JP4750153B2 - Acoustic device and acoustic adjustment method - Google Patents

Acoustic device and acoustic adjustment method Download PDF

Info

Publication number
JP4750153B2
JP4750153B2 JP2008138827A JP2008138827A JP4750153B2 JP 4750153 B2 JP4750153 B2 JP 4750153B2 JP 2008138827 A JP2008138827 A JP 2008138827A JP 2008138827 A JP2008138827 A JP 2008138827A JP 4750153 B2 JP4750153 B2 JP 4750153B2
Authority
JP
Japan
Prior art keywords
sound pressure
user
sound
pressure level
frequency band
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008138827A
Other languages
Japanese (ja)
Other versions
JP2009288354A (en
Inventor
和男 寅市
光晃 中村
泰男 諸岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2008138827A priority Critical patent/JP4750153B2/en
Publication of JP2009288354A publication Critical patent/JP2009288354A/en
Application granted granted Critical
Publication of JP4750153B2 publication Critical patent/JP4750153B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To propose an acoustic device and an acoustic adjustment method, for playing back in excellent sound quality according to user's auditory characteristics. <P>SOLUTION: In an auditory detection section 2b, a sound pressure level is gradually raised for each detection sound of each frequency band, and the sound pressure level at which the user can hear the detection sound is determined as a perception sound pressure level for each frequency band, according to timing of receiving a confirmation signal from a confirmation signal input section 10. Thereby, the acoustic processing section 2a easily determines where the specified frequency band which is hard to listen for the user is, or is not, from sound pressure difference between perception sound pressure level and a reference sound pressure level, and surely amplifies the sound pressure level in only the frequency band which is hard to listen for the user, by amplifiers 5a, 5b, 5c and so on, which are respectively provided for each frequency band, and consequently, music is adjusted to the sound pressure level which is easy to listen for the user in all frequency bands and played back in the excellent sound quality according to the user's auditory characteristics. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、音響装置及び音響調整方法に関し、例えば所定のサンプリング周波数でサンプリングされた時間方向に並ぶ離散データ間を補間してアナログ信号を生成する際に適用して好適なものである。   The present invention relates to an acoustic device and an acoustic adjustment method, and is preferably applied when, for example, an analog signal is generated by interpolating between discrete data arranged in a time direction sampled at a predetermined sampling frequency.

従来、オーディオ装置においては、例えばCD(Compact Disc)やDVD(Digital Versatile Disc)等の記録媒体を再生する際に、音量摘み(ボリューム摘み)が操作されることにより、スピーカから出力される音量が変化し、ユーザが難聴者や高齢者であっても、再生音を聞き取り易くできる(例えば、特許文献1参照)。
特開2004−260518号公報
2. Description of the Related Art Conventionally, in an audio device, for example, when playing a recording medium such as a CD (Compact Disc) or a DVD (Digital Versatile Disc), the volume output from the speaker is increased by operating the volume control. Even if the user is a deaf or elderly person, the reproduced sound can be easily heard (see, for example, Patent Document 1).
JP 2004-260518 A

しかしながら、実際には難聴者や高齢者であっても、全ての周波数帯域が聞き取り難いわけではなく、ある特定の周波数帯域のみが聞き取り難い場合もある。このような場合には、単に音量を増加させると、聞き取り易い周波数帯域の音量も増加することによって、他の周波数帯域が聞き取り難くなり、その結果、音質が劣ってしまうという問題があった。そこで、各ユーザの聴覚特性や音楽の種類等に応じてユーザの聴覚特性に適した音質に調整できることが望まれている。   However, even if it is a hearing-impaired person or an elderly person, not all frequency bands are difficult to hear, and only a specific frequency band may be difficult to hear. In such a case, if the volume is simply increased, the volume of the frequency band that is easy to hear increases, and it becomes difficult to hear other frequency bands, resulting in a problem that the sound quality is deteriorated. Therefore, it is desired to be able to adjust the sound quality suitable for the user's auditory characteristics according to each user's auditory characteristics, the type of music, and the like.

本発明は以上の点を考慮してなされたもので、ユーザの聴覚特性に応じた良好な音質で再生することができる音響装置及び音響調整方法を提案することを目的とする。   The present invention has been made in consideration of the above points, and an object of the present invention is to propose an acoustic apparatus and an acoustic adjustment method that can be reproduced with good sound quality according to the user's auditory characteristics.

かかる課題を解決するため本発明の請求項1の音響装置は、ユーザが検知した最小の音圧レベルである知覚音圧レベルを周波数帯域毎に特定し、該ユーザの聴覚特性を検査する聴覚検査手段と、該ユーザに聴取させる音楽が音響信号として入力部から入力され、前記音響信号の周波数特性を、前記聴覚検査手段からの出力結果に基づいて前記ユーザの聴覚特性に適した周波数特性に調整する調整手段とを備え、前記聴覚検査手段は、一般的なユーザが周波数帯域毎に聞き取った最小の音圧レベルを表した統計的な標準音圧曲線を記憶しており、該標準音圧曲線の標準音圧レベルと、前記知覚音圧レベルとの比である音圧係数を、前記ユーザが検査した周波数帯域毎に算出し、検査した前記周波数帯域の間毎に該音圧係数と周波数帯域との関係式を生成し、これら複数の前記関係式を基に知覚音圧レベル傾向を推測し、その推測結果から前記ユーザが聞き取り難い前記音響信号の周波数帯域の音圧レベルを、前記調整手段によって増幅させることを特徴とする。
In order to solve this problem, an audio device according to claim 1 of the present invention specifies a perceived sound pressure level, which is a minimum sound pressure level detected by a user, for each frequency band, and tests an auditory characteristic of the user. means, music to be listened to by the user is inputted from the input unit as an acoustic signal, adjusting the frequency characteristic of the acoustic signal, the frequency characteristics suitable for the hearing characteristics of the user based on the output result from the hearing test device The auditory test means stores a statistical standard sound pressure curve representing a minimum sound pressure level heard by a general user for each frequency band, and the standard sound pressure curve. A sound pressure coefficient, which is a ratio between the standard sound pressure level of the sound and the perceived sound pressure level, is calculated for each frequency band examined by the user, and the sound pressure coefficient and the frequency band between the examined frequency bands Relationship with Generates, that infer perceived sound pressure level trend based on the plurality of the relational equation, the sound pressure level of the frequency band of the user listening difficult the acoustic signal from the speculative result and amplified by the adjusting means It is characterized by.

また、本発明の請求項2の音響装置は、前記聴覚検査手段は、検査音に対するユーザからの応答があるまで周波数帯域毎に前記検査音の音圧レベルを増加させながら前記ユーザに対して該検査音を提示する検査音出力手段と、前記ユーザからの応答によ前記周波数帯域毎に前記知覚音圧レベルを特定する特定手段とを備え、前記調整手段は、入力された前記音響信号を複数の周波数帯域に分離する帯域分離部を備え、前記帯域分離部にて分離した前記周波数帯域毎に前記ユーザが聞き取り難い周波数帯域の音圧レベルを、前記推測結果を基に増減させることを特徴とする。
The acoustic apparatus according to claim 2 of the present invention, the hearing test device until there is a response from the user to the test sound, to the user while increasing the sound pressure level of the test sound for each frequency band comprising: a test sound output means for presenting the test sound, and a specifying means for specifying the perceived sound pressure level by Ri for each of the frequency bands in response from the user, said adjustment means, the inputted acoustic signal A band separation unit that separates the frequency band into a plurality of frequency bands, and for each of the frequency bands separated by the band separation unit, the sound pressure level of the frequency band that is difficult for the user to hear is increased or decreased based on the estimation result. Features.

また、本発明の請求項3の音響装置は、前記聴覚検査手段は、前記音圧係数と周波数帯域との関係式に基づいて、前記知覚音圧レベルが特定された周波数帯域以外の周波数帯域における前記ユーザ固有の知覚音圧レベル傾向を算出して全周波数帯域の前記知覚音圧レベル傾向を示した知覚音圧曲線を、前記推測結果として生成する生成手段を備え、前記調整手段は、前記知覚音圧曲線に基づいて各前記周波数帯域毎に音圧レベルを増減させることを特徴とする。
According to a third aspect of the present invention, in the audio device according to the third aspect of the present invention, the auditory inspection unit is configured to use a frequency band other than the frequency band in which the perceived sound pressure level is specified based on a relational expression between the sound pressure coefficient and the frequency band. And generating means for generating a perceptual sound pressure curve indicating the perceived sound pressure level tendency of the entire frequency band by calculating the user-specific perceived sound pressure level tendency, and the adjusting means includes the perception The sound pressure level is increased or decreased for each of the frequency bands based on a sound pressure curve.

また、本発明の請求項4の音響装置は、前記知覚音圧曲線は周波数に関するn次多項式で表し、該n次多項式に基づき各周波数における音圧調整レベルを生成することを特徴とする。   The acoustic device according to claim 4 of the present invention is characterized in that the perceived sound pressure curve is represented by an nth order polynomial relating to frequency, and a sound pressure adjustment level at each frequency is generated based on the nth order polynomial.

また、本発明の請求項5の音響装置は、前記聴覚検査手段には、予め生成した複数の前記知覚音圧曲線が記憶されていることを特徴とする。   The acoustic device according to claim 5 of the present invention is characterized in that a plurality of the perceptual sound pressure curves generated in advance are stored in the auditory test means.

また、本発明の請求項6の音響装置は、 前記聴覚検査手段に記憶された複数の前記知覚音圧曲線のうち、所望の前記知覚音圧曲線をユーザに選択させるための選択手段を備えることを特徴とする。   Moreover, the acoustic device according to claim 6 of the present invention includes a selection unit for causing a user to select a desired perceived sound pressure curve among the plurality of perceived sound pressure curves stored in the auditory examination unit. It is characterized by.

また、本発明の請求項7の音響装置は、 前記検査音出力手段は、聴覚特性検査のための微小音を発生させる微小音発生手段と、前記ユーザが前記微小音を知覚したとき、前記ユーザに確認信号を入力させるための確認信号入力手段とを備えることを特徴とする。   The sound device according to claim 7 of the present invention is characterized in that the inspection sound output means includes a minute sound generating means for generating a minute sound for an auditory characteristic inspection, and the user when the user perceives the minute sound. And a confirmation signal input means for inputting a confirmation signal.

また、本発明の請求項8の音響調整方法は、聴覚検査手段によって、ユーザが検知した最小の音圧レベルである知覚音圧レベルを周波数帯域毎に特定し、該ユーザの聴覚特性を検査する聴覚検査ステップと、一般的なユーザが周波数帯域毎に聞き取った最小の音圧レベルを表した統計的な標準音圧曲線を記憶した前記聴覚検査手段によって、該標準音圧曲線の標準音圧レベルと、前記知覚音圧レベルとの比である音圧係数を、前記ユーザが検査した周波数帯域毎に算出する算出ステップと、該ユーザに聴取させる音楽が音響信号として入力部から入力され、調整手段によって、前記音響信号の周波数特性を、前記聴覚検査ステップを行う前記聴覚検査手段からの出力結果に基づいて前記ユーザの聴覚特性に適した周波数特性に調整する調整ステップとを備え、前記調整ステップでは、検査した前記周波数帯域の間毎に前記音圧係数と周波数帯域との関係式を生成し、これら複数の前記関係式を基に知覚音圧レベル傾向を推測し、その推測結果から前記ユーザが聞き取り難い前記音響信号の周波数帯域の音圧レベルを、前記調整手段によって増幅させることを特徴とする。 In the acoustic adjustment method according to claim 8 of the present invention, the perceptual sound pressure level, which is the minimum sound pressure level detected by the user, is specified for each frequency band by the hearing test means, and the user's auditory characteristics are tested. A standard sound pressure level of the standard sound pressure curve by the auditory test step and the auditory test means storing a statistical standard sound pressure curve representing a minimum sound pressure level heard by a general user for each frequency band; And a calculation step of calculating a sound pressure coefficient, which is a ratio to the perceived sound pressure level, for each frequency band examined by the user, and music to be listened to by the user is input from the input unit as an acoustic signal, and adjusting means Accordingly, the frequency characteristic of the acoustic signal and adjusts the frequency characteristics suitable for hearing characteristics of the user based on the output result from the hearing test means for performing the hearing test step adjustment scan In the adjusting step, a relational expression between the sound pressure coefficient and the frequency band is generated for each of the examined frequency bands, and a perceived sound pressure level tendency is determined based on the plurality of the relational expressions. The sound pressure level in the frequency band of the acoustic signal that is difficult for the user to hear from the estimation result is amplified by the adjusting means.

また、本発明の請求項9の音響調整方法は、記聴覚検査ステップは、検査音に対するユーザからの応答があるまで周波数帯域毎に前記検査音の音圧レベルを増加させながら前記ユーザに対して該検査音を提示する検査音出力ステップと、前記ユーザからの応答によ前記周波数帯域毎に前記知覚音圧レベルを特定する特定ステップとを備え、前記調整ステップは、帯域分離部によって、前記入力部からの前記音響信号を複数の周波数帯域に分離し、前記調整手段によって、前記帯域分離部にて分離した前記周波数帯域毎に前記ユーザが聞き取り難い周波数帯域の音圧レベルを、前記推測結果を基に増減させることを特徴とする。
The acoustic adjustment method according to claim 9 of the present invention, prior Symbol hearing test step, until there is a response from the user to the test sound, the user while increasing the sound pressure level of the test sound for each frequency band a test sound output step of presenting the test sound for, and a specifying step of specifying the perceived sound pressure level by Ri for each of the frequency bands in response from the user, the adjusting step, the band separation unit The sound signal from the input unit is separated into a plurality of frequency bands, and the sound pressure level of the frequency band that is difficult for the user to hear for each of the frequency bands separated by the band separation unit by the adjustment unit, It is characterized by increasing or decreasing based on the estimation result .

また、本発明の請求項10の音響調整方法は、前記聴覚検査ステップは、前記音圧係数と周波数帯域との関係式に基づいて、前記知覚音圧レベルが特定された周波数帯域以外の周波数帯域における前記ユーザ固有の知覚音圧レベル傾向を算出して全周波数帯域の前記知覚音圧レベル傾向を示した知覚音圧曲線を、前記推測結果として生成する生成ステップを、前記特定ステップの後に備え、前記調整ステップは、前記知覚音圧曲線に基づいて各前記周波数帯域毎に音圧レベルを増減させることを特徴とする。 In the acoustic adjustment method according to claim 10 of the present invention, in the auditory test step, the frequency band other than the frequency band in which the perceived sound pressure level is specified based on a relational expression between the sound pressure coefficient and the frequency band. the user-specific the perceived sound perceived sound pressure curve showing the pressure level trends calculated to the entire frequency band of the perceived sound pressure level trend, a generation step of generating as the speculative result, provided after the specific steps in, In the adjusting step, the sound pressure level is increased or decreased for each frequency band based on the perceived sound pressure curve.

また、本発明の請求項11の音響方法は、前記知覚音圧曲線は周波数に関するn次多項式で表し、該n次多項式に基づき各周波数における音圧調整レベルを生成することを特徴とする。   The acoustic method according to claim 11 of the present invention is characterized in that the perceived sound pressure curve is represented by an nth order polynomial relating to frequency, and a sound pressure adjustment level at each frequency is generated based on the nth order polynomial.

また、本発明の請求項12の音響調整方法は、前記聴覚検査ステップは、複数の前記知覚音圧曲線を予め生成して記憶しておくことを特徴とする。   The acoustic adjustment method according to claim 12 of the present invention is characterized in that the auditory test step generates and stores a plurality of the perceived sound pressure curves in advance.

また、本発明の請求項13の音響方法は、前記聴覚検査ステップは、予め複数ユーザの前記知覚音圧曲線をそれぞれ生成して記憶しておき、音響信号再生時にユーザが、前記記憶された複数の知覚音圧曲線の中からユーザに適した知覚音圧曲線を選択させて前記音圧レベルを調整することを特徴とする。   In the acoustic method according to claim 13 of the present invention, in the auditory test step, the perceived sound pressure curves of a plurality of users are generated and stored in advance, and the user can store the plurality of stored sound signals when reproducing an acoustic signal. The perceptual sound pressure curve suitable for the user is selected from the perceived sound pressure curves, and the sound pressure level is adjusted.

また、本発明の請求項14の音響方法は、前記聴覚検査ステップは、微小音発生手段によって微小音を発生させ、前記ユーザが前記微小音を知覚したとき、前記ユーザに確認信号入力手段を介して確認信号を入力させ、前記知覚音圧レベルを特定することを特徴とする。   Further, in the acoustic method according to claim 14 of the present invention, in the auditory test step, a minute sound is generated by a minute sound generating means, and when the user perceives the minute sound, the user is confirmed via a confirmation signal input means. The confirmation signal is inputted to specify the perceived sound pressure level.

本発明の請求項1の音響装置及び請求項8の音響調整方法によれば、聴覚検査によってユーザにとって聞き取り難い特有の周波数帯域がどこであるのか否かを容易に判別し、当該ユーザが聞き取り難い音響信号の周波数特性を調整することで、音楽を全周波数帯域においてユーザが聞き取り易い音圧レベルに調整することができ、かくしてユーザの聴覚特性に応じた良好な音質で再生することができる。   According to the acoustic device of claim 1 and the acoustic adjustment method of claim 8 of the present invention, it is easily determined where a specific frequency band that is difficult for the user to hear is obtained by an auditory test, and the sound that is difficult for the user to hear. By adjusting the frequency characteristics of the signal, the music can be adjusted to a sound pressure level that is easy for the user to hear in all frequency bands, and can thus be reproduced with good sound quality according to the auditory characteristics of the user.

以下図面に基づいて本発明の実施の形態を詳述する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

(1)オーディオ装置の全体構成
図1において、1は聴覚特性適合機能付きのオーディオ装置を示し、音響装置としてのオーディオ装置1は、音響処理部2aに聴覚検査手段としての聴覚検査部2bが接続されており、当該聴覚検査部2bにおけるユーザの聴覚検査の結果に基づき音響処理部2aによって各周波数帯域毎に音圧レベルを自動的に調整し、各ユーザに適した音質で音楽を再生し得るようになされている。
(1) Overall Configuration of Audio Device In FIG. 1, reference numeral 1 denotes an audio device with an auditory characteristic adaptation function, and the audio device 1 as an acoustic device is connected to an acoustic test unit 2b as an auditory test means in an acoustic processing unit 2a. The sound processing unit 2a can automatically adjust the sound pressure level for each frequency band based on the result of the user's auditory test in the auditory test unit 2b, and can reproduce music with sound quality suitable for each user. It is made like that.

実際上、このオーディオ装置1は、入力部3によって例えばCDやDVD等の種々の記録媒体を再生し、その結果得られる時間方向に並ぶ複数の離散データを音響処理部2aへ順次送出する。因みに、離散データとは、例えば滑らかに変化する連続的な信号を一定の時間間隔で標本化し、その結果得られたサンプリングデータを量子化することにより得られた離散的なデータである。   In practice, the audio apparatus 1 reproduces various recording media such as CDs and DVDs by the input unit 3, and sequentially transmits a plurality of discrete data arranged in the time direction to the acoustic processing unit 2a. Incidentally, the discrete data is discrete data obtained by, for example, sampling a continuous signal that changes smoothly at regular time intervals and quantizing the sampling data obtained as a result.

音響処理部2aは、複数の周波数帯域に離散データを分離する帯域分離部4と、これら複数の周波数帯域毎に音圧レベルを調整する音圧調整部5と、各周波数帯域毎に設定された所定の標本化関数(後述する)を用いて各周波数帯域毎に補間処理を個別に実行する補間処理部6と、各周波数帯域毎に生成した補間処理信号を合成することにより、合成信号としてのアナログ信号を生成する帯域合成部7とから構成されている。そして、オーディオ装置1は、帯域合成部7からのアナログ信号に基づいて出力部8において音を発する。   The acoustic processing unit 2a is set for each frequency band, a band separation unit 4 that separates discrete data into a plurality of frequency bands, a sound pressure adjustment unit 5 that adjusts a sound pressure level for each of the plurality of frequency bands. By combining the interpolation processing unit 6 that individually executes interpolation processing for each frequency band using a predetermined sampling function (described later) and the interpolation processing signal generated for each frequency band, It comprises a band synthesizing unit 7 that generates an analog signal. Then, the audio device 1 emits sound at the output unit 8 based on the analog signal from the band synthesizing unit 7.

かかる構成に加えて、音圧調整部5には、聴覚検査部2bが接続されており、各周波数帯域毎に音圧レベルを個別に増加させるための帯域別音圧係数データが聴覚検査部2bから送出され得る。ここで、聴覚検査部2bは、当該聴覚検査部2b全体の動作を統括的に制御する制御部9に、確認信号入力部10と検出音出力部11と比率演算部12とが接続されており、当該比率演算部12には帯域別音圧係数算出部13が接続された構成を有する。   In addition to this configuration, the sound pressure adjusting unit 5 is connected to the auditory inspection unit 2b, and the sound pressure coefficient data for each band for individually increasing the sound pressure level for each frequency band is stored in the auditory inspection unit 2b. Can be sent from. Here, in the auditory test unit 2b, a confirmation signal input unit 10, a detection sound output unit 11, and a ratio calculation unit 12 are connected to a control unit 9 that comprehensively controls the operation of the entire auditory test unit 2b. The ratio calculation unit 12 is connected to a band-specific sound pressure coefficient calculation unit 13.

制御部9は、複数の周波数毎にユーザが絶対に聞き取ることができないと思われる音圧レベルから徐々に検査音の音圧レベルを上昇させてゆき、ユーザが始めて聞き取ることができるようになった音圧レベルをユーザからの聴取応答によって判定し、この聴取応答時点での音圧レベルをユーザの知覚音圧レベルとして特定し得る。   The controller 9 gradually increases the sound pressure level of the inspection sound from the sound pressure level that the user can never hear for each of a plurality of frequencies, and the user can hear the sound for the first time. The sound pressure level can be determined by a listening response from the user, and the sound pressure level at the time of the listening response can be specified as the perceived sound pressure level of the user.

ここで、ユーザからの聴取応答は、確認信号入力部10を用いて行われる。すなわちユーザは検査音が聞こえない場合には確認信号入力部10のスイッチを離し、聞こえた場合に確認信号入力部10のスイッチを押す。制御部9は、確認信号入力部10のスイッチが押されると、確認信号入力部10から確認信号を受け取るようになされている。   Here, the listening response from the user is performed using the confirmation signal input unit 10. That is, the user releases the switch of the confirmation signal input unit 10 when the inspection sound cannot be heard, and presses the switch of the confirmation signal input unit 10 when the sound is heard. The control unit 9 receives a confirmation signal from the confirmation signal input unit 10 when the switch of the confirmation signal input unit 10 is pressed.

従って、特定手段としての制御部9は、各周波数毎に検出音の音圧レベルを徐々に上昇させてゆき、確認信号入力部10からの確認信号を受け取ったタイミングに基づいてユーザが検出音を聴取し得た音圧レベルを、当該周波数の知覚音圧レベルとして特定し得る。制御部9は、各周波数毎に得られた知覚音圧レベルを知覚音圧レベルデータとして比率演算部12へ送出する。   Therefore, the control unit 9 as the specifying unit gradually increases the sound pressure level of the detection sound for each frequency, and the user generates the detection sound based on the timing when the confirmation signal is received from the confirmation signal input unit 10. The sound pressure level that can be heard can be specified as the perceived sound pressure level of the frequency. The controller 9 sends the perceived sound pressure level obtained for each frequency to the ratio calculator 12 as perceived sound pressure level data.

因みに、この実施の形態の場合においては、スイッチ構造の確認信号入力部10を用いて、ユーザ自身のスイッチ操作によって知覚音圧レベルを特定するようにした場合について述べたが、本発明はこれに限らず、例えば鼓膜の状態や脳波等の生物学的反応を検知する確認信号入力部によって各ユーザ毎に知覚音圧レベルを特定する等この他種々の確認信号入力部を用いて知覚音圧レベルを特定するようにしてもよい。   Incidentally, in the case of this embodiment, the case where the perceived sound pressure level is specified by the user's own switch operation using the confirmation signal input unit 10 of the switch structure has been described. For example, the perceived sound pressure level is determined using various other confirmation signal input units, such as specifying the perceived sound pressure level for each user by a confirmation signal input unit that detects biological reactions such as the state of the eardrum and brain waves. May be specified.

ここで聴覚検査部2bには、一般的なユーザがどの周波数で音が聞き取り難く、音圧レベルをどの程度増幅させたかを示す統計的な音圧レベル増幅傾向を示した標準音圧曲線が、複数のユーザの聴覚検査を基に予め作成され、図示しないメモリに記憶されている。   Here, in the auditory inspection unit 2b, a standard sound pressure curve indicating a statistical sound pressure level amplification tendency indicating how much a general user cannot hear sound and how much the sound pressure level is amplified is shown. It is created in advance based on a plurality of users' auditory examinations and stored in a memory (not shown).

この実施の形態の場合、図2に示すように、標準音圧曲線C1は、例えば0kHzから4kHzまでの周波数帯域において音圧レベルが徐々に減少してゆき4kHz付近で最小値を示し、4kHzから16kHzまでの周波数帯域において音圧レベルが徐々に増加し、16kHzから40kHzまでの周波数帯域において音圧レベルが急激に増加している。   In the case of this embodiment, as shown in FIG. 2, the standard sound pressure curve C1 shows a minimum value in the vicinity of 4 kHz as the sound pressure level gradually decreases, for example, in a frequency band from 0 kHz to 4 kHz. The sound pressure level gradually increases in the frequency band up to 16 kHz, and the sound pressure level rapidly increases in the frequency band from 16 kHz to 40 kHz.

すなわち、この標準音圧曲線C1は、一般的なユーザが最も音を聞き取り易い周波数が4kHz付近であって、この4kHz付近では音圧レベルを全く増加させていないことを示している。また、標準音圧曲線C1から一般的なユーザは、4kHz付近から低音域の周波数帯域にゆくに従って音が聞き取り難くなり、音圧レベルを次第に増加させていったことを示している。また、この標準音圧曲線C1から一般的なユーザは、4kHz付近から高音域の周波数帯域にゆくに従って音が聞き取り難くなり、音圧レベルを次第に増加させていったことを示している。   That is, the standard sound pressure curve C1 indicates that the frequency at which a general user can easily hear the sound is around 4 kHz, and the sound pressure level is not increased at all around 4 kHz. Further, it can be seen from the standard sound pressure curve C1 that a general user becomes difficult to hear sound from the vicinity of 4 kHz to the low frequency band, and the sound pressure level is gradually increased. Further, it can be seen from this standard sound pressure curve C1 that a general user becomes difficult to hear the sound as it goes from around 4 kHz to a high frequency band, and the sound pressure level is gradually increased.

比率演算部12は、各周波数毎に知覚音圧レベルデータを制御部9から受け取ると、知覚音圧レベルと同じ周波数における標準音圧レベルを標準音圧曲線C1から特定し、知覚音圧レベルと、特定した標準音圧レベルとに基づいて各周波数帯域における音圧係数を算出する。具体的には、図2に示すように、所定の周波数f1における知覚音圧レベルをA1とし、同じ周波数f1における標準音圧レベルをA0とした場合、音圧係数H(f1)は、H(f1)=A1/A0で求めることができる。比率演算部12は、音圧係数H(f)を算出すると、これを音圧係数データとして帯域別音圧係数算出部13へ送出する。   When the ratio calculation unit 12 receives the perceived sound pressure level data from the control unit 9 for each frequency, the ratio calculation unit 12 specifies the standard sound pressure level at the same frequency as the perceived sound pressure level from the standard sound pressure curve C1, and determines the perceived sound pressure level. The sound pressure coefficient in each frequency band is calculated based on the specified standard sound pressure level. Specifically, as shown in FIG. 2, when the perceived sound pressure level at a predetermined frequency f1 is A1, and the standard sound pressure level at the same frequency f1 is A0, the sound pressure coefficient H (f1) is H ( f1) = A1 / A0. When the ratio calculation unit 12 calculates the sound pressure coefficient H (f), the ratio calculation unit 12 sends the sound pressure coefficient H (f) to the band-specific sound pressure coefficient calculation unit 13 as sound pressure coefficient data.

また、比率演算部12は、所定の周波数f1に隣接し、聴覚検査が行われた次の周波数f2においても、当該周波数f2での知覚音圧レベルB1と、同じ周波数f2での標準音圧レベルB0とから音圧係数H(f2)=B1/B0を求め、これを音圧係数データとして帯域別音圧係数算出部13へ送出する。   In addition, the ratio calculation unit 12 is adjacent to the predetermined frequency f1 and also at the next frequency f2 after the auditory test, the perceived sound pressure level B1 at the frequency f2 and the standard sound pressure level at the same frequency f2. Sound pressure coefficient H (f2) = B1 / B0 is obtained from B0, and this is sent as sound pressure coefficient data to the sound pressure coefficient calculation unit 13 for each band.

帯域別音圧係数算出部13は、比率演算部12から受け取ったこれら音圧係数データに基づいて、音圧係数H(f)と周波数fとの関係を示す式、H(f)=a・f+bを用いて、a及びbを算出するようになされている。   The sound pressure coefficient calculation unit 13 for each band is based on the sound pressure coefficient data received from the ratio calculation unit 12 and is an expression showing the relationship between the sound pressure coefficient H (f) and the frequency f, H (f) = a · a and b are calculated using f + b.

具体的に帯域別音圧係数算出部13は、周波数f1と音圧係数H(f1)とを上記式に代入して、H(f1)=a・f1+bとする。また、帯域別音圧係数算出部13は、周波数f2と音圧係数H(f2)とを上記式に代入して、H(f2)=a・f2+bとする。そして、帯域別音圧係数算出部13は、これらH(f1)=a・f1+bの式と、H(f2)=a・f2+bの式とから式中のa及びbの値(例えばaの求めた値をa1、bの求めた値をb1とする)を求め、周波数f1及び周波数f2間を結んぶ音圧係数線、H(f)=a1・f+b1を生成し得るようになされている。なお上記説明では周波数fの一次式の関係H(f)=a・f+bで示したが、さらに高性能な調整を行うために、周波数fのn次多項式式、例えば、H(f)=a・f2+b・f+cの様な二次式で近似することも本発明の範囲を逸脱するものではない。二次式の場合は3点の周波数における音圧から係数a,b,cを決定することができる。 Specifically, the band-specific sound pressure coefficient calculation unit 13 substitutes the frequency f1 and the sound pressure coefficient H (f1) into the above equation, so that H (f1) = a · f1 + b. Further, the sound pressure coefficient calculation unit 13 for each band substitutes the frequency f2 and the sound pressure coefficient H (f2) into the above equation, so that H (f2) = a · f2 + b. Then, the sound pressure coefficient calculation unit 13 for each band calculates the values of a and b (for example, the determination of a) from the equation of H (f1) = a · f1 + b and the equation of H (f2) = a · f2 + b. The sound pressure coefficient line connecting the frequency f1 and the frequency f2, H (f) = a1 · f + b1, can be generated. In the above description, the relationship H (f) = a · f + b of the linear expression of the frequency f is shown. However, in order to perform higher performance adjustment, an n-order polynomial expression of the frequency f, for example, H (f) = a Approximation with a quadratic expression such as f 2 + b · f + c does not depart from the scope of the present invention. In the case of a quadratic expression, coefficients a, b, and c can be determined from sound pressures at three frequencies.

次いで、帯域別音圧係数算出部13は、周波数f1から周波数f2までの間の所定の周波数f3における音圧係数H(f3)を、次式、H(f3)=a1・f3+b1から求め、求めた音圧係数H(f3)を周波数f3での標準音圧レベルに乗算することにより、当該周波数f3における知覚音圧レベルを求めるようになされている。かくして、帯域別音圧係数算出部13は、音圧係数線と、周波数と、そのときの標準音圧レベルとを基に、知覚音圧レベルを検査していない各周波数での知覚音圧レベルを推測し得るようになされている。そして、帯域別音圧係数算出部13は、これら低音域から高音域まで全周波数帯域の知覚音圧レベル傾向を推定した知覚音圧曲線C2を生成し、これを知覚音圧データとして音響処理部2aの音圧調整部5へ送出する。   Next, the sound pressure coefficient calculation unit 13 for each band obtains a sound pressure coefficient H (f3) at a predetermined frequency f3 between the frequency f1 and the frequency f2 from the following equation, H (f3) = a1 · f3 + b1. The perceived sound pressure level at the frequency f3 is obtained by multiplying the standard sound pressure level at the frequency f3 by the sound pressure coefficient H (f3). Thus, the per-band sound pressure coefficient calculation unit 13 calculates the perceived sound pressure level at each frequency for which the perceived sound pressure level is not inspected based on the sound pressure coefficient line, the frequency, and the standard sound pressure level at that time. Have been made to guess. The band-specific sound pressure coefficient calculation unit 13 generates a perceptual sound pressure curve C2 in which the perceived sound pressure level tendency of all frequency bands from the low sound range to the high sound range is estimated, and uses this as perceptual sound pressure data as the sound processing unit. 2a is sent to the sound pressure adjusting unit 5.

因みに、この実施の形態の場合、例えばあるユーザに対して聴覚検査を行ったところ、図2に示すような、知覚音圧レベル傾向を示した知覚音圧曲線C2が生成された。この知覚音圧曲線C2では、0kHzで知覚音圧レベルが標準音圧レベルよりも高いものとなり、0kHzから4kHzまでの周波数帯域において音圧レベルが標準音圧曲線C1に比べて急激に減少してゆき、4kHzから16kHzまでの周波数帯域において音圧レベルが標準音圧曲線C1に比べて急激に増加するような形となっている。   Incidentally, in the case of this embodiment, for example, when a hearing test was performed on a certain user, a perceived sound pressure curve C2 showing a tendency of perceived sound pressure level as shown in FIG. 2 was generated. In this perceived sound pressure curve C2, the perceived sound pressure level is higher than the standard sound pressure level at 0 kHz, and the sound pressure level rapidly decreases in the frequency band from 0 kHz to 4 kHz as compared with the standard sound pressure curve C1. In the frequency band from 4 kHz to 16 kHz, the sound pressure level suddenly increases as compared to the standard sound pressure curve C1.

このことから、聴覚検査を行ったユーザは、低音域及び高音域の周波数帯域にゆくに従って、一般的なユーザに比べて音圧レベルを増加させたことが分かり、これは低音域や高音域の周波数帯域へゆくに従って一般的なユーザよりも音が聞き取り難いことを示している。そして、音響処理部2aは、聴覚検査部2bから受け取った聴覚検査の結果に基づいて生成した知覚音圧曲線C2を基に、低音域や高音域の周波数帯域へゆくに従って各周波数毎に音圧レベルを個別に増幅させるようになされている。   From this, it can be seen that the user who performed the auditory examination increased the sound pressure level as compared to the general user as the frequency range of the low and high sounds ranged. It shows that it is hard to hear a sound than a general user according to going to a frequency band. Then, the sound processing unit 2a performs sound pressure for each frequency according to the frequency range of the low sound range and the high sound range based on the perceptual sound pressure curve C2 generated based on the result of the auditory test received from the auditory test unit 2b. The level is amplified individually.

図3に示すように、音圧調整部5には、帯域分離部4で分離された各周波数帯域に対応して複数の増幅器5a,5b,5c…が設けられており、各増幅器5a,5b,5c…内には検出音の周波数や他の所定周波数に対応させて複数の増幅回路が設けられている。そして、例えば増幅器5aは、帯域別音圧係数算出部13から知覚音圧データを受け取ると、知覚音圧データに基づく知覚音圧曲線C2から各増幅回路に対応した周波数での知覚音圧レベルを特定し、各増幅回路毎に知覚音圧レベルに基づいて帯域別信号の音圧レベルを増幅させ得る。このようにして、各増幅器5a,5b,5c…では、それぞれの周波数帯域において所定の周波数毎に知覚音圧レベルに基づいて帯域別信号の音圧レベルを増幅し得る。   As shown in FIG. 3, the sound pressure adjusting unit 5 is provided with a plurality of amplifiers 5a, 5b, 5c... Corresponding to each frequency band separated by the band separating unit 4, and each amplifier 5a, 5b. , 5c... Are provided with a plurality of amplifier circuits corresponding to the detected sound frequency and other predetermined frequencies. For example, when the amplifier 5a receives the perceived sound pressure data from the band-specific sound pressure coefficient calculation unit 13, the perceived sound pressure level at the frequency corresponding to each amplifier circuit is determined from the perceived sound pressure curve C2 based on the perceived sound pressure data. In particular, the sound pressure level of the band-specific signal can be amplified based on the perceived sound pressure level for each amplifier circuit. In this way, each of the amplifiers 5a, 5b, 5c... Can amplify the sound pressure level of the band-specific signal based on the perceived sound pressure level for each predetermined frequency in each frequency band.

因みに、この実施の形態の場合においては、所定の周波数からなる検査音を出力し、各増幅器5a,5b,5c…によって、対応する周波数部分の音圧レベルを、当該周波数での知覚音圧レベルに基づいて増幅するようにした場合について述べたが、本発明はこれに限らず、所定の下限周波数から所定の上限周波数までの周波数帯域からなる検出音を出力し、各増幅器5a,5b,5c…によって、対応する周波数帯域部分の音圧レベルを、当該周波数帯域での知覚音圧レベルに基づいて増幅するようにしてもよい。   Incidentally, in the case of this embodiment, a test sound having a predetermined frequency is output, and the sound pressure level of the corresponding frequency portion is changed by the amplifiers 5a, 5b, 5c. However, the present invention is not limited to this, and a detection sound having a frequency band from a predetermined lower limit frequency to a predetermined upper limit frequency is output, and each amplifier 5a, 5b, 5c is output. ..., the sound pressure level of the corresponding frequency band portion may be amplified based on the perceived sound pressure level in the frequency band.

また、各増幅器5a,5b,5c…は、知覚音圧データに基づいて音響信号としての各帯域別信号を所定の音圧レベルにまで増幅させて各帯域別調整信号を生成すると、これら各帯域別調整信号を補間処理部6へ送出するようになされている。このように、音圧調整部5は、聴覚検査部2bにおける聴覚検査の結果から得られたユーザの聴覚特性に応じて、ユーザが聞き取り難い周波数ついてのみ音圧レベルを増加させ、その結果、音楽を全周波数帯域においてユーザが聞き取り易い音圧レベルに調整し得るようになされている。   When each amplifier 5a, 5b, 5c,... Amplifies each band signal as an acoustic signal to a predetermined sound pressure level based on the perceived sound pressure data and generates each band adjustment signal, each of these bands Another adjustment signal is sent to the interpolation processing unit 6. In this way, the sound pressure adjustment unit 5 increases the sound pressure level only for frequencies that are difficult for the user to hear according to the user's auditory characteristics obtained from the result of the auditory test in the auditory test unit 2b. Can be adjusted to a sound pressure level that can be easily heard by the user in all frequency bands.

因みに、このオーディオ装置1は、上述したように音圧調整部5において各周波数毎に音圧レベルが調整できることに加えて、補間処理部6においても音圧レベルを調整し得るようになされている。なお、補間処理部6における音圧レベルの調整は、音圧調整部5によって音圧レベルの調整が行われた後に、更に実行するようにしてもよく、補間処理部6のみ、或いは音圧調整部5のみで音圧レベルの調整を実行してもよい。   Incidentally, in this audio apparatus 1, in addition to being able to adjust the sound pressure level for each frequency in the sound pressure adjusting unit 5 as described above, the interpolation processing unit 6 can also adjust the sound pressure level. . The adjustment of the sound pressure level in the interpolation processing unit 6 may be further executed after the sound pressure level is adjusted by the sound pressure adjusting unit 5, or only the interpolation processing unit 6 or the sound pressure adjustment. The sound pressure level may be adjusted only by the unit 5.

以下、補間処理部6において実行される補間処理について説明する。ここで、補間処理部6には、帯域分離部4で分離した各周波数帯域に対応して複数の帯域別補間部6a,6b,6c…が設けられており、聴覚検査部2bの制御部9からの補間処理選択命令によって、各帯域別調整信号を補間処理する所定の標本化関数(後述する)が各帯域別補間部6a,6b,6c…毎に設定され得る。これにより、帯域別補間部6a,6b,6c…は、ユーザの聴覚特性に応じて制御部9が設定した標本化関数に従い、各周波数帯域の帯域別調整信号毎に所定の補間処理を個別に実行し、各帯域別調整信号を構成する帯域別データ間を補間してサンプリング周波数を擬似的に上げ、その結果得られた補間処理信号を帯域合成部7へ送出する。   Hereinafter, the interpolation processing executed in the interpolation processing unit 6 will be described. Here, the interpolation processing unit 6 is provided with a plurality of band-specific interpolation units 6a, 6b, 6c,... Corresponding to each frequency band separated by the band separation unit 4, and the control unit 9 of the auditory examination unit 2b. Can be set for each of the interpolators 6a, 6b, 6c... For each of the bands. Thus, the interband interpolation units 6a, 6b, 6c,... Individually perform predetermined interpolation processing for each adjustment signal for each band in each frequency band according to the sampling function set by the control unit 9 according to the user's auditory characteristics. This is executed to interpolate between the band-specific data constituting each band-specific adjustment signal to increase the sampling frequency in a pseudo manner, and the resultant interpolated signal is sent to the band synthesizing unit 7.

例えば、図2に示すように、高音域の周波数帯域において音圧レベルを増加させた聴覚結果が得られた場合には、例えば高音域の特定の周波数帯域で音圧レベルが所定の閾値以上に増加されると、ユーザが高音域を聞き取り難い状態であると判断し、当該高音域での音圧レベルが増幅するような標本化関数を自動的に選択し得る。これにより、音響処理部2aは、各帯域別調整信号毎に高音域が増幅するように、帯域別データ間を補間する補間値を調整し、各周波数帯域の音圧レベルを増減させ得るようになされている。   For example, as shown in FIG. 2, when an auditory result in which the sound pressure level is increased in the high frequency range is obtained, the sound pressure level is higher than a predetermined threshold value in a specific high frequency range, for example. When increased, it can be determined that it is difficult for the user to hear the high frequency range, and a sampling function that amplifies the sound pressure level in the high frequency range can be automatically selected. Thereby, the acoustic processing unit 2a can adjust the interpolation value for interpolating between the band-specific data so that the high-frequency range is amplified for each band-specific adjustment signal, and can increase or decrease the sound pressure level of each frequency band. Has been made.

帯域合成部7は、各帯域別補間部6a,6b,6c…において生成された複数の補間処理信号を合成することにより全周波数帯域からなる1つのアナログ信号を生成し、これを出力部8へ送出する。因みに、この実施の形態においては、高周波の離散間隔で信号生成することと、アナログ信号を生成することを同一の処理として「アナログ信号の生成」と称して説明を行うものとする。このようにしてオーディオ装置1は、各周波数帯域毎に調整された補間処理信号を生成でき、かくしてアナログ信号の各周波数帯域の音圧レベルが、聴覚検査に基づいて自動的にユーザ毎に細かく調整され、ユーザ所望の音質からなる音楽を出力部8から再生し得るようになされている。   The band synthesizing unit 7 generates one analog signal composed of the entire frequency band by synthesizing a plurality of interpolation processing signals generated by the interpolating units 6a, 6b, 6c, etc. for each band, and outputs this to the output unit 8. Send it out. Incidentally, in this embodiment, the generation of signals at high frequency discrete intervals and the generation of analog signals are referred to as “analog signal generation” as the same processing. In this way, the audio apparatus 1 can generate an interpolated signal adjusted for each frequency band, and thus the sound pressure level of each frequency band of the analog signal is automatically finely adjusted for each user based on an auditory test. Thus, the music having the sound quality desired by the user can be reproduced from the output unit 8.

(2)帯域別補間部における補間処理
次に各帯域別補間部6a,6b,6c…で実行される補間処理の概略について以下説明する。なお、関数の値が局所的な領域で0以外の有限の値を有し、それ以外の領域で0となる場合を「有限台」と称して説明を行うものとする。帯域別補間部6a,6b,6c…において用いられる標本化関数sN(t)は基本標本化関数f(t)及び制御標本化関数c0(t)から構成されている。ここで、離散データの標本位置をtとし、例えば当該離散データの標本位置[−2,2]間での基本標本化関数f(t)及び制御標本化関数c0(t)からなる標本化関数s2(t)は、次式、
(2) Interpolation Processing in the Interpolation Unit by Band Next, an outline of the interpolation processing executed by the interpolation units by band 6a, 6b, 6c. Note that the case where the value of the function has a finite value other than 0 in a local region and becomes 0 in other regions will be referred to as a “finite platform”. The sampling function s N (t) used in the interband interpolation units 6a, 6b, 6c... Is composed of a basic sampling function f (t) and a control sampling function c 0 (t). Here, the sampling position of the discrete data is assumed to be t, and, for example, a sampling consisting of a basic sampling function f (t) and a control sampling function c 0 (t) between the sampling positions [−2, 2] of the discrete data. The function s 2 (t) is given by

Figure 0004750153
によって表され、一般的な制御標本化関数をck(t)とし、ck(t)=cr(t−k)+cr(−t−k)と置いたときは、当該離散データの標本位置[−N,N]間で標本化関数sN(t)は次式
Figure 0004750153
When a general control sampling function is expressed as c k (t) and c k (t) = c r (t−k) + c r (−t−k), the discrete data The sampling function s N (t) between sample positions [−N, N] is

Figure 0004750153
によって表される。なお、αkは後述する可変パラメータを示し、ユーザによって設定可能な任意の数値を示すもので、α1=α2=α3…のようにkによって可変しないものである。因みに、N=2のときの標本化関数s2(t)については、説明の便宜上、単に標本化関数sN(t)として以下説明する。
Figure 0004750153
Represented by Α k represents a variable parameter to be described later, and represents an arbitrary numerical value that can be set by the user, and does not vary with k as α 1 = α 2 = α 3 . Incidentally, the sampling function s 2 (t) when N = 2 will be described below simply as the sampling function s N (t) for convenience of explanation.

この標本化関数sN(t)は、可変パラメータαの数値が反映した補間値を算出できることから、可変パラメータαの数値を変更することにより、各周波数帯域毎に補間処理信号を調整し得るようになされている。基本標本化関数f(t)及び制御標本化関数c0(t)は、図4に示すような波形を示し、可変パラメータαの数値に応じて制御標本化関数c0(t)が示す波形の振幅が増減して可変し得る。 Since the sampling function s N (t) can calculate an interpolation value reflecting the value of the variable parameter α, the interpolation processing signal can be adjusted for each frequency band by changing the value of the variable parameter α. Has been made. The basic sampling function f (t) and the control sampling function c 0 (t) show waveforms as shown in FIG. 4, and the waveform shown by the control sampling function c 0 (t) according to the value of the variable parameter α. The amplitude of can be increased and decreased.

基本標本化関数f(t)は、微分可能性に着目した有限台の関数であり、例えば全域において1回だけ微分可能であって、横軸に沿った標本位置tが−1から+1(すなわち、区間[−1,1])にあるときに0以外の有限な値を有し、他の区間は恒等的に0で表される関数である。具体的には基本標本化関数f(t)は、代表的関数形式が2次式であり、全範囲で1回だけ微分可能な凸形状の波形を示し、t=0の標本位置でのみ1になり、t=±1に向けて0に収束してt=±2の標本位置までそのまま0になるという特徴を有する。   The basic sampling function f (t) is a function of a finite stage focusing on differentiability. For example, the basic sampling function f (t) can be differentiated only once in the entire region, and the sample position t along the horizontal axis is −1 to +1 (ie, , [−1, 1]) has a finite value other than 0, and the other intervals are functions that are represented as 0 by identity. Specifically, the basic sampling function f (t) is a quadratic expression in a typical function form, shows a convex waveform that can be differentiated only once in the entire range, and is 1 only at a sample position of t = 0. And converges to 0 toward t = ± 1 and reaches 0 as it is until the sample position of t = ± 2.

また、この基本標本化関数f(t)は、有限台のn次インパルス応答関数でよく、標本点間を区分した点で連続なn次の区分多項式函数であれば良い。具体的には、このような基本標本化関数f(t)は、2次の区分多項式函数の場合、次式、   The basic sampling function f (t) may be an n-order impulse response function of a finite number, and may be an n-th order piecewise polynomial function that is continuous at the point where sample points are divided. Specifically, in the case of a quadratic piecewise polynomial function, such a basic sampling function f (t)

Figure 0004750153
によって表される。そして、この基本標本化関数f(t)を用いて帯域別調整信号を構成する各帯域別データに基づく重ね合わせを行うことにより、帯域別調整信号の帯域別データ間の値を1回だけ微分可能な関数を用いて仮補間することができる。
Figure 0004750153
Represented by Then, by using the basic sampling function f (t) to perform superposition based on each band-specific data constituting the band-specific adjustment signal, the value between the band-specific data of the band-specific adjustment signal is differentiated only once. Temporary interpolation can be performed using possible functions.

一方、制御標本化関数c0(t)は、微分可能性に着目した有限台の関数であり、例えば全域において1回だけ微分可能であって、横軸に沿った標本位置tが−2から+2(すなわち、区間[−2,2])にあるときに0以外の有限な値を有し、他の区間では恒等的に0で表される関数である。また、制御標本化関数c0(t)は、全範囲で1回だけ微分可能な波形を示し、t=0,±1,±2の各標本位置で0なるという特徴を有する。 On the other hand, the control sampling function c 0 (t) is a function of a finite stage focusing on differentiability, and can be differentiated only once in the entire region, for example, and the sample position t along the horizontal axis is from −2. It is a function that has a finite value other than 0 when it is in +2 (that is, the interval [−2, 2]), and is uniformly expressed as 0 in other intervals. Further, the control sampling function c 0 (t) shows a waveform that can be differentiated only once in the entire range, and has a feature that it becomes 0 at each sample position of t = 0, ± 1, ± 2.

また、この制御標本化関数c0(t)は、有限台のn次インパルス応答関数でよく、標本点間を区分した点で連続なn次の区分多項式函数であれば良い。ここで、制御標本化関数c0(t)は、上述したように制御標本化関数c0(t)=cr(t)+cr(−t)で表され、このcr(t)は具体的に次式、 The control sampling function c 0 (t) may be an nth-order impulse response function of a finite number, and may be an n-th order piecewise polynomial function that is continuous at points obtained by dividing between sample points. Here, the control sampling function c 0 (t) is represented by the control sampling function c 0 (t) = c r (t) + c r (−t) as described above, and this cr (t) is Specifically,

Figure 0004750153
によって表される。そして、この制御標本化関数c0(t)を用いて帯域別調整信号の各帯域別データに基づく重ね合わせを行うことにより、帯域別調整信号の帯域別データ間の値を1回だけ微分可能な関数を用いて仮補間することができる。
Figure 0004750153
Represented by Then, by using the control sampling function c 0 (t) to perform superposition based on the band-specific data of the band-specific adjustment signal, the value between the band-specific data of the band-specific adjustment signal can be differentiated only once. Can be interpolated using a simple function.

標本化関数sN(t)は、基本標本化関数f(t)と制御標本化関数c0(t)との線形結合で表され、実際の補間演算は基本標本化関数f(t)と離散データ(標本値)との畳み込み演算で算出した仮の補間値(以下、これを基本補間値と呼ぶ)と、制御標本化関数c0(t)と離散データ(標本値)との畳み込み演算で算出した仮の補間値(以下、これを制御補間値と呼ぶ)とを線形加算することにより、帯域別調整信号の帯域別データ間の値を1回だけ微分可能な関数を用いて補間することができる。 The sampling function s N (t) is represented by a linear combination of the basic sampling function f (t) and the control sampling function c 0 (t), and the actual interpolation operation is the basic sampling function f (t). A convolution operation between a temporary interpolation value (hereinafter referred to as a basic interpolation value) calculated by a convolution operation with discrete data (sample values), a control sampling function c 0 (t), and discrete data (sample values) By linearly adding the provisional interpolation value calculated in step (hereinafter referred to as the control interpolation value), the value between the band-specific data of the band-specific adjustment signal is interpolated using a function that can be differentiated only once. be able to.

因みに、この基本標本化関数f(t)と制御標本化関数c0(t)との線形結合では、下記の6つの条件が成立する関数であることを特徴としている。第1としては、S2(0)=1,S2(±1)=S2(±2)=0となること。第2としては、偶関数、すなわちy軸に関して対称となること。第3としては、標本位置区間[−∞,−2]、[2,∞]で恒等的に0であること。第4としては、各区間[n/2,(n+1)/2](−4≦n≦3)においては高々二次の多項式であること。第5としては、全区間ではC1級、すなわち連続的一回微分可能であること。第6としては、標本位置区間[−1/2,1/2]において、次式 Incidentally, the linear combination of the basic sampling function f (t) and the control sampling function c 0 (t) is a function that satisfies the following six conditions. First, S 2 (0) = 1, S 2 (± 1) = S 2 (± 2) = 0. Secondly, it should be symmetric with respect to the even function, ie the y-axis. Thirdly, the sample position interval [−∞, −2], [2, ∞] should be zero on the identity. Fourthly, each section [n / 2, (n + 1) / 2] (−4 ≦ n ≦ 3) is at most a quadratic polynomial. Fifth, all sections should be C1 class, that is, differentiable continuously once. Sixth, in the sample position section [−1/2, 1/2],

Figure 0004750153
となること。
Figure 0004750153
To be.

ここで、制御標本化関数c0(t)には、例えば高音域の周波数帯域において音圧レベルが所定の閾値以上に増加したことを知覚音圧曲線C2(図2)から判定したときに任意の数値からなる可変パラメータαが自動的に乗算されたり、或いは、図示しない設定部によってユーザにより設定された任意の数値からなる可変パラメータαが乗算され得る。 Here, the control sampling function c 0 (t) is arbitrary when, for example, it is determined from the perceived sound pressure curve C2 (FIG. 2) that the sound pressure level has increased beyond a predetermined threshold in the high sound frequency band. Can be automatically multiplied, or can be multiplied by an arbitrary numerical value α set by a user by a setting unit (not shown).

そして、これにより制御標本化関数c0(t)は、t=0,±1,±2の標本位置で0としたまま、標本位置−2から+2までの間で当該可変パラメータαの数値に応じてその波形の振幅が変形され得る。その結果、制御標本化関数c0(t)は、離散データ(標本値)との畳み込み演算による算出結果を変更させ得る。このように、可変パラメータαは、数値が変更されることで、標本化関数sN(t)によって算出した補間処理信号の周波数特性を変化させることができ、各周波数帯域毎に高域成分の信号レベルを調整し得るようになされている。 Thus, the control sampling function c 0 (t) is set to the numerical value of the variable parameter α between the sample positions −2 and +2 while keeping 0 at the sample positions of t = 0, ± 1, ± 2. Accordingly, the amplitude of the waveform can be modified. As a result, the control sampling function c 0 (t) can change the calculation result by the convolution operation with the discrete data (sample value). Thus, the variable parameter α can change the frequency characteristic of the interpolation processing signal calculated by the sampling function s N (t) by changing the numerical value, and the high frequency component of each frequency band can be changed. The signal level can be adjusted.

従って、オーディオ装置1では、各周波数帯域毎に、制御標本化関数c0(t)に乗算される可変パラメータαを変化させることによって補間処理信号を調整し、これら各周波数帯域毎に生成された複数の補間処理信号を合成してアナログ信号を生成することにより、高音域が各周波数帯域毎に細かく調整されたユーザ所望の音質からなるアナログ信号を生成し得るようになされている。 Therefore, the audio apparatus 1 adjusts the interpolation processing signal by changing the variable parameter α multiplied by the control sampling function c 0 (t) for each frequency band, and is generated for each frequency band. By synthesizing a plurality of interpolation processing signals to generate an analog signal, it is possible to generate an analog signal having a sound quality desired by the user whose high sound range is finely adjusted for each frequency band.

(3)帯域別補間部の回路構成
(3−1)帯域別補間部における補間処理の概略説明
3つの帯域別補間部6a,6b,6cは、補間処理に用いる標本化関数sN(t)の可変パラメータαが個別に設定されている点と、当該補間処理する帯域別調整信号が異なる点とで相違するものの、その他の点については同一構成を有することから、以下、そのうち所定の帯域別調整信号に対して補間処理する1つの帯域別補間部6aに着目して説明する。
(3) Circuit configuration of interpolator for each band (3-1) Outline description of interpolation processing in interpolator for each band The three interpolators 6a, 6b, and 6c for each band are sampling functions s N (t) used for the interpolation process. The variable parameter α is set individually and the adjustment signal for each band to be interpolated is different, but the other points have the same configuration. Description will be made by paying attention to one interpolator 6a for each band that interpolates the adjustment signal.

図5に示すように、帯域別補間部6aは、帯域別調整信号を構成する所定数(この場合4つ)の帯域別データを順次抽出して保持するデータ抽出部15と、データ抽出部15で抽出保持された所定数の帯域別データを一度に受け取り、これら帯域別データを用いて補間処理を実行する関数処理部14とから構成され、増幅器5aから順次入力される帯域別データ間を所定の時間間隔でデータ補間し得るようになされている。   As shown in FIG. 5, the band-by-band interpolation unit 6 a includes a data extraction unit 15 that sequentially extracts and holds a predetermined number (four in this case) of band-by-band data constituting the band-by-band adjustment signal, and a data extraction unit 15. And a function processing unit 14 for receiving a predetermined number of band-specific data extracted and held at a time and performing interpolation using these band-specific data, and a predetermined interval between the band-specific data sequentially input from the amplifier 5a. The data can be interpolated at the time interval.

関数処理部14は、標本化関数sN(t)のうち基本標本化関数f(t)の項と帯域別データとの畳み込み演算を処理する基本項演算部16と、標本化関数sN(t)のうち制御標本化関数c0(t)の項と帯域別データとの畳み込み演算を処理する制御項演算部17と、制御項演算部17の算出結果に可変パラメータαを乗算する係数乗算部18と、基本項演算部16の算出結果と係数乗算部18の算出結果とを線形加算する加算演算部19とから構成されている。 The function processing unit 14 includes a basic term operation unit 16 for processing a convolution operation between the term of the basic sampling function f (t) and the band-specific data in the sampling function s N (t), and a sampling function s N ( t) of the control sampling function c 0 (t) and the control term calculation unit 17 for processing the convolution calculation of the band-specific data, and coefficient multiplication for multiplying the calculation result of the control term calculation unit 17 by the variable parameter α. Unit 18 and an addition operation unit 19 that linearly adds the calculation result of the basic term calculation unit 16 and the calculation result of the coefficient multiplication unit 18.

この実施の形態の場合、データ抽出部15は、順次入力される帯域別データの中から直前の4つの帯域別データを抽出し、次に新たな帯域別データが入力されるまでこの4つの帯域別データを保持して、これら4つの帯域別データを基本項演算部16及び制御項演算部17へそれぞれ送出する。   In the case of this embodiment, the data extraction unit 15 extracts the previous four band-specific data from the band-specific data that are sequentially input, and these four bands are then input until new band-specific data is next input. Separate data is held, and these four band-specific data are sent to the basic term calculation unit 16 and the control term calculation unit 17, respectively.

基本項演算部16は、所定の記憶手段(図示せず)に基本標本化関数f(t)を記憶しており、帯域別データ間の補間位置が指定されると、この補間位置と帯域別データとの間の距離に基づいて基本標本化関数f(t)の値を計算する。この基本項演算部16は、データ抽出部15から送出される4つの帯域別データ毎にそれぞれ基本標本化関数f(t)の値が計算され得る。また、基本項演算部16は、帯域別データ毎に得られた4つの基本標本化関数f(t)の値毎にそれぞれ対応する帯域別データの値を乗算した後、これら4つの帯域別データに対応する畳み込み演算を行い、この畳み込み演算の算出結果を加算演算部19へ送出する。   The basic term calculation unit 16 stores a basic sampling function f (t) in a predetermined storage means (not shown), and when an interpolation position between band-specific data is designated, this interpolation position and band-specific calculation are performed. Based on the distance to the data, the value of the basic sampling function f (t) is calculated. The basic term calculation unit 16 can calculate the value of the basic sampling function f (t) for each of the four band-specific data transmitted from the data extraction unit 15. Further, the basic term calculation unit 16 multiplies the values of the band-specific data corresponding to the values of the four basic sampling functions f (t) obtained for the band-specific data, and then the four band-specific data. The convolution operation corresponding to is performed, and the calculation result of the convolution operation is sent to the addition operation unit 19.

これと同時に制御項演算部17は、所定の記憶手段(図示せず)に制御標本化関数c0(t)を記憶しており、補間位置が指定されると、この補間位置と帯域別データとの間の距離に基づいて制御標本化関数c0(t)の値を計算する。この制御項演算部17は、データ抽出部15から送出される4つの帯域別データ毎にそれぞれ制御標本化関数c0(t)の値が計算され得る。また、制御項演算部17は、帯域別データ毎に得られた4つの制御標本化関数c0(t)の値毎にそれぞれ対応する帯域別データの値を乗算した後、これらを加算することにより4つの帯域別データに対応する畳み込み演算を行い、この畳み込み演算の算出結果を係数乗算部18へ送出する。 At the same time, the control term calculation unit 17 stores the control sampling function c 0 (t) in a predetermined storage means (not shown), and when an interpolation position is designated, this interpolation position and band-specific data The value of the control sampling function c 0 (t) is calculated based on the distance between. The control term calculation unit 17 can calculate the value of the control sampling function c 0 (t) for each of the four band-specific data transmitted from the data extraction unit 15. Further, the control term calculation unit 17 multiplies the values of the corresponding band-specific data for each value of the four control sampling functions c 0 (t) obtained for the band-specific data, and then adds these. Thus, the convolution operation corresponding to the four band-specific data is performed, and the calculation result of the convolution operation is sent to the coefficient multiplier 18.

係数乗算部18は、制御項演算部17から受け取った制御標本化関数c0(t)の畳み込み演算の算出結果に、ユーザの聴覚検査を基に選定された可変パラメータαを乗算し、その結果得られた可変パラメータ乗算結果を加算演算部19へ送出する。加算演算部19は、基本項演算部16から受け取った基本標本化関数f(t)の畳み込み演算の算出結果と、係数乗算部18から受け取った可変パラメータ乗算結果とを線形加算することにより、4つの帯域別データに対応する演算結果を得る。この線形加算によって得られる値は、所定の2つの帯域別データ間の補間位置における補間値となる。因みに、この補間位置は、予め設定された所定の時間間隔、具体的には帯域別データの入力間隔に対応する周期Tの1/Nの周期(=T/N)毎にその値が更新される。 The coefficient multiplication unit 18 multiplies the calculation result of the convolution operation of the control sampling function c 0 (t) received from the control term calculation unit 17 by the variable parameter α selected based on the user's auditory test, and the result The obtained variable parameter multiplication result is sent to the addition operation unit 19. The addition calculation unit 19 linearly adds the calculation result of the convolution calculation of the basic sampling function f (t) received from the basic term calculation unit 16 and the variable parameter multiplication result received from the coefficient multiplication unit 18 to obtain 4 An operation result corresponding to one band-specific data is obtained. A value obtained by this linear addition is an interpolation value at an interpolation position between two predetermined band-specific data. Incidentally, the value of this interpolation position is updated every predetermined period of time, specifically, every 1 / N period (= T / N) of the period T corresponding to the input interval of the band-specific data. The

(3−2)4つの帯域別データに基づいて補間値を求める具体例
次に、時間的に連続して並ぶ4つの帯域別データに基づいて所定の2つの帯域別データ間の補間値を算出する補間処理について、連続する4つの帯域別データと、補間位置である着目点との位置関係を示す図6を用い、以下説明する。この図6では、標本位置t1、t2、t3、t4のそれぞれに対応して順次入力される帯域別データd1、d2、d3、d4の各値をY(t1)、Y(t2)、Y(t3)、Y(t4)とし、標本位置t2及びt3間の所定位置(すなわち補間位置(t2から距離b))t0に対応した補間値yを求める場合を考える。
(3-2) Specific example of obtaining an interpolation value based on four band-specific data Next, an interpolation value between two predetermined band-specific data is calculated based on four band-specific data arranged in time series. The interpolation processing to be performed will be described below with reference to FIG. 6 showing the positional relationship between the continuous four band-specific data and the point of interest that is the interpolation position. In FIG. 6, the values of the band-specific data d1, d2, d3, d4 sequentially input corresponding to the respective sample positions t1, t2, t3, t4 are represented by Y (t1), Y (t2), Y ( Assume that t3) and Y (t4) are set, and an interpolation value y corresponding to a predetermined position between the sample positions t2 and t3 (that is, the interpolation position (distance b from t2)) t0 is obtained.

本実施の形態で用いる標本化関数sN(t)は、t=±2の標本位置で0に収束するため、t=±2までの帯域別データd1、d2、d3、d4を考慮に入れればよい。従って、図6に示す補間値yを求める場合には、t=t1、t2、t3、t4に対応した4つの帯域別データd1、d2、d3、d4のみを考慮すればよいことになり、演算量を大幅に削減することができる。しかも、t=±3以上の各帯域別データ(図示せず)については、本来考慮すべきであるが演算量や精度等を考慮して無視しているというわけではなく、理論的に考慮する必要がないため、打ち切り誤差は発生しない。 Since the sampling function s N (t) used in the present embodiment converges to 0 at the sample position of t = ± 2, the band-specific data d1, d2, d3, d4 up to t = ± 2 is taken into consideration. That's fine. Therefore, when obtaining the interpolation value y shown in FIG. 6, it is only necessary to consider the four band-specific data d1, d2, d3, d4 corresponding to t = t1, t2, t3, t4. The amount can be greatly reduced. In addition, data for each band (not shown) of t = ± 3 or more should be considered originally, but is not ignored in consideration of the amount of calculation and accuracy, but is considered theoretically. There is no need for censoring errors.

図7に示すように、データ抽出部15は、3つのシフト回路20a,20b,20cを備えており、連続する帯域別データが入力されると、各シフト回路20a,20b,20c毎に当該帯域別データを例えばCDのサンプリング周期(44.1kHz)でシフトし、各シフト回路20a,20b,20cで直前の帯域別データd1、d2、d3、d4をそれぞれ1つ抽出保持し得る。すなわち、データ抽出部15は、連続する4つの帯域別データd1、d2、d3、d4が入力されると、最新の帯域別データd4をそのまま基本項演算部16の基本項計算回路21a及び制御項演算部17の制御項計算回路22aへそれぞれ送出する。   As shown in FIG. 7, the data extraction unit 15 includes three shift circuits 20a, 20b, and 20c. When continuous band-specific data is input, the corresponding band is obtained for each shift circuit 20a, 20b, and 20c. The different data is shifted, for example, at a CD sampling period (44.1 kHz), and each of the shift circuits 20a, 20b, and 20c can extract and hold the previous band-specific data d1, d2, d3, and d4, respectively. That is, when four consecutive band-specific data d1, d2, d3, d4 are input, the data extraction unit 15 uses the latest band-specific data d4 as it is and the basic term calculation circuit 21a and the control term of the basic term calculation unit 16. Each is sent to the control term calculation circuit 22a of the calculation unit 17.

また、データ抽出部15は、連続する4つの帯域別データd1、d2、d3、d4からなる帯域別データ列をシフト回路20aに送出し、当該シフト回路20bによって帯域別データ列をシフトして最新の帯域別データd4から1つ前の帯域別データd3を抽出し、これを基本項演算部16の基本項計算回路21b及び制御項演算部17の制御項計算回路22bへそれぞれ送出する。   Further, the data extraction unit 15 sends a band-specific data string composed of four consecutive band-specific data d1, d2, d3, d4 to the shift circuit 20a, and the shift circuit 20b shifts the band-specific data string to the latest. The previous band-specific data d3 is extracted from the band-specific data d4 and sent to the basic term calculation circuit 21b of the basic term calculation unit 16 and the control term calculation circuit 22b of the control term calculation unit 17, respectively.

さらに、データ抽出部15は、残りのシフト回路20b、20cにも帯域別データ列を順次送出してゆき、シフト回路20bで帯域別データ列をさらにシフトさせて最新の帯域別データd4から2つ前の帯域別データd2を基本項計算回路21c及び制御項計算回路22cへそれぞれ送出するとともに、シフト回路20cで帯域別データ列をさらにシフトさせて最新の帯域別データd4から3つ前の帯域別データd1を基本項計算回路21d及び制御項計算回路22dへそれぞれ送出する。   Further, the data extraction unit 15 sequentially transmits the band-specific data string to the remaining shift circuits 20b and 20c, and further shifts the band-specific data string by the shift circuit 20b, so that two data from the latest band-specific data d4 are obtained. The previous band-specific data d2 is sent to the basic term calculation circuit 21c and the control term calculation circuit 22c, respectively, and the band-specific data string is further shifted by the shift circuit 20c, so that the previous band-specific data d4 is changed by the previous three bands. The data d1 is sent to the basic term calculation circuit 21d and the control term calculation circuit 22d.

ここで図8及び図9は、本実施の形態の基本項演算部16及び制御項演算部17における所定の補間位置t0に対する補間処理の概略を示す図である。補間処理の内容としては、上述したように先ず始めに、基本項演算部16における基本補間値を算出する演算処理(以下、これを単に基本補間値算出処理と呼ぶ)と、制御項演算部17及び係数乗算部18における制御補間値を算出する演算処理(以下、これを単に制御補間値算出処理と呼ぶ)とが実行される。以下、これら図8及び図9を用い、基本補間値算出処理と制御補間値算出処理とについて説明する。   Here, FIGS. 8 and 9 are diagrams showing an outline of the interpolation processing for the predetermined interpolation position t0 in the basic term calculation unit 16 and the control term calculation unit 17 of the present embodiment. As the contents of the interpolation processing, as described above, first, the calculation processing for calculating the basic interpolation value in the basic term calculation unit 16 (hereinafter simply referred to as basic interpolation value calculation processing), the control term calculation unit 17 Then, a calculation process for calculating a control interpolation value in the coefficient multiplication unit 18 (hereinafter simply referred to as a control interpolation value calculation process) is executed. Hereinafter, the basic interpolation value calculation process and the control interpolation value calculation process will be described with reference to FIGS. 8 and 9.

(3−2−1)基本補間値算出処理
基本補間値算出処理の内容としては、図8(A)〜(D)に示すように、各標本位置t1、t2、t3、t4毎に、基本標本化関数f(t)のt=0(中心位置)におけるピーク高さを一致させ、このときの補間位置t0におけるそれぞれの基本標本化関数f(t)の値を求めることになる。
(3-2-1) Basic Interpolation Value Calculation Processing As shown in FIGS. 8A to 8D, the basic interpolation value calculation processing includes basic information for each sample position t1, t2, t3, and t4. The peak heights at t = 0 (center position) of the sampling function f (t) are matched, and the value of each basic sampling function f (t) at the interpolation position t0 at this time is obtained.

図8(A)に示す標本位置t1における帯域別データd1に着目すると、補間位置t0と標本位置t1との距離は1+bとなる。従って、標本位置t1に基本標本化関数f(t)の中心位置を合わせたときの補間位置t0における基本標本化関数の値はf(1+b)となる。実際には、帯域別データd1の値Y(t1)に一致するように基本標本化関数f(t)の中心位置のピーク高さを合わせるため、上述したf(1+b)をY(t1)倍した値f(1+b)・Y(t1)が求めたい値となる。f(1+b)の計算は基本項演算部16の基本項計算回路21aで行われ、f(1+b)にY(t1)を乗算する計算は基本項演算部16の基本項乗算回路23aで行われる(図7)。   Focusing on the band-specific data d1 at the sample position t1 shown in FIG. 8A, the distance between the interpolation position t0 and the sample position t1 is 1 + b. Therefore, the value of the basic sampling function at the interpolation position t0 when the center position of the basic sampling function f (t) is aligned with the sample position t1 is f (1 + b). Actually, in order to match the peak height of the center position of the basic sampling function f (t) so as to match the value Y (t1) of the band-specific data d1, the above-described f (1 + b) is multiplied by Y (t1). The obtained value f (1 + b) · Y (t1) is a desired value. Calculation of f (1 + b) is performed by the basic term calculation circuit 21a of the basic term calculation unit 16, and calculation for multiplying f (1 + b) by Y (t1) is performed by the basic term multiplication circuit 23a of the basic term calculation unit 16. (FIG. 7).

同様に、図8(B)に示す標本位置t2における帯域別データd2の値Y(t2)に着目すると、補間位置t0と標本位置t2との距離はbとなる。従って、標本位置t2に基本標本化関数f(t)の中心位置を合わせたときの補間位置t0における基本標本化関数の値はf(b)となる。実際には、帯域別データd2の値Y(t2)に一致するように基本標本化関数f(t)の中心位置のピーク高さを合わせるため、上述したf(b)をY(t2)倍した値f(b)・Y(t2)が求めたい値となる。f(b)の計算は基本項演算部16の基本項計算回路21bで行われ、f(b)にY(t2)を乗算する計算は基本項演算部16の基本項乗算回路23bで行われる(図7)。   Similarly, paying attention to the value Y (t2) of the band-specific data d2 at the sample position t2 shown in FIG. 8B, the distance between the interpolation position t0 and the sample position t2 is b. Therefore, the value of the basic sampling function at the interpolation position t0 when the center position of the basic sampling function f (t) is aligned with the sampling position t2 is f (b). Actually, in order to match the peak height of the center position of the basic sampling function f (t) so as to match the value Y (t2) of the band-specific data d2, the above-described f (b) is multiplied by Y (t2) times. The obtained value f (b) · Y (t2) is a desired value. The calculation of f (b) is performed by the basic term calculation circuit 21b of the basic term calculation unit 16, and the calculation of multiplying f (b) by Y (t2) is performed by the basic term multiplication circuit 23b of the basic term calculation unit 16. (FIG. 7).

図8(C)に示す標本位置t3における帯域別データd3の値Y(t3)に着目すると、補間位置t0と標本位置t3との距離は1−bとなる。従って、標本位置t3に基本標本化関数f(t)の中心位置を合わせたときの補間位置t0における基本標本化関数の値はf(1−b)となる。実際には、帯域別データの値Y(t3)に一致するように基本標本化関数f(t)の中心位置のピーク高さを合わせるため、上述したf(1−b)をY(t3)倍した値f(1−b)・Y(t3)が求めたい値となる。f(1−b)の計算は基本項演算部16の基本項計算回路21cで行われ、f(1−b)にY(t3)を乗算する計算は基本項演算部16の基本項乗算回路23cで行われる(図7)。   Focusing on the value Y (t3) of the band-specific data d3 at the sample position t3 shown in FIG. 8C, the distance between the interpolation position t0 and the sample position t3 is 1-b. Therefore, the value of the basic sampling function at the interpolation position t0 when the center position of the basic sampling function f (t) is aligned with the sampling position t3 is f (1-b). Actually, in order to match the peak height of the center position of the basic sampling function f (t) so as to coincide with the value Y (t3) of the band-specific data, the above-described f (1-b) is changed to Y (t3). The multiplied value f (1-b) · Y (t3) is the value to be obtained. The calculation of f (1-b) is performed by the basic term calculation circuit 21c of the basic term calculation unit 16, and the calculation of multiplying f (1-b) by Y (t3) is the basic term multiplication circuit of the basic term calculation unit 16. 23c (FIG. 7).

図8(D)に示す標本位置t4における帯域別データd4の値Y(t4)に着目すると、補間位置t0と標本位置t4との距離は2−bとなる。従って、標本位置t4に基本標本化関数f(t)の中心位置を合わせたときの補間位置t0における基本標本化関数の値はf(2−b)となる。実際には、帯域別データd4の値Y(t4)に一致するように基本標本化関数f(2−b)の中心位置のピーク高さを合わせるため、上述したf(2−b)をY(t4)倍した値f(2−b)・Y(t4)が求めたい値となる。f(2−b)の計算は基本項演算部16の基本項計算回路21dで行われ、f(2−b)にY(t4)を乗算する計算は基本項演算部16の基本項乗算回路23dで行われる(図7)。   Focusing on the value Y (t4) of the band-specific data d4 at the sample position t4 shown in FIG. 8D, the distance between the interpolation position t0 and the sample position t4 is 2-b. Therefore, the value of the basic sampling function at the interpolation position t0 when the center position of the basic sampling function f (t) is aligned with the sampling position t4 is f (2-b). Actually, in order to match the peak height of the center position of the basic sampling function f (2-b) so as to match the value Y (t4) of the band-specific data d4, the above-described f (2-b) is set to Y The value f (2-b) · Y (t4) multiplied by (t4) is the desired value. The calculation of f (2-b) is performed by the basic term calculation circuit 21d of the basic term calculation unit 16, and the calculation of multiplying f (2-b) by Y (t4) is the basic term multiplication circuit of the basic term calculation unit 16. 23d (FIG. 7).

そして、基本項演算部16は、補間位置t0の着目点に対応して得られた4つの値f(1+b)・Y(t1)、f(b)・Y(t2)、f(1−b)・Y(t3)、f(2−b)・Y(t4)を、基本項畳み込み回路24において畳み込み演算し、所定の周波数帯域における基本補間値yaが計算される。因みに、この実施の形態の場合、補間位置t0の着目点に対応して得られた値f(1+b)・Y(t1)及びf(2−b)・Y(t4)は、図8(A)及び(D)に示すように0となるため、基本補間値yaは、{f(b)・Y(t2)}+{f(1−b)・Y(t3)}となる。   The basic term calculation unit 16 then obtains four values f (1 + b) · Y (t1), f (b) · Y (t2), and f (1−b) obtained corresponding to the point of interest at the interpolation position t0. ) · Y (t3) and f (2-b) · Y (t4) are convolved in the basic term convolution circuit 24 to calculate a basic interpolation value ya in a predetermined frequency band. Incidentally, in the case of this embodiment, the values f (1 + b) · Y (t1) and f (2-b) · Y (t4) obtained corresponding to the point of interest at the interpolation position t0 are shown in FIG. ) And 0 as shown in (D), the basic interpolation value ya is {f (b) · Y (t2)} + {f (1−b) · Y (t3)}.

(3−2−2)制御補間値算出処理
一方、制御補間値算出処理の内容としては、図9(A)〜(D)に示すように、各標本位置t1、t2、t3、t4毎に、制御標本化関数c0(t)のt=0(中心位置)を一致させて、各制御標本化関数c0(t)に対応した帯域別データd1、d2、d3、d4の値Y(t1)、Y(t2)、Y(t3)、Y(t4)を乗算し、このときの補間位置t0におけるそれぞれの制御標本化関数c0(t)の値を求めることになる。
(3-2-2) Control Interpolation Value Calculation Processing On the other hand, as the contents of the control interpolation value calculation processing, as shown in FIGS. 9A to 9D, for each sample position t1, t2, t3, t4 , to match the t = 0 (center position) of the control sampling function c 0 (t), the band-by-band data d1 corresponding to each control sampling function c 0 (t), d2, d3, d4 of the value Y ( t1), Y (t2), Y (t3), and Y (t4) are multiplied, and the value of each control sampling function c 0 (t) at the interpolation position t0 at this time is obtained.

図9(A)に示す標本位置t1における帯域別データd1の値Y(t1)に着目すると、補間位置t0と標本位置t1との距離は1+bとなる。従って、標本位置t1に制御標本化関数c0(t)の中心位置を合わせたときの補間位置t0における制御標本化関数の値はc0(1+b)となる。実際には、帯域別データd1の値Y(t1)に対応させて制御標本化関数c0(t)の波形高さを合わせるため、上述したc0(1+b)をY(t1)倍した値c0(1+b)・Y(t1)が求めたい値となる。c0(1+b)の計算は制御項演算部17の制御項計算回路22aで行われ、c0(1+b)にY(t1)を乗算する計算は制御項演算部17の制御項乗算回路25aで行われる(図7)。 Focusing on the value Y (t1) of the band-specific data d1 at the sample position t1 shown in FIG. 9A, the distance between the interpolation position t0 and the sample position t1 is 1 + b. Therefore, the value of the control sampling function at the interpolation position t0 when the center position of the control sampling function c 0 (t) is aligned with the sample position t1 is c 0 (1 + b). Actually, in order to match the waveform height of the control sampling function c 0 (t) in correspondence with the value Y (t 1) of the band-specific data d 1, a value obtained by multiplying the above c 0 (1 + b) by Y (t 1). c 0 (1 + b) · Y (t1) is a desired value. The calculation of c 0 (1 + b) is performed by the control term calculation circuit 22a of the control term calculation unit 17, and the calculation of multiplying c 0 (1 + b) by Y (t1) is performed by the control term multiplication circuit 25a of the control term calculation unit 17. Performed (FIG. 7).

同様に、図9(B)に示す標本位置t2における帯域別データd2の値Y(t2)に着目すると、補間位置t0と標本位置t2との距離はbとなる。従って、標本位置t2に制御標本化関数c0(t)の中心位置を合わせたときの補間位置t0における制御標本化関数の値はc0(b)となる。実際には、帯域別データd2の値Y(t2)に対応させて制御標本化関数c0(t)の波形高さを合わせるため、上述したc0(b)をY(t2)倍した値c0(b)・Y(t2)が求めたい値となる。c0(b)の計算は制御項演算部17の制御項計算回路22bで行われ、c0(b)にY(t2)を乗算する計算は制御項演算部17の制御項乗算回路25bで行われる(図7)。 Similarly, focusing on the value Y (t2) of the band-specific data d2 at the sample position t2 shown in FIG. 9B, the distance between the interpolation position t0 and the sample position t2 is b. Therefore, the value of the control sampling function at the interpolation position t0 when the center position of the control sampling function c 0 (t) is aligned with the sample position t2 is c 0 (b). Actually, in order to match the waveform height of the control sampling function c 0 (t) in correspondence with the value Y (t 2) of the band-specific data d 2, a value obtained by multiplying the above c 0 (b) by Y (t 2). c 0 (b) · Y (t2) is a desired value. The calculation of c 0 (b) is performed by the control term calculation circuit 22b of the control term calculation unit 17, and the calculation of multiplying c 0 (b) by Y (t2) is performed by the control term multiplication circuit 25b of the control term calculation unit 17. Performed (FIG. 7).

図9(C)に示す標本位置t3における帯域別データd3の値Y(t3)に着目すると、補間位置t0と標本位置t3との距離は1−bとなる。従って、標本位置t3に制御標本化関数c0(t)の中心位置を合わせたときの補間位置t0における制御標本化関数の値はc0(1−b)となる。実際には、帯域別データd3の値Y(t3)に対応させて制御標本化関数c0(t)の波形高さを合わせるため、上述したc0(1−b)をY(t3)倍した値c0(1−b)・Y(t3)が求めたい値となる。c0(1−b)の計算は制御項演算部17の制御項計算回路22cで行われ、c0(1−b)にY(t3)を乗算する計算は制御項演算部17の制御項乗算回路25cで行われる(図7)。 Focusing on the value Y (t3) of the band-specific data d3 at the sample position t3 shown in FIG. 9C, the distance between the interpolation position t0 and the sample position t3 is 1-b. Therefore, the value of the control sampling function at the interpolation position t0 when the center position of the control sampling function c 0 (t) is aligned with the sampling position t3 is c 0 (1-b). Actually, in order to match the waveform height of the control sampling function c 0 (t) in correspondence with the value Y (t 3) of the band-specific data d 3 , the above c 0 (1-b) is multiplied by Y (t 3). The value c 0 (1-b) · Y (t3) is the value to be obtained. The calculation of c 0 (1-b) is performed by the control term calculation circuit 22c of the control term calculation unit 17, and the calculation of multiplying c 0 (1-b) by Y (t3) is the control term of the control term calculation unit 17. This is performed by the multiplication circuit 25c (FIG. 7).

図9(D)に示す標本位置t4における帯域別データd4の値Y(t4)に着目すると、補間位置t0と標本位置t4との距離は2−bとなる。従って、標本位置t4に制御標本化関数c0(t)の中心位置を合わせたときの補間位置t0における制御標本化関数の値はc0(2−b)となる。実際には、帯域別データd4の値Y(t4)に対応させて制御標本化関数c0(2−b)の波形高さを合わせるため、上述したc0(2−b)をY(t4)倍した値c0(2−b)・Y(t4)が求めたい値となる。c0(2−b)の計算は制御項演算部17の制御項計算回路22dで行われ、c0(2−b)にY(t4)を乗算する計算は制御項演算部17の制御項乗算回路25dで行われる(図7)。 Focusing on the value Y (t4) of the band-specific data d4 at the sample position t4 shown in FIG. 9D, the distance between the interpolation position t0 and the sample position t4 is 2-b. Therefore, the value of the control sampling function at the interpolation position t0 when the center position of the control sampling function c 0 (t) is aligned with the sampling position t4 is c 0 (2-b). Actually, in order to match the waveform height of the control sampling function c 0 (2-b) in correspondence with the value Y (t4) of the band-specific data d4, the above-described c 0 (2-b) is changed to Y (t4). ) The multiplied value c 0 (2-b) · Y (t4) is the desired value. The calculation of c 0 (2-b) is performed by the control term calculation circuit 22d of the control term calculation unit 17, and the calculation of multiplying c 0 (2-b) by Y (t4) is the control term of the control term calculation unit 17. This is performed by the multiplication circuit 25d (FIG. 7).

そして、補間位置t0の着目点に対応して得られた4つの値c0(1+b)・Y(t1)、c0(b)・Y(t2)、c0(1−b)・Y(t3)、c0(2−b)・Y(t4)は、制御項演算部17の制御項畳み込み回路26によって畳み込み演算された後、係数乗算部18において可変パラメータαが乗算され、これにより所定の周波数帯域における制御補間値ybが計算される。 Then, four values c 0 (1 + b) · Y (t1), c 0 (b) · Y (t2), c 0 (1−b) · Y () obtained corresponding to the point of interest at the interpolation position t0. t3), c 0 (2-b) · Y (t4) are subjected to a convolution operation by the control term convolution circuit 26 of the control term operation unit 17, and then multiplied by the variable parameter α in the coefficient multiplication unit 18, whereby a predetermined parameter is obtained. A control interpolation value yb in the frequency band is calculated.

(3−2−3)補間値演算処理
加算演算部19は、基本項演算部16により算出された着目点に対応する基本補間値yaと、制御項演算部17及び係数乗算部18により算出された着目点に対応する制御補間値ybとを線形加算することにより、所定の周波数帯域における補間位置t0の補間値yを出力し得るようになされている。このようにして、帯域別データd2及びd3間の他の全ての補間位置も同様に補間値が算出されるとともに、帯域別補間部6b,6cにおいても中音域及び高音域の各周波数帯域毎に設定された標本化関数を用いて同様の補間処理手法が実行され得る。
(3-2-3) Interpolation Value Calculation Processing The addition calculation unit 19 is calculated by the basic interpolation value ya corresponding to the target point calculated by the basic term calculation unit 16, the control term calculation unit 17, and the coefficient multiplication unit 18. The interpolation value y at the interpolation position t0 in a predetermined frequency band can be output by linearly adding the control interpolation value yb corresponding to the target point. In this manner, interpolation values are similarly calculated for all other interpolation positions between the band-specific data d2 and d3, and the band-based interpolation units 6b and 6c are also provided for each frequency band of the middle sound range and the high sound range. A similar interpolation processing technique can be executed using the set sampling function.

(3−3)可変パラメータの数値を変更したときの補間処理結果
かかる構成に加えて、音響処理部2aは、知覚音圧曲線C2の閾値や、ユーザの設定に基づいて係数乗算部18の可変パラメータαの数値が各帯域別補間部6a,6b,6c毎に適宜変更されることにより、各帯域別補間部6a,6b,6c毎に標本化関数sN(t)の値が変更され、各周波数帯域毎に補間値yを調整し得る。その結果、帯域合成部7において生成されるアナログ信号は、各周波数帯域毎に可変パラメータαの数値が変更されることにより周波数特性が調整され得るようになされている。ここでは、可変パラメータαを変更した際に、標本化関数sN(t)がどのように変化するかについて、図4に示した基本標本化関数f(t)が示す波形と、制御標本化関数c0(t)が示す波形とを合成した波形に着目して以下説明する。
(3-3) Interpolation Processing Result when Variable Parameter Values are Changed In addition to such a configuration, the acoustic processing unit 2a can change the coefficient multiplying unit 18 based on the threshold value of the perceptual sound pressure curve C2 or user settings. The value of the sampling function s N (t) is changed for each interpolator 6a, 6b, 6c for each band by appropriately changing the numerical value of the parameter α for each interpolator 6a, 6b, 6c for each band, The interpolation value y can be adjusted for each frequency band. As a result, the analog signal generated in the band synthesizing unit 7 can be adjusted in frequency characteristics by changing the numerical value of the variable parameter α for each frequency band. Here, with respect to how the sampling function s N (t) changes when the variable parameter α is changed, the waveform shown by the basic sampling function f (t) shown in FIG. The following description will be focused on a waveform obtained by combining the waveform indicated by the function c 0 (t).

基本標本化関数f(t)が示す波形と、制御標本化関数c0(t)が示す波形とを合成した標本化関数sN(t)の波形は、図10に示すように、可変パラメータαの数値によって大きく異なるものとなる。この実施の形態の場合、可変パラメータαを−1.5、−0.25、1.5に順次変化させてゆくと、−2≦t≦−1の領域と、1≦t≦2の領域とでは、標本化関数sN(t)の波長の振幅が次第に大きくなり波形の極性が反転することを確認した。一方、−1≦t≦0の領域と、0≦t≦1の領域とでは、標本化関数sN(t)の波長の振幅が次第に小さくなり波形の極性が反転することを確認した。 As shown in FIG. 10, the waveform of the sampling function s N (t) obtained by synthesizing the waveform indicated by the basic sampling function f (t) and the waveform indicated by the control sampling function c 0 (t) is a variable parameter. It varies greatly depending on the numerical value of α. In this embodiment, when the variable parameter α is sequentially changed to −1.5, −0.25, and 1.5, the region of −2 ≦ t ≦ −1 and the region of 1 ≦ t ≦ 2 Then, it was confirmed that the amplitude of the wavelength of the sampling function s N (t) gradually increased and the waveform polarity was inverted. On the other hand, in the region of −1 ≦ t ≦ 0 and the region of 0 ≦ t ≦ 1, it was confirmed that the wavelength amplitude of the sampling function s N (t) gradually decreased and the polarity of the waveform was inverted.

因みに、テスト曲としてCDに記録されたヴァイオリン曲「Zigeunerweisen(ツィゴイナーヴァイゼン)」を23秒間再生して得られた離散データを、低音域、中音域及び高音域の周波数帯域に分離せずにそのまま補間処理した。このとき、可変パラメータαを−0.25、−1.5及び1.5にそれぞれ設定し、各標本化関数sN(t)で補間処理したアナログ信号の周波数特性について比較したところ、図11に示すような結果が得られた。 By the way, the discrete data obtained by playing the violin song “Zigeunerweisen” recorded on CD as a test song for 23 seconds is not separated into the low, mid and high frequency bands. The interpolation processing was performed as is. At this time, the variable parameter α is set to −0.25, −1.5, and 1.5, respectively, and the frequency characteristics of the analog signals interpolated with each sampling function s N (t) are compared. The results as shown in Fig. 1 were obtained.

図11に示したように、これら可変パラメータαの数値を変えた各標本化関数sN(t)による補間処理では、従来のシャノンの標本化関数を用いると再生し難い20kHz以上の高音域の信号が、可変パラメータαの数値にかかわらず、再生できることが確認できた。このような特性を有する波形は、低音域、中音域及び高音域等の種々の周波数帯域に離散データを分離した各帯域別調整信号を補間処理したときであっても同様に高音域側の信号が再生されることから、従来のシャノンの標本化関数を用いた場合に比べて、低音域、中音域及び高音域等の各周波数帯域の範囲毎にその範囲内での高音域成分を再生させ得る。 As shown in FIG. 11, in the interpolation process using each sampling function s N (t) in which the numerical value of the variable parameter α is changed, a high frequency range of 20 kHz or higher that is difficult to reproduce by using the conventional Shannon sampling function is used. It was confirmed that the signal can be reproduced regardless of the value of the variable parameter α. The waveform having such characteristics is the same as the signal on the high frequency side even when the adjustment signal for each band obtained by separating the discrete data into various frequency bands such as the low frequency range, the middle frequency range, and the high frequency range is interpolated. As compared with the case where the conventional Shannon sampling function is used, the high frequency range component within the low frequency range, the mid frequency range and the high frequency range are reproduced. obtain.

また、可変パラメータαを1.5、−1.5又は−0.25に設定したときには、各信号レベルの波形が互いに異なるものとなった。そして、このような特性を有する波形は、低音域、中音域及び高音域等の種々の周波数帯域に離散データを分離した各帯域別調整信号を補間処理したときであっても同様に形成されることから、可変パラメータαの数値を各周波数帯域毎に適宜変更することにより、低音域、中音域及び高音域等の各周波数帯域の範囲内でそれぞれ個別に信号レベルを調整することができる。   Further, when the variable parameter α is set to 1.5, −1.5, or −0.25, the waveforms of the respective signal levels are different from each other. A waveform having such characteristics is similarly formed even when interpolation processing is performed on each band-specific adjustment signal obtained by separating discrete data into various frequency bands such as a low sound range, a mid sound range, and a high sound range. Therefore, by appropriately changing the numerical value of the variable parameter α for each frequency band, it is possible to individually adjust the signal level within each frequency band such as a low sound range, a middle sound range, and a high sound range.

このように、音響処理部2aは、各周波数帯域毎に標本化関数sN(t)の可変パラメータαが変更されることで、各周波数帯域毎に微細な信号レベルの調整ができることにより、周波数特性の一段と細かな調整をユーザに対して容易に行わせることができる。かくして、オーディオ装置1では、可変パラメータαを各周波数帯域毎にそれぞれ変化させることによって各補間処理信号を個別に調整し、この調整された複数の補間処理信号を合成してアナログ信号を生成することにより、高音域が各周波数帯域毎に細かく調整されたアナログ信号を生成できる。 As described above, the acoustic processing unit 2a can adjust the fine signal level for each frequency band by changing the variable parameter α of the sampling function s N (t) for each frequency band. It is possible to make the user easily perform finer adjustment of characteristics. Thus, in the audio apparatus 1, each interpolation processing signal is individually adjusted by changing the variable parameter α for each frequency band, and an analog signal is generated by synthesizing the plurality of adjusted interpolation processing signals. Thus, it is possible to generate an analog signal whose high sound range is finely adjusted for each frequency band.

(4)動作及び効果
以上の構成において、聴覚検出部2bでは各周波数の検出音毎に徐々に音圧レベルを上昇させてゆき、確認信号入力部10からの確認信号を受け取ったタイミングに基づいてユーザが検出音を聴取し得た音圧レベルを知覚音圧レベルとして各周波数毎に特定する。これにより音響処理部2aでは、知覚音圧レベルと標準音圧レベルとの音圧レベルの相違からユーザにとって聞き取り難い特有の周波数帯域がどこであるのか否かを判別し、各周波数帯域毎に個別に設けた増幅器5a,5b,5c…によって、当該ユーザが聞き取り難い周波数帯域についてだけ音圧レベルを確実に増幅させることで、ユーザが聞き取り易い音圧レベルに全周波数帯域を調整することができ、かくしてユーザの聴覚特性に応じた良好な音質で音楽等を再生させることができる。
(4) Operation and effect In the above configuration, the auditory detection unit 2b gradually increases the sound pressure level for each detection sound of each frequency, and based on the timing when the confirmation signal is received from the confirmation signal input unit 10. The sound pressure level at which the user can hear the detected sound is specified for each frequency as the perceived sound pressure level. As a result, the acoustic processing unit 2a determines where the specific frequency band that is difficult for the user to hear from the difference in the sound pressure level between the perceived sound pressure level and the standard sound pressure level, and individually for each frequency band. The amplifiers 5a, 5b, 5c,... Provided can amplify the sound pressure level only in a frequency band that is difficult for the user to hear, thereby adjusting the entire frequency band to a sound pressure level that is easy for the user to hear. Music or the like can be reproduced with good sound quality according to the user's auditory characteristics.

また、聴覚検出部2bでは、統計的な音圧レベル増幅傾向を示した標準音圧曲線C1が予め記憶されており、この標準音圧曲線C1と知覚音圧レベルとに基づいて各周波数毎に音圧係数を算出し、これら音圧係数と周波数と標準音圧レベルとの関係から、聴覚検査で知覚音圧レベルを直接特定した周波数以外の他の周波数での知覚音圧レベルを推定する。従って、音響処理部2aでは、知覚音圧レベルを検査していない周波数であっても、ユーザが聞き取り難い周波数を推定し、これに応じて細かく音圧レベルを増幅させることができ、かくしてユーザの聴覚特性に応じた良好な音質で音楽等を再生させることができる。   In the auditory detection unit 2b, a standard sound pressure curve C1 indicating a statistical sound pressure level amplification tendency is stored in advance, and for each frequency based on the standard sound pressure curve C1 and the perceived sound pressure level. A sound pressure coefficient is calculated, and a perceived sound pressure level at a frequency other than the frequency at which the perceived sound pressure level is directly specified by an auditory test is estimated from the relationship between the sound pressure coefficient, the frequency, and the standard sound pressure level. Therefore, the acoustic processing unit 2a can estimate a frequency that is difficult for the user to hear even if the perceived sound pressure level is not inspected, and finely amplify the sound pressure level accordingly. Music and the like can be reproduced with good sound quality according to the auditory characteristics.

さらに、具体的に聴覚検出部2bでは、微小音発生手段としての検出音出力部11から発生した微小な検出音(微小音)をユーザが知覚したとき、ユーザ自身が反応して自らの意思で確認信号入力部10をスイッチ操作させるようにしたことにより、ユーザ自身が感じる最小の音圧レベルを正確、かつ確実に特定することができ、かくしてユーザの聴覚特性に応じた良好な音質で音楽等を再生させることができる。   Further, in the auditory detection unit 2b, when the user perceives the minute detection sound (micro sound) generated from the detection sound output unit 11 as the minute sound generation means, the user reacts and makes his own intention. By making the confirmation signal input unit 10 switch-operated, the minimum sound pressure level felt by the user himself / herself can be specified accurately and reliably, thus music with good sound quality according to the user's auditory characteristics, etc. Can be played.

(5)他の実施の形態
なお、本発明は、本実施形態に限定されるものではなく、本発明の要旨の範囲内で種々の変形実施が可能である。例えば、知覚音圧曲線C2を年齢や性別あるいは家族の個々人等のユーザに関する種々のカテゴリーに応じて予め複数生成しておき、これら複数の知覚音圧曲線C2を聴覚検査部に記憶しておくようにしてもよい。この場合、図12に示すように、このオーディオ装置100は、帯域別音圧係数算出部13において予め生成した複数の知覚音圧曲線C2を記憶する記憶部102と、当該記憶部102に記憶した複数の知覚音圧曲線C2を選択する選択ボタン等からなる選択部103とを聴覚検査部101に備える。
(5) Other Embodiments The present invention is not limited to the present embodiment, and various modifications can be made within the scope of the gist of the present invention. For example, a plurality of perceived sound pressure curves C2 are generated in advance according to various categories related to users such as age, gender, or individual family members, and the plurality of perceived sound pressure curves C2 are stored in the auditory examination unit. It may be. In this case, as shown in FIG. 12, the audio apparatus 100 stores a plurality of perceptual sound pressure curves C2 generated in advance by the band-specific sound pressure coefficient calculation unit 13 and the storage unit 102. The auditory examination unit 101 includes a selection unit 103 including a selection button for selecting a plurality of perceptual sound pressure curves C2.

選択部102は、音楽等を再生させる音響信号再生時、ユーザによる選択操作に応じて所定の選択信号を生成し、これを記憶部101に送出する。これにより記憶部102は、予め記憶した複数の知覚音圧曲線C2のなかから、選択信号に応じた所定の知覚音圧曲線C2を選択し、これを音圧調整部5に送出する。かくして音圧調整部5は知覚音圧曲線C2を用いて上述した同様の処理を実行し得る。以上の構成によれば、このオーディオ装置1では、音響信号再生時に、ユーザに対して選択操作のみを行わせるだけで、ユーザの聴覚特性に応じた良好な音質で音楽等を再生させることができ、その都度、ユーザが聴覚検査を行う手間を省かせることができる。   The selection unit 102 generates a predetermined selection signal in response to a selection operation by the user and reproduces it to the storage unit 101 when reproducing an acoustic signal for reproducing music or the like. As a result, the storage unit 102 selects a predetermined perceptual sound pressure curve C2 corresponding to the selection signal from a plurality of perceived sound pressure curves C2 stored in advance, and sends this to the sound pressure adjustment unit 5. Thus, the sound pressure adjusting unit 5 can execute the same process as described above using the perceived sound pressure curve C2. According to the above configuration, the audio device 1 can reproduce music or the like with good sound quality according to the user's auditory characteristics by only allowing the user to perform a selection operation when reproducing the sound signal. Each time, it is possible to save the user from having to perform an auditory examination.

なお、上述した実施の形態においては、知覚音圧曲線C2を生成して当該知覚音圧曲線C2から知覚音圧レベルを特定し、この知覚音圧レベルを基に対応する周波数の帯域別調整信号を増幅させるようにした場合について述べたが、本発明はこれに限らず、知覚音圧曲線C2を生成せずに聴覚検査によって特定した知覚音圧レベルだけを直接用いて、対応する周波数の帯域別調整信号を増幅させるようにしてもよい。   In the embodiment described above, the perceived sound pressure curve C2 is generated, the perceived sound pressure level is specified from the perceived sound pressure curve C2, and the frequency-dependent adjustment signal for the corresponding frequency based on the perceived sound pressure level. However, the present invention is not limited to this, and only the perceived sound pressure level specified by the auditory test is directly used without generating the perceptual sound pressure curve C2. Another adjustment signal may be amplified.

また、上述した実施の形態においては、ユーザが聞き取り難い周波数を知覚音圧レベルに基づいて増幅させ、全周波数帯域においてユーザが聞き取り易い音圧レベルに調整するようにした場合について述べたが、本発明はこれに限らず、ユーザが聞き取り易い周波数を知覚音圧レベルに基づいて減衰させ、全周波数帯域においてユーザが聞き取り易い音圧レベルに調整するようにしてもよく、要は、知覚音圧レベルに基づいて音圧レベルを増減させて、全周波数帯域においてユーザが聞き取り易くできればよい。   In the above-described embodiment, the case where the frequency that is difficult for the user to hear is amplified based on the perceived sound pressure level and adjusted to the sound pressure level that is easy for the user to hear in all frequency bands has been described. The invention is not limited to this, and the frequency at which the user can easily hear may be attenuated based on the perceived sound pressure level, and adjusted to the sound pressure level at which the user can easily hear in all frequency bands. The sound pressure level may be increased or decreased based on the above, so that the user can easily hear in all frequency bands.

さらに、上述した実施の形態においては、補間処理として、標本化関数sN(t)を用いた補間処理を適用するようにした場合について述べたが、これに限らず、標本化関数を用いた補間処理だけでなく、この他種々の補間処理を適用してもよい。 Furthermore, in the above-described embodiment, the case where the interpolation process using the sampling function s N (t) is applied as the interpolation process is described, but the present invention is not limited to this, and the sampling function is used. In addition to the interpolation process, various other interpolation processes may be applied.

また、ここでは、基本標本化関数f(t)及び制御標本化関数c0(t)からなる標本化関数sN(t)を用い、当該制御標本化関数c0(t)に乗算される可変パラメータαの数値を変更することにより補間処理信号を調整するようにした場合について述べたが、これに限らず、当該標本化関数sN(t)に加えて、シャノンの標本化関数を選択させるようにしたり、予め設定された各種標本化関数を単に選択させるようにして補間処理信号を調整するようにしてよい。 Also, here, a sampling function s N (t) composed of a basic sampling function f (t) and a control sampling function c 0 (t) is used, and the control sampling function c 0 (t) is multiplied. Although the case where the interpolation processing signal is adjusted by changing the numerical value of the variable parameter α has been described, the present invention is not limited to this, and the Shannon sampling function is selected in addition to the sampling function s N (t). Alternatively, the interpolation processing signal may be adjusted by simply selecting various sampling functions set in advance.

また、例えば、標本化関数sN(t)を全域で1回だけ微分可能な有限台の関数としたが、微分可能回数を2回以上に設定してもよい。さらに、上述した実施の形態においては、標本化関数sN(t)を用いて補間処理を行うことにより合成信号としてアナログ信号を生成するようにした場合についてのべたが、本発明はこれに限らず、標本化関数sN(t)を用いて補間処理を行うことにより単にオーバーサンプリングした合成信号を生成し、その後にアナログデジタル変換器でアナログ信号を生成するようにしてもよい。 For example, although the sampling function s N (t) is a function of a finite stage that can be differentiated only once in the entire region, the number of differentiable times may be set to 2 or more. Furthermore, in the above-described embodiment, the case where an analog signal is generated as a synthesized signal by performing an interpolation process using the sampling function s N (t) is described, but the present invention is not limited to this. Alternatively, an oversampled composite signal may be generated by performing an interpolation process using the sampling function s N (t), and then an analog signal may be generated by an analog-to-digital converter.

さらに、上述した実施の形態においては、標本化関数sN(t)はt=±2で0に収束するようにした場合について述べたが、これに限らず、t=±3以上で0に収束するようにしてもよい。例えば、t=±3で0に収束するようにした場合には、データ抽出部15によって直前の6つの離散データを抽出し、関数処理部14によってこれら6つの離散データに対して標本化関数sN(t)の値が計算され得る。 Furthermore, in the above-described embodiment, the case where the sampling function s N (t) converges to 0 at t = ± 2 is described, but this is not limiting, and the sampling function s N (t) becomes 0 at t = ± 3 or more. You may make it converge. For example, when t = ± 3 and converge to 0, the data extraction unit 15 extracts the previous six discrete data, and the function processing unit 14 performs sampling function s on these six discrete data. The value of N (t) can be calculated.

さらに、上述した実施の形態においては、基本項演算部16に基本標本化関数f(t)を記憶し、これとは別に制御項演算部17に制御標本化関数c0(t)を記憶しておき、それぞれ基本標本化関数f(t)及び制御標本化関数c0(t)毎に帯域別データd1、d2、d3、d4に対する畳み込み演算を行って基本補間値yaと制御補間値ybとを算出した後、基本補間値yaと制御補間値ybとを線形加算して補間値yを算出するようにした場合について述べたが、これに限らず、基本標本化関数f(t)及び制御標本化関数c0(t)を予め線形加算して一つの標本化関数sN(t)として記憶しておき、可変パラメータαを変更した標本化関数sN(t)を用い、帯域別データd1、d2、d3、d4に対する畳み込み演算を行って補間値yを直接算出するようにしてもよい。 Furthermore, in the above-described embodiment, the basic sampling function f (t) is stored in the basic term calculation unit 16, and separately, the control sampling function c 0 (t) is stored in the control term calculation unit 17. The basic interpolation value ya and the control interpolation value yb are calculated by performing a convolution operation on the band-specific data d1, d2, d3, d4 for each basic sampling function f (t) and control sampling function c 0 (t). In the above description, the basic interpolation value ya and the control interpolation value yb are linearly added to calculate the interpolation value y. However, the present invention is not limited to this, and the basic sampling function f (t) and the control are calculated. sampling function c 0 (t) is pre-linear addition is stored as a single sampling function s N (t) by using the sampling changed the variable parameter α function s N (t), the band-by-band data Interpolation operation is performed on d1, d2, d3, and d4 to directly calculate the interpolation value y. You may make it do.

オーディオ装置の回路構成を示すブロック図である。It is a block diagram which shows the circuit structure of an audio apparatus. 標準音圧曲線と知覚音圧曲線とを示すグラフである。It is a graph which shows a standard sound pressure curve and a perceived sound pressure curve. 音圧調整部、補間処理部及び帯域合成部の詳細構成を示すブロック図である。It is a block diagram which shows the detailed structure of a sound pressure adjustment part, an interpolation process part, and a zone | band synthetic | combination part. 本発明の帯域別補間部で用いる基本標本化関数の波形と、制御標本化関数の波形との関係を示す概略図である。It is the schematic which shows the relationship between the waveform of the basic sampling function used in the interpolation part according to band of this invention, and the waveform of a control sampling function. 帯域別補間部の回路構成を示すブロック図である。It is a block diagram which shows the circuit structure of the interpolation part according to zone | band. 4つの帯域別データと着目点との位置関係を示す概略図である。It is the schematic which shows the positional relationship of the data according to four bands, and the attention point. 帯域別補間部の詳細構成を示すブロック図である。It is a block diagram which shows the detailed structure of the interpolation part according to zone | band. 本発明による帯域別補間部による基本標本化関数を用いた補間処理を示す概略図である。It is the schematic which shows the interpolation process using the basic sampling function by the interpolation part according to band by this invention. 本発明による帯域別補間部による制御標本化関数を用いた補間処理を示す概略図である。It is the schematic which shows the interpolation process using the control sampling function by the interpolation part according to band by this invention. 可変パラメータを変化させたときの標本化関数の波形を示す概略図である。It is the schematic which shows the waveform of the sampling function when a variable parameter is changed. 可変パラメータを変化させたときの周波数特性を示す概略図である。It is the schematic which shows the frequency characteristic when a variable parameter is changed. 他の実施の形態によるオーディオ装置の回路構成を示すブロック図である。It is a block diagram which shows the circuit structure of the audio apparatus by other embodiment.

符号の説明Explanation of symbols

1 オーディオ装置(音響装置)
2a 聴覚検査部(聴覚検査手段)
2b 音響処理部(調整手段)
9 制御部(特定手段)
10 確認信号入力部(確認信号入力手段)
11 検出音出力部(検査音出力手段、微小音発生手段)
13 帯域別音圧係数算出部(生成手段)
103 選択部(選択手段)
1 Audio equipment (acoustic equipment)
2a Hearing test part (Hearing test means)
2b Acoustic processing unit (adjustment means)
9 Control unit (specifying means)
10 Confirmation signal input section (confirmation signal input means)
11 Detection sound output section (inspection sound output means, minute sound generation means)
13 Band-specific sound pressure coefficient calculation unit (generation means)
103 Selection part (selection means)

Claims (14)

ユーザが検知した最小の音圧レベルである知覚音圧レベルを周波数帯域毎に特定し、該ユーザの聴覚特性を検査する聴覚検査手段と、
該ユーザに聴取させる音楽が音響信号として入力部から入力され、前記音響信号の周波数特性を、前記聴覚検査手段からの出力結果に基づいて前記ユーザの聴覚特性に適した周波数特性に調整する調整手段とを備え、
前記聴覚検査手段は、一般的なユーザが周波数帯域毎に聞き取った最小の音圧レベルを表した統計的な標準音圧曲線を記憶しており、該標準音圧曲線の標準音圧レベルと、前記知覚音圧レベルとの比である音圧係数を、前記ユーザが検査した周波数帯域毎に算出し、
検査した前記周波数帯域の間毎に該音圧係数と周波数帯域との関係式を生成し、これら複数の前記関係式を基に知覚音圧レベル傾向を推測し、その推測結果から前記ユーザが聞き取り難い前記音響信号の周波数帯域の音圧レベルを、前記調整手段によって増幅させる
ことを特徴とする音響装置。
Auditory inspection means for specifying a perceived sound pressure level, which is the minimum sound pressure level detected by the user, for each frequency band, and inspecting the user's auditory characteristics;
The music to be listened to by the user is input as an acoustic signal from the input unit, and the adjusting unit adjusts the frequency characteristic of the acoustic signal to a frequency characteristic suitable for the auditory characteristic of the user based on the output result from the auditory examination unit. And
The auditory test means stores a statistical standard sound pressure curve representing a minimum sound pressure level heard by a general user for each frequency band, and a standard sound pressure level of the standard sound pressure curve; Calculating a sound pressure coefficient, which is a ratio to the perceived sound pressure level, for each frequency band examined by the user;
A relational expression between the sound pressure coefficient and the frequency band is generated for each of the examined frequency bands, a perceived sound pressure level tendency is estimated based on the plurality of relational expressions, and the user hears from the estimation result. A sound device that amplifies a difficult sound pressure level in a frequency band of the sound signal by the adjusting means.
前記聴覚検査手段は、
検査音に対するユーザからの応答があるまで、周波数帯域毎に前記検査音の音圧レベルを増加させながら前記ユーザに対して該検査音を提示する検査音出力手段と、
前記ユーザからの応答により前記周波数帯域毎に前記知覚音圧レベルを特定する特定手段とを備え、
前記調整手段は、
入力された前記音響信号を複数の周波数帯域に分離する帯域分離部を備え、前記帯域分離部にて分離した前記周波数帯域毎に前記ユーザが聞き取り難い周波数帯域の音圧レベルを、前記推測結果を基に増減させる
ことを特徴とする請求項1記載の音響装置。
The hearing test means includes
Inspection sound output means for presenting the inspection sound to the user while increasing the sound pressure level of the inspection sound for each frequency band until there is a response from the user to the inspection sound;
Specifying means for specifying the perceived sound pressure level for each frequency band according to a response from the user,
The adjusting means includes
A band separation unit that separates the input acoustic signal into a plurality of frequency bands, and for each frequency band separated by the band separation unit, the sound pressure level in the frequency band that is difficult for the user to hear is obtained from the estimation result. The acoustic device according to claim 1, wherein the acoustic device is increased or decreased based on the basis.
前記聴覚検査手段は、
前記音圧係数と周波数帯域との関係式に基づいて、前記知覚音圧レベルが特定された周波数帯域以外の周波数帯域における前記ユーザ固有の知覚音圧レベル傾向を算出して全周波数帯域の前記知覚音圧レベル傾向を示した知覚音圧曲線を、前記推測結果として生成する生成手段を備え、
前記調整手段は、前記知覚音圧曲線に基づいて各前記周波数帯域毎に音圧レベルを増減させる
ことを特徴とする請求項2記載の音響装置。
The hearing test means includes
Based on a relational expression between the sound pressure coefficient and the frequency band, the perceptual sound pressure level tendency in the frequency band other than the frequency band in which the perceived sound pressure level is specified is calculated to calculate the perception of the entire frequency band. A generating means for generating a perceived sound pressure curve indicating a sound pressure level tendency as the estimation result;
The acoustic device according to claim 2, wherein the adjustment unit increases or decreases a sound pressure level for each of the frequency bands based on the perceived sound pressure curve.
前記知覚音圧曲線は周波数に関するn次多項式で表し、該n次多項式に基づき各周波数における音圧調整レベルを生成する
ことを特徴とする請求項3記載の音響装置。
4. The acoustic apparatus according to claim 3, wherein the perceived sound pressure curve is represented by an nth order polynomial relating to frequency, and a sound pressure adjustment level at each frequency is generated based on the nth order polynomial.
前記聴覚検査手段には、予め生成した複数の前記知覚音圧曲線が記憶されている
ことを特徴とする請求項3又は4記載の音響装置。
The acoustic device according to claim 3 or 4, wherein the auditory test means stores a plurality of the perceptual sound pressure curves generated in advance.
前記聴覚検査手段に記憶された複数の前記知覚音圧曲線のうち、所望の前記知覚音圧曲線をユーザに選択させるための選択手段を備える
ことを特徴とする請求項5に記載の音響装置。
The acoustic apparatus according to claim 5, further comprising a selection unit that allows a user to select a desired perceptual sound pressure curve among the plurality of perceptual sound pressure curves stored in the auditory inspection unit.
前記検査音出力手段は、聴覚特性検査のための微小音を発生させる微小音発生手段と、前記ユーザが前記微小音を知覚したとき、前記ユーザに確認信号を入力させるための確認信号入力手段とを備える
ことを特徴とする請求項2〜6のうちのいずれか1項記載の音響装置。
The inspection sound output means includes a minute sound generation means for generating a minute sound for auditory characteristic inspection, and a confirmation signal input means for causing the user to input a confirmation signal when the user perceives the minute sound. The acoustic device according to any one of claims 2 to 6, further comprising:
聴覚検査手段によって、ユーザが検知した最小の音圧レベルである知覚音圧レベルを周波数帯域毎に特定し、該ユーザの聴覚特性を検査する聴覚検査ステップと、
一般的なユーザが周波数帯域毎に聞き取った最小の音圧レベルを表した統計的な標準音圧曲線を記憶した前記聴覚検査手段によって、該標準音圧曲線の標準音圧レベルと、前記知覚音圧レベルとの比である音圧係数を、前記ユーザが検査した周波数帯域毎に算出する算出ステップと、
該ユーザに聴取させる音楽が音響信号として入力部から入力され、調整手段によって、前記音響信号の周波数特性を、前記聴覚検査ステップを行う前記聴覚検査手段からの出力結果に基づいて前記ユーザの聴覚特性に適した周波数特性に調整する調整ステップとを備え、
前記調整ステップでは、検査した前記周波数帯域の間毎に前記音圧係数と周波数帯域との関係式を生成し、これら複数の前記関係式を基に知覚音圧レベル傾向を推測し、その推測結果から前記ユーザが聞き取り難い前記音響信号の周波数帯域の音圧レベルを、前記調整手段によって増幅させる
ことを特徴とする音響調整方法。
Auditory inspection step of identifying perceived sound pressure level, which is the minimum sound pressure level detected by the user, for each frequency band by the auditory inspection means, and inspecting the user's auditory characteristics;
A standard sound pressure level of the standard sound pressure curve and the perceived sound are recorded by the auditory test means storing a statistical standard sound pressure curve representing a minimum sound pressure level heard by a general user for each frequency band. A calculation step of calculating a sound pressure coefficient, which is a ratio to the pressure level, for each frequency band examined by the user;
The music to be listened to by the user is input as an acoustic signal from the input unit , and the frequency characteristic of the acoustic signal is adjusted by the adjusting unit based on the output result from the auditory test unit that performs the auditory test step. An adjustment step for adjusting to a frequency characteristic suitable for
In the adjustment step, a relational expression between the sound pressure coefficient and the frequency band is generated for each of the examined frequency bands, a perceived sound pressure level tendency is estimated based on the plurality of relational expressions, and the estimation result A sound pressure level in the frequency band of the sound signal that is difficult for the user to hear is amplified by the adjusting means.
前記聴覚検査ステップは、
検査音に対するユーザからの応答があるまで、周波数帯域毎に前記検査音の音圧レベルを増加させながら前記ユーザに対して該検査音を提示する検査音出力ステップと、
前記ユーザからの応答により前記周波数帯域毎に前記知覚音圧レベルを特定する特定ステップとを備え、
前記調整ステップは、
帯域分離部によって、前記入力部からの前記音響信号を複数の周波数帯域に分離し、前記調整手段によって、前記帯域分離部にて分離した前記周波数帯域毎に前記ユーザが聞き取り難い周波数帯域の音圧レベルを、前記推測結果を基に増減させる
ことを特徴とする請求項8記載の音響調整方法。
The hearing test step includes
A test sound output step of presenting the test sound to the user while increasing the sound pressure level of the test sound for each frequency band until there is a response from the user to the test sound;
A step of specifying the perceived sound pressure level for each frequency band according to a response from the user,
The adjustment step includes
The acoustic signal from the input unit is separated into a plurality of frequency bands by a band separation unit, and the sound pressure in a frequency band that is difficult for the user to hear for each of the frequency bands separated by the band separation unit by the adjustment unit. The sound adjustment method according to claim 8, wherein the level is increased or decreased based on the estimation result.
前記聴覚検査ステップは、
前記音圧係数と周波数帯域との関係式に基づいて、前記知覚音圧レベルが特定された周波数帯域以外の周波数帯域における前記ユーザ固有の知覚音圧レベル傾向を算出して全周波数帯域の前記知覚音圧レベル傾向を示した知覚音圧曲線を、前記推測結果として生成する生成ステップを、前記特定ステップの後に備え、
前記調整ステップは、
前記知覚音圧曲線に基づいて各前記周波数帯域毎に音圧レベルを増減させる
ことを特徴とする請求項9記載の音響調整方法。
The hearing test step includes
Based on a relational expression between the sound pressure coefficient and the frequency band, the perceptual sound pressure level tendency in the frequency band other than the frequency band in which the perceived sound pressure level is specified is calculated to calculate the perception of the entire frequency band. A generation step of generating a perceived sound pressure curve indicating a sound pressure level tendency as the estimation result is provided after the specifying step,
The adjustment step includes
The sound adjustment method according to claim 9, wherein the sound pressure level is increased or decreased for each frequency band based on the perceived sound pressure curve.
前記知覚音圧曲線は周波数に関するn次多項式で表し、該n次多項式に基づき各周波数における音圧調整レベルを生成する
ことを特徴とする請求項10記載の音響調整方法。
The acoustic adjustment method according to claim 10, wherein the perceived sound pressure curve is represented by an nth order polynomial relating to frequency, and a sound pressure adjustment level at each frequency is generated based on the nth order polynomial.
前記聴覚検査ステップは、複数の前記知覚音圧曲線を予め生成して記憶しておく
ことを特徴とする請求項10又は11記載の音響調整方法。
The acoustic adjustment method according to claim 10 or 11, wherein in the auditory test step, a plurality of the perceptual sound pressure curves are generated and stored in advance.
前記聴覚検査ステップは、予め複数ユーザの前記知覚音圧曲線をそれぞれ生成して記憶しておき、音響信号再生時にユーザが、前記記憶された複数の知覚音圧曲線の中からユーザに適した知覚音圧曲線を選択させて前記音圧レベルを調整する
ことを特徴とする請求項10〜12のうちいずれか1項記載の音響調整方法。
In the auditory test step, the perceptual sound pressure curves of a plurality of users are generated and stored in advance, and the user perceives the perception suitable for the user from the stored perceptual sound pressure curves when reproducing the sound signal. The sound adjustment method according to any one of claims 10 to 12, wherein the sound pressure level is adjusted by selecting a sound pressure curve.
前記聴覚検査ステップは、微小音発生手段によって微小音を発生させ、前記ユーザが前記微小音を知覚したとき、前記ユーザに確認信号入力手段を介して確認信号を入力させ、前記知覚音圧レベルを特定する
ことを特徴とする請求項8〜13のうちのいずれか1項記載の音響調整方法。
In the auditory inspection step, a minute sound is generated by a minute sound generating means, and when the user perceives the minute sound, the user inputs a confirmation signal via the confirmation signal input means, and the perceived sound pressure level is set. It specifies. The acoustic adjustment method of any one of Claims 8-13 characterized by the above-mentioned.
JP2008138827A 2008-05-28 2008-05-28 Acoustic device and acoustic adjustment method Active JP4750153B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008138827A JP4750153B2 (en) 2008-05-28 2008-05-28 Acoustic device and acoustic adjustment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008138827A JP4750153B2 (en) 2008-05-28 2008-05-28 Acoustic device and acoustic adjustment method

Publications (2)

Publication Number Publication Date
JP2009288354A JP2009288354A (en) 2009-12-10
JP4750153B2 true JP4750153B2 (en) 2011-08-17

Family

ID=41457654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008138827A Active JP4750153B2 (en) 2008-05-28 2008-05-28 Acoustic device and acoustic adjustment method

Country Status (1)

Country Link
JP (1) JP4750153B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012002537A1 (en) * 2010-07-01 2012-01-05 京セラ株式会社 Portable electronic apparatus and audio control system
WO2013001836A1 (en) 2011-06-30 2013-01-03 パナソニック株式会社 Discomfort threshold level estimation system, method and program therefor, hearing aid adjustment system, and discomfort threshold level estimation processing circuit
CN103081516A (en) * 2011-06-30 2013-05-01 松下电器产业株式会社 Uncomfortable sound pressure determination system, method and program therefor, hearing aid adjustment system, and uncomfortable sound pressure determination device
JP5289529B2 (en) * 2011-09-30 2013-09-11 株式会社東芝 Electronic device, acoustic signal correction method and program
WO2013140735A1 (en) * 2012-03-19 2013-09-26 パナソニック株式会社 Unpleasant sound pressure estimation system, unpleasant sound pressure estimation device, unpleasant sound pressure estimation method, and computer program therefor
JP5579352B1 (en) * 2012-09-27 2014-08-27 パナソニック株式会社 Unpleasant sound pressure evaluation system, unpleasant sound pressure evaluation device, unpleasant sound pressure adjustment device, unpleasant sound pressure evaluation method, and computer program therefor
US20140270291A1 (en) * 2013-03-15 2014-09-18 Mark C. Flynn Fitting a Bilateral Hearing Prosthesis System
EP2981963B1 (en) 2013-04-05 2017-01-04 Dolby Laboratories Licensing Corporation Companding apparatus and method to reduce quantization noise using advanced spectral extension

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2212131A1 (en) * 1996-08-07 1998-02-07 Beltone Electronics Corporation Digital hearing aid system
JPH11196496A (en) * 1998-01-06 1999-07-21 Rion Co Ltd Program writer for digital hearing aid and parameter rewriter
JP3894695B2 (en) * 2000-01-21 2007-03-22 松下電器産業株式会社 Hearing aid adjustment device and hearing aid
US7190795B2 (en) * 2003-10-08 2007-03-13 Henry Simon Hearing adjustment appliance for electronic audio equipment
JP4516366B2 (en) * 2004-07-09 2010-08-04 株式会社ビジョンメガネ Hearing test device, hearing aid selection device using the same, management server, and computer-readable recording medium

Also Published As

Publication number Publication date
JP2009288354A (en) 2009-12-10

Similar Documents

Publication Publication Date Title
JP4750153B2 (en) Acoustic device and acoustic adjustment method
US8554349B2 (en) High-frequency interpolation device and high-frequency interpolation method
JP5177012B2 (en) Noise suppression device, noise suppression method, and computer program
WO2016153825A1 (en) System and method for improved audio perception
CN104918177A (en) Signal processing apparatus, signal processing method, and program
US10555108B2 (en) Filter generation device, method for generating filter, and program
US7286946B2 (en) Transmission characteristic measuring device transmission characteristic measuring method, and amplifier
WO2009133948A1 (en) Audio processing device and audio processing method
JP5690082B2 (en) Audio signal processing apparatus, method, program, and recording medium
JP2008058470A (en) Audio signal processor and audio signal reproduction system
JP2008283600A (en) Automatic sound field correction device
JP5217875B2 (en) Sound field support device, sound field support method and program
JP2008072600A (en) Acoustic signal processing apparatus, acoustic signal processing program, and acoustic signal processing method
WO2018155164A1 (en) Filter generation device, filter generation method, and program
EP3772224B1 (en) Vibration signal generation apparatus and vibration signal generation program
JP4950119B2 (en) Sound processing apparatus and sound processing method
JP2007189317A (en) Sound field correction device and control method thereof
JP2010016483A (en) Sound signal correction apparatus
JP2010181448A (en) Sound adjusting device and sound adjusting method
JP2008225474A (en) Device and method for shaping a digital audio signal
JP2005323204A (en) Motional feedback device
JP2012100117A (en) Acoustic processing apparatus and method
JP6973501B2 (en) Signal processing equipment and signal processing method
JP3957819B2 (en) Sound field correction method and sound field correction apparatus
JP2006093767A (en) Amplifier

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110502

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110518

R150 Certificate of patent or registration of utility model

Ref document number: 4750153

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250