JP4753897B2 - Measuring method of semiconductor device - Google Patents

Measuring method of semiconductor device Download PDF

Info

Publication number
JP4753897B2
JP4753897B2 JP2007046473A JP2007046473A JP4753897B2 JP 4753897 B2 JP4753897 B2 JP 4753897B2 JP 2007046473 A JP2007046473 A JP 2007046473A JP 2007046473 A JP2007046473 A JP 2007046473A JP 4753897 B2 JP4753897 B2 JP 4753897B2
Authority
JP
Japan
Prior art keywords
voltage
terminal
measured
output
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007046473A
Other languages
Japanese (ja)
Other versions
JP2008209252A (en
Inventor
清一 芝崎
弘造 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2007046473A priority Critical patent/JP4753897B2/en
Publication of JP2008209252A publication Critical patent/JP2008209252A/en
Application granted granted Critical
Publication of JP4753897B2 publication Critical patent/JP4753897B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Individual Semiconductor Devices (AREA)
  • Measurement Of Current Or Voltage (AREA)
  • Tests Of Electronic Circuits (AREA)

Description

本発明は、半導体装置の電気的特性の測定方法に関し、特に半導体装置と測定プローブにおける接触抵抗の影響を補償するようにした測定方法に関する。   The present invention relates to a method for measuring electrical characteristics of a semiconductor device, and more particularly to a method for compensating for the influence of contact resistance between a semiconductor device and a measurement probe.

半導体装置の電気的特性を測定する際には、半導体装置の端子にプローブを接触させて測定するのが一般的な方法である。しかし、半導体装置の端子とプローブとの間には必ず接触抵抗が存在するため、測定精度は接触抵抗の影響で低下していた。
例えば、図5は、半導体装置に内蔵された定電圧回路における出力電圧Vo‐出力電流io特性の例を示した図である。なお、図5では、定電圧回路にフの字特性を有する過電流保護回路が設けられている場合を示している。図5では、最大出力電流iomaxが出力されたときの出力電圧VoはVo1である。
When measuring the electrical characteristics of a semiconductor device, it is a general method to measure by bringing a probe into contact with a terminal of the semiconductor device. However, since a contact resistance always exists between the terminal of the semiconductor device and the probe, the measurement accuracy has been lowered due to the influence of the contact resistance.
For example, FIG. 5 is a diagram showing an example of the output voltage Vo-output current io characteristic in a constant voltage circuit built in the semiconductor device. FIG. 5 shows a case where an overcurrent protection circuit having a U-shaped characteristic is provided in the constant voltage circuit. In FIG. 5, the output voltage Vo when the maximum output current iomax is output is Vo1.

ここで、最大出力電流iomaxを測定するためには、定電圧回路の出力端に出力電圧がVo1の定電圧電源を接続して出力電流ioを測定すると、前記接触抵抗の影響で、例えば半導体装置の出力端子電圧は電圧Vo1よりも大きい電圧Vo2になっていた。該出力端子電圧がVo2であるときの出力電流ioは、図5から分かるように、最大出力電流iomaxよりも小さいio2であり、最大出力電流iomaxが測定されていないことが分かる。
前記接触抵抗は、半導体装置の端子とプローブに流れる電流値が大きいほど測定値に大きな影響を及ぼす。また、量産工程で多くの半導体装置を測定する場合は、プローブ先端にゴミ等が付着したり、先端が磨耗したりして、前記接触抵抗は大きく変化することから、配線抵抗等のように決まった抵抗値として処理することができなかった。
Here, in order to measure the maximum output current iomax, a constant voltage power supply with an output voltage of Vo1 is connected to the output terminal of the constant voltage circuit, and the output current io is measured. The output terminal voltage was a voltage Vo2 larger than the voltage Vo1. As can be seen from FIG. 5, the output current io when the output terminal voltage is Vo2 is io2 smaller than the maximum output current iomax, and it can be seen that the maximum output current iomax is not measured.
The contact resistance has a greater influence on the measured value as the current value flowing through the terminal of the semiconductor device and the probe increases. Also, when many semiconductor devices are measured in the mass production process, the contact resistance changes greatly due to dust adhering to the tip of the probe or wear of the tip. Could not be treated as a resistance value.

このような接触抵抗の影響を抑える方法としては、4端子測定が行えるケルビンプローブを利用することが一般的であるが、近年、半導体装置の小型化に伴って端子も小さくなっているため、ケルビンプローブを使用することが困難になってきていた。
このため、ケルビンプローブを使用せず、接触抵抗を下げて測定する方法として、測定開始に先立ち、測定に用いる電流及び電圧以上の電流及び電圧を供給し、接触抵抗を小さくした状態にしてから測定を行う方法があった(例えば、特許文献1参照。)。
特開2006−10572号公報
As a method for suppressing the influence of such contact resistance, it is common to use a Kelvin probe capable of performing four-terminal measurement. However, in recent years, the terminals have become smaller with the miniaturization of semiconductor devices. It has become difficult to use probes.
For this reason, as a method of measuring by reducing the contact resistance without using a Kelvin probe, before starting the measurement, supply a current and voltage that are higher than the current and voltage used for measurement and reduce the contact resistance before measurement. There was a method of performing (see, for example, Patent Document 1).
JP 2006-10572 A

しかし、供給する前記電流及び電圧は、測定が行われる半導体装置の絶対最大定格値以下にする必要があるが、近年の半導体装置は低電圧動作になっているため、供給できる電流及び電圧をそれほど大きくすることができず、大きな効果を得ることができなかった。   However, the current and voltage to be supplied need to be less than or equal to the absolute maximum rating value of the semiconductor device to be measured. However, since recent semiconductor devices are operated at a low voltage, the current and voltage that can be supplied are not much. The size could not be increased, and a great effect could not be obtained.

本発明は、このような問題を解決するためになされたものであり、ケルビンプローブを用いることなく、高精度の測定が可能な半導体装置の測定方法を得ることを目的とする。   The present invention has been made to solve such a problem, and an object of the present invention is to obtain a semiconductor device measurement method capable of high-precision measurement without using a Kelvin probe.

この発明に係る半導体装置の測定方法は、被測定端子と、該被測定端子と同電圧になるように設けられた被測定センス端子とを備えた半導体装置の測定方法において、
前記被測定端子に、設定された第2電圧を入力し、
前記被測定センス端子の電圧を測定し、
前記被測定センス端子の電圧と前記第2電圧との電圧差を検出し、
該電圧差が所定値を超えている場合は、該電圧差が該所定値以下になるように、前記被測定端子に入力する前記第2電圧の電圧値を補正し、
前記電圧差が前記所定値以下の場合は、前記被測定端子の電気的特性を測定し、
前記半導体装置は、出力電流が所定値以上になると出力電圧と出力電流との特性がフの字特性をなすように該出力電圧を低下させると共に該出力電流を低下させる過電流保護回路を備えた定電圧回路を有し、前記被測定端子は該定電圧回路の出力端子であり、
前記電気的特性は、該定電圧回路の最大出力電流値であるようにした。
A measuring method of a semiconductor device according to the present invention is a measuring method of a semiconductor device comprising a measured terminal and a measured sense terminal provided so as to have the same voltage as the measured terminal.
The set second voltage is input to the measured terminal,
Measure the voltage of the sense terminal to be measured,
Detecting a voltage difference between the voltage of the sense terminal to be measured and the second voltage;
When the voltage difference exceeds a predetermined value, the voltage value of the second voltage input to the measured terminal is corrected so that the voltage difference is less than or equal to the predetermined value,
If the voltage difference is less than or equal to the predetermined value, measure the electrical characteristics of the measured terminal ,
The semiconductor device includes an overcurrent protection circuit that lowers the output voltage and lowers the output current so that the characteristics of the output voltage and the output current form a U-shaped characteristic when the output current exceeds a predetermined value. A constant voltage circuit, and the measured terminal is an output terminal of the constant voltage circuit;
The electrical characteristic is the maximum output current value of the constant voltage circuit .

また、この発明に係る半導体装置の測定方法は、電源入力端子と、該電源入力端子と同電圧になるように設けられた電源センス端子と、被測定端子と、該被測定端子と同電圧になるように設けられた被測定センス端子とを備えた半導体装置の測定方法において、
前記電源入力端子に、設定された第1電圧を入力し、
前記被測定端子に、設定された第2電圧を入力し、
前記被測定センス端子の電圧を測定し、
前記被測定センス端子の電圧と前記第2電圧との電圧差を検出し、
前記被測定センス端子の電圧と前記第2電圧との電圧差が第1所定値を超えている場合は、該電圧差が該第1所定値以下になるように、前記被測定端子に入力する前記第2電圧の電圧値を補正し、
前記電源センス端子の電圧を測定し、
前記電源センス端子の電圧と前記第1電圧との電圧差を検出し、
前記電源センス端子の電圧と前記第1電圧との電圧差が第2所定値を超えている場合は、該電圧差が該第2所定値以下になるように、前記電源入力端子に入力する前記第1電圧の電圧値を補正し、
前記被測定センス端子の電圧と前記第2電圧との電圧差が前記第1所定値以下で、かつ前記電源センス端子の電圧と前記第1電圧との電圧差が前記第2所定値以下の場合は、前記被測定端子の電気的特性を測定するようにした。
The semiconductor device measuring method according to the present invention includes a power input terminal, a power sense terminal provided to be at the same voltage as the power input terminal, a measured terminal, and the same voltage as the measured terminal. In a method for measuring a semiconductor device comprising a sense terminal to be measured provided to be,
The set first voltage is input to the power input terminal,
The set second voltage is input to the measured terminal,
Measure the voltage of the sense terminal to be measured,
Detecting a voltage difference between the voltage of the sense terminal to be measured and the second voltage;
When the voltage difference between the voltage of the measured sense terminal and the second voltage exceeds a first predetermined value, the voltage difference is input to the measured terminal so that the voltage difference is less than or equal to the first predetermined value. Correcting the voltage value of the second voltage;
Measure the voltage of the power supply sense terminal,
Detecting a voltage difference between the voltage of the power supply sense terminal and the first voltage;
When the voltage difference between the voltage of the power supply sense terminal and the first voltage exceeds a second predetermined value, the voltage input to the power supply input terminal so that the voltage difference is equal to or less than the second predetermined value. Correct the voltage value of the first voltage,
When the voltage difference between the voltage at the measured sense terminal and the second voltage is less than or equal to the first predetermined value and the voltage difference between the voltage at the power supply sense terminal and the first voltage is less than or equal to the second predetermined value Measures the electrical characteristics of the terminal to be measured.

具体的には、前記半導体装置は定電圧回路を有し、前記被測定端子は該定電圧回路の出力端子である。   Specifically, the semiconductor device has a constant voltage circuit, and the measured terminal is an output terminal of the constant voltage circuit.

また、前記定電圧回路は、該定電圧回路の出力電流が所定値以上になると該定電圧回路の出力電圧と出力電流との特性がフの字特性をなすように該出力電圧を低下させると共に該出力電流を低下させる過電流保護回路を備え、前記電気的特性は、該定電圧回路の最大出力電流値であるようにした。   In addition, the constant voltage circuit reduces the output voltage so that the characteristic of the output voltage and the output current of the constant voltage circuit forms a U-shaped characteristic when the output current of the constant voltage circuit exceeds a predetermined value. An overcurrent protection circuit for reducing the output current is provided, and the electrical characteristic is set to the maximum output current value of the constant voltage circuit.

本発明の半導体装置の測定方法によれば、被測定端子と同電圧になるように設けられた被測定センス端子の電圧と被測定端子に入力した第2電圧との電圧差が所定値以下になるように第2電圧の電圧値を補正し、該電圧差が所定値以下になると被測定端子の電気的特性を測定するようにした。このことから、被測定端子における接触抵抗の影響を排除することができるため、ケルビンプローブを用いることなく高精度の測定を行うことができ、半導体装置及び端子の小型化を図ることができる。   According to the method for measuring a semiconductor device of the present invention, the voltage difference between the voltage of the sense terminal to be measured and the second voltage input to the terminal to be measured is equal to or less than a predetermined value. Thus, the voltage value of the second voltage is corrected so that the electrical characteristics of the terminal to be measured are measured when the voltage difference becomes a predetermined value or less. Therefore, the influence of contact resistance at the terminal to be measured can be eliminated, so that high-precision measurement can be performed without using a Kelvin probe, and the semiconductor device and the terminal can be downsized.

また、本発明の半導体装置の測定方法によれば、被測定端子と同電圧になるように設けられた被測定センス端子の電圧と被測定端子に入力した第2電圧との電圧差が第1所定値以下になるように第2電圧の電圧値を補正し、該電圧差が第1所定値以下になり、かつ電源入力端子と同電圧になるように設けられた電源センス端子の電圧と電源入力端子に入力した第1電圧との電圧差が第2所定値以下になるように第1電圧の電圧値を補正し、該電圧差が第2所定値以下になると被測定端子の電気的特性を測定するようにした。このことから、被測定端子における接触抵抗の影響を排除することができるため、ケルビンプローブを用いることなく高精度の測定を行うことができ、半導体装置及び端子の小型化を図ることができると共に、電源入力端子における接触抵抗の影響も排除することができ、より高精度の測定を行うことができる。   According to the method for measuring a semiconductor device of the present invention, the voltage difference between the voltage of the sense terminal to be measured and the second voltage input to the terminal to be measured is the first voltage. The voltage value of the second voltage is corrected so as to be equal to or less than the predetermined value, and the voltage of the power supply sense terminal provided so that the voltage difference is equal to or less than the first predetermined value and the same voltage as the power input terminal and the power supply The voltage value of the first voltage is corrected so that the voltage difference with the first voltage input to the input terminal is less than or equal to the second predetermined value, and when the voltage difference becomes less than or equal to the second predetermined value, the electrical characteristics of the terminal to be measured Was measured. From this, since it is possible to eliminate the influence of contact resistance at the terminal to be measured, high-precision measurement can be performed without using a Kelvin probe, and the semiconductor device and the terminal can be miniaturized, The influence of contact resistance at the power input terminal can also be eliminated, and more accurate measurement can be performed.

次に、図面に示す実施の形態に基づいて、本発明を詳細に説明する。
第1の実施の形態.
図1は、本発明の第1の実施の形態における半導体装置の測定方法を行う測定装置の構成例を示した図である。
図1において、測定装置1は、半導体装置10の電気的特性を測定するものであり、入力された制御信号に応じた直流電圧V1を生成して出力する可変直流電圧源2と、入力された制御信号に応じた直流電圧V2を生成して出力する可変直流電圧源3と、電圧測定回路4と、電流測定回路5と、電圧測定回路4の測定結果に応じて可変直流電圧源2及び3の動作制御を行う制御回路6とを備えており、更に接続端子V1o、Vis、Vos及びV2oを備えている。
Next, the present invention will be described in detail based on the embodiments shown in the drawings.
First embodiment.
FIG. 1 is a diagram showing a configuration example of a measurement apparatus that performs the semiconductor device measurement method according to the first embodiment of the present invention.
In FIG. 1, a measuring apparatus 1 measures the electrical characteristics of a semiconductor device 10, and generates and outputs a DC voltage V1 corresponding to an input control signal, and an input Variable DC voltage source 3 that generates and outputs DC voltage V2 according to the control signal, voltage measurement circuit 4, current measurement circuit 5, and variable DC voltage sources 2 and 3 according to the measurement results of voltage measurement circuit 4 And a control circuit 6 for controlling the above operation, and further provided with connection terminals V1o, Vis, Vos and V2o.

半導体装置10は、被測定回路である定電圧回路11、入力端子IN、出力端子OUT及び接続端子ISENSE,OSENSEを有しており、定電圧回路11はシリーズレギュレータをなしている。なお、出力端子OUTは被測定端子を、接続端子OSENSEは被測定センス端子を、入力端子INは電源入力端子を、接続端子ISENSEは電源センス端子をそれぞれなす。
定電圧回路11は、入力端子INに入力された入力電圧Vinから所定の定電圧を生成して出力端子OUTから出力電圧Voとして出力する。
定電圧回路11は、所定の基準電圧Vrefを生成して出力する基準電圧発生回路12と、誤差増幅回路13と、ゲートに入力された制御信号に応じた電流を入力端子INから出力端子OUTに出力するPMOSトランジスタからなる出力トランジスタM1と、出力電圧検出用の抵抗R1,R2と、出力トランジスタM1から出力される電流が所定値を超えないように出力トランジスタM1の動作を制限する過電流保護回路14とを備えている。
The semiconductor device 10 includes a constant voltage circuit 11, which is a circuit to be measured, an input terminal IN, an output terminal OUT, and connection terminals ISENSE and OSENSE. The constant voltage circuit 11 forms a series regulator. The output terminal OUT is a terminal to be measured, the connection terminal OSENSE is a sense terminal to be measured, the input terminal IN is a power input terminal, and the connection terminal ISENSE is a power sense terminal.
The constant voltage circuit 11 generates a predetermined constant voltage from the input voltage Vin input to the input terminal IN, and outputs it from the output terminal OUT as the output voltage Vo.
The constant voltage circuit 11 generates a reference voltage generation circuit 12 that generates and outputs a predetermined reference voltage Vref, an error amplification circuit 13, and a current corresponding to a control signal input to the gate from the input terminal IN to the output terminal OUT. An output transistor M1 composed of an output PMOS transistor, output voltage detection resistors R1 and R2, and an overcurrent protection circuit that limits the operation of the output transistor M1 so that the current output from the output transistor M1 does not exceed a predetermined value. 14.

また、測定装置1において、接続端子V1oには可変直流電源2から電圧V1が入力されており、電圧測定回路4は、接続端子Vis及びVosにそれぞれ接続されている。また、電流測定回路5には可変直流電源3から電圧V2が入力されており、電流測定回路5は接続端子V2oに接続されている。制御回路6は、電圧測定回路4及び電流測定回路5からの測定結果がそれぞれ入力されており、電圧測定回路4の測定結果に応じて、可変直流電源2及び3に対して、出力する電圧V1及びV2の電圧値の制御を行う。なお、制御回路6が、電圧測定回路4及び電流測定回路5の動作制御を行うようにしてもよい。   In the measuring device 1, the voltage V1 is input from the variable DC power source 2 to the connection terminal V1o, and the voltage measurement circuit 4 is connected to the connection terminals Vis and Vos, respectively. Further, the voltage V2 is input from the variable DC power source 3 to the current measuring circuit 5, and the current measuring circuit 5 is connected to the connection terminal V2o. The control circuit 6 receives the measurement results from the voltage measurement circuit 4 and the current measurement circuit 5, respectively, and outputs the voltage V 1 output to the variable DC power sources 2 and 3 according to the measurement result of the voltage measurement circuit 4. And the voltage value of V2 is controlled. Note that the control circuit 6 may control the operation of the voltage measurement circuit 4 and the current measurement circuit 5.

一方、半導体装置10において、入力端子INと出力端子OUTとの間には出力トランジスタM1が接続され、出力端子OUTと接地電圧との間には抵抗R1及びR2が直列に接続されている。抵抗R1とR2との接続部からは、出力電圧Voを分圧した分圧電圧Vfbが誤差増幅回路13の非反転入力端に出力される。誤差増幅回路13の反転入力端には基準電圧Vrefが入力され、誤差増幅回路13の出力端は出力トランジスタM1のゲートに接続されている。過電流保護回路14の出力端は、出力トランジスタM1のゲートに接続されている。また、接続端子ISENSEは入力端子INに、接続端子OSENSEは出力端子OUTにそれぞれ接続されている。   On the other hand, in the semiconductor device 10, an output transistor M1 is connected between the input terminal IN and the output terminal OUT, and resistors R1 and R2 are connected in series between the output terminal OUT and the ground voltage. A divided voltage Vfb obtained by dividing the output voltage Vo is output to the non-inverting input terminal of the error amplifier circuit 13 from the connection portion between the resistors R1 and R2. The reference voltage Vref is input to the inverting input terminal of the error amplifier circuit 13, and the output terminal of the error amplifier circuit 13 is connected to the gate of the output transistor M1. The output terminal of the overcurrent protection circuit 14 is connected to the gate of the output transistor M1. The connection terminal ISENSE is connected to the input terminal IN, and the connection terminal OSENSE is connected to the output terminal OUT.

測定装置1によって半導体装置10に対する測定を行う場合は、接続端子V1oは入力端子INに、接続端子Visは接続端子ISENSEに、接続端子Vosは接続端子OSENSEに、接続端子V2oは出力端子OUTにそれぞれプローブ等の接触子を用いて接続される。
このような構成において、誤差増幅回路13は、分圧電圧Vfbが基準電圧Vrefになるように出力トランジスタM1の動作制御を行い、出力トランジスタM1から出力端子OUTに出力される出力電流ioによらず出力電圧Voが一定となる制御を行う。
When measuring the semiconductor device 10 by the measuring apparatus 1, the connection terminal V1o is connected to the input terminal IN, the connection terminal Vis is connected to the connection terminal ISENSE, the connection terminal Vos is connected to the connection terminal OSENSE, and the connection terminal V2o is connected to the output terminal OUT. They are connected using a contact such as a probe.
In such a configuration, the error amplifying circuit 13 controls the operation of the output transistor M1 so that the divided voltage Vfb becomes the reference voltage Vref, regardless of the output current io output from the output transistor M1 to the output terminal OUT. Control is performed so that the output voltage Vo is constant.

図2は、定電圧回路11の出力電圧Vo‐出力電流io特性の例を示した図である。
図2から分かるように、出力電流ioが0Aから所定値io1までは出力電圧Voは定格電圧を保っているが、出力電流ioが所定値io1を超えると、過電流保護回路14が作動して出力トランジスタM1の動作を制限するため、出力電圧Voが低下する。しかし、出力電流ioは増加を続け、出力電圧Voが所定値Vo1になった時点で最大値iomaxになる。その後は、出力電圧Voと出力電流ioが共に減少し、このような過電流保護回路14の特性は、グラフの形から一般にフの字特性と呼ばれている。
FIG. 2 is a diagram showing an example of the output voltage Vo-output current io characteristic of the constant voltage circuit 11.
As can be seen from FIG. 2, the output voltage Vo is maintained at the rated voltage from the output current io of 0 A to the predetermined value io1, but when the output current io exceeds the predetermined value io1, the overcurrent protection circuit 14 is activated. In order to limit the operation of the output transistor M1, the output voltage Vo decreases. However, the output current io continues to increase and reaches the maximum value iomax when the output voltage Vo reaches the predetermined value Vo1. Thereafter, both the output voltage Vo and the output current io decrease, and such a characteristic of the overcurrent protection circuit 14 is generally called a “F” characteristic from the shape of the graph.

測定装置1は、図2で示した最大値iomaxを測定するためのものであり、可変直流電圧源2は、接続端子V1oから半導体装置10の入力端子INに接続され、半導体装置10に電力を供給する。可変直流電圧源3から出力された電圧V2は、電流測定回路5を介して接続端子V2oに出力される。
図3は、図1の測定装置1の動作例を示したフローチャートであり、図3を用いて測定装置1の測定動作について説明する。
図3において、測定装置1の制御回路6は、ステップS1で、可変直流電圧源2に対して半導体装置10の入力端子INに所定の電圧V1を出力させ、ステップS2で、可変直流電圧源3に対して被測定端子である半導体装置10の出力端子OUTに所定の電圧V2を出力させる。なお、制御回路6は、可変直流電圧源3に対して電圧V2が所定値Vo1になるように設定している。
The measuring device 1 is for measuring the maximum value iomax shown in FIG. 2, and the variable DC voltage source 2 is connected from the connection terminal V1o to the input terminal IN of the semiconductor device 10 to supply power to the semiconductor device 10. Supply. The voltage V2 output from the variable DC voltage source 3 is output to the connection terminal V2o via the current measurement circuit 5.
FIG. 3 is a flowchart showing an example of the operation of the measurement apparatus 1 of FIG. 1, and the measurement operation of the measurement apparatus 1 will be described with reference to FIG.
In FIG. 3, the control circuit 6 of the measuring apparatus 1 causes the variable DC voltage source 2 to output a predetermined voltage V1 to the input terminal IN of the semiconductor device 10 in step S1, and in step S2, the variable DC voltage source 3 In contrast, a predetermined voltage V2 is output to the output terminal OUT of the semiconductor device 10 which is the terminal to be measured. The control circuit 6 is set so that the voltage V2 becomes a predetermined value Vo1 with respect to the variable DC voltage source 3.

次に、制御回路6は、ステップS3で、電圧測定回路4を使用して接続端子OSENSEの電圧値を測定し、ステップS4で、該測定した接続端子OSENSEの電圧と電圧V2との電圧差が所定の第1公差内であるか否かを調べ、該電圧差が第1公差内であれば(Yes)、ステップS5で、電流測定回路5を使用して出力電流ioの電流値を測定し、該測定値を最大値iomaxとして本フローを終了する。一方、制御回路6は、ステップS4で、電圧差が前記第1公差を超えている場合は(No)、ステップS6で、可変直流電圧源3に対して該電圧差に応じた電圧だけ電圧V2の電圧値を補正して出力端子OUTに出力させた後、ステップS3に戻り、ステップS4で第1公差内になったことを検出するまでステップS6の動作を繰り返す。   Next, in step S3, the control circuit 6 measures the voltage value of the connection terminal OSENSE using the voltage measurement circuit 4, and in step S4, the voltage difference between the measured voltage of the connection terminal OSENSE and the voltage V2 is calculated. It is checked whether the voltage difference is within the predetermined first tolerance. If the voltage difference is within the first tolerance (Yes), the current measurement circuit 5 is used to measure the current value of the output current io in step S5. The flow is terminated with the measured value as the maximum value iomax. On the other hand, if the voltage difference exceeds the first tolerance (No) in step S4, the control circuit 6 determines that the voltage V2 is equal to the voltage corresponding to the voltage difference with respect to the variable DC voltage source 3 in step S6. After the voltage value is corrected and output to the output terminal OUT, the process returns to step S3, and the operation of step S6 is repeated until it is detected in step S4 that it is within the first tolerance.

なお、電圧V1は第1電圧を、電圧V2は第2電圧を、第1公差は第1所定値をそれぞれなす。また、図3では、ステップS6の動作を行った後、ステップS3に戻るようにしたが、ステップS6の動作を一度行うだけで第1公差内に収まることが分かっている場合は、ステップS6の動作を行った後、ステップS5に進むようにしてもよい。また、ステップS2で、出力端子OUTに出力する電圧を所定値Vo1になるようにしていたが、最初から接触抵抗による電圧降下を見込んで、所定値Vo1よりも少し大きめの電圧を電圧V2として出力するようにしてもよい。このようにすることで、ステップS4において、電圧差が第1公差を超える確率を小さくすることができる。   The voltage V1 is a first voltage, the voltage V2 is a second voltage, and the first tolerance is a first predetermined value. In FIG. 3, after the operation of step S6 is performed, the process returns to step S3. However, if it is known that the operation of step S6 is performed only once and falls within the first tolerance, the process of step S6 is performed. After performing the operation, the process may proceed to step S5. In step S2, the voltage output to the output terminal OUT is set to the predetermined value Vo1, but a voltage slightly larger than the predetermined value Vo1 is output as the voltage V2 in anticipation of a voltage drop due to contact resistance from the beginning. You may make it do. In this way, in step S4, the probability that the voltage difference exceeds the first tolerance can be reduced.

このように、本第1の実施の形態の測定方法では、測定した接続端子OSENSEの電圧と電圧V2との電圧差が所定の第1公差内であるときに、電流測定回路5を使用して出力電流ioの電流値を測定し、該測定値を最大値iomaxとするようにした。このことから、ケルビンプローブを使用することなく、半導体装置10の電気的特性を高精度に測定することができる。   As described above, in the measurement method of the first embodiment, when the measured voltage difference between the connection terminal OSENSE and the voltage V2 is within the predetermined first tolerance, the current measurement circuit 5 is used. The current value of the output current io was measured, and the measured value was set to the maximum value iomax. Therefore, the electrical characteristics of the semiconductor device 10 can be measured with high accuracy without using a Kelvin probe.

第2の実施の形態.
前記第1の実施の形態では、入力端子INの接触抵抗を考慮しなかったが、入力端子INにおいても接触抵抗による影響があるため、測定装置1から半導体装置10の入力端子INに供給した電圧は、該接触抵抗による電圧降下分だけ低くなっていた。このことから、入力端子INの接触抵抗を考慮した測定方法を本発明の第2の実施の形態とする。
なお、本発明の第2の実施の形態における半導体装置の測定方法を行う測定装置の構成例は図1と同様であることから省略し、以下、図1を用いて本第2の実施の形態における半導体装置の測定方法について説明する。
Second embodiment.
In the first embodiment, the contact resistance of the input terminal IN is not taken into account. However, since the input terminal IN is also affected by the contact resistance, the voltage supplied from the measuring device 1 to the input terminal IN of the semiconductor device 10 Was lower by the voltage drop due to the contact resistance. Therefore, a measurement method that takes into account the contact resistance of the input terminal IN is the second embodiment of the present invention.
Note that the configuration example of the measurement apparatus that performs the semiconductor device measurement method according to the second embodiment of the present invention is the same as that of FIG. 1, and is omitted. Hereinafter, the second embodiment will be described with reference to FIG. A method for measuring a semiconductor device will be described.

図4は、本発明の第2の実施の形態における半導体装置の測定方法を示したフローチャートであり、図4を用いて測定装置1の測定動作について説明する。なお、図4では、図3と同じフロー又は同様のフローは同じ符号で示しており、ここではその説明を省略すると共に図3との相違点のみ説明する。
図4において、図3のステップS1〜S3の動作を行った後、図3のステップS4で、測定した接続端子OSENSEの電圧と電圧V2との電圧差が所定の第1公差内であれば(Yes)、ステップS11で、制御回路6は、電圧測定回路4を使用して接続端子ISENSEの電圧を測定する。
FIG. 4 is a flowchart showing a method for measuring a semiconductor device according to the second embodiment of the present invention. The measurement operation of the measuring apparatus 1 will be described with reference to FIG. In FIG. 4, the same flow as or the same flow as in FIG. 3 is denoted by the same reference numeral, and description thereof is omitted here, and only differences from FIG.
In FIG. 4, after the operations of steps S1 to S3 in FIG. 3 are performed, in step S4 in FIG. 3, if the measured voltage difference between the connection terminal OSENSE and the voltage V2 is within a predetermined first tolerance ( Yes) In step S11, the control circuit 6 uses the voltage measurement circuit 4 to measure the voltage at the connection terminal ISENSE.

次に、制御回路6は、ステップS12で、測定した接続端子ISENSEの電圧と電圧V1との電圧差が所定の第2公差内であるか否かを調べ、該電圧差が第2公差内であれば(Yes)、図3のステップS5の処理を行って本フローを終了する。また、制御回路6は、ステップS12で、電圧差が前記第2公差を超えている場合は(No)、ステップS13で、可変直流電圧源2に対して、測定した接続端子ISENSEの電圧と電圧V1との電圧差に応じた電圧だけ電圧V1の電圧値を補正して入力端子INに出力した後、ステップS3に戻り、ステップS12で第2公差内になったことを検出するまでステップS13の動作を繰り返す。   Next, in step S12, the control circuit 6 checks whether or not the measured voltage difference between the voltage of the connection terminal ISENSE and the voltage V1 is within a predetermined second tolerance, and the voltage difference is within the second tolerance. If there is (Yes), the process of step S5 in FIG. 3 is performed and this flow is terminated. If the voltage difference exceeds the second tolerance in step S12 (No), the control circuit 6 determines the voltage and voltage of the connection terminal ISENSE measured with respect to the variable DC voltage source 2 in step S13. After correcting the voltage value of the voltage V1 by a voltage corresponding to the voltage difference from V1 and outputting it to the input terminal IN, the process returns to step S3, and in step S13, until it is detected that it is within the second tolerance. Repeat the operation.

なお、第2公差は第2所定値をなす。また、図4においても、ステップS6の動作を行った後、ステップS3に戻るようにしたが、ステップS6の動作を一度行うだけで第1公差内に収まることが分かっている場合は、ステップS6の動作を行った後、ステップS11に進むようにしてもよい。同様に、ステップS13の動作を行った後、ステップS3に戻るようにしたが、ステップS13の動作を一度行うだけで第2公差内に収まることが分かっている場合は、ステップS13の動作を行った後、ステップS5に進むようにしてもよい。
また、本第2の実施の形態のフローチャートでは、電圧V2の補正後に電圧V1の補正を行うようにしたが、電圧V1の補正後に電圧V2の補正を行うようにしてもよく、本発明はこの順序を限定するものではない。
The second tolerance is a second predetermined value. Also in FIG. 4, after the operation of step S6 is performed, the process returns to step S3. However, if it is known that the operation of step S6 is performed only once and falls within the first tolerance, step S6 is performed. After performing the above operation, the process may proceed to step S11. Similarly, after performing the operation of step S13, the process returns to step S3. However, if it is known that the operation of step S13 is performed once and falls within the second tolerance, the operation of step S13 is performed. After that, the process may proceed to step S5.
In the flowchart of the second embodiment, the voltage V1 is corrected after the voltage V2 is corrected. However, the voltage V2 may be corrected after the voltage V1 is corrected. The order is not limited.

このように、本第2の実施の形態の測定方法では、測定した接続端子OSENSEの電圧と電圧V2との電圧差が所定の第1公差内であると共に、測定した接続端子ISENSEの電圧と電圧V1との電圧差が所定の第2公差内であるときに、電流測定回路5を使用して出力電流ioの電流値を測定し、該測定値を最大値iomaxとするようにした。このことから、ケルビンプローブを使用することなく、半導体装置10の電気的特性を更に高精度に測定することができる。   As described above, in the measurement method according to the second embodiment, the voltage difference between the measured voltage of the connection terminal OSENSE and the voltage V2 is within the predetermined first tolerance, and the measured voltage and voltage of the connection terminal ISENSE. When the voltage difference from V1 is within the predetermined second tolerance, the current value of the output current io is measured using the current measurement circuit 5, and the measured value is set to the maximum value iomax. Thus, the electrical characteristics of the semiconductor device 10 can be measured with higher accuracy without using a Kelvin probe.

なお、前記第1及び第2の各実施の形態では、定電圧回路11の最大出力電流値iomaxを測定する場合を例に説明したが、本発明はこれに限定するものではなく、被測定端子の出力電圧と出力電流の関係が明らかになっている場合であればすべてに適用することができる。   In the first and second embodiments, the case where the maximum output current value iomax of the constant voltage circuit 11 is measured has been described as an example. However, the present invention is not limited to this, and the terminal to be measured If the relationship between the output voltage and the output current is clarified, it can be applied to all.

本発明の第1の実施の形態における半導体装置の測定方法を行う測定装置の構成例を示した図である。It is the figure which showed the structural example of the measuring apparatus which performs the measuring method of the semiconductor device in the 1st Embodiment of this invention. 図1の定電圧回路11における出力電圧Vo‐出力電流io特性の例を示した図である。FIG. 2 is a diagram illustrating an example of output voltage Vo-output current io characteristics in the constant voltage circuit 11 of FIG. 1. 図1の測定装置1の動作例を示したフローチャートである。3 is a flowchart showing an operation example of the measuring apparatus 1 in FIG. 1. 本発明の第2の実施の形態における半導体装置の測定方法を示したフローチャートである。It is the flowchart which showed the measuring method of the semiconductor device in the 2nd Embodiment of this invention. 従来の半導体装置に内蔵された定電圧回路における出力電圧Vo‐出力電流io特性の例を示した図である。It is the figure which showed the example of the output voltage Vo-output current io characteristic in the constant voltage circuit incorporated in the conventional semiconductor device.

符号の説明Explanation of symbols

1 測定装置
2,3 可変直流電圧源
4 電圧測定回路
5 電流測定回路
6 制御回路
10 半導体装置
11 定電圧回路
12 基準電圧発生回路
13 誤差増幅回路
14 過電流保護回路
M1 出力トランジスタ
R1,R2 抵抗
DESCRIPTION OF SYMBOLS 1 Measuring apparatus 2, 3 Variable DC voltage source 4 Voltage measuring circuit 5 Current measuring circuit 6 Control circuit 10 Semiconductor device 11 Constant voltage circuit 12 Reference voltage generating circuit 13 Error amplification circuit 14 Overcurrent protection circuit M1 Output transistor R1, R2 Resistance

Claims (4)

被測定端子と、該被測定端子と同電圧になるように設けられた被測定センス端子とを備えた半導体装置の測定方法において、
前記被測定端子に、設定された第2電圧を入力し、
前記被測定センス端子の電圧を測定し、
前記被測定センス端子の電圧と前記第2電圧との電圧差を検出し、
該電圧差が所定値を超えている場合は、該電圧差が該所定値以下になるように、前記被測定端子に入力する前記第2電圧の電圧値を補正し、
前記電圧差が前記所定値以下の場合は、前記被測定端子の電気的特性を測定し、
前記半導体装置は、出力電流が所定値以上になると出力電圧と出力電流との特性がフの字特性をなすように該出力電圧を低下させると共に該出力電流を低下させる過電流保護回路を備えた定電圧回路を有し、前記被測定端子は該定電圧回路の出力端子であり、
前記電気的特性は、該定電圧回路の最大出力電流値であることを特徴とする半導体装置の測定方法。
In a measurement method of a semiconductor device comprising a measured terminal and a measured sense terminal provided to have the same voltage as the measured terminal,
The set second voltage is input to the measured terminal,
Measure the voltage of the sense terminal to be measured,
Detecting a voltage difference between the voltage of the sense terminal to be measured and the second voltage;
When the voltage difference exceeds a predetermined value, the voltage value of the second voltage input to the measured terminal is corrected so that the voltage difference is less than or equal to the predetermined value,
If the voltage difference is less than or equal to the predetermined value, measure the electrical characteristics of the measured terminal ,
The semiconductor device includes an overcurrent protection circuit that lowers the output voltage and lowers the output current so that the characteristics of the output voltage and the output current form a U-shaped characteristic when the output current exceeds a predetermined value. A constant voltage circuit, and the measured terminal is an output terminal of the constant voltage circuit;
The method for measuring a semiconductor device, wherein the electrical characteristic is a maximum output current value of the constant voltage circuit .
電源入力端子と、該電源入力端子と同電圧になるように設けられた電源センス端子と、被測定端子と、該被測定端子と同電圧になるように設けられた被測定センス端子とを備えた半導体装置の測定方法において、
前記電源入力端子に、設定された第1電圧を入力し、
前記被測定端子に、設定された第2電圧を入力し、
前記被測定センス端子の電圧を測定し、
前記被測定センス端子の電圧と前記第2電圧との電圧差を検出し、
前記被測定センス端子の電圧と前記第2電圧との電圧差が第1所定値を超えている場合は、該電圧差が該第1所定値以下になるように、前記被測定端子に入力する前記第2電圧の電圧値を補正し、
前記電源センス端子の電圧を測定し、
前記電源センス端子の電圧と前記第1電圧との電圧差を検出し、
前記電源センス端子の電圧と前記第1電圧との電圧差が第2所定値を超えている場合は、該電圧差が該第2所定値以下になるように、前記電源入力端子に入力する前記第1電圧の電圧値を補正し、
前記被測定センス端子の電圧と前記第2電圧との電圧差が前記第1所定値以下で、かつ前記電源センス端子の電圧と前記第1電圧との電圧差が前記第2所定値以下の場合は、前記被測定端子の電気的特性を測定することを特徴とする半導体装置の測定方法。
A power input terminal; a power sense terminal provided to be at the same voltage as the power input terminal; a terminal to be measured; and a sense terminal to be measured provided to be at the same voltage as the terminal to be measured. In a method for measuring a semiconductor device,
The set first voltage is input to the power input terminal,
The set second voltage is input to the measured terminal,
Measure the voltage of the sense terminal to be measured,
Detecting a voltage difference between the voltage of the sense terminal to be measured and the second voltage;
When the voltage difference between the voltage of the measured sense terminal and the second voltage exceeds a first predetermined value, the voltage difference is input to the measured terminal so that the voltage difference is less than or equal to the first predetermined value. Correcting the voltage value of the second voltage;
Measure the voltage of the power supply sense terminal,
Detecting a voltage difference between the voltage of the power supply sense terminal and the first voltage;
When the voltage difference between the voltage of the power supply sense terminal and the first voltage exceeds a second predetermined value, the voltage input to the power supply input terminal so that the voltage difference is equal to or less than the second predetermined value. Correct the voltage value of the first voltage,
When the voltage difference between the voltage at the measured sense terminal and the second voltage is less than or equal to the first predetermined value and the voltage difference between the voltage at the power supply sense terminal and the first voltage is less than or equal to the second predetermined value Is a method for measuring a semiconductor device, wherein the electrical characteristics of the terminal to be measured are measured.
前記半導体装置は定電圧回路を有し、前記被測定端子は該定電圧回路の出力端子であることを特徴とする請求項2記載の半導体装置の測定方法。 3. The method of measuring a semiconductor device according to claim 2, wherein the semiconductor device has a constant voltage circuit, and the terminal to be measured is an output terminal of the constant voltage circuit. 前記定電圧回路は、該定電圧回路の出力電流が所定値以上になると該定電圧回路の出力電圧と出力電流との特性がフの字特性をなすように該出力電圧を低下させると共に該出力電流を低下させる過電流保護回路を備え、前記電気的特性は、該定電圧回路の最大出力電流値であることを特徴とする請求項3記載の半導体装置の測定方法。   When the output current of the constant voltage circuit exceeds a predetermined value, the constant voltage circuit lowers the output voltage so that the characteristics of the output voltage and the output current of the constant voltage circuit form a U-shaped characteristic and outputs the output voltage. 4. The method of measuring a semiconductor device according to claim 3, further comprising an overcurrent protection circuit for reducing a current, wherein the electrical characteristic is a maximum output current value of the constant voltage circuit.
JP2007046473A 2007-02-27 2007-02-27 Measuring method of semiconductor device Expired - Fee Related JP4753897B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007046473A JP4753897B2 (en) 2007-02-27 2007-02-27 Measuring method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007046473A JP4753897B2 (en) 2007-02-27 2007-02-27 Measuring method of semiconductor device

Publications (2)

Publication Number Publication Date
JP2008209252A JP2008209252A (en) 2008-09-11
JP4753897B2 true JP4753897B2 (en) 2011-08-24

Family

ID=39785681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007046473A Expired - Fee Related JP4753897B2 (en) 2007-02-27 2007-02-27 Measuring method of semiconductor device

Country Status (1)

Country Link
JP (1) JP4753897B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60127572U (en) * 1984-02-06 1985-08-27 株式会社アドバンテスト Voltage applied current measuring device
JP2004343865A (en) * 2003-05-14 2004-12-02 Sony Corp Power supply unit and power supply method
JP2007017399A (en) * 2005-07-11 2007-01-25 Seiko Epson Corp Resistance value measuring method and resistance value adjusting method in integrated circuit device having bump, and integrated circuit device and electronic device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60127572U (en) * 1984-02-06 1985-08-27 株式会社アドバンテスト Voltage applied current measuring device
JP2004343865A (en) * 2003-05-14 2004-12-02 Sony Corp Power supply unit and power supply method
JP2007017399A (en) * 2005-07-11 2007-01-25 Seiko Epson Corp Resistance value measuring method and resistance value adjusting method in integrated circuit device having bump, and integrated circuit device and electronic device

Also Published As

Publication number Publication date
JP2008209252A (en) 2008-09-11

Similar Documents

Publication Publication Date Title
JP5169498B2 (en) Current detection circuit and switching regulator including the current detection circuit
JP5093037B2 (en) Load drive circuit
JP4971086B2 (en) Switching regulator and pulse width limit value adjusting method thereof
JP5191671B2 (en) Adder and current mode switching regulator
US7268523B2 (en) Constant voltage power supply circuit and method of testing the same
TWI720285B (en) Voltage generating apparatus and calibration method thereof
US20120176112A1 (en) Circuit for sensing load current of a voltage regulator
JP2012159870A (en) Voltage regulator
JP2008198817A (en) Semiconductor device and trimming method thereof
JP5091101B2 (en) Soft start circuit and power supply circuit including the soft start circuit
JP4753897B2 (en) Measuring method of semiconductor device
JP4255632B2 (en) Electrical load disconnection detector
CN111751693A (en) Method and circuit for detecting current amplification factor of bipolar transistor
JP2013085382A (en) Switching regulator and method of controlling the same
JP4555131B2 (en) Constant voltage power circuit
CN109564139B (en) Sensor device
JP5598507B2 (en) Power supply
JP2005301410A (en) Constant current source, and amplifier circuit and constant voltage circuit using constant current source thereof
TWI395079B (en) Low dropout regulator having a current-limiting mechanism
JP5369749B2 (en) Constant voltage circuit
JP7086495B2 (en) Battery monitoring device
JP2008129693A (en) Dropper type regulator
JP4746489B2 (en) Semiconductor measuring equipment
JP4530878B2 (en) Voltage comparator, overcurrent detection circuit using the same, and semiconductor device
JP2007218664A (en) Electrical current detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110517

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110524

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees