JP4749497B1 - Wind power generator - Google Patents

Wind power generator Download PDF

Info

Publication number
JP4749497B1
JP4749497B1 JP2010125350A JP2010125350A JP4749497B1 JP 4749497 B1 JP4749497 B1 JP 4749497B1 JP 2010125350 A JP2010125350 A JP 2010125350A JP 2010125350 A JP2010125350 A JP 2010125350A JP 4749497 B1 JP4749497 B1 JP 4749497B1
Authority
JP
Japan
Prior art keywords
rotor
power generation
wind
power
cylindrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010125350A
Other languages
Japanese (ja)
Other versions
JP2011252409A (en
Inventor
一喜 野元
一臣 野元
学 屋宜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Birumen Kagoshima Co Ltd
Original Assignee
Birumen Kagoshima Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2010125350A priority Critical patent/JP4749497B1/en
Application filed by Birumen Kagoshima Co Ltd filed Critical Birumen Kagoshima Co Ltd
Priority to PCT/JP2010/073577 priority patent/WO2011151943A1/en
Priority to CN201080062753.5A priority patent/CN102770665B/en
Priority to US13/379,224 priority patent/US8749083B2/en
Priority to CA2796810A priority patent/CA2796810C/en
Priority to KR1020127003337A priority patent/KR101170697B1/en
Priority to AU2010354596A priority patent/AU2010354596B2/en
Priority to TW100100772A priority patent/TWI448617B/en
Application granted granted Critical
Publication of JP4749497B1 publication Critical patent/JP4749497B1/en
Publication of JP2011252409A publication Critical patent/JP2011252409A/en
Priority to HK13101010.9A priority patent/HK1173763A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Abstract

【課題】 風力発電における不安定な発電出力をより安定化させることが可能な風力発電装置を提供する。
【解決手段】 風力を受けて所定の回転軸2の周りを一定回転方向に回転する風車3を備える風力発電装置1において、回転軸2と同軸をなして一体回転するよう配置されたロータ4を有して回転軸2の回転に伴う該ロータ4の回転により電力を生成する第1の発電機5と、回転軸2と同軸をなし、かつ回転軸2の一定回転方向において、回転軸2が増速している場合には該回転軸2と一体回転状態となって自身も増速回転し、回転軸2が減速している場合には該回転軸2から切り離されて慣性回転するようにワンウェイクラッチ6を介して配置されるフライホイール7と、フライホイール7と同軸をなして一体回転するよう配置されたロータ8を有してフライホイール7の回転に伴う該ロータ8の回転により電力を生成する、第1の発電機5とは異なる第2の発電機9と、それら双方の発電機5,9により生成された電力を合わせて外部出力する出力部(出力手段)10を備える。
【選択図】図2
PROBLEM TO BE SOLVED: To provide a wind power generator capable of further stabilizing unstable power generation output in wind power generation.
In a wind turbine generator 1 including a windmill 3 that receives wind power and rotates around a predetermined rotation shaft 2 in a constant rotation direction, a rotor 4 disposed so as to rotate integrally with the rotation shaft 2 is provided. And the first generator 5 that generates electric power by the rotation of the rotor 4 accompanying the rotation of the rotating shaft 2, the coaxial with the rotating shaft 2, and the rotating shaft 2 in the constant rotating direction of the rotating shaft 2 When the speed is increased, the rotating shaft 2 is integrally rotated with the rotating shaft 2 and the rotating shaft 2 is also rotated at an increased speed. A flywheel 7 arranged via the one-way clutch 6 and a rotor 8 arranged so as to rotate integrally with the flywheel 7 are arranged so as to rotate integrally with the flywheel 7. The first generator 5 to be generated And a second generator 9 different from the above, and an output unit (output means) 10 that outputs the electric power generated by both of the generators 5 and 9 together.
[Selection] Figure 2

Description

本発明は、風力発電装置に関する。   The present invention relates to a wind turbine generator.

近年、地球環境の保全のため、再生可能エネルギーを用いた発電方法として、二酸化炭素などの温室効果ガスを排出しない風力発電に注目が集まっている(例えば特許文献1等)。   In recent years, attention has been focused on wind power generation that does not emit greenhouse gases such as carbon dioxide as a power generation method using renewable energy in order to preserve the global environment (for example, Patent Document 1).

特開2004−239113号公報JP 2004-239113 A

ところが、風力発電は、風速の変動に伴い発電出力が変動するため、安定しないという課題がある。   However, the problem with wind power generation is that it is not stable because the power generation output fluctuates as the wind speed fluctuates.

本発明の課題は、風力発電における不安定な発電出力をより安定化させることが可能な風力発電装置を提供することにある。   The subject of this invention is providing the wind power generator which can stabilize the unstable power generation output in wind power generation more.

課題を解決するための手段および発明の効果Means for Solving the Problems and Effects of the Invention

上記課題を解決するために、本発明の風力発電装置は、
風力を受けて所定の回転軸周りを一定回転方向に回転する風車と、
前記回転軸と同軸をなして一体回転するよう配置されたロータを有し、前記回転軸の回転に伴う該ロータの回転により電力を生成する第1の発電手段と、
前記回転軸と同軸をなし、かつ前記一定回転方向において、前記回転軸が増速している場合には該回転軸と一体回転状態となって自身も増速回転し、前記回転軸が減速している場合には該回転軸から切り離されて慣性回転するように1方向クラッチを介して配置されるフライホイールと、
前記フライホイールと同軸をなして一体回転するよう配置されたロータを有し、前記フライホイールの回転に伴う該ロータの回転により電力を生成する、前記第1の発電手段とは異なる第2の発電手段と、
前記第1の発電手段と前記第2の発電手段により生成された双方の電力入力を受け、それらを合わせて外部出力する出力手段と、
を備えることを特徴とする。
In order to solve the above problems, the wind turbine generator of the present invention is
A windmill that receives wind force and rotates around a predetermined rotation axis in a constant rotation direction;
A first power generation means having a rotor arranged to rotate integrally with the rotation shaft and generating electric power by rotation of the rotor as the rotation shaft rotates;
When the rotation axis is coaxial with the rotation axis and the rotation axis is increasing in the constant rotation direction, the rotation axis is integrally rotated with the rotation axis, and the rotation axis is decelerated, and the rotation axis is decelerated. A flywheel disposed through a one-way clutch so as to be inertially separated from the rotating shaft,
A second power generation different from the first power generation means, having a rotor arranged to rotate integrally with the flywheel and generating electric power by rotation of the rotor as the flywheel rotates Means,
Output means for receiving both power inputs generated by the first power generation means and the second power generation means, and combining them to output externally;
It is characterized by providing.

上記本発明の構成によれば、第1の発電手段によって発電される電力は、風車が受ける風力に応じて大きく変動するが、第2の発電手段によって発電される電力は、フライホイールに蓄積された安定的な回転エネルギーに基づいて生成されるものであるから出力が安定しており、これら第1の発電手段と第2の発電手段による双方の発電電力が重畳された形で出力されることにより、第1の発電手段による発電電力の不安定さは緩和され、全体として比較的安定な発電出力を得ることができる。   According to the configuration of the present invention described above, the electric power generated by the first power generation unit varies greatly depending on the wind power received by the windmill, but the power generated by the second power generation unit is accumulated in the flywheel. Output is stable because it is generated based on the stable rotational energy, and the power generated by both the first power generation means and the second power generation means is output in a superimposed form. As a result, the instability of the power generated by the first power generation means is alleviated, and a relatively stable power output can be obtained as a whole.

また、風車の減速時には、フライホイールと風車の回転軸が切り離されるため、フライホイールは慣性回転状態となる。つまり、フライホイール側の減速要素が大幅に減じられるため、より長時間の回転継続が可能となり、その間、第2の発電手段からは、経時的になだらかな減衰は生じるものの安定した発電出力を得ることができる。   In addition, when the windmill is decelerated, the flywheel and the windmill are separated from each other, so that the flywheel is in an inertial rotation state. In other words, since the speed reduction element on the flywheel side is greatly reduced, it is possible to continue the rotation for a longer time. During this time, the second power generation means obtains a stable power generation output although gentle attenuation occurs over time. be able to.

また、風車の増速時には、風車の回転軸とフライホイールとが一体回転状態となってフライホイールに回転エネルギーが蓄積されるので、その後、風車が減速したとしても、増速時に蓄積された回転エネルギーによって第2の発電手段からは安定した発電出力を、蓄積した分だけ長く継続的に得続けることができる。また、風車の増速時には、第1の発電手段と第2の発電手段による2段発電状態となって発電出力は増すが、より重量のあるフライホイールが回転抵抗となる形で風車に極端な増速(加速)が生じて全体の発電出力が極端に増すことは無く、2段発電状態になったとしても、全体の発電出力を比較的安定した状態に保つことができる。   In addition, when the wind turbine speed increases, the rotational axis of the wind turbine and the flywheel rotate together and the rotational energy is stored in the flywheel. By the energy, a stable power generation output can be continuously obtained from the second power generation means for as long as the accumulated amount. Further, when the speed of the windmill is increased, the first power generation means and the second power generation means are in a two-stage power generation state, and the power generation output is increased. There is no increase in acceleration (acceleration), and the total power generation output does not increase extremely, and even if the two-stage power generation state is entered, the total power generation output can be kept relatively stable.

本発明の一実施形態である風力発電装置を簡略的に示す外観図。BRIEF DESCRIPTION OF THE DRAWINGS The external view which shows simply the wind power generator which is one Embodiment of this invention. 図1の風力発電装置の電気的構成を簡略的に示すブロック図。The block diagram which shows simply the electric constitution of the wind power generator of FIG. 図1の風力発電装置の出力部の電気的構成を簡略的に示すブロック図。The block diagram which shows simply the electric constitution of the output part of the wind power generator of FIG. 図1の風力発電装置における風車部分を簡略的に示す拡大断面図。The expanded sectional view which shows simply the windmill part in the wind power generator of FIG. 図1の風力発電装置におけるナセル部分の拡大断面図。The expanded sectional view of the nacelle part in the wind power generator of FIG. 図1の風力発電装置における発電ケース体内部を拡大した拡大断面図。The expanded sectional view which expanded the power generation case body inside the wind power generator of FIG. 図1の風力発電装置のステータの斜視図。The perspective view of the stator of the wind power generator of FIG. 図7のステータの正面図及び部分断面図。The front view and partial sectional view of the stator of FIG. 図1の風力発電装置のステータと磁性部材の位置関係を示す斜視図。The perspective view which shows the positional relationship of the stator and magnetic member of the wind power generator of FIG. 図9のステータ及び磁性部材の正面図及び部分断面図。The front view and partial sectional view of the stator and magnetic member of FIG.

以下、本発明の風力発電装置の一実施形態を、図面を参照して説明する。   Hereinafter, an embodiment of a wind turbine generator according to the present invention will be described with reference to the drawings.

図1は、本発明の一実施形態である風力発電装置の構成を概略的に示す概略図である。また、図2は、図1の風力発電装置の構成を簡略的に示すブロック図である。図1及び図2に示す本実施形態の風力発電装置1は、所定の受風方向2wからの風力を受けて所定の回転軸線2xの周りを一定回転方向に回転する風車3と、風車3の回転軸2と同軸をなして一体回転するよう配置されたロータ4を有して回転軸2の回転に伴う該ロータ4の回転により電力を生成する第1の発電機(発電手段)5と、回転軸2と同軸をなし、かつ上記一定回転方向において、回転軸2が増速している場合には該回転軸2と一体回転状態となって自身も増速回転し、回転軸2が減速している場合には該回転軸2から切り離されて慣性回転するように1方向クラッチ(ワンウェイクラッチ)6を介して配置されるフライホイール7と、フライホイール7と同軸をなして一体回転するよう配置されたロータ8を有してフライホイール7の回転に伴う該ロータ8の回転により電力を生成する、第1の発電機5とは異なる第2の発電機(発電手段)9と、を備えて構成される。   FIG. 1 is a schematic diagram schematically showing a configuration of a wind power generator according to an embodiment of the present invention. FIG. 2 is a block diagram schematically showing the configuration of the wind turbine generator of FIG. The wind turbine generator 1 of the present embodiment shown in FIGS. 1 and 2 receives a wind force from a predetermined wind receiving direction 2w and rotates around a predetermined rotation axis 2x in a constant rotation direction, and the wind turbine 3 A first generator (power generation means) 5 that has a rotor 4 arranged so as to rotate integrally with the rotating shaft 2 and that generates electric power by the rotation of the rotor 4 as the rotating shaft 2 rotates; If the rotation axis 2 is coaxial with the rotation axis 2 and the speed of the rotation axis 2 is increasing in the constant rotation direction, the rotation axis 2 is rotated integrally with the rotation axis 2 and the rotation axis 2 is decelerated. In this case, the flywheel 7 arranged via a one-way clutch (one-way clutch) 6 is separated from the rotary shaft 2 and rotates in an inertial manner, and the flywheel 7 is coaxial with the flywheel 7 so as to rotate integrally. Flywheel with rotor 8 arranged Generating power by the rotation of the rotor 8 with the rotation of the 7 configured to include a different second generator (generator means) 9 and the first generator 5.

さらに、本実施形態の風力発電装置1は、第1の発電機5と第2の発電機9により生成された双方の電力入力を受け、それらを合わせて外部出力する出力部(出力手段)10を備えて構成される。つまり、第1の発電機5及び第2の発電機9の発電電力の出力ラインを、外部出力に至るまでの間で接続し、1系統で外部出力する形で構成される。   Furthermore, the wind turbine generator 1 of the present embodiment receives both power inputs generated by the first generator 5 and the second generator 9 and outputs them together to output them (output means) 10. It is configured with. In other words, the output lines of the generated power of the first generator 5 and the second generator 9 are connected until reaching the external output, and are configured to be externally output by one system.

出力部10は、例えば図3(a)に示すように、第1の発電機5と第2の発電機9により生成された双方の三相の交流電力を、それぞれ整流器12に入力した上で、昇圧コントローラ11に入力して所定の電圧で出力し、さらにそれをパワーコンディショナ15にて入力して、入力された直流の電力を系統電力に変換し、出力するように構成できる。これにより、第1の発電機5と第2の発電機9により生成された双方の電力を合わせて外部の電源系統19Aに供給することができ、例えば売電等が可能となる。また、パワーコンディショナ15にて、家庭内で使える交流電力に変換して出力してもよい。また、出力部10は、図3(b)に示すように、第1の発電機5と第2の発電機9により生成された双方をそれぞれ、整流器12に入力した上で、昇圧コントローラ13に入力し、所定電圧とされた直流の電力をバッテリー(蓄電手段)19Bに供給して蓄電させてもよい。また、バッテリー(蓄電手段)19Bに蓄電された電力を、パワーコンディショナ15を介して外部の電源系統19Aに供給するようにしてもよい。   For example, as shown in FIG. 3A, the output unit 10 inputs both three-phase AC power generated by the first generator 5 and the second generator 9 to the rectifier 12. Then, the voltage can be input to the boost controller 11 and output at a predetermined voltage, and further input by the power conditioner 15 to convert the input DC power into system power and output it. Thereby, both the electric power produced | generated by the 1st generator 5 and the 2nd generator 9 can be combined, and can be supplied to the external power supply system 19A, for example, power sale etc. are attained. Further, the power conditioner 15 may convert the AC power that can be used in the home and output it. Further, as shown in FIG. 3B, the output unit 10 inputs both the first generator 5 and the second generator 9 generated by the first rectifier 12 to the boost controller 13. The DC power that has been input and set to a predetermined voltage may be supplied to the battery (power storage means) 19B for storage. Further, the electric power stored in the battery (electric storage means) 19B may be supplied to the external power supply system 19A via the power conditioner 15.

本実施形態の風車3は、受風方向2wが回転軸2の軸線2xの延出方向(以下、軸線方向という)と一致しており、該受風方向2wから風力を受けることで一定方向に回転するよう複数のブレード30を有する。各ブレード30はハブ22を介して回転軸2と連結(接続)する。   In the wind turbine 3 of the present embodiment, the wind receiving direction 2w coincides with the extending direction of the axis 2x of the rotating shaft 2 (hereinafter referred to as the axial direction), and receives wind force from the wind receiving direction 2w in a certain direction. A plurality of blades 30 are provided for rotation. Each blade 30 is connected (connected) to the rotary shaft 2 via the hub 22.

図4は、本実施形態の風力発電装置1の風車部分の拡大断面図である。ただし、ナセル21の内部構造については簡略化して示している。風車3は、回転軸2の軸線方向に同軸をなす形で筒状に延出する筒状風洞部(ダクト)31の内側に配置される。筒状風洞部31は、風車3の受風方向2wの上流側から下流側に向けて開口面積が減少していく形で形成される。具体的にいえば、筒状風洞部31は、受風方向2wの上流側の環状端部31Aから下流側の環状端部31Bまでの間の区間において、ラジアル方向内向きに膨出した湾曲形状をなす。この筒状風洞部31において取り込まれた風は、圧縮された形で下流に供給され、下流側のブレードがこれを受けることになるので、風車3が得る回転力を増すことができる。   FIG. 4 is an enlarged cross-sectional view of the windmill portion of the wind turbine generator 1 of the present embodiment. However, the internal structure of the nacelle 21 is shown in a simplified manner. The windmill 3 is disposed inside a cylindrical wind tunnel (duct) 31 that extends in a cylindrical shape so as to be coaxial with the axial direction of the rotary shaft 2. The cylindrical wind tunnel portion 31 is formed in a form in which the opening area decreases from the upstream side to the downstream side in the wind receiving direction 2w of the wind turbine 3. More specifically, the cylindrical wind tunnel portion 31 has a curved shape that bulges inward in the radial direction in a section between the upstream annular end portion 31A and the downstream annular end portion 31B in the wind receiving direction 2w. Make. The wind taken in the cylindrical wind tunnel 31 is supplied downstream in a compressed form, and the blades on the downstream side receive this, so that the rotational force obtained by the wind turbine 3 can be increased.

筒状風洞部31は、その内周面に、ナセル21の外周面210から外向きに放射状に延出する複数の支持部材(FRP)32が固定されており、ナセル21と共に回転軸2に対し非回転に設けられている。   The cylindrical wind tunnel portion 31 has a plurality of support members (FRP) 32 extending radially outward from the outer peripheral surface 210 of the nacelle 21 fixed to the inner peripheral surface thereof. It is provided non-rotating.

ナセル21は、第1の発電機5とフライホイール7と第2の発電機9、さらに回転軸2を内部に収容する。図4及び図5に示すように、ナセル21の外表面21Aは、少なくとも回転軸2の軸線2x上の、受風方向2wの上流側に頂点部21aを有する湾曲面として形成される。具体的にいえば、その外表面21Aは、回転軸2の軸線方向の周りに回転させても面形状が変化しない回転対称面をなし、ここでは流線型をなす。他方、ナセル21の受風方向2wの下流側には、風車3に対し一体回転するようその回転軸2に固定されるハブ22が設けられ、その外表面22Aは、ナセル21の外表面21Aをなす湾曲面から受風方向2wに滑らかに続く湾曲面をなし、かつ回転軸2の軸線2x上の受風方向2wの上流側に頂点部22aを有する湾曲面をなす。具体的にいえば、その外表面21Aは、回転軸2の軸線方向の周りに回転させても面形状が変化しない回転対称面をなしており、ナセル21の外表面21Aから続く流線型をなしている。ここでのナセル21とハブ22の外表面21A,22Aは、それら全体で球体表面を形成しており、その球体表面21A,22Aは、上流側の頂点部21aが下流側の頂点部22aよりも曲率半径が大とされた卵状をなしている。   The nacelle 21 accommodates the first generator 5, the flywheel 7, the second generator 9, and the rotating shaft 2 therein. As shown in FIGS. 4 and 5, the outer surface 21 </ b> A of the nacelle 21 is formed as a curved surface having a vertex 21 a on the upstream side in the wind receiving direction 2 w on at least the axis 2 x of the rotation shaft 2. More specifically, the outer surface 21A forms a rotationally symmetric surface whose surface shape does not change even when the outer surface 21A is rotated around the axis direction of the rotating shaft 2, and is streamlined here. On the other hand, on the downstream side of the wind receiving direction 2w of the nacelle 21 is provided a hub 22 fixed to the rotary shaft 2 so as to rotate integrally with the wind turbine 3, and the outer surface 22A of the nacelle 21 is connected to the outer surface 21A of the nacelle 21. A curved surface smoothly extending from the curved surface formed in the wind receiving direction 2w is formed, and a curved surface having a vertex portion 22a on the upstream side of the wind receiving direction 2w on the axis 2x of the rotating shaft 2 is formed. More specifically, the outer surface 21A forms a rotationally symmetric surface whose surface shape does not change even if the outer surface 21A is rotated about the axial direction of the rotary shaft 2, and has a streamline shape that continues from the outer surface 21A of the nacelle 21. Yes. The outer surface 21A, 22A of the nacelle 21 and the hub 22 here forms a spherical surface as a whole, and the spherical surface 21A, 22A has an upstream vertex portion 21a that is more downstream than the downstream vertex portion 22a. It has an oval shape with a large radius of curvature.

なお、ナセル21は、少なくとも一部が筒状風洞部31の内側に位置し、残りが筒状風洞部31の外側に突出する。本実施形態のナセル21は、その頂点部21aが風車3の受風側(受風方向2wの上流側)に筒状風洞部31の内部から突出する形で配置される。また、ナセル21の受風方向2wの下流側には、各ブレード30と回転軸2を接続するハブ22が設けられる。つまり、ブレード30は、受風方向2wにおいてナセル21よりも下流側に設けられており、下流側のブレード30で得た回転力が、回転軸2を介して受風方向2wの上流側に位置する発電機5,9側へと伝達される。ハブ22は、円盤状をなしてその中心部が回転軸2の受風方向2wの下流側端部に中心部が締結部材によって固定される軸固定部221と、軸固定部221における受風方向2wの下流側主面の外周部に対し締結部材によって固定される筒状のブレード取付部222とを有しており、ブレード取付部222の外周面から放射状に複数のブレード30が延びている。   Note that at least a part of the nacelle 21 is located inside the cylindrical wind tunnel portion 31 and the rest protrudes outside the cylindrical wind tunnel portion 31. The nacelle 21 of the present embodiment is arranged such that the apex portion 21a protrudes from the inside of the tubular wind tunnel portion 31 on the wind receiving side of the wind turbine 3 (upstream side in the wind receiving direction 2w). Further, a hub 22 that connects each blade 30 and the rotary shaft 2 is provided on the downstream side of the nacelle 21 in the wind receiving direction 2w. That is, the blade 30 is provided downstream of the nacelle 21 in the wind receiving direction 2w, and the rotational force obtained by the downstream blade 30 is positioned upstream of the wind receiving direction 2w via the rotary shaft 2. Is transmitted to the generators 5 and 9 side. The hub 22 has a disk shape, and a central portion of the hub 22 is fixed to a downstream end of the wind receiving direction 2w of the rotary shaft 2 by a fastening member, and a wind receiving direction in the shaft fixing portion 221. A cylindrical blade mounting portion 222 fixed to the outer peripheral portion of the 2w downstream main surface by a fastening member is provided, and a plurality of blades 30 extend radially from the outer peripheral surface of the blade mounting portion 222.

ナセル21は、地表の基礎部190から延びる支柱(タワー)110の上端部110Tに対し、風向きに合わせて水平面内において向きを変えることが可能(該支柱110の鉛直方向の軸線110xの周りに回転可能)に取り付けられている。このとき、各ブレード30を外周側から被う筒状風洞部31も、ナセル21の受風方向2wの下流側に設けられており、これにより、筒状風洞部31は風車3の受風方向2wを可変する尾翼のような手段として機能する。即ち、筒状風洞部31の筒状外周面31C(特にその水平方向側の面)が風を受けると、支柱110の上端部110Tに対し回転し、風が来る向きにナセル21の頂点部21aを向ける。また、筒状風洞部31がナセル21よりも受風方向2wの下流側に位置することで、わずかな風向きの変化でナセル21の向き、つまりは風車3の受風面の向きが細かく変化することを防ぐことも可能となる。   The nacelle 21 can change the direction in the horizontal plane in accordance with the wind direction with respect to the upper end portion 110T of the column (tower) 110 extending from the foundation portion 190 of the ground surface (rotates around the vertical axis 110x of the column 110). Is possible). At this time, the cylindrical wind tunnel portion 31 that covers each blade 30 from the outer peripheral side is also provided on the downstream side of the wind receiving direction 2 w of the nacelle 21, so that the cylindrical wind tunnel portion 31 receives the wind receiving direction of the wind turbine 3. It functions as a tail-like means that changes 2w. That is, when the cylindrical outer peripheral surface 31C (particularly the surface in the horizontal direction) of the cylindrical wind tunnel portion 31 receives wind, the cylindrical wind tunnel portion 31 rotates relative to the upper end portion 110T of the column 110, and the apex portion 21a of the nacelle 21 comes in the direction that the wind comes. Turn. Further, since the cylindrical wind tunnel portion 31 is positioned downstream of the nacelle 21 in the wind receiving direction 2w, the direction of the nacelle 21, that is, the direction of the wind receiving surface of the windmill 3 is finely changed by a slight change in the wind direction. It is also possible to prevent this.

図5は、図4のナセルを軸線2x,110xを通過する平面で切断した断面図であり、ナセル21の内部には、第2の発電機9とフライホイール7と第1の発電機5とを、風車の受風方向2wの上流側からこの順で収容した発電機ケース体100が配置され、ナセル21に対し締結部材103によって締結固定されている。図6に示すように、受風方向2wの上流側から順に、第2の発電機9を収容する上流側収容空間9Sと、フライホイール7を収容する中間収容空間7Sと、第1の発電機5を収容する下流側収容空間5Sとを有し、これらをひとつながりの空間とする形状をなす。このひとつながりの空間は、フライホイール7が中間収容空間7S内に配置されることで、上流側収容空間9Sと下流側収容空間5Sとに分断される。これら円筒状の上流側収容空間9S及び下流側収容空間5Sよりも、同じく円筒状の中間収容空間7Sの方が径大で、かつ収容されるフライホイール7自体も、径方向において中間収容空間7Sの円筒状外周壁に対し近接して位置するため、フライホイール7が配置されたときには、上流側収容空間9Sと下流側収容空間5Sとは、フライホイール7の外周側においてのみ連通するので、より確実な分離状態となっている。   FIG. 5 is a cross-sectional view of the nacelle of FIG. 4 cut along a plane passing through the axes 2x and 110x. Inside the nacelle 21, the second generator 9, the flywheel 7, the first generator 5 and Are arranged in this order from the upstream side in the wind receiving direction 2 w of the windmill, and are fastened and fixed to the nacelle 21 by the fastening member 103. As shown in FIG. 6, in order from the upstream side in the wind receiving direction 2w, an upstream accommodation space 9S for accommodating the second generator 9, an intermediate accommodation space 7S for accommodating the flywheel 7, and the first generator And a downstream-side storage space 5S for storing 5, which are formed as a continuous space. This one-piece space is divided into an upstream-side accommodation space 9S and a downstream-side accommodation space 5S by the flywheel 7 being arranged in the intermediate accommodation space 7S. Similarly, the cylindrical intermediate storage space 7S is larger in diameter than the cylindrical upstream storage space 9S and the downstream storage space 5S, and the flywheel 7 itself to be stored is also the intermediate storage space 7S in the radial direction. Since the upstream storage space 9S and the downstream storage space 5S communicate with each other only on the outer peripheral side of the flywheel 7, when the flywheel 7 is disposed, It is surely separated.

発電機ケース体100内の第1の発電機5と第2の発電機9は、回転軸2の軸線方向において、間にフライホイール7を挟む形で位置し、発電ケース体100内の空間がフライホイール7によって上流側収容空間9Sと下流側収容空間5Sとで分断されている。これにより、上流側収容空間9S及び下流側収容空間5Sのうち、一方の空間内での回転体(ロータ92,52)の回転に伴う気流の乱れの影響を、他方の空間が受けることがない。本実施形態においては、受風方向2wの上流側から、第2の発電機9、フライホイール7、第1の発電機5の順で位置し、さらにその下流側にハブ22が位置する。なお、フライホイール7には磁気シールド材料(例えば鉄等の軟磁性材料)を用いてもよく、これにより、発電ケース体100内の空間をフライホイール7によって第1の発電機5側と第2の発電機9側とを磁気的に分断し、互いの磁気的な干渉を防止するようにしてもよい。   The first generator 5 and the second generator 9 in the generator case body 100 are positioned with the flywheel 7 in between in the axial direction of the rotary shaft 2, and the space in the generator case body 100 is The flywheel 7 separates the upstream storage space 9S and the downstream storage space 5S. Thereby, the other space does not receive the influence of the turbulence of the air flow accompanying the rotation of the rotating body (rotor 92, 52) in one of the upstream housing space 9S and the downstream housing space 5S. . In the present embodiment, the second generator 9, the flywheel 7, and the first generator 5 are positioned in this order from the upstream side in the wind receiving direction 2w, and the hub 22 is positioned further downstream. The flywheel 7 may be made of a magnetic shielding material (for example, a soft magnetic material such as iron), whereby the space inside the power generation case body 100 is separated from the first generator 5 side and the second by the flywheel 7. The generator 9 side may be magnetically separated to prevent mutual magnetic interference.

回転軸2は、発電ケース体100に対し自身の軸線方向に貫通し、なおかつ発電ケース体100に対し円滑に相対回転するよう軸受装置60を介して取り付けられる(図6参照)。本実施形態の軸受装置60は、例えばシール装置(Oリング等)やグリース等のような密閉機能付きの密閉型軸受装置であり、その密閉機能によって密閉状態としている。密閉された発電機ケース体100内部は、空気が大気圧で充填されている場合に、内部の回転体51,91,7等が受ける充填気体による抵抗(空気抵抗)が軽減されるよう、減圧状態等のような内部状態とされている。ここでは、発電ケース体100内にHeガスを充填することで、回転体であるロータ51,91やフライホイール7等の回転抵抗を減じている。   The rotating shaft 2 is attached via the bearing device 60 so as to penetrate the power generation case body 100 in the axial direction of the power generation case body 100 and smoothly rotate relative to the power generation case body 100 (see FIG. 6). The bearing device 60 of the present embodiment is a sealed bearing device having a sealing function such as a sealing device (O-ring or the like) or grease, and is sealed by the sealing function. The inside of the sealed generator case body 100 is depressurized so that the resistance (air resistance) due to the filling gas received by the internal rotors 51, 91, 7 and the like is reduced when air is filled at atmospheric pressure. It is an internal state such as a state. Here, by filling the power generation case body 100 with He gas, the rotational resistance of the rotors 51 and 91 and the flywheel 7 which are rotating bodies is reduced.

第1の発電機5及び第2の発電機9は、回転軸2の周りを回転可能なロータ(発電機回転子)51,91の周方向に沿って所定間隔おきに複数の磁性部材52,92が配置されるとともに、それら磁性部材52,92に対しエアギャップを形成する形で対向し、かつ該ロータ51,91に対し非回転となるステータコイル54,94が配置されたステータ(発電機固定子)53,93を備えて構成され、それら磁性部材52,92とステータコイル54,94との相対回転により電力を生成する。生成される電力(発電電力)は、その相対回転速度が大きいほどが大となる。なお、本実施形態における磁性部材52,92は永久磁石であり、例えばネオジウム磁石等を用いることができる。ただし、永久磁石に代わって電磁石を用いてもよい。   The first generator 5 and the second generator 9 include a plurality of magnetic members 52 at predetermined intervals along the circumferential direction of rotors (generator rotors) 51 and 91 that can rotate around the rotation shaft 2. 92, a stator (generator that is opposed to the magnetic members 52 and 92 in the form of an air gap, and is arranged non-rotating with respect to the rotors 51 and 91 is disposed. (Stator) 53, 93, and electric power is generated by relative rotation between the magnetic members 52, 92 and the stator coils 54, 94. The generated power (generated power) increases as the relative rotational speed increases. The magnetic members 52 and 92 in the present embodiment are permanent magnets, and for example, neodymium magnets can be used. However, an electromagnet may be used instead of the permanent magnet.

本実施形態においては、磁性部材52,92とステータコイル54,94との数の比が3:4であり、ステータコイル54,94からは三相の交流電力が出力される。支柱110の上端部110Tに設けられた上端軸部にはスリップリング110SA,110SBが設けられており、各スリップリング110SA,110SB上を摺動するブラシ102CA,102CBを介し、ステータコイル54,94から発電出力を取り出すよう構成されている。取り出された発電出力は、筒状の支柱(タワー)110の内部空間を通る配線を介して、出力部10に接続される。   In the present embodiment, the ratio of the numbers of the magnetic members 52 and 92 and the stator coils 54 and 94 is 3: 4, and three-phase AC power is output from the stator coils 54 and 94. Slip rings 110SA and 110SB are provided at the upper end shaft portion provided at the upper end portion 110T of the support column 110. From the stator coils 54 and 94 via the brushes 102CA and 102CB sliding on the slip rings 110SA and 110SB, respectively. The power generation output is configured to be taken out. The extracted power generation output is connected to the output unit 10 via a wiring passing through the internal space of the cylindrical column (tower) 110.

第1の発電機5及び第2の発電機9における双方のステータ53,93は、発電機ケース体100からケース内部に向けて回転軸2の軸線方向に沿って突出形成された筒状部材として設けられる。図7に示すように、それら筒状部材53,93には、径方向に貫通する開口部57,97が周方向に沿って所定間隔おきに形成される。これらの開口部57,97は、周方向に設けられた回転軸2の軸線方向に延びる各柱部56,96により区画される。各柱部56,96には、図8の(b),(c)に示すように、ステータコイル54,94が巻き付けられており、本実施形態においては、隣接する柱部56,96で巻き方向が逆向きとなっている。   Both the stators 53 and 93 in the first generator 5 and the second generator 9 are cylindrical members that are formed to protrude from the generator case body 100 toward the inside of the case along the axial direction of the rotary shaft 2. Provided. As shown in FIG. 7, the cylindrical members 53 and 93 are formed with openings 57 and 97 penetrating in the radial direction at predetermined intervals along the circumferential direction. These openings 57 and 97 are partitioned by column portions 56 and 96 extending in the axial direction of the rotating shaft 2 provided in the circumferential direction. As shown in FIGS. 8B and 8C, the stator coils 54 and 94 are wound around the column portions 56 and 96. In this embodiment, winding is performed by the adjacent column portions 56 and 96. The direction is reversed.

本実施形態のステータ53,93について詳細に説明する。   The stators 53 and 93 of this embodiment will be described in detail.

本実施形態のステータ53,93はそれぞれ筒状部材として形成されており、それらが互換性を有するよう互いに同形状をなす。これらの筒状部材53,93は、耐熱性を有する硬化性樹脂(例えば不飽和ポリエステル樹脂を主体とし、充填材とガラス繊維などで構成した熱硬化性の成形材料)であり、図6に示すように、発電ケース体100において受風方向2wの上流側及び下流側にて外側に露出する主表面121A,122Aを形成する各主面部121,122の主裏面(ケース内側の面)121B,122Bから、ケース内に向けて回転軸2の軸線方向に沿って筒状に突出する形で配置される。   The stators 53 and 93 of the present embodiment are each formed as a cylindrical member and have the same shape so that they are interchangeable. These cylindrical members 53 and 93 are curable resins having heat resistance (for example, thermosetting molding materials mainly composed of an unsaturated polyester resin and configured by a filler and glass fibers), as shown in FIG. As described above, in the power generation case body 100, the main back surfaces (case inner surfaces) 121B and 122B of the main surface portions 121 and 122 that form the main surfaces 121A and 122A exposed to the outside on the upstream side and the downstream side in the wind receiving direction 2w. Then, it is arranged in a shape protruding in a cylindrical shape along the axial direction of the rotary shaft 2 toward the inside of the case.

具体的にいえば、筒状部材53,93は、主面部121,122の主裏面(ケース内側の面)121B,122Bに設けられた環状の嵌合溝部121C、122Cに対し嵌合する形で固定される嵌合固定部53A,93Aと、その嵌合固定部53A,93Aに径方向(ラジアル方向)の段差を形成する形で回転軸2の軸線方向に延出する上記した各柱部56,96と、それら柱部56,96をその延出先端部(主面部121,122とは逆側の端部)56D,96Dにて筒状に連結する筒状連結部53D,93Dとを有して構成される。各柱部56,96の両端が環状部材(嵌合固定部53A,93Aと筒状連結部53D,93D)で連結されていることで、筒状部材53,93は高い強度を有する。本実施形態の筒状部材53,93は、嵌合固定部53A,93Aにおいて主面部121,122に対し締結部材(ボルト等)109,109によって締結固定される。   More specifically, the cylindrical members 53 and 93 are fitted into annular fitting grooves 121C and 122C provided on the main back surfaces (surfaces inside the case) 121B and 122B of the main surface portions 121 and 122, respectively. The fitting fixing portions 53A and 93A to be fixed, and the respective column portions 56 extending in the axial direction of the rotary shaft 2 in the form of forming a radial step (radial direction) in the fitting fixing portions 53A and 93A. , 96 and cylindrical connecting portions 53D, 93D for connecting the column portions 56, 96 in a cylindrical shape at their extended tip portions (ends opposite to the main surface portions 121, 122) 56D, 96D. Configured. The cylindrical members 53 and 93 have high strength because both ends of the column portions 56 and 96 are connected by the annular members (the fitting fixing portions 53A and 93A and the cylindrical connecting portions 53D and 93D). The cylindrical members 53 and 93 of the present embodiment are fastened and fixed to the main surface portions 121 and 122 by fastening members (bolts or the like) 109 and 109 in the fitting fixing portions 53A and 93A.

また、図7及び図8に示すように、嵌合固定部53A,93Aの外周面531,931の延出先端側(嵌合固定部53A,93Aとは逆側)には、その外周面531,931から径方向外側に立上る外周側立面561,961を有する。このため、嵌合固定部53A,93Aの外周面531,931と、当該外周側立面561,961と、柱部56,96の径方向外側の面562,962とによって段差56A,96Aが形成されている。他方、各柱部56,96におけるそれらの段差56A,96Aとは逆側には、上述した筒状連結部53D,93Dが形成されており、この筒状連結部53D,93Dは、各柱部56,96の延出先端部56D,96Dの径方向内側端部から周方向に延出する形で、隣接する柱部56,96へと延出し、全体が環状をなす。このため、柱部56,96の径方向外側の面562,962と、該柱部56,96の延出先端部56D,96Dの周方向における側面563,963と、該柱部56,96の延出先端部56D,96Dの径方向内側端部から周方向に延出する筒状連結部53D,93Dの径方向外側の面532,932とによって段差56B,96Bが形成されている。   Further, as shown in FIGS. 7 and 8, the outer peripheral surface 531 is provided on the extended distal end side of the outer peripheral surfaces 531 and 931 of the fitting and fixing portions 53A and 93A (the side opposite to the fitting fixing portions 53A and 93A). , 931 have outer peripheral side standing surfaces 561 and 961 that rise radially outward. Therefore, steps 56A and 96A are formed by the outer peripheral surfaces 531 and 931 of the fitting and fixing portions 53A and 93A, the outer peripheral side standing surfaces 561 and 961, and the radially outer surfaces 562 and 962 of the column portions 56 and 96. Has been. On the other hand, the cylindrical connecting portions 53D and 93D described above are formed on the opposite sides of the step portions 56A and 96A in the respective column portions 56 and 96, and the cylindrical connecting portions 53D and 93D are connected to the respective column portions. The extended tip portions 56D and 96D of the extended portions 56 and 96 extend in the circumferential direction from the radially inner end portions to the adjacent column portions 56 and 96, and the whole forms an annular shape. Therefore, the radially outer surfaces 562 and 962 of the column portions 56 and 96, the side surfaces 563 and 963 in the circumferential direction of the extending tip portions 56D and 96D of the column portions 56 and 96, and the column portions 56 and 96 Steps 56B and 96B are formed by the radially outer surfaces 532 and 932 of the cylindrical coupling portions 53D and 93D extending in the circumferential direction from the radially inner ends of the extending tips 56D and 96D.

本実施形態のステータコイル54,94は、軸線2xに対する径方向に軸線5x、9xを有する形で環状に巻きつけられる。ここでは、上述の段差56A,96Aと56B,96Bを利用する形で、各柱部56,96に四角形状をなして巻きつけられる。具体的にいえば、ステータコイル54,94は、柱部56,96の延出方向(回転軸2の軸線方向)の一方の端面561,961と、他方の端面564,964と、該柱部56,96の周方向における一方の側面563,963と、他方の側面563,963とにより形成される環状面を取り巻く形で巻きつけられる。このとき、段差56A,96Aにおいて段差下面をなす嵌合固定部53A,93Aの外周面531,931と、段差56B,96Bにおいて段差下面をなす筒状連結部53D,93Dの径方向外側の面532,932とが、柱部56,96に巻きつけられるステータコイル54,94の、回転軸2の軸線2xに対する径方向内側における巻き付け位置を規制する巻き付け位置規制部(巻き付け位置規制手段)として機能し、これにより、ステータコイル54,94は各柱部56,96に安定的に巻きつけられている。   The stator coils 54 and 94 of the present embodiment are wound in an annular shape with the axes 5x and 9x in the radial direction with respect to the axis 2x. Here, the pillars 56 and 96 are wound in a square shape by using the steps 56A and 96A and 56B and 96B. Specifically, the stator coils 54 and 94 include one end surfaces 561 and 961 in the extending direction of the column portions 56 and 96 (the axial direction of the rotary shaft 2), the other end surfaces 564 and 964, and the column portions. It winds around the annular surface formed by one side 563,963 in the circumferential direction of 56,96 and the other side 563,963. At this time, the outer peripheral surfaces 531 and 931 of the fitting fixing portions 53A and 93A forming the lower surface of the step at the steps 56A and 96A, and the radially outer surface 532 of the cylindrical connecting portions 53D and 93D forming the lower surface of the step at the steps 56B and 96B. 932 function as a winding position restricting portion (winding position restricting means) for restricting the winding position of the stator coils 54, 94 wound around the pillar portions 56, 96 on the radially inner side with respect to the axis 2x of the rotating shaft 2. As a result, the stator coils 54 and 94 are stably wound around the column portions 56 and 96.

また、各柱部56,96は、延出先端部56D,96Dの径方向外側端部からさらに同方向に延出する突起部56E,96Eを有する。突起部56D,96Dは、柱部56,96に巻きつけられるステータコイル54,94の、回転軸2の軸線2xに対する径方向外側における巻き付け位置を規制する巻き付け位置規制部(巻き付け位置規制手段)として機能しており、これもステータコイル54,94を各柱部56,96に安定的に巻きつけられる要因となっている。このように、本実施形態では、径方向の内外でステータコイル54,94の位置規制がなされているため、ステータコイル54,94が各柱部56,96に安定して巻き付いた状態を保つことができ、作業者による巻き付け作業も容易となっている。   Moreover, each pillar part 56 and 96 has protrusion part 56E and 96E further extended in the same direction from the radial direction outer side edge part of extension front-end | tip part 56D and 96D. The protrusions 56D and 96D serve as winding position restricting portions (winding position restricting means) for restricting the winding positions of the stator coils 54 and 94 wound around the pillars 56 and 96 on the radially outer side with respect to the axis 2x of the rotating shaft 2. This also functions as a factor for stably winding the stator coils 54 and 94 around the column portions 56 and 96. As described above, in the present embodiment, the position of the stator coils 54 and 94 is restricted inside and outside in the radial direction, so that the stator coils 54 and 94 are stably wound around the column portions 56 and 96. This makes it easy for the operator to perform the winding work.

本実施形態の第1の発電機5のロータ51について詳細に説明する。   The rotor 51 of the first generator 5 of this embodiment will be described in detail.

本実施形態の第1の発電機5は、図6に示すように、ロータ51として、回転軸2と同軸をなし互いに一体回転する第1ロータ部51Aと第2ロータ部51Bとを有する。それら双方のロータ部51A,51Bは、エアギャップを介して互いに対向(対面)する対向面51SA,51SBを有し、それら双方の対向面51SA,51SB上には、周方向において複数の磁性部材52が所定間隔おきに同数配置され、締結部材により固定されている。ただし、それら双方のロータ部51A,51Bのうち、一方のロータ部51Aの磁性部材52A(52)と他方のロータ部51Bの磁性部材52B(52)とは、図10に示すように、互いに異なる極性(磁極)の着磁面同士にて対面している。さらに、それら第1ロータ部51Aと第2ロータ部51Bとの間の空隙にステータ53のステータコイル54が位置する。ステータコイル54は、図9に示すように、回転するそれら双方のロータ部51A,51Bの磁性部材52,52間に挟まれるステータ53上の環状の対向領域に、その周方向に沿って所定間隔おきに複数配置される。   As shown in FIG. 6, the first generator 5 of the present embodiment includes, as the rotor 51, a first rotor portion 51 </ b> A and a second rotor portion 51 </ b> B that are coaxial with the rotary shaft 2 and rotate integrally with each other. Both of the rotor portions 51A and 51B have opposing surfaces 51SA and 51SB that face each other (facing each other) via an air gap, and a plurality of magnetic members 52 in the circumferential direction are provided on both the opposing surfaces 51SA and 51SB. Are arranged at the same intervals and fixed by a fastening member. However, the magnetic member 52A (52) of one rotor part 51A and the magnetic member 52B (52) of the other rotor part 51B are different from each other as shown in FIG. The magnetized surfaces of polarities (magnetic poles) face each other. Further, the stator coil 54 of the stator 53 is located in the gap between the first rotor portion 51A and the second rotor portion 51B. As shown in FIG. 9, the stator coil 54 has a predetermined interval along the circumferential direction in an annular facing region on the stator 53 sandwiched between the magnetic members 52 and 52 of both of the rotating rotor portions 51A and 51B. Several are arranged every other.

また、第1の発電機5において、第1ロータ部51A及び第2ロータ部51Bは、回転軸2の軸線2xに対する径方向(ラジアル方向)に対向して配置される。本実施形態においては、ロータ51の本体部として、回転軸2と一体回転するよう固定される軸固定部50Cと、軸固定部50Cから径方向外側に延出する円盤状の中間部50Bと、中間部50Bの径方向外側の外端部50Aと、を有したロータ本体部50を備える。ただし、ロータ本体部50は、外周側に大重量を有するフライホイール7よりも軽く、小径である。第1ロータ部をなす円筒状部51Aと、第2ロータ部をなす、円筒状部51Aよりも径大の円筒状部51Bとは、ロータ本体50に対し同軸をなす形で一体回転するよう双方とも外端部50Aに固定されている。このように本実施形態においては、回転軸2に対し1つの回転体(ロータ本体部50)を取り付けるだけで、第1ロータ部51Aと第2ロータ部51Bとの双方を設けることが可能であり、回転軸2に対し第1ロータ部51Aと第2ロータ部51Bとを個別の回転体としてそれぞれ固定する場合よりもシンプルな構成となる。なお、中間部50Bは、内周側の軸固定部50C及び外端部50Aの第1ロータ部51Aとの固定部よりも厚み(回転軸2の軸線方向幅)が薄くなっている。   Further, in the first generator 5, the first rotor portion 51 </ b> A and the second rotor portion 51 </ b> B are arranged to face each other in the radial direction (radial direction) with respect to the axis 2 x of the rotating shaft 2. In the present embodiment, as the main body portion of the rotor 51, a shaft fixing portion 50C fixed so as to rotate integrally with the rotary shaft 2, a disk-shaped intermediate portion 50B extending radially outward from the shaft fixing portion 50C, And a rotor main body 50 having an outer end 50A on the radially outer side of the intermediate portion 50B. However, the rotor body 50 is lighter and has a smaller diameter than the flywheel 7 having a large weight on the outer peripheral side. The cylindrical portion 51A forming the first rotor portion and the cylindrical portion 51B having a diameter larger than the cylindrical portion 51A forming the second rotor portion are both rotated integrally with each other so as to be coaxial with the rotor body 50. Both are fixed to the outer end 50A. Thus, in this embodiment, it is possible to provide both the first rotor portion 51A and the second rotor portion 51B by simply attaching one rotating body (rotor main body portion 50) to the rotating shaft 2. The first rotor portion 51 </ b> A and the second rotor portion 51 </ b> B are simpler than the case of fixing the rotating shaft 2 as separate rotating bodies. The intermediate portion 50B has a smaller thickness (width in the axial direction of the rotating shaft 2) than the fixed portion of the inner peripheral side shaft fixing portion 50C and the outer end portion 50A with the first rotor portion 51A.

本実施形態の第1の発電機5において、ロータ本体部50の外端部50Aは、第1ロータ部をなす内周側の円筒状部51Aを固定するための内周側固定部50A1と、第2ロータ部をなす外周側の円筒状部51Bを固定するための外周側固定部50A2と、を備えて構成される。内周側固定部50A1は、回転軸2の軸線方向に突出する円筒状をなし、他方、外周側固定部50A2は、中間部50Bから径方向に続く形で延出する形状をなす。   In the first generator 5 of the present embodiment, the outer end portion 50A of the rotor main body 50 includes an inner peripheral side fixing portion 50A1 for fixing the inner peripheral side cylindrical portion 51A forming the first rotor portion, And an outer peripheral side fixing portion 50A2 for fixing the outer peripheral side cylindrical portion 51B forming the second rotor portion. The inner peripheral side fixing portion 50A1 has a cylindrical shape protruding in the axial direction of the rotating shaft 2, while the outer peripheral side fixing portion 50A2 has a shape extending from the intermediate portion 50B so as to continue in the radial direction.

第1の発電機5において第1ロータ部をなす円筒状部51Aは、ロータ本体部50の円筒状の内周側固定部50A1の外周側に嵌合する筒状の嵌合部51A1と、内周側固定部50A1の延出先端面に当接するよう嵌合部51A1の端部から径方向内向きに延出する環状の当接部51A2とを備える。筒状の嵌合部51A1は、その外周面が磁性部材52の配置面51SAとされており、他方、環状の当接部51A2は、ロータ本体部50(内周側固定部50A1)との固定部として機能する。具体的にいえば、第1ロータ部をなす円筒状部51Aは、当接部51A2の周方向の複数箇所において締結部材106Aによってロータ本体部50の内周側固定部50A1に対し締結固定される。   The cylindrical portion 51A forming the first rotor portion in the first generator 5 includes a cylindrical fitting portion 51A1 that fits on the outer peripheral side of the cylindrical inner peripheral side fixing portion 50A1 of the rotor main body portion 50, and an inner portion An annular contact portion 51A2 extending radially inward from the end portion of the fitting portion 51A1 so as to contact the extended distal end surface of the peripheral side fixing portion 50A1. The outer peripheral surface of the cylindrical fitting portion 51A1 is an arrangement surface 51SA of the magnetic member 52, while the annular contact portion 51A2 is fixed to the rotor main body 50 (inner peripheral side fixing portion 50A1). It functions as a part. Specifically, the cylindrical portion 51A forming the first rotor portion is fastened and fixed to the inner peripheral side fixing portion 50A1 of the rotor main body 50 by the fastening member 106A at a plurality of locations in the circumferential direction of the contact portion 51A2. .

第1の発電機5において第2ロータ部をなす円筒状部51Bは、全体が円筒形状をなす。そのうち一方の端部51B2は、ロータ本体部50の外周側固定部50A2の、内周側固定部50A1が延出する側の面の外周側領域に対し先端面が当接した形で固定される固定部をなし、他方の端部51B1側は、その内周面が第1ロータ部をなす円筒状部51Aの嵌合部51A1の外周面と径方向にて対向(対面)し、当該内周面が磁性部材52の配置面51SBとされている。第2ロータ部をなす円筒状部51Bは、一方の端部51B2の周方向の複数箇所において締結部材106Bによってロータ本体部50の外周側固定部50A2に対し締結固定される。   The cylindrical portion 51B forming the second rotor portion in the first generator 5 has a cylindrical shape as a whole. Of these, one end 51B2 is fixed in such a manner that the tip end surface is in contact with the outer peripheral side region of the surface of the outer peripheral side fixing portion 50A2 of the rotor main body 50 on the side where the inner peripheral side fixing portion 50A1 extends. The other end 51B1 side forms a fixed portion, and the inner peripheral surface thereof is opposed (facing) to the outer peripheral surface of the fitting portion 51A1 of the cylindrical portion 51A forming the first rotor portion in the radial direction, and the inner peripheral surface The surface is an arrangement surface 51SB of the magnetic member 52. The cylindrical portion 51B forming the second rotor portion is fastened and fixed to the outer peripheral side fixing portion 50A2 of the rotor main body 50 by the fastening member 106B at a plurality of locations in the circumferential direction of the one end portion 51B2.

なお、ステータ53の嵌合固定部53A側において発電ケース対100の主面部121側とは逆側の側面と、柱部56の内周面との間に形成される環状の角部55Bには、内周側の第1ロータ部51に対し非接触となるよう、回転軸2の軸線方向において該第1ロータ部51から離れる側に窪んだ環状の湾曲面が形成されている。この角部55Bには、第1ロータ部をなす内周側の円筒状部51Aと、その外周面上に固定設置される磁性部材52とが近接しており、それら双方に対し非接触となるよう、それら双方の近接部位が、それらから遠ざかる方向に窪んだ2つの湾曲面55B1,55B2が隣接して形成されている。   The annular corner 55B formed between the side surface opposite to the main surface 121 side of the power generation case pair 100 and the inner peripheral surface of the column portion 56 on the fitting and fixing portion 53A side of the stator 53 is provided. An annular curved surface that is recessed toward the side away from the first rotor portion 51 in the axial direction of the rotary shaft 2 is formed so as not to contact the first rotor portion 51 on the inner peripheral side. The corner portion 55B is adjacent to the cylindrical portion 51A on the inner peripheral side forming the first rotor portion and the magnetic member 52 fixedly installed on the outer peripheral surface thereof, and is in non-contact with both of them. As described above, the two curved surfaces 55B1 and 55B2 that are recessed in the direction away from them are formed adjacent to each other.

本実施形態の第2の発電機9のロータ91について詳細に説明する。   The rotor 91 of the second generator 9 of this embodiment will be described in detail.

本実施形態の第2の発電機9は、図6に示すように、ロータ91として、回転軸2と同軸をなしフライホイール7と共に互いに一体回転する第1ロータ部91Aと第2ロータ部91Bとを有する。それら双方のロータ部91A,91Bは、エアギャップを介して互いに対向(対面)する対向面91SA,91SBを有し、それら双方の対向面上91SA,91SBには、周方向において複数の磁性部材92が所定間隔おきに同数配置され、締結部材により固定されている。ただし、それら双方のロータ91A,91Bのうち、一方のロータ部91Aの磁性部材92A(92)と他方のロータ部91Bの磁性部材92B(92)とは、図10に示すように、互いに異なる極性(磁極)の着磁面同士にて対面している。さらに、それら第1ロータ部91Aと第2ロータ部92Aとの間の空隙にステータ93のステータコイル94が位置する。ステータコイル94は、図9に示すように、回転するそれら双方のロータ91A,91Bの磁性部材間92,92に挟まれるステータ93上の環状の対向領域に、その周方向に沿って所定間隔おきに複数配置される。   As shown in FIG. 6, the second generator 9 of the present embodiment includes a first rotor portion 91 </ b> A and a second rotor portion 91 </ b> B that are coaxial with the rotary shaft 2 and rotate together with the flywheel 7 as a rotor 91. Have Both of the rotor portions 91A and 91B have opposing surfaces 91SA and 91SB that face each other (facing each other) with an air gap therebetween, and a plurality of magnetic members 92 are provided on the opposing surfaces 91SA and 91SB in the circumferential direction. Are arranged at the same intervals and fixed by a fastening member. However, of these two rotors 91A and 91B, the magnetic member 92A (92) of one rotor portion 91A and the magnetic member 92B (92) of the other rotor portion 91B have different polarities as shown in FIG. The magnetized surfaces of the (magnetic pole) face each other. Further, the stator coil 94 of the stator 93 is located in the gap between the first rotor portion 91A and the second rotor portion 92A. As shown in FIG. 9, the stator coil 94 is provided at predetermined intervals along the circumferential direction in an annular facing region on the stator 93 sandwiched between the magnetic members 92 and 92 of both of the rotating rotors 91A and 91B. A plurality are arranged.

また、第2の発電機9において、第1ロータ部91A及び第2ロータ部91Bは、回転軸2の軸線2xに対する径方向(ラジアル方向)に対向して配置される。第1ロータ部91Aは、フライホイール7の外周側の中間部(外周端部でもよい)に形成される固定部90Aに対し、第1ロータ部をなす円筒状部91Aと、第2ロータ部をなす、円筒状部91Aよりも径大の円筒状部91Bとが共に、フライホイール7に対し同軸をなして一体回転するよう固定されている。この場合、回転軸2に対し1つの回転体(フライホイール7)を取り付けるだけで、第1ロータ部91Aと第2ロータ部91Bとの双方を設けることが可能であり、回転軸2に対し第1ロータ部91Aと第2ロータ部91Bとを個別の回転体として固定する場合よりも簡単な構成となる。   In the second power generator 9, the first rotor portion 91 </ b> A and the second rotor portion 91 </ b> B are arranged to face each other in the radial direction (radial direction) with respect to the axis 2 x of the rotating shaft 2. 91 A of 1st rotor parts are the cylindrical part 91A which makes a 1st rotor part, and the 2nd rotor part with respect to the fixing | fixed part 90A formed in the intermediate part (an outer peripheral edge part may be sufficient) of the outer peripheral side of the flywheel 7. The cylindrical portion 91B having a diameter larger than that of the cylindrical portion 91A is fixed to the flywheel 7 so as to rotate integrally therewith. In this case, it is possible to provide both the first rotor portion 91A and the second rotor portion 91B by simply attaching one rotating body (flywheel 7) to the rotating shaft 2, and the second rotating portion 91B can be provided with respect to the rotating shaft 2. The configuration is simpler than the case where the first rotor portion 91A and the second rotor portion 91B are fixed as separate rotating bodies.

なお、本実施形態のフライホイール7は、回転軸2に対し1方向クラッチ(ワンウェイクラッチ)6を介して固定される軸固定部70Cと、軸固定部70Cから径方向外側に延出する円盤状の中間部70Bと、中間部70Bの径方向外側の固定部70Aとを有し、本実施形態ではさらに、固定部70Aから径方向外側に延出する外端部70Dを有することにより、上述のロータ本体部50よりも径大で大重量をなしており、回転エネルギー保存手段として機能する。なお、中間部70Bは、内周側の軸固定部70Cと、外周側の固定部70A及び外端部70Dよりも厚み(回転軸2の軸線方向幅)が薄くなっている。特に固定部70A及び外端部70Dが中間部70Bよりも厚く形成され、より重くなっていることでロータ91が形成される外周側により大きな遠心力が作用する。   The flywheel 7 according to the present embodiment includes a shaft fixing portion 70C that is fixed to the rotating shaft 2 via a one-way clutch (one-way clutch) 6, and a disk shape that extends radially outward from the shaft fixing portion 70C. The intermediate portion 70B and the fixing portion 70A on the radially outer side of the intermediate portion 70B, and in the present embodiment, the outer end portion 70D extending outward in the radial direction from the fixing portion 70A is further provided. The rotor body 50 is larger in diameter and heavier than the rotor body 50, and functions as a rotational energy storage means. The intermediate portion 70B is thinner than the inner peripheral shaft fixing portion 70C and the outer peripheral fixing portion 70A and the outer end portion 70D (the axial width of the rotating shaft 2). In particular, the fixed portion 70A and the outer end portion 70D are formed thicker than the intermediate portion 70B and are heavier, so that a larger centrifugal force acts on the outer peripheral side where the rotor 91 is formed.

本実施形態の第2の発電機9において、フライホイール7の固定部70Aは、第1ロータ部をなす内周側の円筒状部91Aを固定するための内周側固定部70A1と、第2ロータ部をなす外周側の円筒状部91Bを固定するための外周側固定部70A2と、を備えて構成される。   In the second generator 9 of the present embodiment, the fixing portion 70A of the flywheel 7 includes an inner peripheral side fixing portion 70A1 for fixing the inner peripheral side cylindrical portion 91A forming the first rotor portion, and a second And an outer peripheral side fixing portion 70A2 for fixing the outer peripheral side cylindrical portion 91B forming the rotor portion.

第2の発電機9において第1ロータ部をなす円筒状部91Aと第2ロータ部をなす円筒状部91Bとは共に、全体が円筒形状をなす。それぞれの一方の端部91A2,91B2は、フライホイール7の固定部70A(70A1,70A2)の、第1の発電機5とは逆側の面に対し先端面が当接した形で固定される固定部をなす。また、他方の端部91A1,91B1のうち、端部91A1側は、その外周面91SAが第2ロータ部をなす円筒状部91Bの内周面91SBと径方向にて対向(対面)し、端部91B1側は、その内周面91SBが第1ロータ部をなす円筒状部91Aの外周面91SAと径方向にて対向(対面)し、それら外周面91SA及び内周面91SBが磁性部材92,92の配置面とされている。フライホイール7の固定部70A1,70A2は、第1ロータ部及び第2ロータ部をなす円筒状部91A,91Bの端部91A2,91B2を嵌合するよう、第1の発電機5とは逆側の面に形成された回転軸2の軸線方向に窪む環状の溝が形成された嵌合溝部である。第1ロータ部をなす円筒状部91Aと第2ロータ部をなす円筒状部91Bとは共に、嵌合溝部70A1,70A2の環状の溝に端部91A2,91B2を嵌合し、それら端部91A2,91B2の周方向の複数箇所において締結部材107A,107Bによってフライホイール7の固定部70Aに対し締結固定される。   In the second generator 9, both the cylindrical portion 91A forming the first rotor portion and the cylindrical portion 91B forming the second rotor portion form a cylindrical shape as a whole. Each one end 91A2, 91B2 is fixed in such a manner that the front end surface is in contact with the surface of the fixing portion 70A (70A1, 70A2) of the flywheel 7 opposite to the first generator 5. Make a fixed part. Of the other end portions 91A1 and 91B1, the end portion 91A1 side is opposed (facing) in the radial direction to the inner peripheral surface 91SB of the cylindrical portion 91B whose outer peripheral surface 91SA forms the second rotor portion. On the part 91B1 side, the inner peripheral surface 91SB is opposed (facing) in the radial direction to the outer peripheral surface 91SA of the cylindrical portion 91A forming the first rotor portion, and the outer peripheral surface 91SA and the inner peripheral surface 91SB are the magnetic member 92, 92 are arranged. The fixed portions 70A1 and 70A2 of the flywheel 7 are opposite to the first generator 5 so as to fit the end portions 91A2 and 91B2 of the cylindrical portions 91A and 91B forming the first rotor portion and the second rotor portion. It is the fitting groove part in which the cyclic | annular groove | channel recessed in the axial direction of the rotating shaft 2 formed in this surface was formed. Both the cylindrical portion 91A forming the first rotor portion and the cylindrical portion 91B forming the second rotor portion are fitted with the end portions 91A2 and 91B2 in the annular grooves of the fitting groove portions 70A1 and 70A2, and the end portions 91A2 , 91B2 are fastened and fixed to the fixing portion 70A of the flywheel 7 by the fastening members 107A, 107B at a plurality of locations in the circumferential direction.

なお、ステータ93側の嵌合固定部93A側において発電ケース対100の主面部122側とは逆側の側面と、柱部96の内周面との間に形成される環状の角部95Bには、内周側の第1ロータ部91に対し非接触となるよう、回転軸2の軸線方向において該第1ロータ部91から離れる側に窪んだ環状の湾曲面が形成されている。この角部95Bには、第1ロータ部をなす内周側の円筒状部91Aと、その外周面上に固定設置される磁性部材92とが近接しており、それら双方に対し非接触となるよう、それら双方の近接部位が、それらから遠ざかる方向に窪んだ2つの湾曲面95B1,95B2が隣接して形成されている。   An annular corner portion 95B formed between the side surface opposite to the main surface portion 122 side of the power generation case pair 100 and the inner peripheral surface of the column portion 96 on the fitting fixing portion 93A side on the stator 93 side. Is formed with an annular curved surface that is recessed toward the side away from the first rotor portion 91 in the axial direction of the rotary shaft 2 so as not to contact the first rotor portion 91 on the inner peripheral side. The corner portion 95B is adjacent to a cylindrical portion 91A on the inner peripheral side that forms the first rotor portion and a magnetic member 92 that is fixedly installed on the outer peripheral surface, and is not in contact with both of them. As described above, two curved surfaces 95B1 and 95B2 are formed adjacent to each other in the proximity of both of them so as to be away from them.

ところで、支柱110は、図5に示すように、上述した発電機5,9及びフライホイール7を収容する発電ケース体100の下端部102に対し固定されている。また、発電ケース体100はナセル21に対し固定されている。   By the way, the support | pillar 110 is being fixed with respect to the lower end part 102 of the electric power generation case body 100 which accommodates the generators 5 and 9 and the flywheel 7 which were mentioned above, as shown in FIG. The power generation case body 100 is fixed to the nacelle 21.

発電ケース体100は、地表から延びる支柱(タワー)110の上端部110Tにて、ナセル21と共に、上述のように風向きに応じて回転可能である。ナセル21の下端には内外を上下に貫通する下端開口21Hが設けられ、発電ケース体100の下端部102(102A,102B)に対し固定された支柱固定部102Cが、当該下端開口21Hを貫通してナセル21の外部に突出する形で配置される。支柱固定部102Cには下端に開口する筒状に形成され、当該開口内に支柱110の上端部110Tを挿通させ、かつそれら支柱固定部102Cと支柱110の上端部110Tとの双方の間に軸受装置63を介在させる形で、発電ケース体100側が支柱110に対し支柱軸線110x周りに回転可能となるよう組み付けられている。発電ケース体100の支柱固定部102Cにはブラシ102CA,102CBが取り付けられており、これらとそれぞれが摺動可能となる形で支柱上端部110Tの軸部110TAにはスリップリング110SA,110SBが取り付けられている。発電機5,9で発電した電力は、それらブラシ102CA,102CB及びスリップリング110SA,110SBを介して出力部10に出力される。   As described above, the power generation case body 100 can rotate together with the nacelle 21 at the upper end portion 110T of a column (tower) 110 extending from the ground surface. The lower end of the nacelle 21 is provided with a lower end opening 21H penetrating up and down inside and outside, and a column fixing portion 102C fixed to the lower end portion 102 (102A, 102B) of the power generation case body 100 penetrates the lower end opening 21H. The nacelle 21 is arranged so as to protrude to the outside. The column fixing portion 102C is formed in a cylindrical shape that opens to the lower end, and the upper end portion 110T of the column 110 is inserted into the opening, and a bearing is provided between both the column fixing portion 102C and the upper end portion 110T of the column 110. With the device 63 interposed, the power generation case body 100 side is assembled to the column 110 so as to be rotatable around the column axis 110x. Brushes 102CA and 102CB are attached to the support post fixing part 102C of the power generation case body 100, and slip rings 110SA and 110SB are attached to the shaft part 110TA of the support upper end part 110T so that they can slide with each other. ing. The electric power generated by the generators 5 and 9 is output to the output unit 10 through the brushes 102CA and 102CB and the slip rings 110SA and 110SB.

なお、図5に示すように、発電ケース体100の下端部102(102A,102B)は、支柱固定部102Cと一体に固定されている。本実施形態における発電ケース体100は、上流側収容空間9S及び下流側収容空間5Sの外周壁を形成する小径の円筒状外周壁部129,125と、それらの間に中間収容空間7Sの外周壁を形成するそれらよりも大径の円筒状外周壁部127とを有した形状をなしており、支柱固定部102Cは、その大径の円筒状外周壁部127の下端突出部を回転軸2の軸線方向両側から挟み込む挟持部102Gと、それら挟持部102Gの上端にて回転軸2の軸線方向において互いの対向方向とは逆向きに広がって小径の円筒状外周壁部129,125の下端面を当接させる当接部102S,102Sとを有し、挟持部102Gにおいて円筒状外周壁部127の下端突出部に対し締結部材108,108により締結固定される。   As shown in FIG. 5, the lower end portion 102 (102A, 102B) of the power generation case body 100 is fixed integrally with the support post fixing portion 102C. The power generation case body 100 according to the present embodiment includes small-diameter cylindrical outer peripheral wall portions 129 and 125 that form outer peripheral walls of the upstream storage space 9S and the downstream storage space 5S, and the outer peripheral wall of the intermediate storage space 7S therebetween. The cylindrical outer peripheral wall portion 127 having a larger diameter than those forming the outer peripheral wall portion 127 is formed, and the column fixing portion 102C has a lower end protruding portion of the large-diameter cylindrical outer peripheral wall portion 127 formed on the rotary shaft 2. The sandwiching portions 102G sandwiched from both sides in the axial direction, and the lower end surfaces of the cylindrical outer peripheral wall portions 129 and 125 having small diameters spread in the direction opposite to each other in the axial direction of the rotary shaft 2 at the upper ends of the sandwiching portions 102G. Contact portions 102S and 102S to be contacted, and are fastened and fixed by fastening members 108 and 108 to the lower end protruding portion of the cylindrical outer peripheral wall portion 127 in the sandwiching portion 102G.

また、本実施形態の発電ケース体100は、受風方向2w(回転軸2の軸線方向)における中間収容空間7Sの中間位置にて、上流側ケース体100Aと下流側ケース体100Bとに2分割されており、それらケース体100A,100Bを互いの位置を合わせて密着させ、それらの上端部101A,101Bと下端部102A,102Bとの双方が締結部材(ボルト)103,103によって締結固定されている。他方、ナセル21には、密着状態のケース体100A,100Bの上下の端部101(101A,101B),102(102A,102B)を、受風方向2wの上流側と下流側で挟み込む固定用板部210,210が設けられており、これら固定用板部210,210と、これらに挟み込まれた密着状態のケース体100A,100Bの上下の端部101(101A,101B),102(102A,102B)が上記の締結部材103,103によって締結固定される。これにより、発電ケース体100がナセル21に固定される。本実施形態の固定用板部210は、L字状に屈曲した板材であり、ナセル21の内部上端面に固定される水平部と、その水平部の端部からケース体100A,100Bの上下の端部101,102の周側面に沿って下方に延び、締結部材103が挿通する垂下部とを有する。   Further, the power generation case body 100 of the present embodiment is divided into two parts, an upstream case body 100A and a downstream case body 100B, at an intermediate position of the intermediate housing space 7S in the wind receiving direction 2w (the axial direction of the rotating shaft 2). The case bodies 100A and 100B are brought into close contact with each other, and both the upper end portions 101A and 101B and the lower end portions 102A and 102B are fastened and fixed by fastening members (bolts) 103 and 103. Yes. On the other hand, the nacelle 21 has a fixing plate that sandwiches the upper and lower ends 101 (101A, 101B), 102 (102A, 102B) of the case bodies 100A, 100B in close contact with each other on the upstream side and the downstream side in the wind receiving direction 2w. Parts 210 and 210 are provided, and upper and lower end parts 101 (101A and 101B) and 102 (102A and 102B) of the fixing plate parts 210 and 210 and the case bodies 100A and 100B in a close contact state sandwiched therebetween. ) Is fastened and fixed by the fastening members 103 and 103 described above. Thereby, the power generation case body 100 is fixed to the nacelle 21. The fixing plate portion 210 of the present embodiment is a plate material bent in an L-shape, and includes a horizontal portion fixed to the inner upper end surface of the nacelle 21 and upper and lower portions of the case bodies 100A and 100B from the end portions of the horizontal portion. It has a hanging portion that extends downward along the peripheral side surfaces of the end portions 101 and 102 and through which the fastening member 103 is inserted.

以上、本発明の一実施形態を説明したが、これはあくまでも例示にすぎず、本発明はこれに限定されるものではなく、特許請求の範囲の趣旨を逸脱しない限りにおいて、当業者の知識に基づく種々の変更が可能である。以下、上記実施形態とは異なる実施形態について説明する。   Although one embodiment of the present invention has been described above, this is merely an example, and the present invention is not limited to this, and the knowledge of those skilled in the art can be used without departing from the spirit of the claims. Various modifications based on this are possible. Hereinafter, an embodiment different from the above embodiment will be described.

1 風力発電装置
2 回転軸
2x 回転軸線
2w 受風方向
3 風車
4 ロータ
5 第1の発電機(発電手段)
6 1方向クラッチ(ワンウェイクラッチ)
7 フライホイール
8 ロータ
9 第2の発電機(発電手段)
30 ブレード
31 筒状風洞部(ダクト)
21 ナセル
22 ハブ
100 発電ケース体
110 支柱(タワー)
51,91 ロータ(発電機回転子)
51A 第1のロータ
51B 第2のロータ
52,92 磁性部材
53,93 ステータ(発電機固定子)
54,94 ステータコイル
DESCRIPTION OF SYMBOLS 1 Wind power generator 2 Rotating shaft 2x Rotating axis 2w Wind receiving direction 3 Windmill 4 Rotor 5 1st generator (electric power generation means)
6 One-way clutch (one-way clutch)
7 Flywheel 8 Rotor 9 Second generator (power generation means)
30 Blade 31 Cylindrical wind tunnel (duct)
21 Nacelle 22 Hub 100 Power generation case body 110 Post (tower)
51, 91 Rotor (generator rotor)
51A First rotor 51B Second rotor 52, 92 Magnetic member 53, 93 Stator (generator stator)
54, 94 Stator coil

Claims (10)

風力を受けて所定の回転軸線周りを一定回転方向に回転する風車と、
前記風車の回転軸と同軸をなして一体回転するよう配置されたロータを有し、前記回転軸の回転に伴う該ロータの回転により電力を生成する第1の発電手段と、
前記回転軸と同軸をなし、かつ前記一定回転方向において、前記回転軸が増速している場合には該回転軸と一体回転状態となって自身も増速回転し、前記回転軸が減速している場合には該回転軸から切り離されて慣性回転するように1方向クラッチを介して配置されるフライホイールと、
前記フライホイールと同軸をなして一体回転するよう配置されたロータを有し、前記フライホイールの回転に伴う該ロータの回転により電力を生成する、前記第1の発電手段とは異なる第2の発電手段と、
前記第1の発電手段と前記第2の発電手段により生成された双方の電力入力を受け、それらを合わせて外部出力する出力手段と、
を備えることを特徴とする風力発電装置。
A windmill that receives wind force and rotates around a predetermined axis of rotation in a constant rotation direction;
A first power generation means having a rotor arranged so as to rotate integrally with the rotation axis of the windmill, and generating electric power by rotation of the rotor accompanying rotation of the rotation shaft;
When the rotation axis is coaxial with the rotation axis and the rotation axis is increasing in the constant rotation direction, the rotation axis is integrally rotated with the rotation axis, and the rotation axis is decelerated, and the rotation axis is decelerated. A flywheel disposed through a one-way clutch so as to be inertially separated from the rotating shaft,
A second power generation different from the first power generation means, having a rotor arranged to rotate integrally with the flywheel and generating electric power by rotation of the rotor as the flywheel rotates Means,
Output means for receiving both power inputs generated by the first power generation means and the second power generation means, and combining them to output externally;
A wind turbine generator comprising:
前記出力手段は、前記第1の発電手段と前記第2の発電手段により生成された双方の電力入力を合わせて外部の電源系統に供給するものである請求項1に記載の風力発電装置。   2. The wind power generator according to claim 1, wherein the output unit supplies both the power inputs generated by the first power generation unit and the second power generation unit to an external power supply system. 前記出力手段から供給される電力を蓄電する蓄電手段を備える請求項1に記載の風力発電装置。   The wind turbine generator according to claim 1, further comprising power storage means for storing electric power supplied from the output means. 前記第1の発電手段及び前記第2の発電手段は、前記ロータとして、前記回転軸と同軸をなし互いに一体回転する第1ロータ部と第2ロータ部とをそれぞれ有し、それら第1ロータ部と第2ロータ部とには互いに対面する対向面を有するとともに、それら双方の対向面上には、周方向において複数の磁性部材が所定間隔おきに配置され、かつ一方のロータ部の磁性部材と他方のロータ部の磁性部材とが互いに異なる極性で対面しており、さらに、それら第1ロータ部と第2ロータ部との間にステータを有し、該ステータには、回転するそれら双方のロータの磁性部材間に挟まれる、該ステータの前記周方向に延びる環状の対向領域に所定間隔おきにステータコイルが配置される請求項1ないし請求項3のいずれか1項に記載の風力発電装置。   The first power generation means and the second power generation means each have a first rotor portion and a second rotor portion that are coaxial with the rotary shaft and rotate integrally with each other as the rotor, and the first rotor portion. And the second rotor portion have opposing surfaces facing each other, and a plurality of magnetic members are arranged at predetermined intervals in the circumferential direction on both of the opposing surfaces, and the magnetic member of one rotor portion and The magnetic member of the other rotor portion faces with a polarity different from each other, and further includes a stator between the first rotor portion and the second rotor portion. The wind turbine generator according to any one of claims 1 to 3, wherein a stator coil is arranged at predetermined intervals in an annular opposed region extending between the magnetic members and extending in the circumferential direction of the stator. 前記第1ロータ部の磁性部材と、これと異極をなして対面する前記第2ロータ部の磁性部材とが前記回転軸線に対する径方向に対面し、前記ステータコイルが前記径方向に軸線を有する形で環状に巻き付けられている請求項4に記載の風力発電装置。   The magnetic member of the first rotor portion and the magnetic member of the second rotor portion facing opposite to each other in the radial direction face each other in the radial direction with respect to the rotation axis, and the stator coil has an axial line in the radial direction. The wind power generator according to claim 4, which is wound in a ring shape. 前記第1の発電手段におけるロータは、前記回転軸と一体回転するよう固定される軸固定部を有した円盤状のロータ本体部を備え、そのロータ本体部の外端部に対し、前記第1ロータ部をなす円筒状部と、前記第2ロータ部をなす、前記第1ロータ部よりも径大の円筒状部とが、前記回転軸と同軸をなす形で一体回転するように固定されている請求項4又は請求項5に記載の風力発電装置。   The rotor in the first power generation means includes a disc-shaped rotor main body portion having a shaft fixing portion that is fixed so as to rotate integrally with the rotary shaft, and the first end of the rotor is configured so that the first end of the rotor main body portion has A cylindrical part forming a rotor part and a cylindrical part having a diameter larger than the first rotor part forming the second rotor part are fixed so as to rotate integrally with each other so as to be coaxial with the rotation shaft. The wind power generator according to claim 4 or 5. 前記第2の発電手段におけるロータは、前記フライホイールに対し、前記第1ロータ部をなす円筒状部と、前記第2ロータ部をなす、前記第1ロータ部よりも径大の円筒状部とが、前記回転軸と同軸をなす形で一体回転するように固定されている請求項4ないし請求項6のいずれか1項に記載の風力発電装置。   The rotor in the second power generation means includes a cylindrical portion that forms the first rotor portion with respect to the flywheel, and a cylindrical portion that forms the second rotor portion and has a larger diameter than the first rotor portion. The wind turbine generator according to any one of claims 4 to 6, wherein the wind turbine generator is fixed so as to rotate integrally with the rotary shaft. 前記フライホイールは、前記回転軸の軸線方向において、前記第1の発電手段と前記第2の発電手段との間に配置されている請求項1ないし請求項7のいずれか1項に記載の風力発電装置。   The wind power according to any one of claims 1 to 7, wherein the flywheel is disposed between the first power generation unit and the second power generation unit in an axial direction of the rotation shaft. Power generation device. 前記風車は、前記回転軸の軸線方向に筒状に延出する筒状風洞部の内側に同軸をなして配置されるとともに、前記筒状風洞部は、前記軸線方向において前記風車の受風方向の上流側から下流側に向けて開口面積が小となっていく形で形成されている請求項1ないし請求項8のいずれか1項に記載の風力発電装置。   The windmill is coaxially disposed inside a cylindrical wind tunnel portion that extends in a cylindrical shape in the axial direction of the rotating shaft, and the cylindrical wind tunnel portion is in a wind receiving direction of the wind turbine in the axial direction. The wind power generator according to any one of claims 1 to 8, wherein the wind power generator is formed so that the opening area becomes smaller from the upstream side toward the downstream side. 地表から延びる支柱に対し水平面内にて回転可能に固定され、前記第1の発電手段及び前記第2の発電手段と、前記フライホイールとを収容するナセルが、前記風車のハブに対し該風車の受風方向の上流側に位置し、前記筒状風洞部よりも前記受風方向の上流側に突出して位置する請求項9に記載の風力発電装置。   A nacelle that is rotatably fixed in a horizontal plane with respect to a support extending from the ground surface, and that accommodates the first power generation means, the second power generation means, and the flywheel, is disposed on the windmill hub with respect to the windmill hub. The wind turbine generator according to claim 9, wherein the wind turbine generator is located upstream of the wind receiving direction and protrudes upstream of the cylindrical wind tunnel portion in the wind receiving direction.
JP2010125350A 2010-05-31 2010-05-31 Wind power generator Active JP4749497B1 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2010125350A JP4749497B1 (en) 2010-05-31 2010-05-31 Wind power generator
CN201080062753.5A CN102770665B (en) 2010-05-31 2010-12-27 Wind-driven electricity generation device
US13/379,224 US8749083B2 (en) 2010-05-31 2010-12-27 Wind power generator
CA2796810A CA2796810C (en) 2010-05-31 2010-12-27 Wind power generator with flywheel
PCT/JP2010/073577 WO2011151943A1 (en) 2010-05-31 2010-12-27 Wind-driven electricity generation device
KR1020127003337A KR101170697B1 (en) 2010-05-31 2010-12-27 Wind driven electricity generation device
AU2010354596A AU2010354596B2 (en) 2010-05-31 2010-12-27 Wind-driven electricity generation device
TW100100772A TWI448617B (en) 2010-05-31 2011-01-10 Wind power plant
HK13101010.9A HK1173763A1 (en) 2010-05-31 2013-01-23 Wind-driven electricity generation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010125350A JP4749497B1 (en) 2010-05-31 2010-05-31 Wind power generator

Publications (2)

Publication Number Publication Date
JP4749497B1 true JP4749497B1 (en) 2011-08-17
JP2011252409A JP2011252409A (en) 2011-12-15

Family

ID=44597064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010125350A Active JP4749497B1 (en) 2010-05-31 2010-05-31 Wind power generator

Country Status (1)

Country Link
JP (1) JP4749497B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114567121A (en) * 2022-02-28 2022-05-31 北京纳米能源与系统研究所 Power generation method and device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0456713B2 (en) * 1985-02-15 1992-09-09 Tokyo Shibaura Electric Co
JP2002084796A (en) * 2000-09-04 2002-03-22 Mitsubishi Electric Corp Generating system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0456713B2 (en) * 1985-02-15 1992-09-09 Tokyo Shibaura Electric Co
JP2002084796A (en) * 2000-09-04 2002-03-22 Mitsubishi Electric Corp Generating system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114567121A (en) * 2022-02-28 2022-05-31 北京纳米能源与系统研究所 Power generation method and device

Also Published As

Publication number Publication date
JP2011252409A (en) 2011-12-15

Similar Documents

Publication Publication Date Title
CA2796810C (en) Wind power generator with flywheel
JP5815941B2 (en) Counter-rotatable generator
US6975045B2 (en) Wind power generating system
JP2011012675A (en) Counter-rotatable generator for aircraft gas turbine engine
FR2993018A1 (en) NON-GEAR CONTRAROTATIVE WIND GENERATOR
WO2011142919A1 (en) Wind turbines direct drive alternator system with torque balancing
KR101539321B1 (en) generator with roof exhaust fan
JP4762356B1 (en) Wind power generator
KR101205483B1 (en) Windmill for wind power generator and wind power generator
JP4762355B1 (en) Wind power generator
JP2007336783A (en) Generator, wind power generation method, and water power generation method
JP6132112B2 (en) Electromagnetic generator and method of using the same
GB2426554A (en) Tubular turbine with magnetic bearings
CN108317045A (en) A kind of magnetic suspending wind turbine generator with air gap regulatory function
JP4749497B1 (en) Wind power generator
US20160312768A1 (en) Wind Power Generating Apparatus
US7298063B2 (en) Quantum disk armature electric generator
KR200418919Y1 (en) Aerogenerator
JP2014204644A (en) Generator of monopole configuration
KR101289800B1 (en) Permanent magnetic motor and fluid charger comprising the same
JP2020084837A (en) Frame unit for wind power generation, wind power generation unit, and wind power generation facility
JP3175706U (en) Coreless generator and micro hydro power generation system using the same
JP2014053990A (en) Rotary electric machine
JP5080698B1 (en) Fluid induction panel and power generation device
WO2020259780A1 (en) Generator rotor assembly for power generator of a wind turbine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110406

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20110406

TRDD Decision of grant or rejection written
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20110502

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110509

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110517

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4749497

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250