JP4752119B2 - Piezoelectric actuator and manufacturing method thereof, and magnetic head using this piezoelectric actuator - Google Patents

Piezoelectric actuator and manufacturing method thereof, and magnetic head using this piezoelectric actuator Download PDF

Info

Publication number
JP4752119B2
JP4752119B2 JP2001056504A JP2001056504A JP4752119B2 JP 4752119 B2 JP4752119 B2 JP 4752119B2 JP 2001056504 A JP2001056504 A JP 2001056504A JP 2001056504 A JP2001056504 A JP 2001056504A JP 4752119 B2 JP4752119 B2 JP 4752119B2
Authority
JP
Japan
Prior art keywords
rotating member
displacement
piezoelectric actuator
shaped hinge
piezoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001056504A
Other languages
Japanese (ja)
Other versions
JP2002262588A (en
Inventor
勝政 三木
博文 多鹿
将也 中谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2001056504A priority Critical patent/JP4752119B2/en
Publication of JP2002262588A publication Critical patent/JP2002262588A/en
Application granted granted Critical
Publication of JP4752119B2 publication Critical patent/JP4752119B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、例えば磁気記録装置内部の磁気ヘッド部の移動等に用いられる圧電アクチュエータおよびその製造方法、この圧電アクチュエータを用いた磁気ヘッドに関するものである。
【0002】
【従来の技術】
従来の磁気ヘッド用の圧電アクチュエータに関する技術としては、特開平5−47126号に開示されているものが知られている。
【0003】
図8は従来例における、磁気ヘッド駆動用アクチュエータの一例を示す斜視図である。梁82a,82bの両面にそれぞれ、圧電素子をはじめとする微小変位素子81a,81b,81c,81dが接着され、かつそれぞれの微小変位素子81a〜81dにリード線84a,84b,84c,84d(84b,84dは図示せず)が取り付けられている。また2本の梁82a,82bは両端において結合しており、一方の結合部においてスライダ83が取り付けられ、他方の結合部においてヘッドアーム85に取り付けられている。このスライダ83上には記録の書き込みなどを行なう磁気ヘッド部やその配線など(図示せず)も設けられている。
【0004】
微小変位素子81a〜81dが圧電素子であって、その両面に電極が設けられている場合、また梁82a,82bを導電性材料とした場合には、リード線84a〜84dと梁82a,82bとの間に電界を印加することにより、圧電素子は変形を生ずる。このとき圧電素子は、厚み方向の変形と同時に、圧電横効果によって長手方向にも変化を生ずる。圧電素子の変形に伴って梁82a,82bの長さも変化するのであるが、この変化を各梁82a,82bで逆向きに生じさせれば、すなわち一方の梁82a,82bの長さが伸びた場合、他方が縮小するように駆動を行えば、磁気ヘッドの部位において回転変位が得られるのである。
【0005】
これらの圧電アクチュエータ及び磁気ヘッドは、通常別の長手部材を介して、モータ等のより大きな変位が得られる磁気アクチュエータに取り付けられ、両者の併用によって位置決めが行なわれる。すなわちモータによって概略の位置決めを行ない、圧電アクチュエータによってより正確な位置決めを行なうことによって、位置決めの高速化と正確性の向上を図っているのである。
【0006】
【発明が解決しようとする課題】
しかしながら従来の圧電アクチュエータは、一般に変位量が小さいため、十分な変位量を得るためには高い駆動電圧が必要であった。また大きな変位量を得るためには形状が大きくなり、あるいはアクチュエータの剛性を低下させて変形しやすくした場合、共振周波数が低下して不要振動が発生し、駆動の妨げとなった。磁気記録装置のヘッド駆動用のアクチュエータとして用いるためには、高速かつ安定的に記録媒体上のトラック間を移動できなければならず、高速に十分対応するためには耐振性を初めとするアクチュエータの剛性が必要であり、加えてモータなど他のアクチュエータから受ける振動や重力にも耐えうる必要がある。
【0007】
さらに加えて、低電圧において大きな変位量が得られることも要求される。すなわち変位量が大きければトラック間を正確に移動できるのみならず、位置決めの調整範囲も大きく出来る。そして回路的に小型化を図りかつ雑音などの誤差要因を低下させるため、低電圧での駆動が求められるのである。
【0008】
そして磁気記録装置全体の小型化のため、アクチュエータの小型化も同時に求められる。
【0009】
本発明は、より外乱に対して強く、大きな変位量が得られる小型の圧電アクチュエータを提供し、各種機器本体の小型化と高精度化を図ることを目的とする。
【0010】
【課題を解決するための手段】
そしてこの目的を達成するために本発明は、以下の構成を有する。
【0011】
第1の発明は、圧電アクチュエータを、弾性平板と圧電体との積層体である2つの変位素子を互いに平行かつ同一直線上に配して片端固定し、両変位素子間に両変位素子の変形によって回転可能に支持された回転部材を、L字型ヒンジ部を介して結合した形状で構成するものであり、両変位素子を互いに逆方向に変位させることによって回転部材において回転変位が得られ、L字型のヒンジ部により変位素子の垂直変位が効率よく回転方向の変位に転換され、加えて回転による角度とテコの作用によって変位が拡大されてより大きな変位が得られ、更に加えて、回転部材は回転中心で支持されており、またL字型ヒンジ部によっても固定されているので、高い剛性を持つといった作用効果が得られる。さらに、回転支持位置がL字型ヒンジ部と回転部材との結合部を結ぶ線上以外にの部位であるので、見かけ上回転部材が3角形の頂点によって支持された構成となり、回転方向以外の方向への振動に対しての剛性が上がるといった作用効果が得られる。
【0012】
第2の発明は、回転部材がL字型ヒンジ部との結合部を結ぶ直線上から、両変位素子に対して遠い側において回転支持されていることによって、より大きな変位量が得られるといった作用効果を有する。
【0013】
第3の発明は、回転支持部材に設けられた突起部によって回転部材を押圧して回転支持を行うので、構成が容易であり、回転部材は突起部の先端と接触するだけであるので低摩擦である、回転変位の阻害が小さいといった作用効果を有する。
【0014】
第4の発明は、回転部材に支持孔を設け、支持孔に回転支持部材の突起部が嵌合する構成としたので、外部からの振動によって突起部が回転中心から外れる恐れがなくなり、安定した駆動が行えるといった作用効果が得られる。
【0015】
第5の発明は、変位素子を固定部と回転部材との結合部の方向の寸法よりも、方向と直交する幅方向の寸法が大きい長方形平板形状としたので、回転変位を得るための自由端側での垂直変位に対して、より大きな駆動力が得られ、同時に回転方向での共振周波数を上げる作用を有するために耐振性が向上するといった作用効果が得られる。
【0016】
第6の発明は、複数の弾性平板とL字型ヒンジ部、及び回転部材とを同一平面状に平行に配した大面積の基板に対し、曲げ加工と圧電体を接着する工程を一括して行うので、生産性が良く低コスト化が図れ、かつ容易に請求項1以下の圧電アクチュエータを形成できるとともに、L字型ヒンジ部と弾性平板、及び回転部材が一体であるので大丈夫であり、長期的な信頼性や耐振性などに優れるといった作用効果が得られる。
【0017】
第7の発明は、圧電アクチュエータの回転部材にスライダ及び磁気ヘッドを設けた磁気ヘッドとしたので、高剛性であるのでトラック上の位置決め動作が外乱の影響を受けることなく、また大きな変位量によって位置決めの範囲が大きく、確実にトラック上での位置決めが行えるといった作用効果が得られる。
【0019】
【発明の実施の形態】
(実施の形態1)
以下、本発明の実施の形態1における圧電アクチュエータについて、図面を参照しながら説明する。
【0020】
図1は本発明の実施の形態1における圧電アクチュエータの斜視図である。
【0021】
図1において、11a,11bは圧電体、12a,12bは弾性平板、13は回転部材、14a,14bはL字型ヒンジ部、15a,15bは固定部材、16は回転支持部材、17は突起部、18はスライダである。弾性平板12a,12bは並行かつ同一線上に配置されており、それぞれの片面に圧電体11a,11bが接着されて変位素子を構成している。また弾性平板12a,12bは片端を固定部材15a,15bによって固定され、他方側の端部においてL字型ヒンジ部14a,14bと結合され、さらにL字型ヒンジ部14a,14bの間において回転部材13が、弾性平板12a,12bの平面と直交して配置されており、回転部材13の一部とL字型ヒンジ部14a,14bとが結合されている。回転支持部材16は長手形状を有し、先端部近傍に突起部17が設けられており、突起部17の先端部は回転部材13と当接し、回転部材13は回転支持部材16によって適度に押圧され、突起部17の先端部においてほぼ点で加圧される。加えて、回転部材13の一方側の面において、スライダ18が接着などの方法によって固定され、回転部材13と同様に変位可能な状態で支持されている。
【0022】
圧電体11a,11bの両面にはそれぞれ電極が設けられ、両電極間に電圧を加えることによって圧電体11a,11bに変形が生じ、弾性平板12a,12bと接着されていることによってL字型ヒンジ部14a,14b側の端部においてたわみ変位が発生する。圧電体11a,11bに加える電圧の方向を逆にすることによって変位素子は逆の方向に変位する。この変位はL字型ヒンジ部14a,14bを介して回転部材13へと伝達され、スライダ18とともに回転変位する。この回転変位は突起部17によって拘束された点を中心とすることとなるが、前述のように突起部17によって回転部材13が押圧された状態である場合、互いの接触部の面積や材質などによって摩擦が変化する、よって適当な条件を選ぶことにより、摩擦を増やしてより回転中心を完全に決定したり、逆に摩擦を減らすことによって変位量を大きくすることも可能である。摩擦を増やして回転中心を拘束した場合、変位量は低下するが、アクチュエータとしての剛性は上がるため、耐振性が向上し、拘束応答が可能となる。そしてアクチュエータによる変位は回転変位であるので、回転部材やスライダの大きさを増せば、回転によって生じた角度変化はテコの原理によって大きな変位へと拡大されるので、剛性の向上とともに変位量も確保できるのである。
【0023】
回転中心を拘束する場合、その位置によって変位量は変化する。図2は本発明の圧電アクチュエータを示す斜視図であり、図1とは視点が異なるものである。11a,11bは圧電体、12a,12bは弾性平板、13は回転部材、14a,14bはL字型ヒンジ部、15a,15bは固定部材、18はスライダであり、構造は図1で説明したのと同様である。L字型ヒンジ部14a,14bを介して回転部材13と弾性平板12a,12bが結合されているのであるが、L字型ヒンジ部14a,14bの中央を結ぶ直線と直角方向で、かつ両L字型ヒンジ部間の中心を通る直線上において回転支持部と当接させ、回転中心を設けることにより、回転時のバランスがよくなるので駆動を安定に行なうことが出来る。よって回転中心は前記の直線上に設けることとなるが、この位置によって回転変位量が変わるのである。弾性平板12a,12bや圧電体11a,11bに対し、L字型ヒンジ部14a,14bの中央を結ぶ直線よりも遠い側において回転中心を設けた場合、逆に弾性平板12a,12bや圧電体11a,11bに近い側に設けた場合よりも変位量は大きくなる。ただし遠い側に回転中心を設定した場合においても変位量は変化し、かつ回転変位と同方向の共振の周波数や、その他の不要共振の周波数等も変化する。これはL字型ヒンジ部の形状や、回転部材との結合個所などによって最適位置が変化するためで、よってこれらの点を考慮して最も最適な位置を決定するのである。
【0024】
本発明においてはL字型ヒンジ部を用いているのであるが、これは回転変位を得るために有効なものである。図3(a),図3(b)はこの点を説明するための平面図であって、11a,11bは圧電体、12a,12bは弾性平板、14a,14bはL字型ヒンジ部、15a,15bは固定部材、18はスライダ、19は回転支持部、20a,20bは直線ヒンジ部である(回転部材は省略)。図3aにおいては弾性平板12a,12bとスライダ18の間にあるのは直線ヒンジ部20a,20bである。この場合圧電体11a,11bと弾性平板12a,12bによって構成された変位素子(ユニモルフ型素子)の変位は実線の矢印の通りであり、ほぼ変位素子面に対し直角方向である。そして直線ヒンジ部20a,20bにより、この変位はスライダ18に伝えられ、ほとんど点線矢印のように実線矢印と同じ方向に変位が行なわれる。一方図3(b)のようにL字型ヒンジ部を用いた場合、実線矢印のような変位は、見かけ上点線矢印のように斜め方向に変換される。これはヒンジ部がL字であるのでたわみが発生しやすく、かつこのたわみは変位の方向を変化させる効果による。またL字型ヒンジ部のたわみを用いることによってスライダなどが必要以上に拘束されず、有効に変位が伝達される。そしてこの点線矢印の方向が回転変位の接線方向と近くなれば、有効に回転変位が得られるのである。
【0025】
図4は回転支持をより有効に行なうための一例を示す断面図であり、13は回転部材、16は回転支持部材、17は突起部、18はスライダ、21は支持孔である。回転部材13には貫通孔である支持孔21が設けられ、スライダ18と結合している。そして例えばスライダ18の片側端部近傍には、磁気記録装置用のヘッドとして用いる場合には磁気ヘッド部が設けられる。回転支持部材16に設けられた突起部17は支持孔21と嵌合しつつ、スライダ18を押圧している。このような構成によれば回転中心の位置を容易に決定することができ、駆動中に回転中心がずれる等の恐れもなく、かつ外部からの振動等による回転中心の位置ずれを防止し、同時に図4の図面の垂直方向などから加わる荷重に対するストッパーとしても機能するため、アクチュエータの損壊を防止することもできるのである。
【0026】
図5は本発明の圧電アクチュエータを、磁気記録装置用の磁気ヘッドの駆動用アクチュエータとして用いた場合の一例を示す斜視図である。図5において、15は固定部材、16は回転支持部材、18はスライダ、22は圧電アクチュエータ部、23a,23bはヘッド用配線パターン、24はヘッド配線、25は記録媒体である。圧電アクチュエータ部22は前述のように弾性平板と圧電体からなる変位素子、L字型ヒンジ部と回転部材によって構成され、固定部材15によって固定され、さらに可動部にはスライダ18が設けられている。スライダ18には図4に示したように磁気ヘッド部が設けられ、加えて磁気ヘッド部に信号を加えるための配線パターンなどが設けられている。固定部材15は1枚の板状部材を加工して形成され、先端部にアクチュエータ部22を配置するための溝が設けられ、また先端部に曲げ加工によって直角に成型された部位を有し、この部位にアクチュエータ部22の弾性平板が固定されるのである。固定部材15の一方側の面にはヘッド用配線パターン23a,23bが、固定部材15とは電気的に絶縁されて形成されており、このヘッド用配線パターン23a,23bと前記のスライダ上の磁気ヘッド部のための配線パターンとが、ヘッド配線24を介して接続される。また固定部材15の他方側の面には圧電アクチュエータ部22駆動用のアクチュエータ用配線パターン(図示せず)が形成されており、ヘッド用配線パターン23a,23bとともに外部の配線取り出し部(図示せず)へと伸びている。さらに回転支持部材16が固定部材15に固定されるとともに、圧電アクチュエータ部22の一部を押圧して回転中心を形成している。この状態において記録媒体25の回転時にスライダ18が記録媒体25上に浮上するように配置し、かつ固定部材15の他方側の端部近傍を他の大変位用アクチュエータに取り付ける。
【0027】
回転する記録媒体に対し、大まかな位置決めをすばやく行なうために、モータ等の大変位用アクチュエータによる固定部材の回転移動を行ない、これとともに圧電アクチュエータ部によってスライダを回転させ、正確な位置決めを行なうのである。大変位用アクチュエータによる移動時においてスライダや圧電アクチュエータ部が外力を受けることとなり、圧電アクチュエータの剛性が低い場合には歪みが生じたり、駆動力が外力に劣った結果、正確な位置決めが行なえなくなる。しかしながら本発明の圧電アクチュエータによれば、高い剛性と大きな変位量を併せ持つので、外力の影響を受けず、より幅広い範囲での位置決めが可能となる。これにより、磁気ヘッドの記録速度が向上し、かつアクチュエータも小型であるので装置全体として大型にもならず、小型化と高性能化に寄与できるものである。
【0028】
図6は本発明の圧電アクチュエータを磁気ヘッド駆動用アクチュエータとして用いた場合の、固定方法と配線取り出し方法の一例を示す斜視図である。図6において、11は圧電体、12は弾性平板、14はL字型ヒンジ部、15は固定部材、26は上部電極パターン、27は下部電極パターン、28a,28bはアクチュエータ用配線、29はアクチュエータ用配線パターンである。全体の構成は前述までとほぼ同じであり、弾性平板12は溶接によって固定部材15に固定されている。すなわち固定部材15と弾性平板12は例えば金属板であり、圧電体11の両面の電極はパターニングされてその1部が上部電極パターン26と下部電極パターン27が設けられ、溶接部はこれら電極パターンを除いた部位となる。各電極パターンは弾性平板12との界面に樹脂層を有し、電気的な絶縁が保たれている。上部電極パターン26はその下部に圧電材料の層を有し、下部用電極との絶縁を確保している。固定部材15上にはアクチュエータ用配線パターン29が設けられ、これは固定部材15表面を通ってさらに外部へと接続されており、アクチュエータ用配線パターン29と上部電極パターン26、及び下部電極パターン27がアクチュエータ用配線28a,28bを介して電気的に接続される。この状態において上部電極と下部電極間に電圧を加えることで、圧電体と弾性平板よりなる変位素子に変位を発生させることができる。
【0029】
変位素子の可動部は長方形の形状を有しているが、変位素子を固定部と回転部材との結合部の方向の寸法、すなわち図面で言えば横方向の寸法よりも、前記方向と直交する幅方向の寸法、すなわち図面でいえば縦方向の寸法が大きい長方形平板形状とすることで、自由端側での変位に対してより大きな駆動力が得られ、同時に共振周波数を上げる作用を有するために耐振性が向上するのである。この方法によれば通常は変位量が低下するが、本発明の圧電アクチュエータは垂直変位が回転変位に変換され、回転によって変位拡大の効果を有するのでこうした問題を回避でき、同時に圧電アクチュエータに高い剛性をもたせることが可能となるのである。
【0030】
(実施の形態2)
以下、実施の形態2における圧電アクチュエータについて、図面を参照しながら説明する。
【0031】
図7は本発明の実施の形態2における、圧電アクチュエータの製造方法を示す図である。
【0032】
図7において、11a,11bは圧電体、12a,12bは弾性平板、13は回転部材、14a,14bはL字型ヒンジ部、26a,26bは上部用配線パターン、27a,27bは下部用配線パターンである。図7(a)において、同一の弾性平板に対し、弾性平板12a,12b、回転部材13、L字型ヒンジ部14a,14bからなる1個のアクチュエータの構成部材が、複数個並行に設けられている。これは例えば1枚の幅の広い金属板をエッチングする等して形成できる。次に図7(b)に示すようにL字型ヒンジ部14a,14bの1部において曲げ加工を行い、L字型ヒンジ部14a,14bと、回転部材13を一体的に、弾性平板12a,12bと直交させる。続いて弾性平板12a,12bに対し、あらかじめ上部電極パターン26a,26b及び下部電極パターン27a,27bが形成された圧電体11a,11bを接着して図7(c)の図に示す状態となる。この後、それぞれの圧電アクチュエータを分割し、他の固定部材等に固定して完成する。
【0033】
以上のような方法によれば、圧電アクチュエータを容易に形成でき、また1枚の基板において複数の圧電アクチュエータの製造が行なえるため、作業性が良い。例えば接着や曲げ加工などの位置決めが一括して行なえ、接着については面積の大きい被着体を用いれば一括して行なうことも可能である。加えて微細な部材の取り扱いも、基板全体で一体で行なうことが出来て容易である。
【0034】
なお本実施の形態においては、曲げ加工後に圧電体の接着を行なったが、圧電体の接着を曲げ加工に先立って行なっても、本発明の利点は失われるものではない。また上部及び下部用配線パターンについては、本実施の形態では接着前にすでに行なっていたが、曲げ加工に先立って配線パターンのない圧電体の接着を行なった後に、上部及び下部用配線パターンのパターニングを行ない、続いて曲げ加工を行なう等の方法によっても形成可能である。
【0035】
【発明の効果】
以上のように本発明は、弾性平板と圧電体との積層体からなり、互いに平行かつ同一線上に配された一対の変位素子と、この変位素子の間にL字型ヒンジ部を介して設けられた両変位素子の変形によって回転可能に支持される回転部材と、前記変位素子の回転部材側との反対側を固定部材によって固定する構成としたので、高い剛性と大きな変位量とを併せ持った小型の圧電アクチュエータを実現できる。そして回転部材に対する回転支持は、突起状の部材で押圧し、あるいは回転部材に設けられた支持孔とを嵌合させる等の方法により、容易に実現できる。そして一体化されたL字型ヒンジ部及び回転部材と弾性平板とを同一平面上に配した基板を形成し、この基板に一体化されて回転部材及びL字型ヒンジ部を弾性平板に対して直角に折り曲げ加工し、弾性平板に対して圧電体を接着する製造方法によれば、L字型ヒンジ部及び回転部材を有する本発明の圧電アクチュエータを一体で、かつ容易に実現でき、各工程の一括処理が可能であるので生産性がよい。
【0036】
本発明の圧電アクチュエータを磁気ヘッドの位置決め用のアクチュエータとして用いることにより、小型であるので機器の小型化が実現できるとともに、耐振性に優れるので情報の安定的に記録でき、かつ高速応答が可能となるので記録の高速化が図れ、加えて大変位であるので位置決めの調整幅の増加が図れるので、位置決めがより容易になる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態におけるアクチュエータの斜視図
【図2】同斜視図
【図3】(a)同アクチュエータの平面図
(b)同アクチュエータの平面図
【図4】同要部である回転部材周辺の断面図
【図5】同要部である磁気ヘッドとその周辺部の斜視図
【図6】同斜視図
【図7】本発明の第2の実施の形態におけるアクチュエータの製造工程図
【図8】従来のアクチュエータの斜視図
【符号の説明】
11a,11b 圧電体
12a,12b 弾性平板
13 回転部材
14a,14b L字型ヒンジ部
15a,15b 固定部材
16 回転支持部材
17 突起部
18 スライダ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a piezoelectric actuator used for, for example, movement of a magnetic head portion in a magnetic recording apparatus, a manufacturing method thereof, and a magnetic head using the piezoelectric actuator.
[0002]
[Prior art]
As a technique related to a conventional piezoelectric actuator for a magnetic head, one disclosed in Japanese Patent Laid-Open No. 5-47126 is known.
[0003]
FIG. 8 is a perspective view showing an example of a conventional actuator for driving a magnetic head. Small displacement elements 81a, 81b, 81c, 81d including a piezoelectric element are bonded to both surfaces of the beams 82a, 82b, and lead wires 84a, 84b, 84c, 84d (84b) are bonded to the respective small displacement elements 81a-81d. , 84d are not shown). The two beams 82a and 82b are joined at both ends, and a slider 83 is attached at one joint, and is attached to the head arm 85 at the other joint. On the slider 83, there are also provided a magnetic head portion for recording and the like and wiring (not shown) thereof.
[0004]
When the minute displacement elements 81a to 81d are piezoelectric elements and electrodes are provided on both surfaces thereof, or when the beams 82a and 82b are made of a conductive material, the lead wires 84a to 84d and the beams 82a and 82b By applying an electric field between the two, the piezoelectric element is deformed. At this time, the piezoelectric element also changes in the longitudinal direction due to the piezoelectric lateral effect simultaneously with the deformation in the thickness direction. The lengths of the beams 82a and 82b also change along with the deformation of the piezoelectric element. If this change occurs in the opposite directions in each of the beams 82a and 82b, that is, the length of one of the beams 82a and 82b increases. In this case, if the drive is performed so that the other is reduced, rotational displacement can be obtained at the magnetic head.
[0005]
These piezoelectric actuators and magnetic heads are usually attached to a magnetic actuator such as a motor that can obtain a larger displacement via another longitudinal member, and positioning is performed by using both of them together. In other words, rough positioning is performed by a motor, and more accurate positioning is performed by a piezoelectric actuator, thereby speeding up positioning and improving accuracy.
[0006]
[Problems to be solved by the invention]
However, since the conventional piezoelectric actuator generally has a small amount of displacement, a high driving voltage is required to obtain a sufficient amount of displacement. Further, in order to obtain a large amount of displacement, when the shape becomes large or the rigidity of the actuator is lowered to facilitate deformation, the resonance frequency is lowered and unnecessary vibration is generated, which hinders driving. In order to be used as an actuator for driving a head of a magnetic recording apparatus, it must be able to move between tracks on a recording medium at a high speed and stably. It must be rigid and must be able to withstand vibrations and gravity from other actuators such as motors.
[0007]
In addition, it is required that a large amount of displacement can be obtained at a low voltage. That is, if the amount of displacement is large, not only can it be moved accurately between tracks, but also the positioning adjustment range can be increased. In order to reduce the size of the circuit and reduce error factors such as noise, driving at a low voltage is required.
[0008]
In order to reduce the size of the entire magnetic recording apparatus, the actuator must be downsized at the same time.
[0009]
An object of the present invention is to provide a small piezoelectric actuator that is more resistant to disturbances and obtains a large amount of displacement, and aims to reduce the size and accuracy of various equipment bodies.
[0010]
[Means for Solving the Problems]
And in order to achieve this objective, this invention has the following structures.
[0011]
According to a first aspect of the present invention, a piezoelectric actuator has two displacement elements, which are a laminate of an elastic flat plate and a piezoelectric body, arranged in parallel and on the same straight line and fixed at one end, and deformation of both displacement elements is performed between both displacement elements. The rotating member that is rotatably supported by is configured in a shape coupled via an L-shaped hinge portion, and rotational displacement is obtained in the rotating member by displacing both displacement elements in opposite directions, The vertical displacement of the displacement element is efficiently converted into a rotational displacement by the L-shaped hinge, and in addition, the displacement is enlarged by the action of the angle and leverage by the rotation, and a larger displacement is obtained. Since the member is supported at the center of rotation and is also fixed by the L-shaped hinge portion, the effect of having high rigidity can be obtained. Further, since the rotation support position is a portion other than the line connecting the joint portion between the L-shaped hinge portion and the rotation member, the rotation member is apparently supported by the apex of the triangle, and the direction other than the rotation direction The effect that the rigidity with respect to the vibration increases is obtained.
[0012]
According to the second aspect of the present invention , a larger displacement amount can be obtained by rotating and supporting the rotating member on the side far from both displacement elements from the straight line connecting the coupling portion with the L-shaped hinge portion. Has an effect.
[0013]
In the third aspect of the invention, since the rotation member is pressed by the protrusion provided on the rotation support member to perform rotation support, the configuration is easy, and the rotation member is only in contact with the tip of the protrusion, so that the friction is low. The effect is that the inhibition of rotational displacement is small .
[0014]
According to the fourth aspect of the present invention , the support member is provided with a support hole, and the protrusion of the rotation support member is fitted into the support hole. The effect of being able to drive is obtained.
[0015]
In the fifth aspect of the invention, the displacement element has a rectangular flat plate shape whose dimension in the width direction perpendicular to the direction is larger than the dimension in the direction of the coupling portion between the fixed portion and the rotating member. With respect to the vertical displacement on the side, a larger driving force can be obtained, and at the same time, the effect of increasing the resonance frequency in the rotational direction can be obtained.
[0016]
In a sixth aspect of the present invention, a process of bending and bonding a piezoelectric body to a large area substrate in which a plurality of elastic flat plates, an L-shaped hinge portion, and a rotating member are arranged in parallel on the same plane is collectively performed. As a result, the productivity can be reduced and the cost can be reduced, and the piezoelectric actuator of claim 1 or less can be easily formed, and the L-shaped hinge portion, the elastic plate, and the rotating member are integrated, so that it is safe. Effects such as excellent reliability and vibration resistance can be obtained.
[0017]
The seventh aspect of the invention is a magnetic head in which a slider and a magnetic head are provided on a rotating member of a piezoelectric actuator. Therefore, since the rigidity is high, the positioning operation on the track is not affected by disturbance and positioning is performed with a large amount of displacement. Thus, the effect is obtained that the positioning on the track can be surely performed .
[0019]
DETAILED DESCRIPTION OF THE INVENTION
(Embodiment 1)
Hereinafter, the piezoelectric actuator according to the first embodiment of the present invention will be described with reference to the drawings.
[0020]
FIG. 1 is a perspective view of a piezoelectric actuator according to Embodiment 1 of the present invention.
[0021]
In FIG. 1, 11a and 11b are piezoelectric bodies, 12a and 12b are elastic flat plates, 13 is a rotating member, 14a and 14b are L-shaped hinge parts, 15a and 15b are fixing members, 16 is a rotating support member, and 17 is a protruding part. , 18 is a slider. The elastic flat plates 12a and 12b are arranged in parallel and on the same line, and the piezoelectric bodies 11a and 11b are bonded to one side to constitute a displacement element. The elastic flat plates 12a and 12b are fixed at one end by fixing members 15a and 15b, joined to the L-shaped hinge portions 14a and 14b at the other end, and further rotated between the L-shaped hinge portions 14a and 14b. 13 is arranged orthogonal to the plane of the elastic flat plates 12a and 12b, and a part of the rotating member 13 and the L-shaped hinge portions 14a and 14b are coupled to each other. The rotation support member 16 has a longitudinal shape, and a projection 17 is provided in the vicinity of the tip. The tip of the projection 17 abuts the rotation member 13, and the rotation member 13 is appropriately pressed by the rotation support member 16. Then, the tip 17 of the protrusion 17 is pressurized almost at a point. In addition, on one surface of the rotating member 13, the slider 18 is fixed by a method such as adhesion, and is supported in a displaceable state in the same manner as the rotating member 13.
[0022]
Electrodes are provided on both surfaces of the piezoelectric bodies 11a and 11b, respectively. The piezoelectric bodies 11a and 11b are deformed by applying a voltage between both electrodes, and are bonded to the elastic plates 12a and 12b. A deflection displacement occurs at the end portions on the side of the portions 14a and 14b. By reversing the direction of the voltage applied to the piezoelectric bodies 11a and 11b, the displacement element is displaced in the opposite direction. This displacement is transmitted to the rotating member 13 via the L-shaped hinge portions 14 a and 14 b and is rotationally displaced together with the slider 18. This rotational displacement is centered on the point constrained by the protrusion 17, but when the rotating member 13 is pressed by the protrusion 17 as described above, the area, material, etc. of the contact portions of each other It is possible to increase the friction so that the center of rotation can be determined more completely by selecting an appropriate condition, or conversely, the displacement can be increased by reducing the friction. When the rotation center is constrained by increasing the friction, the amount of displacement decreases, but the rigidity as an actuator increases, so that the vibration resistance is improved and a restraint response is possible. And since the displacement by the actuator is a rotational displacement, if the size of the rotating member or slider is increased, the angle change caused by the rotation will be expanded to a large displacement by the lever principle, so the rigidity is improved and the amount of displacement is also secured. It can be done.
[0023]
When the rotation center is constrained, the amount of displacement changes depending on the position. FIG. 2 is a perspective view showing the piezoelectric actuator of the present invention, which is different from FIG. 11a and 11b are piezoelectric bodies, 12a and 12b are elastic flat plates, 13 is a rotating member, 14a and 14b are L-shaped hinge portions, 15a and 15b are fixed members, 18 is a slider, and the structure is described in FIG. It is the same. The rotating member 13 and the elastic flat plates 12a and 12b are connected to each other through the L-shaped hinge portions 14a and 14b. By bringing the rotation center into contact with the rotation support portion on a straight line passing through the center between the character-shaped hinge portions and providing a rotation center, the balance at the time of rotation is improved, so that driving can be performed stably. Therefore, although the center of rotation is provided on the straight line, the amount of rotational displacement changes depending on this position. When the center of rotation is provided on the side farther from the straight line connecting the centers of the L-shaped hinge portions 14a and 14b with respect to the elastic plates 12a and 12b and the piezoelectric bodies 11a and 11b, the elastic plates 12a and 12b and the piezoelectric bodies 11a are reversed. , 11b, the amount of displacement is larger than that provided on the side close to 11b. However, even when the rotation center is set on the far side, the amount of displacement changes, and the frequency of resonance in the same direction as the rotational displacement, the frequency of other unnecessary resonances, and the like also change. This is because the optimum position changes depending on the shape of the L-shaped hinge portion, the coupling position with the rotating member, and the like, and therefore, the optimum position is determined in consideration of these points.
[0024]
In the present invention, an L-shaped hinge is used, which is effective for obtaining rotational displacement. FIGS. 3A and 3B are plan views for explaining this point. 11a and 11b are piezoelectric bodies, 12a and 12b are elastic flat plates, 14a and 14b are L-shaped hinge portions, 15a. 15b are fixed members, 18 is a slider, 19 is a rotation support portion, and 20a and 20b are linear hinge portions (rotation members are omitted). In FIG. 3 a, linear hinge portions 20 a and 20 b are located between the elastic plates 12 a and 12 b and the slider 18. In this case, the displacement of the displacement element (unimorph type element) constituted by the piezoelectric bodies 11a and 11b and the elastic plates 12a and 12b is as shown by the solid line arrow, and is substantially perpendicular to the displacement element surface. The displacement is transmitted to the slider 18 by the linear hinge portions 20a and 20b, and the displacement is performed in the same direction as the solid line arrow as shown by a dotted line arrow. On the other hand, when the L-shaped hinge portion is used as shown in FIG. 3B, the displacement as indicated by the solid line arrow is apparently converted into the oblique direction as indicated by the dotted line arrow. This is because the hinge portion is L-shaped, so that deflection is likely to occur, and this deflection is due to the effect of changing the direction of displacement. Further, by using the deflection of the L-shaped hinge portion, the slider is not restrained more than necessary, and the displacement is effectively transmitted. If the direction of the dotted arrow is close to the tangential direction of the rotational displacement, the rotational displacement can be obtained effectively.
[0025]
FIG. 4 is a cross-sectional view showing an example for more effectively carrying out rotation support, wherein 13 is a rotation member, 16 is a rotation support member, 17 is a protrusion, 18 is a slider, and 21 is a support hole. The rotating member 13 is provided with a support hole 21 that is a through hole, and is coupled to the slider 18. For example, a magnetic head portion is provided in the vicinity of one end of the slider 18 when used as a head for a magnetic recording apparatus. The protrusion 17 provided on the rotation support member 16 presses the slider 18 while fitting into the support hole 21. According to such a configuration, the position of the rotation center can be easily determined, there is no fear that the rotation center is shifted during driving, and the position of the rotation center is prevented from being displaced due to external vibrations, etc. Since it also functions as a stopper against a load applied from the vertical direction of the drawing of FIG. 4, it is possible to prevent the actuator from being damaged.
[0026]
FIG. 5 is a perspective view showing an example in which the piezoelectric actuator of the present invention is used as an actuator for driving a magnetic head for a magnetic recording apparatus. In FIG. 5, 15 is a fixing member, 16 is a rotation support member, 18 is a slider, 22 is a piezoelectric actuator section, 23a and 23b are head wiring patterns, 24 is head wiring, and 25 is a recording medium. As described above, the piezoelectric actuator unit 22 is composed of a displacement element composed of an elastic flat plate and a piezoelectric body, an L-shaped hinge unit, and a rotating member. The piezoelectric actuator unit 22 is fixed by a fixed member 15, and a slider 18 is provided on the movable unit. . As shown in FIG. 4, the slider 18 is provided with a magnetic head portion, and in addition, a wiring pattern for applying a signal to the magnetic head portion. The fixing member 15 is formed by processing a single plate-like member, provided with a groove for disposing the actuator portion 22 at the tip, and having a portion molded at a right angle by bending at the tip. The elastic flat plate of the actuator part 22 is fixed to this part. Head wiring patterns 23a, 23b are formed on one surface of the fixing member 15 so as to be electrically insulated from the fixing member 15. The head wiring patterns 23a, 23b and the magnetic field on the slider are formed. A wiring pattern for the head portion is connected via the head wiring 24. Also, an actuator wiring pattern (not shown) for driving the piezoelectric actuator section 22 is formed on the other surface of the fixing member 15, and an external wiring extraction section (not shown) is formed together with the head wiring patterns 23a and 23b. ). Further, the rotation support member 16 is fixed to the fixed member 15, and a part of the piezoelectric actuator portion 22 is pressed to form a rotation center. In this state, the slider 18 is disposed so as to float on the recording medium 25 when the recording medium 25 rotates, and the vicinity of the other end of the fixing member 15 is attached to another large displacement actuator.
[0027]
In order to quickly perform rough positioning on a rotating recording medium, the fixed member is rotated by a large displacement actuator such as a motor, and the slider is rotated by the piezoelectric actuator unit to perform accurate positioning. . When the actuator is moved by the large displacement actuator, the slider or the piezoelectric actuator portion receives an external force. When the rigidity of the piezoelectric actuator is low, distortion occurs or the driving force is inferior to the external force, so that accurate positioning cannot be performed. However, according to the piezoelectric actuator of the present invention, since it has both high rigidity and a large amount of displacement, positioning in a wider range is possible without being affected by external force. As a result, the recording speed of the magnetic head is improved, and the actuator is small, so that the entire apparatus is not large, and can contribute to miniaturization and high performance.
[0028]
FIG. 6 is a perspective view showing an example of a fixing method and a wiring extracting method when the piezoelectric actuator of the present invention is used as a magnetic head driving actuator. In FIG. 6, 11 is a piezoelectric body, 12 is an elastic plate, 14 is an L-shaped hinge, 15 is a fixing member, 26 is an upper electrode pattern, 27 is a lower electrode pattern, 28a and 28b are actuator wirings, and 29 is an actuator. Wiring pattern. The overall configuration is substantially the same as described above, and the elastic flat plate 12 is fixed to the fixing member 15 by welding. That is, the fixing member 15 and the elastic flat plate 12 are, for example, metal plates, the electrodes on both sides of the piezoelectric body 11 are patterned, and one part thereof is provided with the upper electrode pattern 26 and the lower electrode pattern 27, and the welded portion is formed of these electrode patterns. It becomes the removed part. Each electrode pattern has a resin layer at the interface with the elastic flat plate 12, and electrical insulation is maintained. The upper electrode pattern 26 has a layer of piezoelectric material in the lower portion thereof, and ensures insulation from the lower electrode. An actuator wiring pattern 29 is provided on the fixing member 15, and is further connected to the outside through the surface of the fixing member 15. The actuator wiring pattern 29, the upper electrode pattern 26, and the lower electrode pattern 27 are provided. They are electrically connected via the actuator wirings 28a and 28b. By applying a voltage between the upper electrode and the lower electrode in this state, a displacement can be generated in the displacement element made of the piezoelectric body and the elastic plate.
[0029]
Although the movable part of the displacement element has a rectangular shape, the displacement element is orthogonal to the direction rather than the dimension in the direction of the coupling part between the fixed part and the rotating member, that is, the lateral dimension in the drawing. By making the rectangular plate shape with a large dimension in the width direction, that is, in the vertical direction in the drawing, a larger driving force can be obtained with respect to the displacement on the free end side, and at the same time, the resonance frequency is increased. In addition, the vibration resistance is improved. Although this method usually reduces the amount of displacement, the piezoelectric actuator of the present invention converts the vertical displacement into a rotational displacement, which has the effect of enlarging the displacement by rotation, thus avoiding such a problem, and at the same time, having high rigidity in the piezoelectric actuator. It becomes possible to have.
[0030]
(Embodiment 2)
Hereinafter, the piezoelectric actuator according to the second embodiment will be described with reference to the drawings.
[0031]
FIG. 7 is a diagram showing a method for manufacturing a piezoelectric actuator in the second embodiment of the present invention.
[0032]
In FIG. 7, 11a and 11b are piezoelectric bodies, 12a and 12b are elastic plates, 13 is a rotating member, 14a and 14b are L-shaped hinges, 26a and 26b are upper wiring patterns, and 27a and 27b are lower wiring patterns. It is. In FIG. 7 (a), a plurality of constituent members of one actuator including elastic flat plates 12a and 12b, a rotating member 13, and L-shaped hinge portions 14a and 14b are provided in parallel to the same elastic flat plate. Yes. This can be formed, for example, by etching one wide metal plate. Next, as shown in FIG. 7 (b), bending is performed at one part of the L-shaped hinge portions 14a and 14b, and the L-shaped hinge portions 14a and 14b and the rotating member 13 are integrally formed with the elastic flat plate 12a, It is made orthogonal to 12b. Subsequently, the piezoelectric bodies 11a and 11b on which the upper electrode patterns 26a and 26b and the lower electrode patterns 27a and 27b are formed in advance are bonded to the elastic flat plates 12a and 12b, and the state shown in FIG. 7C is obtained. Thereafter, each piezoelectric actuator is divided and fixed to another fixing member or the like to complete.
[0033]
According to the method as described above, the piezoelectric actuator can be easily formed, and a plurality of piezoelectric actuators can be manufactured on one substrate, so that workability is good. For example, positioning such as bonding and bending can be performed all at once, and bonding can be performed all at once by using an adherend having a large area. In addition, handling of fine members can be easily performed as a whole on the entire substrate.
[0034]
In this embodiment, the piezoelectric body is bonded after the bending process. However, even if the piezoelectric body is bonded before the bending process, the advantages of the present invention are not lost. In addition, the upper and lower wiring patterns have already been formed in this embodiment before bonding. However, the upper and lower wiring patterns are patterned after bonding the piezoelectric body having no wiring pattern prior to bending. It can also be formed by a method of performing bending and subsequently bending.
[0035]
【The invention's effect】
As described above, the present invention comprises a laminated body of an elastic flat plate and a piezoelectric body, and is provided with a pair of displacement elements arranged in parallel and on the same line, and an L-shaped hinge portion between the displacement elements. Since the rotating member that is rotatably supported by the deformation of the both displacement elements and the opposite side of the displacement element to the rotating member side are fixed by the fixing member, it has both high rigidity and a large amount of displacement. A small piezoelectric actuator can be realized. And the rotation support with respect to a rotation member can be easily implement | achieved by methods, such as pressing with a protrusion-shaped member or fitting with the support hole provided in the rotation member. Then, a substrate in which the integrated L-shaped hinge portion and the rotating member and the elastic plate are arranged on the same plane is formed, and the rotating member and the L-shaped hinge portion are integrated with the substrate with respect to the elastic plate. According to the manufacturing method in which the piezoelectric body is bent at a right angle and the piezoelectric body is bonded to the elastic flat plate, the piezoelectric actuator of the present invention having the L-shaped hinge portion and the rotating member can be easily and integrally realized. Productivity is good because batch processing is possible.
[0036]
By using the piezoelectric actuator of the present invention as an actuator for positioning a magnetic head, it is possible to reduce the size of the device because it is small, and it is possible to stably record information and to respond at high speed because of excellent vibration resistance. Therefore, the recording speed can be increased, and in addition, since the displacement is large, the positioning adjustment width can be increased, so that the positioning becomes easier.
[Brief description of the drawings]
1 is a perspective view of an actuator according to a first embodiment of the present invention. FIG. 2 is a perspective view of the actuator. FIG. 3A is a plan view of the actuator. FIG. 1B is a plan view of the actuator. FIG. 5 is a perspective view of a magnetic head as a main part and a peripheral part thereof. FIG. 6 is a perspective view of the main part. FIG. 7 is an actuator according to a second embodiment of the invention. Manufacturing process diagram [Fig. 8] Perspective view of conventional actuator [Explanation of symbols]
11a, 11b Piezoelectric bodies 12a, 12b Elastic flat plate 13 Rotating members 14a, 14b L-shaped hinge portions 15a, 15b Fixed member 16 Rotating support member 17 Protruding portion 18 Slider

Claims (7)

弾性平板と圧電体との積層体からなり、互いに平行かつ同一線上に配された一対の変位素子と、この変位素子の間にL字型ヒンジ部を介して設けた両変位素子の変形によって回転可能に支持される回転部材と、前記変位素子の回転部材側と反対側を固定部材によって固定されるものであって、前記回転部材は、一対の前記L字型ヒンジ部と回転部材との結合部を結ぶ直線から離れた位置で回転支持されている圧電アクチュエータ。  It consists of a laminate of an elastic flat plate and a piezoelectric body, and is rotated by deformation of a pair of displacement elements arranged in parallel and on the same line, and both displacement elements provided between the displacement elements via an L-shaped hinge. A rotating member that is supported and a side opposite to the rotating member side of the displacement element are fixed by a fixing member, and the rotating member is a combination of the pair of L-shaped hinge portions and the rotating member. Piezoelectric actuator that is rotatably supported at a position away from the straight line connecting the parts. 回転部材を支持する回転支持部材を備え、この回転支持部材によって回転支持される部位は、前記回転部材と一対の前記L字型ヒンジ部との結合部を結ぶ直線に対して、変位素子より遠い位置に設けた請求項1に記載の圧電アクチュエータ。  A rotation support member that supports the rotation member is provided, and a portion that is rotatably supported by the rotation support member is farther than a displacement element with respect to a straight line that connects the coupling portion between the rotation member and the pair of L-shaped hinge portions. The piezoelectric actuator according to claim 1 provided at a position. 回転支持部材は突起部を備え、この突起部により回転部材を支持する請求項2に記載の圧電アクチュエータ。  The piezoelectric actuator according to claim 2, wherein the rotation support member includes a protrusion, and the rotation member is supported by the protrusion. 回転部材は回転支持部材の突起部と嵌合して支持する支持孔を備えた請求項3に記載の圧電アクチュエータ。  The piezoelectric actuator according to claim 3, wherein the rotation member includes a support hole that fits and supports the protrusion of the rotation support member. 固定部材より露出する弾性平板は、前記固定部材から回転部材に向かう方向の寸法が、これらと直交する幅方向の寸法よりも小さい請求項1に記載の圧電アクチュエータ。Elastic flat plate exposed from the fixing member, the dimension in the direction from the fixed member toward the rotating member, a piezoelectric actuator according to a small claim 1 than the dimension in the width direction orthogonal to these. 一体化されたL字型ヒンジ部及び回転部材と弾性平板とを同一平面上に配した基板を形成し、この基板に一体化されて回転部材及びL字型ヒンジ部を弾性平板に対して直角に折り曲げ加工し、弾性平板に対して圧電体を接着する請求項1に記載の圧電アクチュエータの製造方法。  A substrate in which the L-shaped hinge portion and the rotating member integrated with the elastic plate are arranged on the same plane is formed, and the rotating member and the L-shaped hinge portion are integrated with the substrate at a right angle to the elastic plate. The method for manufacturing a piezoelectric actuator according to claim 1, wherein the piezoelectric body is bonded to the elastic flat plate by bending the substrate into an elastic plate. 弾性平板と圧電体との積層体からなり、互いに平行かつ同一線上に配された一対の変位素子と、この変位素子の間にL字型ヒンジ部を介して設けた両変位素子の変形によって回転可能に支持される回転部材と、前記変位素子の回転部材側と反対側を固定部材によって固定されるとともに、前記回転部材を、一対の前記L字型ヒンジ部と回転部材との結合部を結ぶ直線から離れた位置で回転支持されている圧電アクチュエータと、この圧電アクチュエータの回転部材に固定されたスライダと、このスライダに設けられた磁気ヘッドとからなる磁気ヘッド。  It consists of a laminate of an elastic flat plate and a piezoelectric body, and is rotated by deformation of a pair of displacement elements arranged in parallel and on the same line, and both displacement elements provided between the displacement elements via an L-shaped hinge. The rotating member that is supported and the side opposite to the rotating member side of the displacement element are fixed by a fixing member, and the rotating member is connected to a connecting portion between the pair of L-shaped hinge portions and the rotating member. A magnetic head comprising a piezoelectric actuator rotatably supported at a position away from a straight line, a slider fixed to a rotating member of the piezoelectric actuator, and a magnetic head provided on the slider.
JP2001056504A 2001-03-01 2001-03-01 Piezoelectric actuator and manufacturing method thereof, and magnetic head using this piezoelectric actuator Expired - Fee Related JP4752119B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001056504A JP4752119B2 (en) 2001-03-01 2001-03-01 Piezoelectric actuator and manufacturing method thereof, and magnetic head using this piezoelectric actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001056504A JP4752119B2 (en) 2001-03-01 2001-03-01 Piezoelectric actuator and manufacturing method thereof, and magnetic head using this piezoelectric actuator

Publications (2)

Publication Number Publication Date
JP2002262588A JP2002262588A (en) 2002-09-13
JP4752119B2 true JP4752119B2 (en) 2011-08-17

Family

ID=18916521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001056504A Expired - Fee Related JP4752119B2 (en) 2001-03-01 2001-03-01 Piezoelectric actuator and manufacturing method thereof, and magnetic head using this piezoelectric actuator

Country Status (1)

Country Link
JP (1) JP4752119B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6135175A (en) * 1984-07-25 1986-02-19 Fuji Elelctrochem Co Ltd Piezoelectric motor
JPH06113564A (en) * 1992-09-29 1994-04-22 Ricoh Co Ltd Actuator
JP2000322847A (en) * 1999-05-13 2000-11-24 Seiko Instruments Inc Memory and micro-positioner

Also Published As

Publication number Publication date
JP2002262588A (en) 2002-09-13

Similar Documents

Publication Publication Date Title
JP5931625B2 (en) Suspension for disk unit
US8094416B2 (en) Head suspension and piezoelectric actuator
JP3675315B2 (en) Head gimbal assembly having an actuator for minute positioning of a head element and disk apparatus having the head gimbal assembly
JP5931624B2 (en) Suspension for disk unit
US8144436B2 (en) Head suspension
JP5933403B2 (en) Suspension for disk unit
JP5875216B2 (en) Manufacturing method of electrical connection structure of piezoelectric element
US7372669B2 (en) Magnetic disk drive, wiring connection structure and terminal structure
JP3716164B2 (en) Head support mechanism
US20100290158A1 (en) Head suspension
JP3975688B2 (en) Head element micropositioning actuator, head gimbal assembly provided with the actuator, and method of manufacturing the actuator
JP2003228930A (en) Head gimbal assembly equipped with actuator for fine positioning of head element, disk drive equipped with head gimbal assembly, and manufacturing method for the head gimbal assembly
JP2002133803A (en) Very small positioning actuator for head element, head gimbal assembly equipped with the actuator, disk device equipped with the head gimbal assembly, actuator manufacturing method, and head gimbal assembly manufacturing method
JP2010154691A (en) Electrical connecting structure and electrical connecting method for piezoelectric element, piezoelectric actuator, and head suspension
US20100302687A1 (en) Piezoelectric element with electrode and head suspension
CN109637556B (en) Circuit structure of disk drive suspension
US9196277B2 (en) Terminal with terminal bender having stable bend, wiring member, and head suspension
US8335054B2 (en) Head suspension piezoelectric actuator with a nonconductive adhesive joining together the circumferential edge of an actuator base opening with a circumferential side face of the piezoelectric element
JP2006209918A (en) Manufacturing method of head gimbal assembly, head gimbal assembly, and magnetic disk drive unit
JP6067347B2 (en) Manufacturing method of head gimbal assembly, manufacturing method of flexure constituting the same, and flexure sheet used for manufacturing head gimbal assembly and flexure
JP4752119B2 (en) Piezoelectric actuator and manufacturing method thereof, and magnetic head using this piezoelectric actuator
JP3348777B2 (en) Differential piezoelectric actuator
JP4585223B2 (en) Piezoelectric actuator and head suspension device using the piezoelectric actuator
JP2001211668A (en) Fine positioning actuator, thin film magnetic head device positioning actuator and head suspension assembly having the same
US7170718B2 (en) Wiring body with flexure sheet connecting the head slider and the driving unit in a disk apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080225

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20080312

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110406

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110509

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees