JP4753068B2 - POSITION DETECTION DEVICE FOR MOBILE BODY AND MOBILE ROBOT - Google Patents

POSITION DETECTION DEVICE FOR MOBILE BODY AND MOBILE ROBOT Download PDF

Info

Publication number
JP4753068B2
JP4753068B2 JP2005269140A JP2005269140A JP4753068B2 JP 4753068 B2 JP4753068 B2 JP 4753068B2 JP 2005269140 A JP2005269140 A JP 2005269140A JP 2005269140 A JP2005269140 A JP 2005269140A JP 4753068 B2 JP4753068 B2 JP 4753068B2
Authority
JP
Japan
Prior art keywords
output
moving body
posture
acceleration
inertia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005269140A
Other languages
Japanese (ja)
Other versions
JP2007075967A (en
Inventor
健二 金子
文男 金広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2005269140A priority Critical patent/JP4753068B2/en
Publication of JP2007075967A publication Critical patent/JP2007075967A/en
Application granted granted Critical
Publication of JP4753068B2 publication Critical patent/JP4753068B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、移動体の姿勢を検出する姿勢検出装置に関するものであり、詳細には、歩行ロボットや車輪型移動ロボットなどの移動ロボットの姿勢の安定制御を行うため、この移動ロボットの本体の加速度や姿勢回転角速度や姿勢角等を精度良く検出する場合などに好適に利用できる移動体の姿勢検出装置に関するものである。 The present invention relates to posture detecting device that gives detects the posture of the moving body, in particular, for stable control of the posture of a mobile robot such as walking robots and wheel type moving robot, the body of the mobile robot If it of precisely detecting acceleration or posture rotational angular velocity and attitude angle, etc. relates posture detecting device of a moving body which can be suitably used for such.

移動体である移動ロボットの姿勢制御は、従来より、例えば、特許文献1に示されているように、ロボット本体の一軸の姿勢に対して、一つのレートジャイロや一つの加速度センサを用いて姿勢角を検出し、その信号をフィードバックして、移動体の姿勢制御を行っていた。   Conventionally, the posture control of a mobile robot as a moving body is performed by using one rate gyro or one acceleration sensor with respect to the uniaxial posture of the robot body, as shown in Patent Document 1, for example. The angle is detected and the signal is fed back to control the posture of the moving body.

ところが、レートジャイロや加速度センサ等の姿勢センサ出力には温度によるドリフトが存在するため、移動体の姿勢制御を精度良く制御できない問題があった。また、特に長時間に渡り移動体の姿勢制御を行う場合はドリフト量が顕著になるため、移動ロボットでも特に歩行ロボットにいたっては転倒を起こす問題があった。   However, there is a problem that the posture control of the moving body cannot be accurately controlled because there is a drift due to temperature in the output of the posture sensor such as a rate gyroscope or an acceleration sensor. In addition, the drift amount becomes remarkable when the posture control of the moving body is performed for a long time, so that there is a problem that the mobile robot falls down especially in the walking robot.

このような問題を解決する1つ目の方法として、温度センサを用いた姿勢センサの出力を補正する方法が考えられている。   As a first method for solving such a problem, a method of correcting the output of the attitude sensor using a temperature sensor is considered.

しかしながら、この1つ目の解決方法は、姿勢センサを駆動する電源を安定して供給できるシステムを備えた移動体には有効であるものの、姿勢センサの駆動電源が変動し、その結果、姿勢センサ出力も変動する場合には、やはり移動体の姿勢制御を精度良く制御できない問題があった。特に、小型軽量であり、限られたロボット本体の本体スペースに、制御用コンピュータ、センサ、駆動電源等を搭載する歩行ロボットの場合、制御用コンピュータでの演算処理による負荷変動が、駆動電源の出力変動を引き起こし、その結果、姿勢角の検出変動・ドリフトまでも引き起こしている。そのため、温度センサを用いた姿勢センサの出力を補正したところで、やはり、歩行ロボットにいたっては転倒を起こす問題があった。   However, although this first solution is effective for a moving body having a system that can stably supply power for driving the attitude sensor, the driving power of the attitude sensor fluctuates, and as a result, the attitude sensor When the output also fluctuates, there is still a problem that the posture control of the moving body cannot be controlled with high accuracy. In particular, in the case of a walking robot that is compact and lightweight, and has a limited body space of the robot body with a control computer, sensor, drive power supply, etc., load fluctuations due to arithmetic processing in the control computer are output from the drive power supply. As a result, it also causes detection fluctuation and drift of the posture angle. Therefore, when the output of the posture sensor using the temperature sensor is corrected, there is still a problem that the walking robot falls.

また、ドリフトの問題を解決する別の方法として、例えば、特許文献2に示されているように、2つの差動回路のみならず、同期検波回路、平滑回路、移相回路を用いて、ドリフトを検出し補正する方法がある。   As another method for solving the drift problem, for example, as shown in Patent Document 2, drift is achieved using not only two differential circuits but also a synchronous detection circuit, a smoothing circuit, and a phase shift circuit. There is a method of detecting and correcting.

しかしながら、この解決方法では、回路が複雑になる問題があった。また、センサ出力をドリフト補償したにも関わらず、姿勢制御装置の駆動電源変動、すなわちアナログ・デジタル変換回路の基準電圧変動により、制御演算処理等を行う姿勢制御装置に取り込んだ際には制御信号として、やはりドリフトが発生する問題があった。   However, this solution has a problem that the circuit becomes complicated. In addition, even if the sensor output is compensated for drift, the control signal when the control signal is taken into the attitude control device that performs control calculation processing due to fluctuations in the drive power supply of the attitude control device, that is, the reference voltage fluctuation of the analog / digital conversion circuit. As mentioned above, there was also a problem that drift occurred.

レートジャイロのドリフト問題の別の解決方法として、例えば、レートジャイロと加速度センサと併用し、カルマンフィルタ等の姿勢角検出アルゴリズムを構成し、姿勢センサのドリフトを補正しながら姿勢角を検出する方法が考えられている。   As another solution to the rate gyro drift problem, for example, a combination of a rate gyro and an acceleration sensor is used to construct an attitude angle detection algorithm such as a Kalman filter and detect the attitude angle while correcting the drift of the attitude sensor. It has been.

しかしながら、レートジャイロのドリフトを解消する役割の加速度センサ自体のドリフトを補正できない問題があった。更には、カルマンフィルタ等の姿勢角検出アルゴリズムにおいては、静的(もしくは低周波数領域)において姿勢角の補正が行われているため、移動体に動的な運動を行わせる場合、動的な(もしくは高周波数領域の)姿勢角を精度良く検出できない問題も存在する。これらの問題により、カルマンフィルタ等の姿勢角検出アルゴリズムにより姿勢角を検出したところで、やはり、歩行ロボットにいたっては転倒を起こす問題があった。   However, there has been a problem that the drift of the acceleration sensor itself that serves to eliminate the drift of the rate gyro cannot be corrected. Furthermore, in the posture angle detection algorithm such as the Kalman filter, since the posture angle is corrected statically (or in a low frequency region), the dynamic (or There is also a problem that the attitude angle (in the high frequency range) cannot be detected accurately. Due to these problems, when a posture angle is detected by a posture angle detection algorithm such as a Kalman filter, the walking robot still has a problem of falling.

姿勢検出センサの温度ドリフト、姿勢検出手センサに供給する駆動電源の変動、制御演算処理機構での取り込み時に発生する変動ドリフトなどが存在する場合の解決方法としては、本発明者らが先に提案した特許文献3に示すように、移動体の姿勢検出手段と、この姿勢検出手段に対して出力が反転して出力されるもう一つの姿勢検出手段を備え、姿勢検出手段と制御演算処理機構が共通の駆動電源で駆動されて、制御演算処理機構により移動体の姿勢を高精度に検出する方法がある。
特開2001−9772号公報 特開平07−218269号公報 特開2004−53530号公報
The present inventors have previously proposed a solution for the case where there is a temperature drift of the posture detection sensor, fluctuations in the drive power supplied to the posture detection hand sensor, fluctuation drifts that occur when taken in by the control arithmetic processing mechanism, etc. As shown in Japanese Patent Application Laid-Open No. H10-228707, the mobile body includes a posture detection unit and another posture detection unit that outputs an inverted output with respect to the posture detection unit. There is a method of detecting the attitude of a moving body with high accuracy by a control arithmetic processing mechanism driven by a common drive power source.
JP 20019772 A JP 07-218269 A JP 2004-53530 A

特許文献3に示されるように、本発明者らは、移動体の高精度姿勢検出方法を提案したが、更に、解決すべき課題として、特許文献3に記載の移動体の高精度姿勢検出方法おいては、移動体自身が急な加減速を行う場合、旋回移動により遠心加速度が移動体に働く場合、加減速する台車に移動体が搭乗している場合など、加速度センサ自身に移動体の慣性加速度が作用している場合には、姿勢角を高精度に検出できないという問題が存在していた。また、移動体の慣性加速度の影響を除去するため、姿勢検出演算過程でレートジャイロに重みを付けて姿勢角を算出する方法が考えられるが、自転する環境(星上:地球上に限らず月や火星などを含む全ての星上)に移動体が居る場合には、レートジャイロセンサ自身に自転の回転角速度が影響するため、姿勢角を高精度に検出できないという問題が存在していた。   As shown in Patent Document 3, the present inventors have proposed a high-accuracy posture detection method for a moving body. Further, as a problem to be solved, a high-accuracy posture detection method for a mobile body described in Patent Document 3 In this case, when the mobile body itself performs sudden acceleration / deceleration, centrifugal acceleration acts on the mobile body due to turning movement, or when the mobile body is on a trolley that accelerates / decelerates, When inertial acceleration is acting, there is a problem that the posture angle cannot be detected with high accuracy. In order to eliminate the influence of inertial acceleration of the moving body, a method of calculating the posture angle by weighting the rate gyro in the posture detection calculation process can be considered, but the rotating environment (on the star: not only on the earth but on the moon When there is a moving object on all the stars including Mars, etc., there is a problem that the attitude angle cannot be detected with high accuracy because the rotational angular velocity of the rotation affects the rate gyro sensor itself.

本発明は、このような問題を解決するためになされたものであり、本発明の目的は、例えば、加速度センサ自身に移動体の慣性加速度が作用している場合であっても、移動体の姿勢を精度良く検出できる移動体の姿勢検出装置を提供することにある。 The present invention has been made to solve such a problem, and an object of the present invention is, for example, even when the inertial acceleration of the moving body acts on the acceleration sensor itself . It is an object of the present invention to provide a moving body posture detecting apparatus capable of detecting a posture with high accuracy.

前記目的を達成するため、本発明の第1の解決手段によれば、移動体に、当該移動体の慣性を検出する慣性検出手段と、当該移動体の動作を生成する動作生成手段と、移動体の姿勢演算を行う演算処理手段を備え、前記演算処理手段は、前記慣性検出手段の出力から前記動作生成手段の出力を減算することにより前記慣性検出手段の出力補正し、補正した前記慣性検出手段の出力により姿勢を算出する演算処理を行い、移動体の姿勢を検出する移動体の姿勢検出装置が提供される。 In order to achieve the above object, according to the first solving means of the present invention, an inertia detecting means for detecting the inertia of the moving body, an action generating means for generating an action of the moving body, a movement Arithmetic processing means for performing body posture calculation, wherein the arithmetic processing means corrects the output of the inertia detection means by subtracting the output of the motion generation means from the output of the inertia detection means, and the corrected inertia There is provided a mobile body posture detection apparatus that performs arithmetic processing for calculating a posture based on the output of the detection means and detects the posture of the mobile body.

このような本発明の第1の解決手段によれば、移動体に搭載した慣性検出手段の出力の中から移動体の姿勢演算に不要な慣性成分を、移動体の動作を生成する動作生成手段の出力(目標値)を用いて除去することができるため、移動体自身が急な加減速を行う場合、旋回移動により遠心加速度が移動体に働く場合、加減速する台車に移動体が搭乗している場合、または、移動体が自転する環境(星上:地球上に限らず月や火星などを含む全ての星上)に居る場合のいずれの場合においても、精度良く移動体の姿勢を検出することができる。   According to the first solving means of the present invention as described above, the motion generating means for generating the motion of the moving body from the output of the inertia detecting means mounted on the moving body, the inertia component unnecessary for the posture calculation of the moving body. Therefore, when the mobile body itself accelerates or decelerates suddenly, or when centrifugal acceleration acts on the mobile body due to turning movement, the mobile body gets on the trolley that accelerates or decelerates. Or in the environment where the moving object rotates (on the star: not only on the earth but on all stars including the moon and Mars), the posture of the moving object is detected accurately. can do.

本発明の第1の解決手段の第1の具体的方法によれば、前記慣性検出手段には、少なくとも2つの加速度センサが互いに直交するように備えられ、前記動作生成手段の出力から少なくとも前記加速度センサと同じ方向成分で出力される動作の加速度目標値が出力されており、前記演算処理手段は、前記慣性検出手段の加速度センサの出力から前記動作生成手段の加速度目標値の同じ方向成分同士を減算することにより前記慣性検出手段の加速度センサ出力を補正し、片方の補正した加速度センサの出力をもう片方の補正した加速度センサの出力で割り算を行い、割り算結果をarctan演算して移動体の姿勢を検出する。 According to the first specific method of the first solving means of the present invention, at least two acceleration sensors are provided in the inertia detection means so as to be orthogonal to each other , and at least the acceleration from the output of the motion generation means. The acceleration target value of the motion output with the same direction component as the sensor is output, and the arithmetic processing means calculates the same direction component of the acceleration target value of the motion generation means from the output of the acceleration sensor of the inertia detection means. the corrected output of the acceleration sensor of the inertial sensing means by subtracting performs division on the output of the acceleration sensor that the other correct output of the acceleration sensor which is corrected for one, the mobile division result arctan operation on Detect posture.

本発明の第1の解決手段の第2の具体的方法によれば、前記慣性検出手段には、少なくとも2つの加速度センサが互いに直交するように備えられ、前記動作生成手段の出力から少なくとも前記加速度センサと同じ方向成分で出力される移動体が居る環境の自転による遠心力が出力されており、前記演算処理手段は、前記慣性検出手段の加速度センサの出力から前記動作生成手段の遠心力の同じ方向成分同士を減算することにより前記慣性検出手段の加速度センサ出力を補正し、片方の補正した加速度センサの出力をもう片方の補正した加速度センサ出力で割り算を行い、この割り算結果をarctan演算して移動体の姿勢を検出する。 According to the second specific method of the first solving means of the present invention, the inertia detection means is provided with at least two acceleration sensors so as to be orthogonal to each other , and at least the acceleration from the output of the motion generation means. Centrifugal force due to rotation of the environment in which there is a moving body that is output in the same direction component as the sensor is output, and the arithmetic processing means uses the same centrifugal force of the motion generation means from the output of the acceleration sensor of the inertia detection means correcting the output of the acceleration sensor of the inertial sensing means by subtracting the directional components together, perform division with the other of the corrected acceleration sensor outputs an output of the acceleration sensor which is corrected for one, the division result to arctan calculation To detect the posture of the moving object.

本発明の第1の解決手段の第3の具体的方法によれば、前記慣性検出手段には、レートジャイロが備えられ、前記動作生成手段の出力から少なくとも前記レートジャイロと同じ方向成分で出力される移動体が居る環境の自転速度が出力されており、前記演算処理手段は、前記慣性検出手段のレートジャイロの出力から前記動作生成手段の前記自転速度を減算することにより前記慣性検出手段のレートジャイロ出力を補正し、補正したレートジャイロの出力を積分することにより移動体の姿勢を検出する。 According to a third specific method of the first aspect of the present invention, the said inertial sensing means, Les Tojairo is provided, is output in the same direction component as at least the rate gyro from the output of said motion generating means that rotation speed of the moving object is present environment are outputted, the processing means, the rate of the inertia detecting means by subtracting the rotation speed of said motion generating means from the rate gyro output of said inertial sensing means The posture of the moving body is detected by correcting the output of the gyro and integrating the output of the corrected rate gyro.

また、本発明の第2の解決手段によれば、移動体に、当該移動体の慣性を検出する慣性検出手段と、当該移動体が居る環境の情報を検出し記憶する環境情報手段と、移動体の姿勢演算を行う演算処理手段を備え、前記演算処理手段は、前記慣性検出手段の出力から前記環境情報手段の出力を減算することにより前記慣性検出手段の出力を補正し、補正した前記慣性検出手段の出力により姿勢を算出する演算処理を行い、移動体の姿勢を検出する移動体の姿勢検出装置が提供される。 Further, according to the second solving means of the present invention, the mobile body includes an inertia detection means for detecting the inertia of the mobile body, an environment information means for detecting and storing information on an environment where the mobile body is located, Arithmetic processing means for performing body posture calculation, wherein the arithmetic processing means corrects the output of the inertia detection means by subtracting the output of the environment information means from the output of the inertia detection means, and the corrected inertia There is provided a mobile body posture detection apparatus that performs arithmetic processing for calculating a posture based on the output of the detection means and detects the posture of the mobile body.

このような本発明の第2の解決手段によれば、移動体に搭載した慣性検出手段の出力の中から移動体の姿勢演算に不要な慣性成分を、移動体が居る環境の情報を検出し記憶する環境情報手段の出力を用いて除去することができるため、移動体自身が急な加減速を行う場合、旋回移動により遠心加速度が移動体に働く場合、加減速する台車に移動体が搭乗している場合、または、移動体が自転する環境(星上:地球上に限らず月や火星などを含む全ての星上)に居る場合のいずれの場合においても、精度良く移動体の姿勢を検出することができる。   According to the second solving means of the present invention as described above, the inertia component unnecessary for the posture calculation of the moving object is detected from the output of the inertia detecting means mounted on the moving object, and the information on the environment where the moving object is present is detected. Since it can be removed using the output of the stored environmental information means, when the mobile body itself performs sudden acceleration / deceleration, when the centrifugal acceleration acts on the mobile body due to turning movement, the mobile body is mounted on the accelerating / decelerating carriage Or in the environment where the moving object rotates (on the stars: not only on the earth but on all stars including the moon and Mars) Can be detected.

本発明の第2の解決手段の第1の具体的方法によれば、前記慣性検出手段には、少なくとも2つの加速度センサが互いに直交するように備えられ、前記環境情報手段、少なくとも移動体と環境との間に作用する力を検出する力センサと、前記力センサと前記加速度センサとの間の座標変換を行う座標変換手段備えると共に、移動体が居る環境の既知重力加速度の値を記憶しており、前記力センサからは、移動体と環境との間に作用する力の水平方向成分と垂直方向成分が出力されており、前記演算処理手段は、前記移動体と環境との間に作用する力の水平方向成分を前記移動体と環境との間に作用する力の垂直方向成分で割り、その割り算結果に前記既知重力加速度を掛け算することにより移動体の動作を生成する加速度値を演算し、演算して求めた移動体の動作を生成する加速度値を前記座標変換手段により前記加速度センサと同じ方向成分で出力される移動体の動作を生成する加速度値に変換し前記慣性検出手段の加速度センサの出力から前記変換した加速度値の同じ方向成分同士を減算することにより前記慣性検出手段の加速度センサ出力を補正し、片方の補正した加速度センサの出力をもう片方の補正した加速度センサの出力で割り算を行い、割り算結果をarctan演算して移動体の姿勢を検出する。 According to the first specific method of the second solving means of the present invention, the inertia detection means is provided so that at least two acceleration sensors are orthogonal to each other , and the environment information means is at least a moving body. a force sensor for detecting a force acting between the environment, said force sensor and comprises a coordinate transformation means for performing coordinate conversion between the acceleration sensor Rutotomoni, the value of the known gravitational acceleration environment which the mobile is present The force sensor outputs a horizontal component and a vertical component of a force acting between the moving body and the environment, and the arithmetic processing means is provided between the moving body and the environment. An acceleration value that generates a motion of the moving object by dividing the horizontal component of the force acting on the object by the vertical component of the force acting between the moving object and the environment, and multiplying the division result by the known gravitational acceleration Calculate Converts the acceleration value for generating an operation of the moving body obtained by the acceleration value for generating an operation of the moving object are output in the same direction component as the acceleration sensor by the coordinate transforming means, the acceleration sensor of the inertial sensing means in the corrected output of the acceleration sensor of the inertial sensing means by the output by subtracting the same direction component between the converted acceleration value, the output of the acceleration sensors the other corrects the output of the acceleration sensor which is corrected for one Division is performed, and the division result is arctan calculated to detect the posture of the moving object.

本発明の第2の解決手段の第2の具体的方法によれば、前記慣性検出手段には、少なくとも2つの加速度センサが互いに直交するように備えられ、前記環境情報手段、少なくとも移動体の緯度を検出するGPSセンサと、移動体が居る位置と前記加速度センサとの間の座標変換を行う座標変換手段備えると共に、移動体が居る環境の自転速度と半径を記憶しており、前記演算処理手段は、GPSセンサの出力、前記自転速度、前記半径を用いて移動体が居る位置での遠心力を演算し、演算して求めた移動体が居る位置での遠心力を前記座標変換手段により前記加速度センサと同じ方向成分の移動体が居る位置での自転による遠心力に変換し、前記慣性検出手段の加速度センサの出力から変換した前記移動体が居る位置での自転による遠心力の同じ方向成分同士を減算することにより前記慣性検出手段の加速度センサ出力を補正し、片方の補正した加速度センサの出力をもう片方の補正した加速度センサ出力で割り算を行い、この割り算結果をarctan演算して移動体の姿勢を検出する。 According to a second specific method of the second solving means of the present invention, the inertia detection means is provided so that at least two acceleration sensors are orthogonal to each other , and the environment information means is at least a moving body. a GPS sensor for detecting latitude, Rutotomoni comprises a coordinate transformation means for performing coordinate transformation between the position and the acceleration sensor moving body is present, stores the rotation speed and the radius of the environment in which the mobile is present, the The arithmetic processing means calculates the centrifugal force at the position where the moving body is present using the output of the GPS sensor, the rotation speed, and the radius, and the coordinate conversion is performed on the centrifugal force at the position where the moving body is obtained by calculation. centrifugation through rotation at the position converted into the centrifugal force, the movable body converted from the output of the acceleration sensor of the inertial sensing means is present due to rotation of the mobile is present position in the same direction component as the acceleration sensor by means The same by subtracting the directional components together to correct the output of the acceleration sensor of the inertial sensing means performs division by the acceleration sensor output that is the other correct output of the acceleration sensor which is corrected for one, arctan this division result of The posture of the moving body is detected by calculation.

本発明の第2の解決手段の第3の具体的方法によれば、前記慣性検出手段には、レートジャイロが備えられ、前記環境情報手段、少なくとも移動体の緯度を検出するGPSセンサと、移動体が居る位置と前記レートジャイロとの間の座標変換を行う座標変換手段備えると共に、移動体が居る環境の自転速度を記憶しており、前記演算処理手段は、前記GPSセンサと前記移動体が居る環境の自転速度から移動体の居る位置での自転速度の回転角速度を算出し、算出して求めた移動体の居る位置での回転角速度を前記座標変換手段により前記レートジャイロと同じ方向成分で出力される回転角速度に変換し前記慣性検出手段のレートジャイロの出力から前記変換されたレートジャイロと同じ方向成分で出力される回転角速度を減算することにより前記慣性検出手段のレートジャイロ出力を補正し、補正したレートジャイロの出力を積分することにより移動体の姿勢を検出する。 According to a third specific method of the second solving means of the present invention, the inertia detection means is provided with a rate gyro, and the environment information means includes at least a GPS sensor for detecting the latitude of the moving object; Rutotomoni comprises a coordinate transformation means for performing coordinate conversion between the position where the moving body is present and the rate gyro, stores the rotation speed of the environment in which the mobile is present, the processing means, the said GPS sensor The rotation angular velocity of the rotation speed at the position where the moving body is located is calculated from the rotation speed of the environment where the moving body is present, and the rotation angular velocity at the position where the moving body is found is the same as the rate gyro obtained by the coordinate conversion means. into a rotational angular velocity that is output by the directional component, the rotational angular velocity is subtracted child outputted in the same direction component rate gyro and output the converted rate gyroscopes of the inertial sensing means The corrected output of the rate gyro inertial detecting means for detecting the posture of the moving body by integrating the output of the corrected rate gyro by.

本発明による移動体の姿勢検出装置によれば、移動体自身が急な加減速を行う場合、旋回移動により遠心加速度が移動体に働く場合、加減速する台車に移動体が搭乗している場合、加速度センサ自身に移動体の慣性加速度が作用している場合のいずれの場合においても、姿勢角を精度良く検出する装置を得ることができる。また、移動体が自転する環境(星上:地球上に限らず月や火星などを含む全ての星上)に移動体が居て、レートジャイロセンサ自身に自転の回転角速度が影響する場合においても、姿勢角を精度良く検出する装置を得ることができる。 According to posture detecting device of the mobile body according to the present invention, if the mobile itself perform sudden acceleration or deceleration, centrifugal acceleration when acting on the moving body, the moving body is on board the truck accelerates or decelerates the pivotal movement In this case, in any case where the inertial acceleration of the moving body is acting on the acceleration sensor itself, it is possible to obtain a device that accurately detects the posture angle. In addition, even when the moving object is in an environment where the moving object rotates (on the star: not only on the earth but on all stars including the moon and Mars), the rate gyro sensor itself is affected by the rotational angular velocity of the rotation. A device for accurately detecting the attitude angle can be obtained.

以下、本発明による移動体の姿勢検出装置の実施例を説明する。以下に説明する移動体の姿勢検出装置は、移動体に搭載した慣性センサ出力の中から移動体の姿勢の検出には不要となる慣性成分を除去して、移動体の姿勢を精度良く検出できる姿勢検出装置であり、この姿勢検出装置を高精度姿勢検出装置と表記している。また、以下の説明では、「高精度に検出する」と「精度良く検出する」とは同じことを意味している。図1は、本発明の第1実施例の高精度姿勢検出装置の構成を概略的に示す図であり、高精度姿勢検出装置2aによって、歩行ロボットの胴体3の姿勢角を、高精度に検出する実施例の装置の構成を説明する図である。図1は本発明が対象とする移動体の例として、歩行ロボットを用いて示したものであるが、移動体としては歩行ロボットに限らず、車輪型移動ロボットなどさまざまな移動体であってよい。 Embodiments of a posture detection apparatus for a moving body according to the present invention will be described below. Posture detection device of the moving body to be described below, the detection of the attitude of the moving body from the inertial sensor output installed in the moving body by removing the inertial component becomes unnecessary, it can be accurately detect the posture of the moving body This is a posture detection device, and this posture detection device is referred to as a high-precision posture detection device. In the following description, “detect with high accuracy” and “detect with high accuracy” mean the same thing. FIG. 1 is a diagram schematically showing the configuration of a high-accuracy posture detection device according to a first embodiment of the present invention, and the posture angle of the body 3 of the walking robot is detected with high accuracy by the high-precision posture detection device 2a. It is a figure explaining the structure of the apparatus of the Example to do. FIG. 1 shows a walking robot as an example of a moving body targeted by the present invention, but the moving body is not limited to a walking robot, and may be various moving bodies such as a wheeled mobile robot. .

図1において、3はロボット胴体、10は慣性検出手段、20は動作生成手段である。また、4aは片脚の大腿リンク、4bは片脚の下腿リンク、5は片脚の足裏、6aは第1の関節モータ、6bは第2の関節モータ、6cは第3の関節モータであり、これらは、それぞれ図示しない他方の片脚分についても備えられている。図示されないが、各関節の関節角は、エンコーダやポテンショメータなどの関節角センサにより検出される。加えて、同じく図示しない制御装置により、動作生成手段20により生成される動作を忠実に再現するように各関節のアクチュエータが制御されて、図示する歩行ロボットが移動する。   In FIG. 1, 3 is a robot body, 10 is inertia detection means, and 20 is motion generation means. 4a is a leg link of one leg, 4b is a leg link of one leg, 5 is a sole of a leg, 6a is a first joint motor, 6b is a second joint motor, and 6c is a third joint motor. They are also provided for the other one leg, not shown. Although not shown, the joint angle of each joint is detected by a joint angle sensor such as an encoder or a potentiometer. In addition, an actuator of each joint is controlled by a control device (not shown) so as to faithfully reproduce the motion generated by the motion generating means 20, and the illustrated walking robot moves.

高精度姿勢検出装置2aは、慣性検出手段10及び動作生成手段20から構成されている。慣性検出手段10には、加速度センサ(11a,11b)が備え付けられており、ここでの動作生成手段20からは、重力加速度成分を含まず、生成している動作の加減速成分のみからなる加速度目標値21aが出力されている。加速度目標値21aは、後述するように、演算処理の簡略化のためには、加速度センサ(11a,11b)と同じ方向成分で出力されていることが好ましい。加速度センサ(11a,11b)と同じ方向成分で出力されていない場合には、後述するように、演算処理部に座標変換手段を設けて、加速度目標値21aの出力座標と目標姿勢状態にある胴体3に設置された加速度センサ(11a,11b)の出力座標との間の座標変換を行い、同じ方向成分として演算する。以下、説明の簡略化のため、加速度目標値21aは、加速度センサ(11a,11b)と同じ方向成分で出力されているとする。   The high-accuracy posture detection device 2a includes an inertia detection unit 10 and a motion generation unit 20. The inertia detection means 10 is provided with an acceleration sensor (11a, 11b). The motion generation means 20 here does not include a gravitational acceleration component, but includes only an acceleration / deceleration component of the generated motion. A target value 21a is output. As will be described later, the acceleration target value 21a is preferably output with the same direction component as the acceleration sensors (11a, 11b) in order to simplify the arithmetic processing. When the acceleration sensor (11a, 11b) is not output in the same direction component, as will be described later, a coordinate conversion means is provided in the arithmetic processing unit, and the body in the target posture state with the output coordinates of the acceleration target value 21a. 3 is subjected to coordinate conversion with the output coordinates of the acceleration sensors (11a, 11b) installed at 3, and is calculated as the same direction component. Hereinafter, for simplification of explanation, it is assumed that the acceleration target value 21a is output with the same direction component as the acceleration sensors (11a, 11b).

図2は、図1の高精度姿勢検出装置2aの演算処理部の構成を示すブロック図であり、歩行ロボットの胴体3の姿勢角を、高精度に検出する実施例の装置の構成を説明する図である。具体的には、動作生成手段20から出力される加速度目標値21aの内、加速度センサ11aと同じ方向の成分で、且つ重力成分を含まない加速度目標値「αa_ref1」に基づき、加速度センサ11aの出力「αa_sen」を補正し、補正加速度「αa」を算出している。同様にして、動作生成手段20から出力される加速度目標値21aの内、加速度センサ11bと同じ方向の成分であり、且つ重力成分を含まない加速度目標値「αb_ref1」に基づき、加速度センサ11bの出力「αb_sen」を補正し、補正加速度「αb」を算出している。最終的には、この補正した加速度信号の「αa」と「αb」に基づき、移動体の姿勢を高精度に検出する。   FIG. 2 is a block diagram showing the configuration of the arithmetic processing unit of the high-accuracy posture detection device 2a shown in FIG. 1, and the configuration of the device of the embodiment that detects the posture angle of the body 3 of the walking robot with high accuracy will be described. FIG. Specifically, the output of the acceleration sensor 11a is based on the acceleration target value “αa_ref1” which is a component in the same direction as the acceleration sensor 11a and does not include the gravity component in the acceleration target value 21a output from the motion generation unit 20. “Αa_sen” is corrected, and corrected acceleration “αa” is calculated. Similarly, based on the acceleration target value “αb_ref1”, which is a component in the same direction as the acceleration sensor 11b and out of the acceleration target value 21a output from the motion generation unit 20, the output of the acceleration sensor 11b is output. “Αb_sen” is corrected, and corrected acceleration “αb” is calculated. Finally, based on the corrected acceleration signals “αa” and “αb”, the posture of the moving body is detected with high accuracy.

この場合、高精度姿勢検出装置2aの演算処理によって得られる補正した加速度信号の補正加速度「αa」と補正加速度「αb」は、それぞれ
αa=αa_sen−αa_ref1
αb=αb_sen−αb_ref1
であり、移動体自身の移動に伴う加減速成分を除去することにより、高精度に歩行ロボットの胴体3の姿勢に起因する加速度(αa,αb)を求めることができる。
そのため、図2に示す演算処理部の演算処理は、具体的には
姿勢角=−tan−1(αb/αa)
により姿勢角を求める。これにより、移動体自身が急な加減速を行う場合、または旋回移動により遠心加速度が移動体に働く場合においても、高精度に歩行ロボットの胴体3の姿勢角を求めることができる。
In this case, the corrected acceleration “αa” and the corrected acceleration “αb” of the corrected acceleration signal obtained by the calculation process of the high-accuracy posture detection device 2a are respectively αa = αa_sen−αa_ref1
αb = αb_sen−αb_ref1
Thus, by removing the acceleration / deceleration component accompanying the movement of the moving body itself, the acceleration (αa, αb) resulting from the posture of the body 3 of the walking robot can be obtained with high accuracy.
Therefore, the arithmetic processing of the arithmetic processing unit shown in FIG. 2 is specifically performed by posture angle = −tan −1 (αb / αa).
The posture angle is obtained by Thereby, even when the mobile body itself performs rapid acceleration / deceleration, or when centrifugal acceleration acts on the mobile body due to turning movement, the posture angle of the body 3 of the walking robot can be obtained with high accuracy.

図3〜図5は、本発明による高精度姿勢検出装置の動作を説明する図である。本発明の第1実施例の具体例として、図3に示すように、移動体の胴体3が水平を維持したまま、加速している状態に関して概略を説明する。   3-5 is a figure explaining operation | movement of the highly accurate attitude | position detection apparatus by this invention. As a specific example of the first embodiment of the present invention, as shown in FIG. 3, an outline will be described regarding a state in which the body 3 of the moving body is accelerating while maintaining the level.

従来においては、例えば、特許文献3の高精度姿勢検出装置においては、姿勢角の演算処理過程において、移動体の移動に伴う加速度を考慮していないため、図3に示すように、胴体3が加速をおこなっている状況においては、図4に示すように、胴体3の姿勢が傾いていると誤認識する場合があった。そのため、この姿勢検出情報を用いて移動体の姿勢制御を行った場合、誤った姿勢に制御されてしまうという問題があった。特に、歩行ロボットにいたっては、転倒を起こすという問題があった。   Conventionally, for example, in the high-accuracy posture detection device of Patent Document 3, since the acceleration accompanying the movement of the moving body is not considered in the calculation process of the posture angle, as shown in FIG. In the situation where acceleration is performed, as shown in FIG. 4, it may be erroneously recognized that the posture of the body 3 is inclined. Therefore, when the posture control of the moving body is performed using the posture detection information, there is a problem that the posture is controlled to be incorrect. In particular, the walking robot has a problem of falling.

これに対して、本発明の第1実施例の高精度姿勢検出装置では、姿勢角の演算処理過程において、加速度センサに含まれる移動体の移動に伴う加速度を、動作生成手段20の出力(加速度目標値)を用いて除去しているため、図3のように、胴体3が加速をおこなっている状況においても、図5に示すように、胴体3の姿勢を高精度に演算することが可能となる。そのため、この姿勢検出情報を用いて移動体の姿勢制御を行った場合、目標姿勢に高精度に制御を行うことが可能であり、歩行ロボットにいたっては、転倒を回避して、安定した歩行の実現が可能となる。   In contrast, in the high-accuracy posture detection apparatus according to the first embodiment of the present invention, in the posture angle calculation process, the acceleration accompanying the movement of the moving body included in the acceleration sensor is output from the motion generation means 20 (acceleration. 3), even in a situation where the body 3 is accelerating as shown in FIG. 3, the posture of the body 3 can be calculated with high accuracy as shown in FIG. It becomes. Therefore, when the posture control of the moving body is performed using this posture detection information, it is possible to control the target posture with high accuracy. Can be realized.

図6は、本発明の第2実施例の高精度姿勢検出装置の構成を概略的に示す図であり、高精度姿勢検出装置2bによって、歩行ロボットの胴体3の姿勢角を、高精度に検出する実施例の装置の構成を説明する図である。第2実施例の高精度姿勢検出装置2bは、第1実施例の高精度姿勢検出装置2aと同様に、慣性検出手段10と動作生成手段20から構成されており、慣性検出手段10には、加速度センサ(11a,11b)が備え付けられている。相違点は、動作生成手段20からは、生成している動作の加減速成分と重力成分を合算した加速度目標値21bが出力されている共に、既知重力加速度22と目標姿勢角23も出力されている点である。これらのデータを用いて、高精度に移動体の姿勢角を検出する。なお、第1実施例の高精度姿勢検出装置2aと同様に、以下の説明の簡略化のために、加速度目標値21bは、加速度センサ(11a,11b)と同じ方向成分で出力されているとする。   FIG. 6 is a diagram schematically showing the configuration of the high-accuracy posture detection device according to the second embodiment of the present invention. The posture angle of the body 3 of the walking robot is detected with high accuracy by the high-precision posture detection device 2b. It is a figure explaining the structure of the apparatus of the Example to do. The high-accuracy posture detection device 2b of the second embodiment is composed of the inertia detection means 10 and the motion generation means 20 in the same manner as the high-precision posture detection device 2a of the first embodiment. An acceleration sensor (11a, 11b) is provided. The difference is that the motion generation means 20 outputs the acceleration target value 21b obtained by adding the acceleration / deceleration component and the gravity component of the generated motion, and also outputs the known gravitational acceleration 22 and the target posture angle 23. It is a point. Using these data, the attitude angle of the moving body is detected with high accuracy. As with the high-accuracy posture detection device 2a of the first embodiment, the acceleration target value 21b is output with the same direction component as that of the acceleration sensors (11a, 11b) in order to simplify the following description. To do.

図7は、図6の高精度姿勢検出装置2bの演算処理部の構成を示すブロック図であり、歩行ロボットの胴体3の姿勢角を、高精度に検出する実施例の装置の構成を説明する図である。具体的には、動作生成手段20から出力される加速度目標値21bの内、加速度センサ11aと同じ方向の成分で、且つ動作の加減速成分と重力成分を合算した加速度目標値「αa_ref2」と、既知の重力加速度22と、目標姿勢角23に基づき、加速度センサ11aの出力「αa_sen」を補正し、補正加速度「αa」を算出している。同様にして、動作生成手段20から出力される加速度目標値21bの内、加速度センサ11bと同じ方向の成分で、且つ動作の加減速成分と重力成分を合算した加速度目標値「αb_ref2」と、既知の重力加速度22と、目標姿勢角23に基づき、加速度センサ11bの出力「αb_sen」を補正し、補正加速度「αb」を算出している。最終的には、この補正した加速度信号の補正加速度「αa」と補正加速度「αb」に基づいて、移動体の姿勢を高精度に検出している。   FIG. 7 is a block diagram showing the configuration of the arithmetic processing unit of the high-accuracy posture detection device 2b of FIG. 6, and the configuration of the device of the embodiment that detects the posture angle of the body 3 of the walking robot with high accuracy will be described. FIG. Specifically, the acceleration target value “αa_ref2”, which is a component in the same direction as the acceleration sensor 11a in the acceleration target value 21b output from the motion generation means 20, and the motion acceleration / deceleration component and the gravity component are added together, Based on the known gravitational acceleration 22 and the target posture angle 23, the output “αa_sen” of the acceleration sensor 11a is corrected to calculate a corrected acceleration “αa”. Similarly, the acceleration target value “αb_ref2”, which is a component in the same direction as the acceleration sensor 11b in the acceleration target value 21b output from the motion generation means 20, and is the sum of the acceleration / deceleration component and the gravity component of the motion, is known. Based on the gravitational acceleration 22 and the target attitude angle 23, the output “αb_sen” of the acceleration sensor 11b is corrected to calculate the corrected acceleration “αb”. Finally, the posture of the moving body is detected with high accuracy based on the corrected acceleration “αa” and the corrected acceleration “αb” of the corrected acceleration signal.

ここでは、既知重力加速度22と目標姿勢角23によって、移動体の胴体3の姿勢角が目標姿勢角23になっている場合の重力成分を算出している。すなわち、加速度センサ11aと同じ方向の成分「αa_grav」と加速度センサ11bと同じ方向の成分「αb_grav」とを演算している。そのため、高精度姿勢検出装置2bの演算処理によって得られる補正した加速度信号の補正加速度「αa」と補正加速度「αb」は、それぞれ
αa=αa_sen−αa_ref2+αa_grav
αb=αb_sen−αb_ref2+αb_grav
であり、移動体自身の移動に伴う加減速成分を除去することにより、高精度に歩行ロボットの胴体3の姿勢に起因する加速度(αa,αb)を求めることができる。
そのため、図7に示す演算処理部の演算処理、具体的には
姿勢角=−tan−1(αb/αa)
により姿勢角を求める。これにより、移動体自身が急な加減速を行う場合や旋回移動により遠心加速度が移動体に働く場合においても、高精度に歩行ロボットの胴体3の姿勢角を求めることができる。
Here, based on the known gravitational acceleration 22 and the target posture angle 23, the gravity component when the posture angle of the body 3 of the moving body is the target posture angle 23 is calculated. That is, the component “αa_grav” in the same direction as the acceleration sensor 11a and the component “αb_grav” in the same direction as the acceleration sensor 11b are calculated. Therefore, the corrected acceleration “αa” and the corrected acceleration “αb” of the corrected acceleration signal obtained by the arithmetic processing of the high-accuracy posture detection device 2b are αa = αa_sen−αa_ref2 + αa_grav, respectively.
αb = αb_sen−αb_ref2 + αb_grav
Thus, by removing the acceleration / deceleration component accompanying the movement of the moving body itself, the acceleration (αa, αb) resulting from the posture of the body 3 of the walking robot can be obtained with high accuracy.
Therefore, the arithmetic processing of the arithmetic processing unit shown in FIG. 7, specifically, the attitude angle = −tan −1 (αb / αa)
The posture angle is obtained by Thereby, even when the mobile body itself performs rapid acceleration / deceleration or when centrifugal acceleration acts on the mobile body due to turning movement, the posture angle of the body 3 of the walking robot can be obtained with high accuracy.

図8は、本発明の第3実施例の高精度姿勢検出装置の構成を概略的に示す図であり、高精度姿勢検出装置2cによって、歩行ロボットの胴体3の姿勢角を、高精度に検出する実施例の装置の構成を説明する図である。   FIG. 8 is a diagram schematically showing the configuration of the high-accuracy posture detection device according to the third embodiment of the present invention. The posture angle of the body 3 of the walking robot is detected with high accuracy by the high-precision posture detection device 2c. It is a figure explaining the structure of the apparatus of the Example to do.

前述した第1実施例の高精度姿勢検出装置2a、第2実施例の高精度姿勢検出装置2bと同様に、第3実施例の高精度姿勢検出装置2cは、慣性検出手段10と動作生成手段20から構成されており、慣性検出手段10には、加速度センサ(11a,11b)が備え付けられている。相違点は、動作生成手段20からは、移動体が居る環境(星)の自転による遠心力24が出力されている点である。遠心力24は、後述するように、演算処理部による演算処理の簡略化のため、移動体の居る位置での遠心力であるとともに、加速度センサ(11a,11b)と同じ方向成分で出力されていることが好ましい。移動体の居る位置での遠心力が出力されていない場合には、移動体が居る環境(星)の既知半径と既知自転速度と目標緯度から算出する。また、加速度センサ(11a,11b)と同じ方向成分で出力されていない場合には、座標変換手段を備え、座標変換手段により、目標方位と目標姿勢を使用し、遠心力24の出力座標と目標姿勢状態にある胴体3に設置された加速度センサ(11a,11b)の出力座標との間の座標変換を行う。以下、説明の簡略化のため、遠心力24は、移動体の居る位置での遠心力であるとともに、加速度センサ(11a,11b)と同じ方向成分で出力されているとする。   Like the high-accuracy posture detection device 2a of the first embodiment and the high-precision posture detection device 2b of the second embodiment, the high-accuracy posture detection device 2c of the third embodiment includes inertia detection means 10 and motion generation means. The inertial detecting means 10 is provided with acceleration sensors (11a, 11b). The difference is that the motion generating means 20 outputs a centrifugal force 24 due to the rotation of the environment (star) in which the moving body is present. As will be described later, the centrifugal force 24 is a centrifugal force at a position where the moving body is present, and is output with the same direction component as the acceleration sensors (11a, 11b) in order to simplify the arithmetic processing by the arithmetic processing unit. Preferably it is. When the centrifugal force at the position where the moving body is present is not output, it is calculated from the known radius, the known rotation speed and the target latitude of the environment (star) where the moving body is present. In addition, when the same direction component as that of the acceleration sensor (11a, 11b) is not output, the coordinate conversion unit is provided, the target conversion direction is used by the coordinate conversion unit, and the output coordinate of the centrifugal force 24 and the target Coordinate conversion between the output coordinates of the acceleration sensors (11a, 11b) installed on the body 3 in the posture state is performed. Hereinafter, for simplification of explanation, it is assumed that the centrifugal force 24 is a centrifugal force at a position where the moving body is present and is output in the same direction component as the acceleration sensors (11a, 11b).

図9は、図8の高精度姿勢検出装置2cの演算処理部の構成を示すブロック図であり、歩行ロボットの胴体3の姿勢角を、高精度に検出する実施例の装置の構成を説明する図である。具体的には、動作生成手段20から出力される遠心力24の内、加速度センサ11aと同じ方向の成分「αa_cen1」に基づき、加速度センサ11aの出力「αa_sen」を補正し、補正加速度「αa」を算出している。同様にして、動作生成手段20から出力される遠心力24の内、加速度センサ11bと同じ方向の成分「αb_cen1」に基づき、加速度センサ11bの出力「αb_sen」を補正し、補正加速度「αb」を算出している。最終的には、この補正した加速度信号の補正加速度「αa」と補正加速度「αb」に基づき、移動体の姿勢を高精度に検出する。   FIG. 9 is a block diagram showing the configuration of the arithmetic processing unit of the high-accuracy posture detection device 2c of FIG. 8, and the configuration of the device of the embodiment that detects the posture angle of the body 3 of the walking robot with high accuracy will be described. FIG. Specifically, the output “αa_sen” of the acceleration sensor 11a is corrected based on the component “αa_cen1” in the same direction as the acceleration sensor 11a in the centrifugal force 24 output from the motion generation means 20, and the corrected acceleration “αa” Is calculated. Similarly, the output “αb_sen” of the acceleration sensor 11b is corrected based on the component “αb_cen1” in the same direction as the acceleration sensor 11b in the centrifugal force 24 output from the motion generation means 20, and the corrected acceleration “αb” is obtained. Calculated. Finally, based on the corrected acceleration “αa” and the corrected acceleration “αb” of the corrected acceleration signal, the posture of the moving body is detected with high accuracy.

この場合、高精度姿勢検出装置2cの演算処理によって得られる補正した加速度信号の補正加速度「αa」と補正加速度「αb」は、それぞれ
αa=αa_sen−αa_cen1
αb=αb_sen−αb_cen1
であり、移動体が居る環境(星)の自転により遠心力成分を除去することにより、高精度に歩行ロボットの胴体3の姿勢に起因する加速度(αa,αb)を求めることができる。
そのため、図9に示す演算処理部の演算処理、具体的には
姿勢角=−tan−1(αb/αa)
により姿勢角を求める。これにより、移動体が居る環境(星)が自転しており、加速度センサ出力に自転による遠心力成分が混入するような場合においても、高精度に歩行ロボットの胴体3の姿勢角を求めることができる。
In this case, the corrected acceleration “αa” and the corrected acceleration “αb” of the corrected acceleration signal obtained by the arithmetic processing of the high-accuracy posture detection device 2c are respectively αa = αa_sen−αa_cen1.
αb = αb_sen−αb_cen1
Thus, by removing the centrifugal force component by the rotation of the environment (star) where the moving body is present, the acceleration (αa, αb) resulting from the posture of the body 3 of the walking robot can be obtained with high accuracy.
Therefore, the arithmetic processing of the arithmetic processing unit shown in FIG. 9, specifically, the attitude angle = −tan −1 (αb / αa)
The posture angle is obtained by Thereby, even when the environment (star) in which the moving body is present rotates, and the centrifugal force component due to the rotation is mixed in the acceleration sensor output, the posture angle of the body 3 of the walking robot can be obtained with high accuracy. it can.

図10は、本発明の第4実施例の高精度姿勢検出装置の構成を概略的に示す図であり、高精度姿勢検出装置2dによって、歩行ロボットの胴体3の姿勢角を、高精度に検出する実施例の装置の構成を説明する図である。   FIG. 10 is a diagram schematically showing the configuration of the high-accuracy posture detection device according to the fourth embodiment of the present invention. The high-precision posture detection device 2d detects the posture angle of the body 3 of the walking robot with high accuracy. It is a figure explaining the structure of the apparatus of the Example to do.

第4実施例の高精度姿勢検出装置2dは、前述した第1〜3実施例の高精度姿勢検出装置(2a,2b,2c)と同様に、慣性検出手段10と動作生成手段20から構成されている。これらの第1〜3実施例の高精度姿勢検出装置との相違点は、慣性検出手段10には、レートジャイロ12c備え付けられており、動作生成手段20からは、移動体が居る環境(星)の自転速度25が出力されている点である。自転速度25は、後述する演算処理部の演算処理の簡略化のため、レートジャイロ12cと同じ方向成分で出力されていることが好ましい。レートジャイロ12cと同じ方向成分で出力されていない場合には、座標変換手段を用いて、目標緯度と目標方位と目標姿勢を使用し、自転速度25の出力座標と目標姿勢状態にある胴体3に設置されたレートジャイロ12cの出力座標との間の座標変換を行う。以下、説明の簡略化のため、自転速度25は、レートジャイロ12cと同じ方向成分で出力されているとする。   The high-accuracy posture detection device 2d of the fourth embodiment is composed of the inertia detection means 10 and the motion generation means 20 in the same manner as the high-precision posture detection devices (2a, 2b, 2c) of the first to third embodiments described above. ing. The difference from the high-accuracy posture detection devices of the first to third embodiments is that the inertia detection means 10 is provided with a rate gyro 12c, and the motion generation means 20 includes an environment (star). The rotation speed 25 is output. The rotation speed 25 is preferably output in the same direction component as that of the rate gyro 12c in order to simplify the arithmetic processing of the arithmetic processing unit described later. When the direction component is not output in the same direction as the rate gyro 12c, the coordinate conversion means is used to use the target latitude, target orientation, and target posture, and the output coordinates of the rotation speed 25 and the body 3 in the target posture state are used. Coordinate conversion between the output coordinates of the installed rate gyro 12c is performed. Hereinafter, for the sake of simplicity, it is assumed that the rotation speed 25 is output in the same direction component as the rate gyro 12c.

図11は、図10の高精度姿勢検出装置2dの演算処理部の構成を示すブロック図であり、歩行ロボットの胴体3の姿勢角を、高精度に検出する実施例の装置の構成を説明する図である。具体的には、動作生成手段20から出力される自転速度25の内、レートジャイロ12cと同じ方向の成分「ωc_rot1」に基づき、レートジャイロ12cの出力「ωc_sen」を補正し、補正角速度「ωc」を算出している。最終的には、この補正した角速度信号の補正角速度「ωc」に基づき、移動体の姿勢を高精度に検出している。   FIG. 11 is a block diagram showing the configuration of the arithmetic processing unit of the high-accuracy posture detection device 2d in FIG. 10, and the configuration of the device of the embodiment that detects the posture angle of the body 3 of the walking robot with high accuracy will be described. FIG. Specifically, the output “ωc_sen” of the rate gyro 12c is corrected based on the component “ωc_rot1” in the same direction as the rate gyro 12c in the rotation speed 25 output from the motion generation means 20, and the corrected angular velocity “ωc”. Is calculated. Finally, based on the corrected angular velocity “ωc” of the corrected angular velocity signal, the posture of the moving body is detected with high accuracy.

この場合、高精度姿勢検出装置2dの演算処理部の演算処理によって得られる補正した角速度信号の補正角速度「ωc」は、
ωc=ωc_sen−ωc_rot1
であり、移動体が居る環境(星)の自転による自転速度成分を除去することにより、高精度に歩行ロボットの胴体3の姿勢に起因する角速度(ωc)を求めることができる。
そのため、図11に示す演算処理部の演算処理、具体的には

Figure 0004753068

により姿勢角を求める。これにより、移動体が居る環境(星)が自転しており、レートジャイロ出力に自転による自転速度成分が混入するような場合においても、高精度に歩行ロボットの胴体3の姿勢角を求めることができる。 In this case, the corrected angular velocity “ωc” of the corrected angular velocity signal obtained by the arithmetic processing of the arithmetic processing unit of the high-accuracy posture detecting device 2d is
ωc = ωc_sen−ωc_rot1
The angular velocity (ωc) resulting from the posture of the body 3 of the walking robot can be obtained with high accuracy by removing the rotation speed component due to the rotation of the environment (star) in which the moving body is present.
Therefore, the arithmetic processing of the arithmetic processing unit shown in FIG.
Figure 0004753068

The posture angle is obtained by Thereby, even when the environment (star) in which the moving body is present rotates, and the rotation speed component due to the rotation is mixed in the rate gyro output, the posture angle of the body 3 of the walking robot can be obtained with high accuracy. it can.

図12は、本発明の第5実施例の高精度姿勢検出装置の構成を概略的に示す図であり、高精度姿勢検出装置2eによって、歩行ロボットの胴体3の姿勢角を、高精度に検出する実施例の装置の構成を説明する図である。   FIG. 12 is a diagram schematically showing the configuration of the high-accuracy posture detection device according to the fifth embodiment of the present invention, and the posture angle of the body 3 of the walking robot is detected with high accuracy by the high-precision posture detection device 2e. It is a figure explaining the structure of the apparatus of the Example to do.

第5実施例の高精度姿勢検出装置2eは、慣性検出手段10と環境情報手段30から構成されており、慣性検出手段10には、2つの加速度センサ(11a,11b)が備え付けられている。また、環境情報手段30には、移動体と環境との間に作用する力を検出する力センサ31が備え付けられている。図12には図示していないが、力センサ31の出力座標と胴体3に設置された加速度センサ(11a,11b)の出力座標との間の座標変換を行う座標変換手段40が設けられている。各関節の関節角を検出するエンコーダやポテンショメータなどの関節角センサ32、もしくは、同じく図示していない動作生成手段20から出力されている各関節の関節角指令から、座標変換を行って、必要な方向成分を取り出すように逐次、演算されている。   The high-accuracy posture detection device 2e of the fifth embodiment includes an inertia detection means 10 and an environment information means 30. The inertia detection means 10 is provided with two acceleration sensors (11a, 11b). In addition, the environment information means 30 is provided with a force sensor 31 that detects a force acting between the moving body and the environment. Although not shown in FIG. 12, coordinate conversion means 40 is provided for performing coordinate conversion between the output coordinates of the force sensor 31 and the output coordinates of the acceleration sensors (11a, 11b) installed on the body 3. . Coordinate conversion is performed from a joint angle sensor 32 such as an encoder or a potentiometer that detects the joint angle of each joint, or a joint angle command of each joint that is output from the motion generation means 20 (not shown), and necessary. The calculation is sequentially performed so as to extract the direction component.

図13は、図12の高精度姿勢検出装置2eの演算処理部の構成を示すブロック図であり、歩行ロボットの胴体3の姿勢角を、高精度に検出する実施例の装置の構成を説明する図である。第5実施例の高精度姿勢検出装置2eの演算処理の内容は、第1実施例の高精度姿勢検出装置2aや第2実施例の高精度姿勢検出装置2bの演算処理に類似している。相違点は、動作生成手段20から出力されるデータを用いずに、環境情報手段30からのデータを用いて演算処理を行う点である。以下に、具体的な処理の内容を説明する。   FIG. 13 is a block diagram showing the configuration of the arithmetic processing unit of the high-accuracy posture detection device 2e of FIG. 12, and the configuration of the device of the embodiment that detects the posture angle of the body 3 of the walking robot with high accuracy will be described. FIG. The contents of the arithmetic processing of the high accuracy posture detection device 2e of the fifth embodiment are similar to the arithmetic processing of the high accuracy posture detection device 2a of the first embodiment and the high accuracy posture detection device 2b of the second embodiment. The difference is that the calculation process is performed using the data from the environment information unit 30 without using the data output from the motion generation unit 20. Hereinafter, specific processing contents will be described.

先ず、力センサ31の出力である水平方向成分「Fx_sen」と垂直方向成分「Fz_sen」と既知重力加速度22を用いて、動作を生成する加速度値「αx_mot」を求める。歩行ロボットなど、着地衝撃により垂直方向成分「Fz_sen」にノイズ成分が多く現れてしまうような場合には、力センサの垂直方向成分「Fz_sen」を用いずに、既知体重値を用いても実用上問題はない。次に、動作を生成する加速度値「αx_mot」を、座標変換手段40による座標変換によって、加速度センサ(11a,11b)と同じ方向成分の加速度値(αa_mot,αb_mot)に変換する。そして、この方向成分の加速度値「αa_mot」と加速度値「αb_mot」に基づき、加速度センサ(11a,11b)の出力(αa_sen,αb_sen)を補正して、補正加速度「αa」と補正加速度「αb」を算出している。最終的には、この補正した加速度信号の補正加速度「αa」と補正加速度「αb」に基づき、移動体の姿勢を高精度に検出している。   First, using the horizontal component “Fx_sen”, the vertical component “Fz_sen” and the known gravitational acceleration 22 which are outputs of the force sensor 31, an acceleration value “αx_mot” for generating a motion is obtained. When a lot of noise components appear in the vertical component “Fz_sen” due to landing impact, such as a walking robot, it is practical to use the known weight value without using the vertical component “Fz_sen” of the force sensor. No problem. Next, the acceleration value “αx_mot” that generates the motion is converted into acceleration values (αa_mot, αb_mot) having the same direction components as the acceleration sensors (11a, 11b) by coordinate conversion by the coordinate conversion means 40. Then, based on the acceleration value “αa_mot” and the acceleration value “αb_mot” of the direction component, the output (αa_sen, αb_sen) of the acceleration sensor (11a, 11b) is corrected, and the corrected acceleration “αa” and the corrected acceleration “αb” are corrected. Is calculated. Finally, based on the corrected acceleration “αa” and the corrected acceleration “αb” of the corrected acceleration signal, the posture of the moving body is detected with high accuracy.

この場合、力センサ31を用いて算出する動作を生成する加速度値「αx_mot」は、胴体3の重力方向を含まず、胴体3の水平方向の加減速を生成する加速度値である。

Figure 0004753068
In this case, the acceleration value “αx_mot” that generates the motion calculated using the force sensor 31 is an acceleration value that generates acceleration / deceleration in the horizontal direction of the body 3 without including the gravity direction of the body 3.
Figure 0004753068

一方、胴体3が移動に伴って水平方向に加減速すると、その加速度値「αx_mot」の成分が、加速度センサ(11a,11b)の出力に現れる。この影響を算出するため、座標変換手段40により、力センサ31の出力座標と加速度センサ(11a,11b)の出力座標との間の座標変換「ba_R_xz」を行い、加速度値「αx_mot」を、加速度センサ(11a,11b)と同じ方向成分(αa_mot,αb_mot)にそれぞれ変換している。

Figure 0004753068
On the other hand, when the body 3 is accelerated or decelerated in the horizontal direction as it moves, the component of the acceleration value “αx_mot” appears in the output of the acceleration sensor (11a, 11b). In order to calculate this influence, the coordinate conversion means 40 performs coordinate conversion “ba_R_xz” between the output coordinates of the force sensor 31 and the output coordinates of the acceleration sensors (11a, 11b), and converts the acceleration value “αx_mot” into the acceleration value. They are converted to the same direction components (αa_mot, αb_mot) as the sensors (11a, 11b).
Figure 0004753068

最終的には、高精度姿勢検出装置2eの演算処理によって得られる補正した加速度信号の補正加速度「αa」と補正加速度「αb」は、それぞれ
αa=αa_sen−αa_mot
αb=αb_sen−αb_mot
であり、移動体自身の移動に伴う加減速成分を除去することにより、高精度に歩行ロボットの胴体3の姿勢に起因する加速度(αa,αb)を求めることができる。
そのため、図13に示す演算処理部の演算処理、具体的には
姿勢角=−tan−1(αb/αa)
により姿勢角を求める。これにより、移動体自身が急な加減速を行う場合や旋回移動により遠心加速度が移動体に働く場合においても、高精度に歩行ロボットの胴体3の姿勢角を求めることができる。
Finally, the corrected acceleration “αa” and the corrected acceleration “αb” of the corrected acceleration signal obtained by the arithmetic processing of the high-accuracy posture detection device 2e are respectively αa = αa_sen−αa_mot
αb = αb_sen−αb_mot
Thus, by removing the acceleration / deceleration component accompanying the movement of the moving body itself, the acceleration (αa, αb) resulting from the posture of the body 3 of the walking robot can be obtained with high accuracy.
Therefore, the arithmetic processing of the arithmetic processing unit shown in FIG. 13, specifically, the attitude angle = −tan −1 (αb / αa)
The posture angle is obtained by Thereby, even when the mobile body itself performs rapid acceleration / deceleration or when centrifugal acceleration acts on the mobile body due to turning movement, the posture angle of the body 3 of the walking robot can be obtained with high accuracy.

なお、図13では説明の簡略化のために、2次元図面により説明を簡略化して説明したが、3次元での高精度な姿勢検出を行う場合には、この2つの加速度センサ(11a,11b)の両方に直交する更に別の加速度センサ11cが備え付けられ、力センサ31に関してもx方向の出力「Fx_sen」とz方向の出力「Fz_sen」の両方に直交するy方向の出力「Fy_sen」が得られるものが備え付けられていれば、3次元への拡張は容易である。このような拡張は、本発明の全ての実施例に対して有効であることは言うまでもないが、以下、高精度姿勢検出装置2eに関して説明をしておく。
具体的には、力センサ31を用いて算出する動作を生成する加速度値を、

Figure 0004753068


Figure 0004753068

により算出し、
Figure 0004753068

のように、座標変換を行い、
αa=αa_sen−αa_mot、
αb=αb_sen−αb_mot、
αc=αc_sen−αc_mot
のように、加速度センサを補償した後、
c軸周りの姿勢角=−tan−1(αb/αa)
b軸周りの姿勢角=+tan−1(αc/αa)
のような計算により、3次元での胴体3の姿勢を高精度に検出することができる。更に、ノイズに対する信頼性を向上したい場合には、補正した加速度センサの加速度値(αa,αb,αc)を既存のカルマンフィルタを用いて処理することにより、3次元での胴体3の姿勢を高精度に信頼性良く検出することができる。 For simplification of description, FIG. 13 has been described by simplifying the description with reference to a two-dimensional drawing. However, when performing highly accurate posture detection in three dimensions, the two acceleration sensors (11a, 11b) are described. ) Is further provided, and the force sensor 31 also obtains the output “Fy_sen” in the y direction orthogonal to both the output “Fx_sen” in the x direction and the output “Fz_sen” in the z direction. It is easy to expand to three dimensions if it is equipped. Needless to say, such an extension is effective for all the embodiments of the present invention, but the following will describe the high-accuracy posture detection device 2e.
Specifically, the acceleration value that generates the motion calculated using the force sensor 31 is
Figure 0004753068


Figure 0004753068

Calculated by
Figure 0004753068

As shown in Fig.
αa = αa_sen−αa_mot,
αb = αb_sen−αb_mot,
αc = αc_sen−αc_mot
After compensating the acceleration sensor,
Posture angle around c axis = -tan -1 (αb / αa)
Posture angle around b-axis = + tan −1 (αc / αa)
By such calculation, the posture of the body 3 in three dimensions can be detected with high accuracy. Furthermore, when it is desired to improve the reliability against noise, the corrected acceleration values (αa, αb, αc) of the acceleration sensor are processed using an existing Kalman filter, so that the posture of the body 3 in three dimensions can be highly accurate. Can be detected with high reliability.

図14は、本発明の第6実施例の高精度姿勢検出装置の構成を概略的に示す図であり、高精度姿勢検出装置2fによって、歩行ロボットの胴体3の姿勢角を、高精度に検出する実施例の装置の構成を説明する図である。   FIG. 14 is a diagram schematically showing the configuration of the high-accuracy posture detection device according to the sixth embodiment of the present invention. The posture angle of the body 3 of the walking robot is detected with high accuracy by the high-precision posture detection device 2f. It is a figure explaining the structure of the apparatus of the Example to do.

第6実施例の高精度姿勢検出装置2fは、第5実施例の高精度姿勢検出装置2eと同様に、慣性検出手段10と環境情報手段30から構成されており、慣性検出手段10には、加速度センサ(11a,11b)と、加速度センサ(11a,11b)に直交する加速度センサ11c(図示せず)が備え付けられている。第5実施例の高精度姿勢検出装置2eとの相違点は、環境情報手段30が、GPSセンサ33と方位センサ34から構成されると同時に、環境情報手段30によって、移動体が居る環境(星)の自転速度25と半径35の情報が記憶されている。   The high-accuracy posture detection device 2f of the sixth embodiment is composed of the inertia detection means 10 and the environment information means 30 like the high-precision posture detection device 2e of the fifth embodiment. An acceleration sensor (11a, 11b) and an acceleration sensor 11c (not shown) orthogonal to the acceleration sensor (11a, 11b) are provided. The difference from the high-accuracy posture detection device 2e of the fifth embodiment is that the environment information means 30 is composed of a GPS sensor 33 and a direction sensor 34, and at the same time, the environment information means 30 is used to provide an environment (star). ) Is stored.

環境情報手段30におけるGPSセンサ33によって、移動体が居る緯度を検出しており、方位センサ34により、移動体が向いている方向を検出している。更に、GPSセンサ33の出力と、移動体が居る環境(星上:地球上に限らず月や火星などを含む全ての星上)の自転速度25と半径35の情報から、移動体の居る位置での遠心力が、逐次、演算されている。加えて、環境(床)と前記加速度センサとの間の座標変換を行う座標変換手段41が設けられており、必要な座標変換を行う。すなわち、各関節の関節角を検出するエンコーダやポテンショメータなどの関節角センサ32(図示せず)、同じく動作生成手段20(図示せず)から出力されている各関節の関節角指令、または、同じく図示していない動作生成手段20から出力されている胴体3の目標姿勢角と方位センサ34の出力から遠心力が、逐次、演算されて、また、必要な座標変換が行われる。方位センサ34は、2台のGPSセンサ33から構成されても良い。   The latitude at which the moving body is located is detected by the GPS sensor 33 in the environment information means 30, and the direction in which the moving body is facing is detected by the direction sensor 34. Furthermore, the position where the moving body exists from the output of the GPS sensor 33 and the information on the rotation speed 25 and the radius 35 of the environment where the moving body exists (on the star: not only on the earth but on all stars including the moon and Mars). The centrifugal force at is sequentially calculated. In addition, coordinate conversion means 41 that performs coordinate conversion between the environment (floor) and the acceleration sensor is provided to perform necessary coordinate conversion. That is, the joint angle sensor 32 (not shown) such as an encoder or a potentiometer for detecting the joint angle of each joint, the joint angle command of each joint output from the motion generating means 20 (not shown), or the same Centrifugal force is sequentially calculated from the target posture angle of the body 3 and the output of the direction sensor 34 output from the motion generation means 20 (not shown), and necessary coordinate conversion is performed. The direction sensor 34 may be composed of two GPS sensors 33.

図15は、図14の高精度姿勢検出装置2fの演算処理部の構成を示すブロック図であり、歩行ロボットの胴体3の姿勢角を、高精度に検出する実施例の装置の構成を説明する図である。第6実施例の高精度姿勢検出装置2fの演算処理の内容は、高精度姿勢検出装置2cの演算処理に類似している。相違点は、動作生成手段20の代わりに環境情報手段30を用いている点である。以下に、具体的な処理の内容を説明する。   FIG. 15 is a block diagram showing the configuration of the arithmetic processing unit of the high-accuracy posture detection device 2f shown in FIG. 14, and the configuration of the device of the embodiment that detects the posture angle of the body 3 of the walking robot with high accuracy will be described. FIG. The contents of the calculation process of the high-accuracy posture detection device 2f of the sixth embodiment are similar to the calculation processing of the high-precision posture detection device 2c. The difference is that the environment information means 30 is used instead of the motion generation means 20. Hereinafter, specific processing contents will be described.

先ず、GPSセンサ33の出力と、この移動体が居る環境(星)の既知情報である自転速度25と半径35の情報から、移動体の居る位置での遠心力(αx_cen2,αy_cen2,αz_cen2)を先ず算出する。この遠心力(αx_cen2,αy_cen2,αz_cen2)を、関節角センサ32の値から算出される足裏5と胴体3との間の姿勢角と、方位センサ34で検出される方位角から座標変換手段41による座標変換を行い、加速度センサ(11b,11c,11a)と同じ方向成分(αb_cen2,αc_cen2,αa_cen2)に変換する。そして、この方向成分(αb_cen2,αc_cen2,αa_cen2)に基づき、それぞれの加速度センサ(11b,11c,11a)の出力(αb_sen,αc_sen,αa_sen)を補正し、補正加速度(αb,αc,αa)を算出している。最終的には、この補正した加速度信号の補正加速度(αb,αc,αa)に基づき、移動体の姿勢を高精度に検出する。   First, the centrifugal force (αx_cen2, αy_cen2, αz_cen2) at the position where the moving body is located from the output of the GPS sensor 33 and the information on the rotation speed 25 and the radius 35 which are known information of the environment (star) where the moving body is located. First, calculate. This centrifugal force (αx_cen2, αy_cen2, αz_cen2) is converted into a coordinate conversion means 41 from the posture angle between the sole 5 and the torso 3 calculated from the value of the joint angle sensor 32 and the azimuth angle detected by the azimuth sensor 34. Is converted into the same direction components (αb_cen2, αc_cen2, αa_cen2) as the acceleration sensors (11b, 11c, 11a). Based on the direction components (αb_cen2, αc_cen2, αa_cen2), the outputs (αb_sen, αc_sen, αa_sen) of the respective acceleration sensors (11b, 11c, 11a) are corrected to calculate corrected accelerations (αb, αc, αa). is doing. Finally, based on the corrected acceleration (αb, αc, αa) of the corrected acceleration signal, the posture of the moving body is detected with high accuracy.

この場合、まず、GPSセンサ33の出力「θ_gps」と、この移動体が居る環境(星)の自転速度25の「ω_rot」と半径35の「r」の情報から、移動体の居る位置での遠心力を計算する。

Figure 0004753068
In this case, first, based on the output “θ_gps” of the GPS sensor 33, the information on the “ω_rot” of the rotation speed 25 and the “r” of the radius 35 of the environment (star) where the moving body is located, Calculate the centrifugal force.
Figure 0004753068

一方、移動体が自転している環境(星)に居ると、自転による遠心力の成分が、加速度センサ(11a,11b,11c)の出力に現れる。この影響を算出するため、座標変換手段41により、関節角センサ32の値から算出される足裏5と胴体3との間の姿勢角と方位センサ34で検出される方位角からの座標変換「bca_R_xyz」を用いて、遠心力(αx_cen2,αy_cen2,αz_cen2)を、加速度センサ(11b,11c,11a)と同じ方向成分(αb_cen2,αc_cen2,αa_cen2)に変換している。

Figure 0004753068
On the other hand, if the moving body is in an environment (star) that rotates, a centrifugal force component due to the rotation appears in the output of the acceleration sensors (11a, 11b, 11c). In order to calculate this influence, the coordinate conversion means 41 performs coordinate conversion from the posture angle between the sole 5 and the torso 3 calculated from the value of the joint angle sensor 32 and the azimuth angle detected by the azimuth sensor 34. The centrifugal force (αx_cen2, αy_cen2, αz_cen2) is converted into the same direction component (αb_cen2, αc_cen2, αa_cen2) as the acceleration sensor (11b, 11c, 11a) using “bca_R_xyz”.
Figure 0004753068

最終的には、第6実施例の高精度姿勢検出装置2fの演算処理によって得られる補正した加速度信号の補正加速度(αa,αb,αc)は、それぞれ
αa=αa_sen−αa_cen2
αb=αb_sen−αb_cen2
αc=αc_sen−αc_cen2
であり、移動体がいる環境(星)の自転に伴う遠心力を除去することにより、高精度に歩行ロボットの胴体3の姿勢に起因する加速度(αa,αb,αc)を求めることができる。
そのため、図15に示す演算処理部の演算処理、具体的には
c軸周りの姿勢角=−tan−1(αb/αa)
b軸周りの姿勢角=+tan−1(αc/αa)
により姿勢角を求める。これにより、移動体が居る環境(星)が自転しており、加速度センサ出力に自転による遠心力成分が混入するような場合においても、高精度に歩行ロボットの胴体3の姿勢角を求めることができる。なお、更にノイズに対する信頼性を向上したい場合には、補正した加速度センサ値(αa,αb,αc)を既存のカルマンフィルタを用いて処理することにより、3次元での胴体3の姿勢を高精度に信頼性良く検出することができる。
Finally, the corrected accelerations (αa, αb, αc) of the corrected acceleration signals obtained by the arithmetic processing of the high-accuracy posture detecting device 2f of the sixth embodiment are respectively αa = αa_sen−αa_cen2
αb = αb_sen−αb_cen2
αc = αc_sen−αc_cen2
Thus, by removing the centrifugal force associated with the rotation of the environment (star) in which the moving body is present, the acceleration (αa, αb, αc) resulting from the posture of the body 3 of the walking robot can be obtained with high accuracy.
Therefore, the arithmetic processing of the arithmetic processing unit shown in FIG. 15, specifically, the attitude angle around the c axis = −tan −1 (αb / αa)
Posture angle around b-axis = + tan −1 (αc / αa)
The posture angle is obtained by Thereby, even when the environment (star) in which the moving body is present rotates, and the centrifugal force component due to the rotation is mixed in the acceleration sensor output, the posture angle of the body 3 of the walking robot can be obtained with high accuracy. it can. If it is desired to further improve the reliability with respect to noise, the corrected acceleration sensor values (αa, αb, αc) are processed using an existing Kalman filter, so that the posture of the body 3 in three dimensions can be improved with high accuracy. It can be detected with high reliability.

図16は、本発明の第7実施例の高精度姿勢検出装置の構成を概略的に示す図であり、高精度姿勢検出装置2gによって、歩行ロボットの胴体3の姿勢角を、高精度に検出する実施例の装置の構成を説明する図である。   FIG. 16 is a diagram schematically showing the configuration of a high-accuracy posture detection device according to the seventh embodiment of the present invention. The posture angle of the body 3 of the walking robot is detected with high accuracy by the high-precision posture detection device 2g. It is a figure explaining the structure of the apparatus of the Example to do.

第7実施例の高精度姿勢検出装置2gは、第5実施例の高精度姿勢検出装置2eおよび第6実施例の高精度姿勢検出装置2fと同様に、慣性検出手段10と環境情報手段30から構成されている。これらの実施例の高精度姿勢検出装置(2e,2f)との相違点は、慣性検出手段10に、レートジャイロ12cと、当該レートジャイロ12cに直交するレートジャイロ(12a,12b;図17に示す)が備え付けられていると同時に、環境情報手段30が、GPSセンサ33と方位センサ34から構成されており、環境情報手段30により、移動体が居る環境(星)の自転速度25の情報が記憶されている点である。このGPSセンサ33により、移動体が居る緯度を検出している。また、方位センサ34によって、移動体が向いている方向を検出している。加えて、座標変換手段41により、必要な座標変換を行い、図示しないが、各関節の関節角を検出するエンコーダやポテンショメータなどの関節角センサ32、動作生成手段20から出力されている各関節の関節角指令、動作生成手段20から出力されている胴体3の目標姿勢角と方位センサ34の出力からの座標変換された回転角速度が、逐次、演算されている。方位センサ34は、2台のGPSセンサ33から構成しても良い。   The high accuracy posture detection device 2g according to the seventh embodiment is similar to the high accuracy posture detection device 2e according to the fifth embodiment and the high accuracy posture detection device 2f according to the sixth embodiment from the inertia detection means 10 and the environment information means 30. It is configured. The difference from the high-accuracy posture detection devices (2e, 2f) of these embodiments is that the inertia detection means 10 includes a rate gyro 12c and a rate gyro (12a, 12b) orthogonal to the rate gyro 12c; ) Is provided, the environment information means 30 is composed of a GPS sensor 33 and a direction sensor 34, and the environment information means 30 stores information on the rotation speed 25 of the environment (star) where the moving object is located. It is a point that has been. The GPS sensor 33 detects the latitude at which the moving body is located. Further, the direction sensor 34 detects the direction in which the moving body is facing. In addition, necessary coordinate conversion is performed by the coordinate conversion unit 41, and although not shown, the joint angle sensor 32 such as an encoder or potentiometer that detects the joint angle of each joint, and each joint output from the motion generation unit 20. The joint angle command, the target posture angle of the body 3 output from the motion generation means 20, and the rotational angular velocity obtained by coordinate conversion from the output of the azimuth sensor 34 are sequentially calculated. The direction sensor 34 may be composed of two GPS sensors 33.

図17は、図15の高精度姿勢検出装置2gの演算処理部の構成を示すブロック図であり、歩行ロボットの胴体3の姿勢角を、高精度に検出する実施例の装置の構成を説明する図である。この高精度姿勢検出装置2gの演算処理内容は、高精度姿勢検出装置2dの演算処理に類似しており、相違点は動作生成手段20の代わりに環境情報手段30を用いている点である。以下に、具体的な処理の内容を説明する。   FIG. 17 is a block diagram showing the configuration of the arithmetic processing unit of the high-accuracy posture detection device 2g of FIG. 15, and the configuration of the device of the embodiment that detects the posture angle of the body 3 of the walking robot with high accuracy will be described. FIG. The calculation processing contents of the high accuracy posture detection device 2g are similar to the calculation processing of the high accuracy posture detection device 2d, and the difference is that the environment information means 30 is used instead of the motion generation means 20. Hereinafter, specific processing contents will be described.

先ず、GPSセンサ33の出力と、移動体が居る環境(星)の既知情報である自転速度25の情報から、移動体の居る位置での自転速度の回転角速度(ωx_rot2,ωy_rot2,ωz_rot2)を算出する。この移動体の居る位置での回転角速度(ωx_rot2,ωy_rot2,ωz_rot2)を、座標変換手段41により座標変換を行い、関節角センサ32の値から算出される足裏5と胴体3との間の姿勢角と方位センサ34で検出される方位角からの座標変換によって、レートジャイロ(12b,12c,12a)と同じ方向成分(ωb_rot2,ωc_rot2,ωa_rot2)に変換する。そして、この方向成分(ωb_rot2,ωc_rot2,ωa_rot2)に基づき、レートジャイロ(12b,12c,12a)の出力(ωb_sen,ωc_sen,ωa_sen)を補正し、補正角速度(ωb,ωc,ωa)を算出している。最終的には、この補正した角速度信号(ωb,ωc,ωa)に基づき、移動体の姿勢を高精度に検出している。   First, rotation angular velocities (ωx_rot2, ωy_rot2, ωz_rot2) of the rotation speed at the position where the moving body exists are calculated from the output of the GPS sensor 33 and the information about the rotation speed 25 which is known information of the environment (star) where the moving body exists. To do. The rotation angular velocity (ωx_rot2, ωy_rot2, ωz_rot2) at the position where the moving body is present is subjected to coordinate conversion by the coordinate conversion means 41, and the posture between the sole 5 and the torso 3 calculated from the value of the joint angle sensor 32 By the coordinate conversion from the angle and the azimuth angle detected by the azimuth sensor 34, it is converted into the same direction component (ωb_rot2, ωc_rot2, ωa_rot2) as the rate gyroscope (12b, 12c, 12a). Based on the direction components (ωb_rot2, ωc_rot2, ωa_rot2), the output (ωb_sen, ωc_sen, ωa_sen) of the rate gyroscope (12b, 12c, 12a) is corrected, and the corrected angular velocity (ωb, ωc, ωa) is calculated. Yes. Finally, based on the corrected angular velocity signals (ωb, ωc, ωa), the posture of the moving body is detected with high accuracy.

この場合、GPSセンサ33の出力「θ_gps」と、この移動体が居る環境(星)の自転速度25の「ω_rot」の情報から、移動体の居る位置での自転速度成分を計算する。

Figure 0004753068
In this case, the rotation speed component at the position where the moving body exists is calculated from the output “θ_gps” of the GPS sensor 33 and the information of “ω_rot” of the rotation speed 25 of the environment (star) where the moving body exists.
Figure 0004753068

一方、移動体が自転している環境(星)に居ると、この自転速度成分が、レートジャイロ(12a,12b,12c)の出力に現れる。この影響を算出するため、座標変換手段41により、関節角センサ32の値から算出される足裏5と胴体3との間の姿勢角と方位センサ34で検出される方位角からの座標変換の「bca_R_xyz」を用いて、自転速度成分(ωx_ro2t,ωy_rot2,ωz_rot2)を、レートジャイロ(12b,12c,12a)と同じ方向成分(ωb_rot2,ωc_rot2,ωa_rot2)に変換している。

Figure 0004753068
On the other hand, if the mobile body is in an environment (star) that rotates, this rotation speed component appears in the output of the rate gyro (12a, 12b, 12c). In order to calculate this influence, the coordinate conversion means 41 performs coordinate conversion from the posture angle between the sole 5 and the torso 3 calculated from the value of the joint angle sensor 32 and the azimuth angle detected by the azimuth sensor 34. Using “bca_R_xyz”, the rotation speed components (ωx_ro2t, ωy_rot2, ωz_rot2) are converted into the same direction components (ωb_rot2, ωc_rot2, ωa_rot2) as the rate gyros (12b, 12c, 12a).
Figure 0004753068

最終的には、高精度姿勢検出装置2gの演算処理によって得られる補正した角速度信号(ωb,ωc,ωa)は、それぞれ
ωa=ωa_sen−ωa_rot2
ωb=ωb_sen−ωb_rot2
ωc=ωc_sen−ωc_rot2
であり、移動体がいる環境(星)の自転に伴う自転速度成分を除去することにより、高精度に歩行ロボットの胴体3の姿勢に起因する角速度ωa,ωb,ωcを求めることができる。
そのため、図17に示す演算処理部の演算処理、具体的には

Figure 0004753068
により姿勢角を求める。これにより、移動体が居る環境(星)が自転しており、レートジャイロ出力に自転による自転速度成分が混入するような場合においても、高精度に歩行ロボットの胴体3の姿勢角を求めることができる。なお、より正確に姿勢角を求めたい場合には、補正した角速度値(ωa,ωb,ωc)を既存のカルマンフィルタを用いて処理することにより、3次元での胴体3の姿勢をより正確で高精度に検出することができる。 Finally, the corrected angular velocity signals (ωb, ωc, ωa) obtained by the arithmetic processing of the high-accuracy posture detection device 2g are respectively ωa = ωa_sen−ωa_rot2
ωb = ωb_sen−ωb_rot2
ωc = ωc_sen−ωc_rot2
By removing the rotation speed component accompanying the rotation of the environment (star) in which the moving body is present, the angular velocities ωa, ωb, and ωc resulting from the posture of the body 3 of the walking robot can be obtained with high accuracy.
Therefore, the arithmetic processing of the arithmetic processing unit shown in FIG.
Figure 0004753068
The posture angle is obtained by Thereby, even when the environment (star) in which the moving body is present rotates, and the rotation speed component due to the rotation is mixed in the rate gyro output, the posture angle of the body 3 of the walking robot can be obtained with high accuracy. it can. If it is desired to obtain the attitude angle more accurately, the corrected angular velocity values (ωa, ωb, ωc) are processed using an existing Kalman filter, so that the attitude of the torso 3 in three dimensions is more accurate and higher. It can be detected with accuracy.

本発明の高精度姿勢検出装置は、更に、前述した第1実施例〜第7実施例の高精度姿勢検出装置を組み合わせることにより、より高精度な姿勢検出が可能となる。
具体的には、補正した加速度信号(αb,αc,αa)と補正した角速度信号(ωb,ωc,ωa)を次のようにして求める。

αa=αa_sen−{Wa1・αa_ref1
+Wa2・(αa_ref2−αa_grav)+(1−Wa1−Wa2)・αa_mot}
αb=αb_sen−{Wb1・αb_ref1
+Wb2・(αb_ref2−αb_grav)+(1−Wb1−Wb2)・αb_mot}
αa=αa_sen−{Wc1・αc_ref1
+Wc2・(αc_ref2−αc_grav)+(1−Wc1−Wc2)・αc_mot}

ωa=ωa_sen−{Va・ωa_rot1+(1−Va)ωa_rot2}
ωb=ωa_sen−{Vb・ωb_rot1+(1−Vb)ωb_rot2}
ωc=ωa_sen−{Vc・ωc_rot1+(1−Vc)ωc_rot2}

但し、Wa1,Wa2,Wb1,Wb2,Wc1,Wc2,Va,Vb,Vcは、
高精度姿勢検出装置2aから2gを選択して使用する重み係数である。
The high-accuracy posture detection device of the present invention can detect postures with higher accuracy by combining the high-precision posture detection devices of the first to seventh embodiments described above.
Specifically, the corrected acceleration signal (αb, αc, αa) and the corrected angular velocity signal (ωb, ωc, ωa) are obtained as follows.

αa = αa_sen− {Wa1, αa_ref1
+ Wa2 · (αa_ref2−αa_grav) + (1−Wa1−Wa2) · αa_mot}
αb = αb_sen− {Wb1 ・ αb_ref1
+ Wb2 · (αb_ref2−αb_grav) + (1−Wb1−Wb2) · αb_mot}
αa = αa_sen− {Wc1 ・ αc_ref1
+ Wc2 · (αc_ref2−αc_grav) + (1−Wc1−Wc2) · αc_mot}

ωa = ωa_sen− {Va · ωa_rot1 + (1−Va) ωa_rot2}
ωb = ωa_sen− {Vb · ωb_rot1 + (1−Vb) ωb_rot2}
ωc = ωa_sen− {Vc · ωc_rot1 + (1−Vc) ωc_rot2}

However, Wa1, Wa2, Wb1, Wb2, Wc1, Wc2, Va, Vb, Vc are
It is a weighting coefficient used by selecting 2g from the high-accuracy posture detection device 2a.

これにより、加速度センサの出力から、移動体自身の移動に伴う加減速成分と移動体がいる環境(星)の自転に伴う遠心力を除去することにより、高精度に歩行ロボットの胴体3の姿勢に起因する加速度(αa,αb,αc)を求めることができる。また、レートジャイロセンサの出力から、移動体がいる環境(星)の自転に伴う自転速度成分を除去することにより、高精度に歩行ロボットの胴体3の姿勢に起因する角速度(ωa,ωb,ωc)を求めることができる。この補正した加速度信号の補正加速度(αb,αc,αa)と補正した角速度信号の補正角速度(ωb,ωc,ωa)を、既存のカルマンフィルタを用いて処理することにより、3次元での胴体3の姿勢を高精度に信頼性良く検出することが可能である。   As a result, by removing the acceleration / deceleration component accompanying the movement of the moving body itself and the centrifugal force accompanying the rotation of the environment (star) where the moving body is present from the output of the acceleration sensor, the posture of the body 3 of the walking robot can be obtained with high accuracy. Acceleration (αa, αb, αc) resulting from can be obtained. Also, by removing the rotation speed component accompanying the rotation of the environment (star) in which the moving body is present from the output of the rate gyro sensor, the angular velocities (ωa, ωb, ωc) resulting from the posture of the body 3 of the walking robot with high accuracy are removed. ). By processing the corrected acceleration (αb, αc, αa) of the corrected acceleration signal and the corrected angular velocity (ωb, ωc, ωa) of the corrected angular velocity signal using an existing Kalman filter, the three-dimensional body 3 It is possible to detect the posture with high accuracy and reliability.

以上に詳述したように、本発明による移動体の姿勢検出装置は、移動体自身が急な加減速を行う場合、旋回移動により遠心加速度が移動体に働く場合、加減速する台車に移動体が搭乗している場合、加速度センサ自身に移動体の慣性加速度が作用している場合のいずれの場合であっても、姿勢角を精度良く検出する姿勢検出装置であり、また、移動体が自転する環境(星上)に移動体が居て、レートジャイロセンサ自身に自転の回転角速度が影響する場合においても、姿勢角を精度良く検出する姿勢検出装置である。このため、移動体である歩行ロボットの姿勢の安定制御を行うため、歩行ロボットの本体の加速度や姿勢回転角速度や姿勢角等を精度良く検出する場合などに好適に利用できる。 As described in detail above, posture detecting device of the mobile body according to the present invention, the movement if the mobile itself perform sudden acceleration or deceleration, if the centrifugal acceleration by pivotal movement acts on the movable body, the carriage accelerates or decelerates If the body is on board, in either case when the inertial acceleration of the moving object in the acceleration sensor itself is acting, a posture detecting device you accurately detected attitude angle, also moved This is a posture detection device that accurately detects a posture angle even when a moving body is in an environment (on the star) where the body rotates and the rotational angular velocity of the rotation affects the rate gyro sensor itself. For this reason, in order to perform stable control of the posture of the walking robot, which is a moving body, it can be suitably used when detecting the acceleration, posture rotation angular velocity, posture angle, and the like of the main body of the walking robot with high accuracy .

本発明の第1実施例の高精度姿勢検出装置の構成を概略的に示す図である。1 is a diagram schematically illustrating a configuration of a high-accuracy posture detection apparatus according to a first embodiment of the present invention. 高精度姿勢検出装置2aの演算処理部の構成を示すブロック図である。It is a block diagram which shows the structure of the arithmetic processing part of the high precision attitude | position detection apparatus 2a. 本発明による高精度姿勢検出装置の動作を説明する第1の図である。It is a 1st figure explaining operation | movement of the highly accurate attitude | position detection apparatus by this invention. 本発明による高精度姿勢検出装置の動作を説明する第2の図である。It is a 2nd figure explaining operation | movement of the highly accurate attitude | position detection apparatus by this invention. 本発明による高精度姿勢検出装置の動作を説明する第3の図である。It is a 3rd figure explaining operation | movement of the highly accurate attitude | position detection apparatus by this invention. 本発明の第2実施例の高精度姿勢検出装置の構成を概略的に示す図である。It is a figure which shows schematically the structure of the highly accurate attitude | position detection apparatus of 2nd Example of this invention. 高精度姿勢検出装置2bの演算処理部の構成を示すブロック図である。It is a block diagram which shows the structure of the arithmetic processing part of the high precision attitude | position detection apparatus 2b. 本発明の第3実施例の高精度姿勢検出装置の構成を概略的に示す図である。It is a figure which shows schematically the structure of the highly accurate attitude | position detection apparatus of 3rd Example of this invention. 高精度姿勢検出装置2cの演算処理部の構成を示すブロック図である。It is a block diagram which shows the structure of the arithmetic processing part of the high precision attitude | position detection apparatus 2c. 本発明の第4実施例の高精度姿勢検出装置の構成を概略的に示す図である。It is a figure which shows schematically the structure of the highly accurate attitude | position detection apparatus of 4th Example of this invention. 高精度姿勢検出装置2dの演算処理部の構成を示すブロック図である。It is a block diagram which shows the structure of the arithmetic processing part of the high precision attitude | position detection apparatus 2d. 本発明の第5実施例の高精度姿勢検出装置の構成を概略的に示す図である。It is a figure which shows schematically the structure of the highly accurate attitude | position detection apparatus of 5th Example of this invention. 高精度姿勢検出装置2eの演算処理部の構成を示すブロック図である。It is a block diagram which shows the structure of the arithmetic processing part of the high precision attitude | position detection apparatus 2e. 本発明の第6実施例の高精度姿勢検出装置の構成を概略的に示す図である。It is a figure which shows schematically the structure of the highly accurate attitude | position detection apparatus of 6th Example of this invention. 高精度姿勢検出装置2fの演算処理部の構成を示すブロック図である。It is a block diagram which shows the structure of the arithmetic processing part of the high precision attitude | position detection apparatus 2f. 本発明の第7実施例の高精度姿勢検出装置の構成を概略的に示す図である。It is a figure which shows roughly the structure of the highly accurate attitude | position detection apparatus of 7th Example of this invention. 高精度姿勢検出装置2gの演算処理部の構成を示すブロック図である。It is a block diagram which shows the structure of the arithmetic processing part of the highly accurate attitude | position detection apparatus 2g.

符号の説明Explanation of symbols

2a〜2g 高精度姿勢検出装置
3 ロボット胴体
4a 片脚の大腿リンク
4b 片脚の下腿リンク
5 片脚の足裏
6a 第1の関節モータ
6b 第2の関節モータ
6c 第3の関節モータ
10 慣性検出手段
11a 加速度センサ
11b 加速度センサ
11c 加速度センサ
12a レートジャイロ
12b レートジャイロ
12c レートジャイロ
20 動作生成手段
25 自転速度
30 環境情報手段
32 関節角センサ
33 GPSセンサ
34 方位センサ
35 半径
40 座標変換手段
41 座標変換手段

2a to 2g High accuracy posture detection device 3 Robot body 4a Single leg thigh link 4b Single leg leg link 5 Single leg sole 6a First joint motor 6b Second joint motor 6c Third joint motor 10 Inertial detection Means 11a Acceleration sensor 11b Acceleration sensor 11c Acceleration sensor 12a Rate gyro 12b Rate gyro 12c Rate gyro 20 Motion generation means 25 Rotational speed 30 Environment information means 32 Joint angle sensor 33 GPS sensor 34 Direction sensor 35 Radius 40 Coordinate conversion means 41 Coordinate conversion means

Claims (8)

移動体に、当該移動体の慣性を検出する慣性検出手段と、当該移動体の動作を生成する動作生成手段と、移動体の姿勢演算を行う演算処理手段を備え
前記演算処理手段は、前記慣性検出手段の出力から前記動作生成手段の出力を減算することにより前記慣性検出手段の出力を補正し、補正した前記慣性検出手段の出力により姿勢を算出する演算処理を行い、移動体の姿勢を検出する移動体の姿勢検出装置において、
前記慣性検出手段には、少なくとも2つの加速度センサが互いに直交するように備えられ、前記動作生成手段の出力から少なくとも前記加速度センサと同じ方向成分で出力される動作の加速度目標値が出力されており、
前記演算処理手段は、前記慣性検出手段の加速度センサの出力から前記動作生成手段の加速度目標値の同じ方向成分同士を減算することにより前記慣性検出手段の加速度センサの出力を補正し、片方の補正した加速度センサの出力をもう片方の補正した加速度センサの出力で割り算を行い、割り算結果をarctan演算して移動体の姿勢を検出する
ことを特徴とする移動体の姿勢検出装置。
The moving body includes an inertia detection unit that detects inertia of the moving body, an operation generation unit that generates an operation of the moving body, and an arithmetic processing unit that performs posture calculation of the moving body .
The calculation processing unit corrects the output of the inertia detection unit by subtracting the output of the motion generation unit from the output of the inertia detection unit, and calculates the posture based on the corrected output of the inertia detection unit. In the mobile body posture detection device that performs and detects the posture of the mobile body,
The inertia detection unit includes at least two acceleration sensors so as to be orthogonal to each other, and outputs an acceleration target value of an operation output in at least the same direction component as the acceleration sensor from the output of the operation generation unit. ,
The arithmetic processing means corrects the output of the acceleration sensor of the inertia detection means by subtracting the same direction component of the acceleration target value of the motion generation means from the output of the acceleration sensor of the inertia detection means, and corrects one of the corrections. An apparatus for detecting a posture of a moving body that divides the output of the acceleration sensor by the output of the other corrected acceleration sensor and detects the posture of the moving body by performing an arctan calculation on the division result.
移動体に、当該移動体の慣性を検出する慣性検出手段と、当該移動体の動作を生成する動作生成手段と、移動体の姿勢演算を行う演算処理手段を備え
前記演算処理手段は、前記慣性検出手段の出力から前記動作生成手段の出力を減算することにより前記慣性検出手段の出力を補正し、補正した前記慣性検出手段の出力により姿勢を算出する演算処理を行い、移動体の姿勢を検出する移動体の姿勢検出装置において、
前記慣性検出手段には、少なくとも2つの加速度センサが互いに直交するように備えられ、前記動作生成手段の出力から少なくとも前記加速度センサと同じ方向成分で出力される移動体が居る環境の自転による遠心力が出力されており、
前記演算処理手段は、前記慣性検出手段の加速度センサの出力から前記動作生成手段の遠心力の同じ方向成分同士を減算することにより前記慣性検出手段の加速度センサの出力を補正し、片方の補正した加速度センサの出力をもう片方の補正した加速度センサ出力で割り算を行い、この割り算結果をarctan演算して移動体の姿勢を検出する
遠心力に基づき慣性検出手段の加速度センサ出力を補正し、補正した加速度センサの出力に基づき移動体の姿勢を検出する
ことを特徴とする移動体の姿勢検出装置。
The moving body includes an inertia detection unit that detects inertia of the moving body, an operation generation unit that generates an operation of the moving body, and an arithmetic processing unit that performs posture calculation of the moving body .
The calculation processing unit corrects the output of the inertia detection unit by subtracting the output of the motion generation unit from the output of the inertia detection unit, and calculates the posture based on the corrected output of the inertia detection unit. In the mobile body posture detection device that performs and detects the posture of the mobile body,
The inertia detection means includes at least two acceleration sensors so as to be orthogonal to each other, and the centrifugal force due to the rotation of the environment in which there is a moving body output from the output of the motion generation means with at least the same direction component as the acceleration sensor. Is output,
The arithmetic processing unit corrects the output of the acceleration sensor of the inertia detection unit by subtracting the same direction components of the centrifugal force of the motion generation unit from the output of the acceleration sensor of the inertia detection unit, and corrects one of the corrections. The acceleration sensor output is divided by the other corrected acceleration sensor output, and this division result is subjected to arctan calculation to correct the acceleration sensor output of the inertia detection means based on the centrifugal force for detecting the posture of the moving body, and the correction is made. A moving body posture detection apparatus that detects the posture of a moving body based on an output of an acceleration sensor.
移動体に、当該移動体の慣性を検出する慣性検出手段と、当該移動体の動作を生成する動作生成手段と、移動体の姿勢演算を行う演算処理手段を備え
前記演算処理手段は、前記慣性検出手段の出力から前記動作生成手段の出力を減算することにより前記慣性検出手段の出力を補正し、補正した前記慣性検出手段の出力により姿勢を算出する演算処理を行い、移動体の姿勢を検出する移動体の姿勢検出装置において、
前記慣性検出手段には、レートジャイロが備えられ、前記動作生成手段の出力から少なくとも前記レートジャイロと同じ方向成分で出力される移動体が居る環境の自転速度が出力されており、
前記演算処理手段は、前記慣性検出手段のレートジャイロの出力から前記動作生成手段の前記自転速度を減算することにより前記慣性検出手段のレートジャイロの出力を補正し、補正したレートジャイロの出力を積分することにより移動体の姿勢を検出する
ことを特徴とする移動体の姿勢検出装置。
The moving body includes an inertia detection unit that detects inertia of the moving body, an operation generation unit that generates an operation of the moving body, and an arithmetic processing unit that performs posture calculation of the moving body .
The calculation processing unit corrects the output of the inertia detection unit by subtracting the output of the motion generation unit from the output of the inertia detection unit, and calculates the posture based on the corrected output of the inertia detection unit. In the mobile body posture detection device that performs and detects the posture of the mobile body,
The inertia detection means is provided with a rate gyro, and the rotation speed of the environment in which there is a moving body that is output at least in the same direction component as the rate gyro is output from the output of the motion generation means,
The arithmetic processing means corrects the rate gyro output of the inertia detection means by subtracting the rotation speed of the motion generation means from the rate gyro output of the inertia detection means, and integrates the corrected rate gyro output. An apparatus for detecting a posture of a moving body, wherein the posture of the moving body is detected.
移動体に、当該移動体の慣性を検出する慣性検出手段と、当該移動体が居る環境の情報を検出し記憶する環境情報手段と、移動体の姿勢演算を行う演算処理手段を備え
前記演算処理手段は、前記慣性検出手段の出力から前記環境情報手段の出力を減算することにより前記慣性検出手段の出力を補正し、補正した前記慣性検出手段の出力により姿勢を算出する演算処理を行い、移動体の姿勢を検出する移動体の姿勢検出装置において、
前記慣性検出手段には、少なくとも2つの加速度センサが互いに直交するように備えられ、
前記環境情報手段は、少なくとも移動体と環境との間に作用する力を検出する力センサと、前記力センサと前記加速度センサとの間の座標変換を行う座標変換手段を備えると共に、移動体が居る環境の既知重力加速度の値を記憶しており、
前記力センサからは、移動体と環境との間に作用する力の水平方向成分と垂直方向成分が出力もしくは移動体と環境との間に作用する力の水平方向成分のみが出力されており、
前記力センサから移動体と環境との間に作用する力の水平方向成分のみが出力されている場合には前記環境情報手段が移動体の公称体重の値も記憶しており、
前記演算処理手段は、前記移動体と環境との間に作用する力の水平方向成分を前記移動体と環境との間に作用する力の垂直方向成分で割るもしくは前記移動体と環境との間に作用する力の水平方向成分を前記移動体の公称体重の値で割り、その割り算結果に前記既知重力加速度を掛け算することにより移動体の動作を生成する加速度値を演算し、演算して求めた移動体の動作を生成する加速度値を前記座標変換手段により前記加速度センサと同じ方向成分で出力される移動体の動作を生成する加速度値に変換し、前記慣性検出手段の加速度センサの出力から前記変換した加速度値の同じ方向成分同士を減算することにより前記慣性検出手段の加速度センサの出力を補正し、片方の補正した加速度センサの出力をもう片方の補正した加速度センサの出力で割り算を行い、割り算結果をarctan演算して移動体の姿勢を検出する
ことを特徴とする移動体の姿勢検出装置。
The moving body is provided with inertia detecting means for detecting the inertia of the moving body, environment information means for detecting and storing information on the environment in which the moving body is present, and arithmetic processing means for calculating the posture of the moving body ,
The calculation processing unit corrects the output of the inertia detection unit by subtracting the output of the environment information unit from the output of the inertia detection unit, and calculates a posture based on the corrected output of the inertia detection unit. In the mobile body posture detection device that performs and detects the posture of the mobile body,
The inertia detection means includes at least two acceleration sensors so as to be orthogonal to each other,
The environment information means includes at least a force sensor that detects a force acting between the moving body and the environment, and a coordinate conversion means that performs coordinate conversion between the force sensor and the acceleration sensor. Remembers the value of the known gravitational acceleration of the environment you are in,
From the force sensor, the horizontal component and the vertical component of the force acting between the moving body and the environment are output or only the horizontal component of the force acting between the moving body and the environment is output,
When only the horizontal component of the force acting between the moving body and the environment is output from the force sensor, the environmental information means also stores the value of the nominal weight of the moving body,
The arithmetic processing means divides a horizontal component of a force acting between the mobile body and the environment by a vertical component of a force acting between the mobile body and the environment, or between the mobile body and the environment. The horizontal component of the force acting on the mobile body is divided by the value of the nominal weight of the moving body, and the result of multiplication is multiplied by the known gravitational acceleration to calculate the acceleration value that generates the movement of the moving body, and the calculation is obtained. The acceleration value that generates the motion of the moving body is converted into the acceleration value that generates the motion of the moving body that is output in the same direction component as the acceleration sensor by the coordinate conversion means, and the output of the acceleration sensor of the inertia detection means By subtracting the same direction components of the converted acceleration values, the output of the acceleration sensor of the inertia detection means is corrected, and the output of the corrected acceleration sensor on one side is corrected with the corrected acceleration sensor on the other side. Of performed divided by output, the division result arctan operation on the moving body posture detecting device and detects the posture of the moving body.
移動体に、当該移動体の慣性を検出する慣性検出手段と、当該移動体が居る環境の情報を検出し記憶する環境情報手段と、移動体の姿勢演算を行う演算処理手段を備え
前記演算処理手段は、前記慣性検出手段の出力から前記環境情報手段の出力を減算することにより前記慣性検出手段の出力を補正し、補正した前記慣性検出手段の出力により姿勢を算出する演算処理を行い、移動体の姿勢を検出する移動体の姿勢検出装置において、
前記慣性検出手段には、少なくとも2つの加速度センサが互いに直交するように備えられ、
前記環境情報手段は、少なくとも移動体の緯度を検出するGPSセンサと、移動体が居る位置と前記加速度センサとの間の座標変換を行う座標変換手段を備えると共に、移動体が居る環境の自転速度と半径を記憶しており、
前記演算処理手段は、GPSセンサの出力、前記自転速度、前記半径を用いて移動体が居る位置での遠心力を演算し、演算して求めた移動体が居る位置での遠心力を前記座標変換手段により前記加速度センサと同じ方向成分の移動体が居る位置での自転による遠心力に変換し、前記慣性検出手段の加速度センサの出力から変換した前記移動体が居る位置での自転による遠心力の同じ方向成分同士を減算することにより前記慣性検出手段の加速度センサの出力を補正し、片方の補正した加速度センサの出力をもう片方の補正した加速度センサ出力で割り算を行い、この割り算結果をarctan演算して移動体の姿勢を検出する
ことを特徴とする移動体の姿勢検出装置。
The moving body is provided with inertia detecting means for detecting the inertia of the moving body, environment information means for detecting and storing information on the environment in which the moving body is present, and arithmetic processing means for calculating the posture of the moving body ,
The calculation processing unit corrects the output of the inertia detection unit by subtracting the output of the environment information unit from the output of the inertia detection unit, and calculates a posture based on the corrected output of the inertia detection unit. In the mobile body posture detection device that performs and detects the posture of the mobile body,
The inertia detection means includes at least two acceleration sensors so as to be orthogonal to each other,
The environment information means includes at least a GPS sensor that detects the latitude of the moving body, and coordinate conversion means that performs coordinate conversion between the position where the moving body is located and the acceleration sensor, and the rotation speed of the environment where the moving body exists. And remember the radius,
The calculation processing means calculates the centrifugal force at the position where the moving body is present using the output of the GPS sensor, the rotation speed, and the radius, and calculates the centrifugal force at the position where the moving body is obtained by the calculation as the coordinates. The centrifugal force due to the rotation at the position where the moving body is converted from the output of the acceleration sensor of the inertia detection means, which is converted by the converting means into the centrifugal force due to the rotation at the position where the moving body has the same direction component as the acceleration sensor. The output of the acceleration sensor of the inertia detection means is corrected by subtracting the same direction components of each other, and the output of the corrected acceleration sensor on one side is divided by the output of the corrected acceleration sensor on the other side, and this division result is arctan. An apparatus for detecting a posture of a moving body, wherein the posture of the moving body is detected by calculation.
移動体に、当該移動体の慣性を検出する慣性検出手段と、当該移動体が居る環境の情報を検出し記憶する環境情報手段と、移動体の姿勢演算を行う演算処理手段を備え
前記演算処理手段は、前記慣性検出手段の出力から前記環境情報手段の出力を減算することにより前記慣性検出手段の出力を補正し、補正した前記慣性検出手段の出力により姿勢を算出する演算処理を行い、移動体の姿勢を検出する移動体の姿勢検出装置において、
前記慣性検出手段には、レートジャイロが備えられ、
前記環境情報手段は、少なくとも移動体の緯度を検出するGPSセンサと、移動体が居る位置と前記レートジャイロとの間の座標変換を行う座標変換手段を備えると共に、移動体が居る環境の自転速度を記憶しており、
前記演算処理手段は、前記GPSセンサと前記移動体が居る環境の自転速度から移動体の居る位置での自転速度の回転角速度を算出し、算出して求めた移動体の居る位置での回転角速度を前記座標変換手段により前記レートジャイロと同じ方向成分で出力される回転角速度に変換し、前記慣性検出手段のレートジャイロの出力から前記変換されたレートジャイロと同じ方向成分で出力される回転角速度を減算することにより前記慣性検出手段のレートジャイロの出力を補正し、補正したレートジャイロの出力を積分することにより移動体の姿勢を検出する
ことを特徴とする移動体の姿勢検出装置。
The moving body is provided with inertia detecting means for detecting the inertia of the moving body, environment information means for detecting and storing information on the environment in which the moving body is present, and arithmetic processing means for calculating the posture of the moving body ,
The calculation processing unit corrects the output of the inertia detection unit by subtracting the output of the environment information unit from the output of the inertia detection unit, and calculates a posture based on the corrected output of the inertia detection unit. In the mobile body posture detection device that performs and detects the posture of the mobile body,
The inertia detection means includes a rate gyro,
The environment information means includes at least a GPS sensor for detecting the latitude of the moving body, coordinate conversion means for performing coordinate conversion between the position where the moving body is located and the rate gyro, and the rotation speed of the environment where the moving body is located Remember
The arithmetic processing means calculates a rotation angular velocity of a rotation speed at a position where the moving body is present from a rotation speed of an environment where the GPS sensor and the moving body are present, and calculates a rotation angular velocity at the position where the moving body exists. Is converted into a rotational angular velocity output in the same direction component as the rate gyro by the coordinate conversion means, and a rotational angular velocity output in the same direction component as the converted rate gyro is output from the rate gyro output of the inertia detection means. An apparatus for detecting a posture of a moving body which corrects the output of the rate gyro of the inertia detection means by subtraction and detects the attitude of the moving body by integrating the output of the corrected rate gyro.
請求項1〜の何れか1項に記載の移動体の姿勢検出装置の複数の出力値を、重み係数を付加して加算し、移動体の姿勢を検出する
ことを特徴とする移動体の姿勢検出装置。
A plurality of output values of the moving body posture detecting device according to any one of claim 1 to 6 by adding by adding a weighting factor, of a moving body and detects the posture of the moving body Attitude detection device.
請求項1〜の何れか1項に記載の移動体の姿勢検出装置が搭載されている移動ロボット。 Mobile robot posture detection device is mounted in the moving body according to any one of claims 1-7.
JP2005269140A 2005-09-15 2005-09-15 POSITION DETECTION DEVICE FOR MOBILE BODY AND MOBILE ROBOT Expired - Fee Related JP4753068B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005269140A JP4753068B2 (en) 2005-09-15 2005-09-15 POSITION DETECTION DEVICE FOR MOBILE BODY AND MOBILE ROBOT

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005269140A JP4753068B2 (en) 2005-09-15 2005-09-15 POSITION DETECTION DEVICE FOR MOBILE BODY AND MOBILE ROBOT

Publications (2)

Publication Number Publication Date
JP2007075967A JP2007075967A (en) 2007-03-29
JP4753068B2 true JP4753068B2 (en) 2011-08-17

Family

ID=37936758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005269140A Expired - Fee Related JP4753068B2 (en) 2005-09-15 2005-09-15 POSITION DETECTION DEVICE FOR MOBILE BODY AND MOBILE ROBOT

Country Status (1)

Country Link
JP (1) JP4753068B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5682314B2 (en) * 2011-01-06 2015-03-11 セイコーエプソン株式会社 robot
JP5700311B2 (en) * 2013-09-30 2015-04-15 公立大学法人高知工科大学 Angular velocity estimation system
JP6149791B2 (en) * 2014-04-24 2017-06-21 トヨタ自動車株式会社 Center of gravity estimation device and center of gravity estimation method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62204109A (en) * 1986-03-04 1987-09-08 Yokogawa Electric Corp Measuring instrument for robot arm attitude
JPS6420988A (en) * 1987-07-15 1989-01-24 Hitachi Ltd Drive system of joint type robot
JPH0276690A (en) * 1988-09-14 1990-03-16 Seiko Instr Inc Robot arm track control method
JP2901748B2 (en) * 1990-11-15 1999-06-07 和泉電気株式会社 Distance measuring device
JPH09272083A (en) * 1996-04-08 1997-10-21 Mitsubishi Electric Corp Two-foot walking robot
JPH10128688A (en) * 1996-09-04 1998-05-19 Sankyo Seiki Mfg Co Ltd Non-interfering control method of robot
JP2002331478A (en) * 2001-05-02 2002-11-19 Yaskawa Electric Corp Operating speed determining method for robot
JP2004053530A (en) * 2002-07-23 2004-02-19 National Institute Of Advanced Industrial & Technology Highly-accurate attitude detection method of moving body and its device
JP4336774B2 (en) * 2003-10-15 2009-09-30 独立行政法人産業技術総合研究所 Disturbance detection method and apparatus for motion control of legged robot

Also Published As

Publication number Publication date
JP2007075967A (en) 2007-03-29

Similar Documents

Publication Publication Date Title
US11167816B2 (en) Control of a two-wheeled self-balancing vehicle
KR101049362B1 (en) Posture detection device and posture detection method
WO2004010081A1 (en) Method and device for accurately detecting attitude of movable body
JP4753068B2 (en) POSITION DETECTION DEVICE FOR MOBILE BODY AND MOBILE ROBOT
CN108871323A (en) A kind of high-precision navigation method of the low cost inertial sensor under motor-driven environment
JPH095104A (en) Method and apparatus for measurement of three-dimensional attitude angle of moving body
JP2002274499A (en) Attitude change control method of triaxial satellite
US6354163B1 (en) Mitigating gimbal induced disturbances in CMG arrays
EP3429910B1 (en) Control of a two-wheeled self-balancing vehicle
Singh et al. Attitude estimation for dynamic legged locomotion using range and inertial sensors
JPWO2008142757A1 (en) Vehicle attitude angle measurement method using single GPS and inertial data (acceleration, angular velocity)
JP2010276562A (en) Position detector
EP3762801A1 (en) Integrated control method for balancing a two wheeled vehicle using control moment gyroscopes and drive-by-wire steering systems
JP6409625B2 (en) Vehicle position calculation device
JP2021076901A (en) Posture estimation device for moving body
JPH06201863A (en) Strapped-down attitude detection apparatus
Aleshin et al. Horizontal stabilization of the two-degree-of-freedom platform of a uniaxial wheeled module tracking a given trajectory over an underlying surface
JP6454857B2 (en) Posture detection apparatus and posture detection method
RU2145058C1 (en) Gyroscope navigation system
JP3360089B2 (en) Inertial device
JP2004132769A (en) Attitude angle detector
Khan et al. Two Wheel Self-Balancing Human Carrier
JPH11142428A (en) Servo platform for accelerometer, and flight controller
EP4339558A1 (en) Autonomous navigation system
JP2525072B2 (en) Method of initializing flying body guidance device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110411

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110510

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110511

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees