using inexpensive TiO 2 precursor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110401

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110517

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110525

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4754197

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees