JP4749339B2 - Cellooligosaccharide derivative and method for producing the same - Google Patents

Cellooligosaccharide derivative and method for producing the same Download PDF

Info

Publication number
JP4749339B2
JP4749339B2 JP2006548688A JP2006548688A JP4749339B2 JP 4749339 B2 JP4749339 B2 JP 4749339B2 JP 2006548688 A JP2006548688 A JP 2006548688A JP 2006548688 A JP2006548688 A JP 2006548688A JP 4749339 B2 JP4749339 B2 JP 4749339B2
Authority
JP
Japan
Prior art keywords
compound
formula
integer
cellooligosaccharide
alkyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006548688A
Other languages
Japanese (ja)
Other versions
JPWO2006067883A1 (en
Inventor
浩 上高原
文明 中坪
ディーター クレム
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2006548688A priority Critical patent/JP4749339B2/en
Publication of JPWO2006067883A1 publication Critical patent/JPWO2006067883A1/en
Application granted granted Critical
Publication of JP4749339B2 publication Critical patent/JP4749339B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H15/00Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
    • C07H15/02Acyclic radicals, not substituted by cyclic structures
    • C07H15/04Acyclic radicals, not substituted by cyclic structures attached to an oxygen atom of the saccharide radical

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Saccharide Compounds (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Description

本発明は、セロオリゴ糖誘導体及びその製造方法に関する。   The present invention relates to a cellooligosaccharide derivative and a method for producing the same.

近年、界面活性剤は極めて広範な用途に用いられている。そのうち、イオン系界面活性剤は、用いられる用途により、安全性、安定性、生分解性等の点で問題を有する場合がある。これに対し、非イオン性界面活性剤は、上記の問題点が低減されるという優れた特徴を有している。そのため、かかる非イオン性界面活性剤の研究が、今日精力的に行われている。   In recent years, surfactants have been used for a very wide range of applications. Among them, ionic surfactants may have problems in terms of safety, stability, biodegradability, etc., depending on the intended use. On the other hand, the nonionic surfactant has an excellent feature that the above problems are reduced. For this reason, research on such nonionic surfactants is energetically performed today.

これまで、多くの非イオン性界面活性剤が製造及び使用されており、例えば、ショ糖脂肪酸エステル、モノステアリン酸ソルビタンなどが知られている。これらの非イオン性界面活性剤は、分子内に糖部分に加えて長鎖脂肪酸などの構成成分を含み、これにより親水性と疎水性のバランスが維持されている。しかし、長鎖脂肪酸を含まない、糖鎖から構成される界面活性剤については報告例がほとんどない。   Until now, many nonionic surfactants have been produced and used, and for example, sucrose fatty acid esters, sorbitan monostearate and the like are known. These nonionic surfactants contain components such as long-chain fatty acids in addition to the sugar moiety in the molecule, thereby maintaining a balance between hydrophilicity and hydrophobicity. However, there are few reports on surfactants composed of sugar chains that do not contain long-chain fatty acids.

わずかに、特許文献1に、セロビオース又はセロオリゴ糖の6位の水酸基を部分的にメチル化して得られるセロオリゴマー誘導体が、界面活性剤として有用であることが記載されている。このセロオリゴマー誘導体は、疎水基であるメチル基が親水性であるグルコース環に均一に置換されている点に特徴を有し、これにより界面活性が高くなるとされている。   Slightly, Patent Document 1 describes that a cello-oligomer derivative obtained by partially methylating the hydroxyl group at the 6-position of cellobiose or cellooligosaccharide is useful as a surfactant. This cello-oligomer derivative is characterized in that the hydrophobic methyl group is uniformly substituted with a hydrophilic glucose ring, which is said to increase the surface activity.

しかし、この特許文献1のセロオリゴマー誘導体は、酵素(セルラーゼ)を用いて合成されるものであり、用いる酵素の基質特異性のため6位にメチル基が交互に導入されたセロオリゴ糖しか合成できないという欠点がある。また、特許文献1には、セロオリゴマー誘導体の界面活性能評価の結果が記載されておらず、現に界面活性能を有しているかは明らかではない。   However, the cello-oligomer derivative of Patent Document 1 is synthesized using an enzyme (cellulase), and only cellooligosaccharides in which methyl groups are alternately introduced at the 6-position can be synthesized due to the substrate specificity of the enzyme used. There is a drawback. Further, Patent Document 1 does not describe the result of the evaluation of the surface activity of the cello-oligomer derivative, and it is not clear whether it actually has the surface activity.

また、セルロース主鎖に沿って疎水基の導入位置に偏りがあるセロオリゴ糖についてはこれまで報告例はなく、その溶液物性は極めて興味深い。
特開平7−138278号公報
In addition, there has been no report on cellooligosaccharides in which the introduction position of the hydrophobic group is biased along the cellulose main chain, and the solution properties are extremely interesting.
JP 7-138278 A

本発明は、糖鎖に沿って疎水基の導入位置に偏りを有するセロオリゴ糖誘導体及びその製造方法、並びに該セロオリゴ糖誘導体からなる非イオン性界面活性剤及びナノ粒子を提供することを目的とする。   It is an object of the present invention to provide a cellooligosaccharide derivative having a bias in the introduction position of a hydrophobic group along the sugar chain, a method for producing the same, and a nonionic surfactant and nanoparticles comprising the cellooligosaccharide derivative. .

本発明者は、上記の課題を解決するため鋭意研究を行った結果、長鎖疎水基(C5以上)を持たず、メチル化されたグルコース又はセロオリゴ糖からなる疎水性部分と水酸基を有する単糖又はオリゴ糖からなる親水性部分とをブロック的に含有するセロオリゴ糖誘導体が、水、メタノール、クロロホルム等に溶解し、両親媒性を示すことを見出した。また、このセロオリゴ糖誘導体は、水中ではミセルを形成しクロロホルム中では逆ミセルを形成する非イオン性界面活性剤としての特徴を有することも見出した。かかる知見に基づき、さらに研究を重ねた結果、本発明を完成するに至った。   As a result of intensive studies to solve the above-mentioned problems, the present inventor has no long-chain hydrophobic group (C5 or higher), a monosaccharide having a hydrophobic part composed of methylated glucose or cellooligosaccharide and a hydroxyl group Or it discovered that the cellooligosaccharide derivative containing the hydrophilic part which consists of oligosaccharides in a block form melt | dissolves in water, methanol, chloroform, etc., and shows amphiphilicity. It was also found that this cellooligosaccharide derivative has characteristics as a nonionic surfactant that forms micelles in water and reverse micelles in chloroform. As a result of further research based on this knowledge, the present invention has been completed.

即ち、本発明は、以下のセロオリゴ糖誘導体及びその製造方法、並びに該セロオリゴ糖誘導体からなる非イオン性界面活性剤及びナノ粒子を提供する。   That is, the present invention provides the following cellooligosaccharide derivatives and methods for producing the same, as well as nonionic surfactants and nanoparticles comprising the cellooligosaccharide derivatives.

項1.アルキル化されたグルコース又はセロオリゴ糖からなる疎水性部分と単糖又はオリゴ糖からなる親水性部分とがブロック的に結合しているセロオリゴ糖誘導体。   Item 1. A cellooligosaccharide derivative in which a hydrophobic moiety comprising an alkylated glucose or cellooligosaccharide and a hydrophilic moiety comprising a monosaccharide or oligosaccharide are bound in a block manner.

項2.一般式:
H−(B−A)−OR
H−A−(B−A)−OR
−(A−B)−OH 又は
−B−(A−B)−OH
(式中、Aは、2,3,6位の水酸基がC1−4アルキル化されたグルコースからアノマー性水酸基を除きかつ4位のアルコール性水酸基から−Hを除いて得られる疎水性部分、又は、各グルコース残基の2,3,6位の水酸基がC1−4アルキル化されたセロオリゴ糖から還元性末端糖残基のアノマー性水酸基を除きかつ非還元性末端糖残基の4位のアルコール性水酸基から−Hを除いて得られる疎水性部分であり、Bは、単糖からアノマー性水酸基を除きかつ1個のアルコール性水酸基から−Hを除いて得られる親水性部分、又は、オリゴ糖から還元性末端糖残基のアノマー性水酸基を除きかつ非還元性末端糖残基の1個のアルコール性水酸基から−Hを除いて得られる親水性部分であり、2以上のAを含む場合Aは互いに同一又は異なっていてもよく、2以上のBを含む場合Bは互いに同一又は異なっていてもよく、xは1〜20の整数を示し、RはH又はC1−4アルキルを示す。但し、糖鎖は還元性末端を紙面右側になるように配置する。)
で示される項1に記載のセロオリゴ糖誘導体。
Item 2. General formula:
H- (BA) x -OR 1
HA- (BA) x -OR 1
R 1 - (A-B) x -OH or R 1 -B- (A-B) x -OH
(In the formula, A is a hydrophobic moiety obtained by removing the anomeric hydroxyl group from glucose in which the hydroxyl groups at positions 2, 3, 6 are C 1-4 alkylated and -H is removed from the alcoholic hydroxyl group at position 4. Alternatively, the anomeric hydroxyl group of the reducing terminal sugar residue is removed from the cellooligosaccharide in which the hydroxyl groups at the 2, 3, 6 positions of each glucose residue are C 1-4 alkylated and the 4th position of the non-reducing terminal sugar residue. Is a hydrophobic part obtained by removing -H from the alcoholic hydroxyl group, and B is a hydrophilic part obtained by removing the anomeric hydroxyl group from a monosaccharide and removing -H from one alcoholic hydroxyl group, or A hydrophilic moiety obtained by removing an anomeric hydroxyl group of a reducing terminal sugar residue from an oligosaccharide and removing -H from one alcoholic hydroxyl group of a non-reducing terminal sugar residue, and containing two or more A Case A is the same or different from each other May have I, when containing 2 or more B B may be the same or different, x is an integer of 1 to 20, R 1 represents H or C 1-4 alkyl. However, sugar The chain is placed so that the reducing end is on the right side of the page.)
Item 2. A cellooligosaccharide derivative according to item 1.

項3.一般式:
H−B−A−OR 又は
−A−B−OH
(式中、Aは、2,3,6位の水酸基がC1−4アルキル化されたグルコースからアノマー性水酸基を除きかつ4位のアルコール性水酸基から−Hを除いて得られる疎水性部分、又は、各グルコース残基の2,3,6位の水酸基がC1−4アルキル化されたセロオリゴ糖から還元性末端糖残基のアノマー性水酸基を除きかつ非還元性末端糖残基の4位のアルコール性水酸基から−Hを除いて得られる疎水性部分であり、Bは、単糖からアノマー性水酸基を除きかつ1個のアルコール性水酸基から−Hを除いて得られる親水性部分、又は、オリゴ糖から還元性末端糖残基のアノマー性水酸基を除きかつ非還元性末端糖残基の1個のアルコール性水酸基から−Hを除いて得られる親水性部分であり、RはH又はC1−4アルキルを示す。但し、糖鎖は還元性末端を紙面右側になるように配置する。)で示される項1又は2に記載のセロオリゴ糖誘導体。
Item 3. General formula:
H-B 1 -A 1 -OR 1 or R 1 -A 1 -B 1 -OH
(In the formula, A 1 is a hydrophobic moiety obtained by removing the anomeric hydroxyl group from glucose in which the hydroxyl groups at the 2, 3, and 6 positions are C 1-4 alkylated and removing -H from the alcoholic hydroxyl group at the 4 position. Alternatively, the anomeric hydroxyl group of the reducing terminal sugar residue is removed from the cellooligosaccharide in which the 2, 3, 6-position hydroxyl group of each glucose residue is C 1-4 alkylated, and 4 of the non-reducing terminal sugar residue. A hydrophobic moiety obtained by removing -H from the alcoholic hydroxyl group at the position, and B 1 is a hydrophilic moiety obtained by removing the anomeric hydroxyl group from a monosaccharide and removing -H from one alcoholic hydroxyl group; Or a hydrophilic moiety obtained by removing the anomeric hydroxyl group of the reducing terminal sugar residue from the oligosaccharide and removing -H from one alcoholic hydroxyl group of the non-reducing terminal sugar residue, and R 1 is H or an C 1-4 alkyl However, the sugar chain is arranged to be the reducing end on the right side.) Cellooligosaccharide derivative according to claim 1 or 2 represented by.

項4.一般式:
−A−B−A−OR
−A−B−A−B−OH
−A−B−A−B−A−OR
−A−B−A−B−A−B−OH
H−B−A−B−OH
H−B−A−B−A−OR
H−B−A−B−A−B−OH 又は
H−B−A−B−A−B−A−OR
(式中、A、A及びAは、同一又は異なって、2,3,6位の水酸基がC1−4アルキル化されたグルコースからアノマー性水酸基を除きかつ4位のアルコール性水酸基から−Hを除いて得られる疎水性部分、又は、各グルコース残基の2,3,6位の水酸基がC1−4アルキル化されたセロオリゴ糖から還元性末端糖残基のアノマー性水酸基を除きかつ非還元性末端糖残基の4位のアルコール性水酸基から−Hを除いて得られる疎水性部分であり、B、B及びBは、同一又は異なって、単糖からアノマー性水酸基を除きかつ1個のアルコール性水酸基から−Hを除いて得られる親水性部分、又は、オリゴ糖から還元性末端糖残基のアノマー性水酸基を除きかつ非還元性末端糖残基の1個のアルコール性水酸基から−Hを除いて得られる親水性部分であり、RはH又はC1−4アルキルを示す。但し、糖鎖は還元性末端を紙面右側になるように配置する。)
で示される項1又は2に記載のセロオリゴ糖誘導体。
Item 4. General formula:
R 1 -A 1 -B 1 -A 2 -OR 1
R 1 -A 1 -B 1 -A 2 -B 2 -OH
R 1 -A 1 -B 1 -A 2 -B 3 -A 3 -OR 1
R 1 -A 1 -B 1 -A 2 -B 2 -A 3 -B 3 -OH
H-B 1 -A 1 -B 2 -OH
H-B 1 -A 1 -B 2 -A 2 -OR 1
H-B 1 -A 1 -B 2 -A 2 -B 3 -OH or H-B 1 -A 1 -B 2 -A 2 -B 3 -A 3 -OR 1
(In the formula, A 1 , A 2 and A 3 are the same or different and are obtained by removing the anomeric hydroxyl group from glucose in which the hydroxyl groups at the 2, 3 and 6 positions are C 1-4 alkylated and the alcoholic hydroxyl group at the 4 position. The hydrophobic moiety obtained by removing -H from the above, or the anomeric hydroxyl group of the reducing terminal sugar residue from the cellooligosaccharide in which the hydroxyl groups at the 2, 3, 6 positions of each glucose residue are C 1-4 alkylated And a hydrophobic moiety obtained by removing -H from the alcoholic hydroxyl group at the 4-position of the non-reducing terminal sugar residue, and B 1 , B 2 and B 3 are the same or different and are anomalous from a monosaccharide Hydrophilic moiety obtained by removing hydroxyl group and removing -H from one alcoholic hydroxyl group, or one of non-reducing terminal sugar residues by removing anomeric hydroxyl group of reducing terminal sugar residue from oligosaccharide -H from the alcoholic hydroxyl group of And R 1 represents H or C 1-4 alkyl, except that the sugar chain is arranged so that the reducing end is on the right side of the page.
Item 3. The cellooligosaccharide derivative according to item 1 or 2,

項5.前記疎水性部分が、一般式:   Item 5. The hydrophobic moiety has the general formula:

(式中、RはC1〜4アルキル、mは1〜8の整数を示す。)
で表される部分である項1〜4のいずれかに記載のセロオリゴ糖誘導体。
(In the formula, R 2 represents C 1-4 alkyl, and m represents an integer of 1-8.)
Item 5. The cellooligosaccharide derivative according to any one of Items 1 to 4, which is a moiety represented by:

項6.前記親水性部分が、ピラノース型単糖からアノマー性水酸基を除きかつ1個のアルコール性水酸基から−Hを除いて得られる部分であるか、又は、ピラノース型単糖からなる群から選ばれる2以上が1,4−グリコシド結合したオリゴ糖から還元性末端糖残基のアノマー性水酸基を除きかつ非還元性末端糖残基の4位のアルコール性水酸基から−Hを除いて得られる部分である項1〜5のいずれかに記載のセロオリゴ糖誘導体。   Item 6. The hydrophilic portion is a portion obtained by removing an anomeric hydroxyl group from a pyranose type monosaccharide and removing -H from one alcoholic hydroxyl group, or two or more selected from the group consisting of a pyranose type monosaccharide Is a moiety obtained by removing the anomeric hydroxyl group of the reducing terminal sugar residue from the 1,4-glycoside-linked oligosaccharide and removing -H from the alcoholic hydroxyl group at the 4-position of the non-reducing terminal sugar residue. The cellooligosaccharide derivative according to any one of 1 to 5.

項7.一般式(I):   Item 7. Formula (I):

(式中、RはH又はC1〜4アルキル、RはC1〜4アルキル、mは1〜8の整数、nは1〜8の整数を示す。)
で表される項1に記載のセロオリゴ糖誘導体。
(In the formula, R 1 is H or C 1-4 alkyl, R 2 is C 1-4 alkyl, m is an integer of 1-8, and n is an integer of 1-8.)
Item 2. A cellooligosaccharide derivative according to item 1.

項8.一般式(II):   Item 8. General formula (II):

(式中、RはH又はC1〜4アルキル、RはC1〜4アルキル、mは1〜8の整数、nは1〜8の整数を示す。)
で表される項1に記載のセロオリゴ糖誘導体。
(In the formula, R 1 is H or C 1-4 alkyl, R 2 is C 1-4 alkyl, m is an integer of 1-8, and n is an integer of 1-8.)
Item 2. A cellooligosaccharide derivative according to item 1.

項9.一般式(III):   Item 9. General formula (III):

(式中、RはH又はC1〜4アルキル、RはC1〜4アルキル、m及びmは同一又は異なって1〜8の整数、nは1〜8の整数を示す。)
で表される項1に記載のセロオリゴ糖誘導体。
(In the formula, R 1 is H or C 1-4 alkyl, R 2 is C 1-4 alkyl, m 1 and m 2 are the same or different and are an integer of 1-8, n 0 is an integer of 1-8. .)
Item 2. A cellooligosaccharide derivative according to item 1.

項10.一般式(IV):   Item 10. Formula (IV):

(式中、RはC1〜4アルキル、n及びnは同一又は異なって1〜8の整数、mは1〜8の整数を示す。)
で表される項1に記載のセロオリゴ糖誘導体。
(In the formula, R 2 represents C 1-4 alkyl, n 1 and n 2 are the same or different and represent an integer of 1 to 8, and m 0 represents an integer of 1 to 8.)
Item 2. A cellooligosaccharide derivative according to item 1.

項11.項1〜10のいずれかに記載のセロオリゴ糖誘導体からなる界面活性剤。   Item 11. Item 11. A surfactant comprising the cellooligosaccharide derivative according to any one of Items 1 to 10.

項12.一般式(I):   Item 12. Formula (I):

(式中、RはH又はC1〜4アルキル、RはC1〜4アルキル、mは1〜8の整数、nは1〜8の整数を示す。)
で表されるセロオリゴ糖誘導体の製造方法であって、一般式(Ia):
(In the formula, R 1 is H or C 1-4 alkyl, R 2 is C 1-4 alkyl, m is an integer of 1-8, and n is an integer of 1-8.)
The cellooligosaccharide derivative represented by the general formula (Ia):

(式中、RはC1〜4アルキル、mは1〜8の整数を示す。)
で表される疎水性化合物に、水酸基が保護された単糖又はオリゴ糖を1,4−グリコシド結合させた後、保護基を除去することを特徴とするセロオリゴ糖誘導体の製造方法。
(In the formula, R 2 represents C 1-4 alkyl, and m represents an integer of 1-8.)
A method for producing a cellooligosaccharide derivative, wherein a monosaccharide or oligosaccharide having a protected hydroxyl group is bonded to a hydrophobic compound represented by the formula 1,4-glycoside, and then the protecting group is removed.

項13.項1〜10のいずれかに記載のセロオリゴ糖誘導体からなるナノ粒子。   Item 13. Item 11. A nanoparticle comprising the cellooligosaccharide derivative according to any one of Items 1 to 10.

項14.平均粒子半径が2.5〜250nm程度である項13に記載のナノ粒子。   Item 14. Item 14. The nanoparticle according to Item 13, wherein the average particle radius is about 2.5 to 250 nm.

以下、本発明を詳述する。
I.セロオリゴ糖誘導体
本発明のセロオリゴ糖誘導体は、水酸基がアルキル化されたセルロース又はセロオリゴ糖からなる疎水性部分と、水酸基がフリーの単糖又はオリゴ糖からなる親水性部分とがブロック的にグリコシド結合した化合物、又はその混合物である。このセロオリゴ糖誘導体は、水及び有機溶媒に対し両親媒性を示し、さらに界面活性能を有しており非イオン性界面活性剤として用いられる。
The present invention is described in detail below.
I. Cellooligosaccharide derivative The cellooligosaccharide derivative of the present invention has a glycosidic bond between a hydrophobic portion made of cellulose or cellooligosaccharide having a hydroxyl group alkylated and a hydrophilic portion made of a monosaccharide or oligosaccharide having a free hydroxyl group. A compound, or a mixture thereof. This cellooligosaccharide derivative is amphiphilic to water and an organic solvent, and further has a surface activity, and is used as a nonionic surfactant.

本発明のセロオリゴ糖誘導体は、この疎水性部分と親水性部分とをブロック的に含有するものであれば特に限定はない。ここで、「ブロック的」とは、分子内に、アルキル化されたグルコース又はセロオリゴ糖からなるブロック(疎水性部分)と、水酸基がフリーの単糖又はオリゴ糖からなるブロック(親水性部分)とが交互に鎖状に結合することを意味する。   The cellooligosaccharide derivative of the present invention is not particularly limited as long as it contains this hydrophobic part and hydrophilic part in a block form. Here, “block-like” refers to a block (hydrophobic portion) made of alkylated glucose or cellooligosaccharide, and a block (hydrophilic portion) made of monosaccharide or oligosaccharide having a free hydroxyl group in the molecule. Means that they are alternately linked in a chain.

また、「アルキル化されたグルコース又はセロオリゴ糖」とは、グルコースが有する2,3,6位の3個の水酸基アルキル化されたもの、又はセロオリゴ糖の全てのグルコース残基の2,3,6位の3個の水酸基がアルキル化されたものを意味する。   In addition, “alkylated glucose or cellooligosaccharide” means an alkylated one of 3 hydroxyl groups at positions 2, 3, 6 of glucose, or 2,3,6 of all glucose residues of cellooligosaccharide. Means that the three hydroxyl groups at the position are alkylated.

本発明のセロオリゴ糖誘導体としては、次式のような種々のセロオリゴ糖誘導体を挙げることができる。   Examples of the cellooligosaccharide derivative of the present invention include various cellooligosaccharide derivatives such as the following formulas.

H−(B−A)x−OR
H−A−(B−A)x−OR
−(A−B)x−OH 又は
−B−(A−B)x−OH
(式中、Aは、2,3,6位の水酸基がC1−4アルキル化されたグルコースからアノマー性水酸基を除きかつ4位のアルコール性水酸基から−Hを除いて得られる疎水性部分、又は、各グルコース残基の2,3,6位の水酸基がC1−4アルキル化されたセロオリゴ糖から還元性末端糖残基のアノマー性水酸基を除きかつ非還元性末端糖残基の4位のアルコール性水酸基から−Hを除いて得られる疎水性部分であり、Bは、単糖からアノマー性水酸基を除きかつ1個のアルコール性水酸基から−Hを除いて得られる親水性部分、又は、オリゴ糖から還元性末端糖残基のアノマー性水酸基を除きかつ非還元性末端糖残基の1個のアルコール性水酸基から−Hを除いて得られる親水性部分であり、2以上のAを含む場合Aは互いに同一又は異なっていてもよく、2以上のBを含む場合Bは互いに同一又は異なっていてもよく、xは1〜20の整数を示し、RはH又はC1−4アルキルを示す。但し、糖鎖は還元性末端を紙面右側になるように配置する。)
本発明のセロオリゴ糖誘導体の例としては、次式のような種々のセロオリゴ糖誘導体を挙げることができる。
H- (BA) x-OR 1
HA- (BA) x-OR 1
R 1 - (A-B) x-OH , or R 1 -B- (A-B) x-OH
(In the formula, A is a hydrophobic moiety obtained by removing the anomeric hydroxyl group from glucose in which the hydroxyl groups at positions 2, 3, 6 are C 1-4 alkylated and -H is removed from the alcoholic hydroxyl group at position 4. Alternatively, the anomeric hydroxyl group of the reducing terminal sugar residue is removed from the cellooligosaccharide in which the hydroxyl groups at the 2, 3, 6 positions of each glucose residue are C 1-4 alkylated and the 4th position of the non-reducing terminal sugar residue. Is a hydrophobic part obtained by removing -H from the alcoholic hydroxyl group, and B is a hydrophilic part obtained by removing the anomeric hydroxyl group from a monosaccharide and removing -H from one alcoholic hydroxyl group, or A hydrophilic moiety obtained by removing an anomeric hydroxyl group of a reducing terminal sugar residue from an oligosaccharide and removing -H from one alcoholic hydroxyl group of a non-reducing terminal sugar residue, and containing two or more A Case A is the same or different from each other May have I, when containing 2 or more B B may be the same or different, x is an integer of 1 to 20, R 1 represents H or C 1-4 alkyl. However, sugar The chain is placed so that the reducing end is on the right side of the page.)
Examples of the cellooligosaccharide derivative of the present invention include various cellooligosaccharide derivatives such as the following formulas.

H−B−A−OR 又は
−A−B−OH
(式中、Aは、2,3,6位の水酸基がC1−4アルキル化されたグルコースからアノマー性水酸基を除きかつ4位のアルコール性水酸基から−Hを除いて得られる疎水性部分、又は、各グルコース残基の2,3,6位の水酸基がC1−4アルキル化されたセロオリゴ糖から還元性末端糖残基のアノマー性水酸基を除きかつ非還元性末端糖残基の4位のアルコール性水酸基から−Hを除いて得られる疎水性部分であり、Bは、単糖からアノマー性水酸基を除きかつ1個のアルコール性水酸基から−Hを除いて得られる親水性部分、又は、オリゴ糖から還元性末端糖残基のアノマー性水酸基を除きかつ非還元性末端糖残基の1個のアルコール性水酸基から−Hを除いて得られる親水性部分であり、RはH又はC1−4アルキルを示す。但し、糖鎖は還元性末端を紙面右側になるように配置する。)
本発明のセロオリゴ糖誘導体の他の例としては、次式のような種々のセロオリゴ糖誘導体を挙げることもできる。
H-B 1 -A 1 -OR 1 or R 1 -A 1 -B 1 -OH
(In the formula, A 1 is a hydrophobic moiety obtained by removing the anomeric hydroxyl group from glucose in which the hydroxyl groups at the 2, 3, and 6 positions are C 1-4 alkylated and removing -H from the alcoholic hydroxyl group at the 4 position. Alternatively, the anomeric hydroxyl group of the reducing terminal sugar residue is removed from the cellooligosaccharide in which the 2, 3, 6-position hydroxyl group of each glucose residue is C 1-4 alkylated, and 4 of the non-reducing terminal sugar residue. A hydrophobic moiety obtained by removing -H from the alcoholic hydroxyl group at the position, and B 1 is a hydrophilic moiety obtained by removing the anomeric hydroxyl group from a monosaccharide and removing -H from one alcoholic hydroxyl group; Or a hydrophilic moiety obtained by removing the anomeric hydroxyl group of the reducing terminal sugar residue from the oligosaccharide and removing -H from one alcoholic hydroxyl group of the non-reducing terminal sugar residue, and R 1 is H or an C 1-4 alkyl However, the sugar chain is arranged to be the reducing end on the right side.)
As another example of the cellooligosaccharide derivative of the present invention, various cellooligosaccharide derivatives represented by the following formulas can also be mentioned.

−A−B−A−OR
−A−B−A−B−OH
−A−B−A−B−A−OR
−A−B−A−B−A−B−OH
H−B−A−B−OH
H−B−A−B−A−OR
H−B−A−B−A−B−OH 又は
H−B−A−B−A−B−A−OR
(式中、A、A及びAは、同一又は異なって、2,3,6位の水酸基がC1−4アルキル化されたグルコースからアノマー性水酸基を除きかつ4位のアルコール性水酸基から−Hを除いて得られる疎水性部分、又は、各グルコース残基の2,3,6位の水酸基がC1−4アルキル化されたセロオリゴ糖から還元性末端糖残基のアノマー性水酸基を除きかつ非還元性末端糖残基の4位のアルコール性水酸基から−Hを除いて得られる疎水性部分であり、B、B及びBは、同一又は異なって、単糖からアノマー性水酸基を除きかつ1個のアルコール性水酸基から−Hを除いて得られる親水性部分、又は、オリゴ糖から還元性末端糖残基のアノマー性水酸基を除きかつ非還元性末端糖残基の1個のアルコール性水酸基から−Hを除いて得られる親水性部分であり、RはH又はC1−4アルキルを示す。但し、糖鎖は還元性末端を紙面右側になるように配置する。)
疎水性部分は、水酸基がアルキル化されたグルコース又はセロオリゴ糖から構成される。
R 1 -A 1 -B 1 -A 2 -OR 1
R 1 -A 1 -B 1 -A 2 -B 2 -OH
R 1 -A 1 -B 1 -A 2 -B 3 -A 3 -OR 1
R 1 -A 1 -B 1 -A 2 -B 2 -A 3 -B 3 -OH
H-B 1 -A 1 -B 2 -OH
H-B 1 -A 1 -B 2 -A 2 -OR 1
H-B 1 -A 1 -B 2 -A 2 -B 3 -OH or H-B 1 -A 1 -B 2 -A 2 -B 3 -A 3 -OR 1
(In the formula, A 1 , A 2 and A 3 are the same or different and are obtained by removing the anomeric hydroxyl group from glucose in which the hydroxyl groups at the 2, 3 and 6 positions are C 1-4 alkylated and the alcoholic hydroxyl group at the 4 position. The hydrophobic moiety obtained by removing -H from the above, or the anomeric hydroxyl group of the reducing terminal sugar residue from the cellooligosaccharide in which the hydroxyl groups at the 2, 3, 6 positions of each glucose residue are C 1-4 alkylated And a hydrophobic moiety obtained by removing -H from the alcoholic hydroxyl group at the 4-position of the non-reducing terminal sugar residue, and B 1 , B 2 and B 3 are the same or different and are anomalous from a monosaccharide Hydrophilic moiety obtained by removing hydroxyl group and removing -H from one alcoholic hydroxyl group, or one of non-reducing terminal sugar residues by removing anomeric hydroxyl group of reducing terminal sugar residue from oligosaccharide -H from the alcoholic hydroxyl group of And R 1 represents H or C 1-4 alkyl, except that the sugar chain is arranged so that the reducing end is on the right side of the page.
The hydrophobic portion is composed of glucose or cellooligosaccharide having a hydroxyl group alkylated.

疎水性部分は、具体的には、一般式:   Specifically, the hydrophobic portion has the general formula:

(式中、RはC1〜4のアルキル、mは1〜8の整数を示す。)
で表される。
(In the formula, R 2 represents C 1-4 alkyl, and m represents an integer of 1-8.)
It is represented by

水酸基がC1〜4アルキル化されたグルコース(m=1)は、ピラノース型グルコースの2位、3位及び6位の水酸基がC1〜4アルキル化(特に、メチル化)された構造を有している。Glucose whose hydroxyl group is C 1-4 alkylated (m = 1) has a structure in which the hydroxyl groups at the 2-position, 3-position and 6-position of pyranose-type glucose are C 1-4 alkylated (particularly methylated). is doing.

また、水酸基がアルキル化されたセロオリゴ糖は、2以上のピラノース型グルコースが1,4−グリコシド結合してなるセロオリゴ糖からなり、かつ、各グルコースの2位、3位及び6位の水酸基がC1〜4アルキル化(特に、メチル化)された構造を有している。このセロオリゴ糖は、グルコースが2〜8個、好ましくは2〜6個、より好ましくは2〜4個結合したものが挙げられる。The cellooligosaccharide having an alkylated hydroxyl group is composed of a cellooligosaccharide formed by linking two or more pyranose-type glucoses with 1,4-glycosides, and the hydroxyl groups at the 2nd, 3rd and 6th positions of each glucose are C. It has a 1-4 alkylated (particularly methylated) structure. Examples of the cellooligosaccharide include those in which 2 to 8, preferably 2 to 6, more preferably 2 to 4 glucoses are bonded.

一方、親水性部分は、単糖又はオリゴ糖から構成される。   On the other hand, the hydrophilic portion is composed of a monosaccharide or an oligosaccharide.

単糖としては、上記の疎水性部分との結合に関与する水酸基を除く全ての水酸基がフリーのピラノース型又はフラノース型単糖であれば特に限定はない。また、該単糖には、本発明の効果に悪影響を与えない範囲で、水酸基以外の官能基(例えば、アミノ基、アセチルアミノ基等)を含んでいてもよい。好ましくはピラノース型単糖が挙げられる。ピラノース型単糖の具体例としては、グルコース、ガラクトース、マンノース、キシロース、リボース、N−アセチルグルコサミン、グルコサミン、アラビノース、ラムノース、フコース、N-アセチルガラクトサミン、ガラクトサミン等が挙げられる。例えば、単糖がグルコースの場合、親水性部分は、式:   The monosaccharide is not particularly limited as long as all the hydroxyl groups except for the hydroxyl group involved in the binding with the hydrophobic moiety are free pyranose type or furanose type monosaccharides. The monosaccharide may contain a functional group other than a hydroxyl group (for example, an amino group, an acetylamino group, etc.) as long as the effect of the present invention is not adversely affected. Pyranose type monosaccharide is preferable. Specific examples of the pyranose type monosaccharide include glucose, galactose, mannose, xylose, ribose, N-acetylglucosamine, glucosamine, arabinose, rhamnose, fucose, N-acetylgalactosamine, galactosamine and the like. For example, when the monosaccharide is glucose, the hydrophilic moiety is of the formula:

で表される。 It is represented by

また、オリゴ糖としては、上記単糖からなる群より選ばれる2以上がグリコシド結合したオリゴ糖が挙げられ、好ましくは上記ピラノース型単糖からなる群より選ばれる2以上が1,4−グリコシド結合したオリゴ糖が挙げられる。具体的には、セロオリゴ糖(例えば、セロビオース等)、マルトオリゴ糖(例えば、マルトース等)、キトオリゴ糖、キシロオリゴ糖、キトサンオリゴ糖、ラクトース、N-アセチルラクトサミン等が挙げられる。このオリゴ糖は、単糖が2〜8個、好ましくは2〜6個、より好ましくは2〜4個結合したものであればよい。例えば、オリゴ糖がセロビオースの場合、親水性部分は、式:   Examples of the oligosaccharide include oligosaccharides in which two or more selected from the group consisting of the above monosaccharides are glycoside-bonded, and preferably two or more selected from the group consisting of the above-mentioned pyranose type monosaccharide are 1,4-glycoside bonds Oligosaccharides. Specifically, cellooligosaccharide (for example, cellobiose), malto-oligosaccharide (for example, maltose, etc.), chitooligosaccharide, xylo-oligosaccharide, chitosan oligosaccharide, lactose, N-acetyllactosamine and the like can be mentioned. The oligosaccharide may be one in which 2 to 8, preferably 2 to 6, more preferably 2 to 4 monosaccharides are bonded. For example, when the oligosaccharide is cellobiose, the hydrophilic moiety is of the formula:

で表される。 It is represented by

上記の親水性部分を構成する単糖又はオリゴ糖のうち、界面活性能の点から、グルコース、セロビオースが好ましい。   Of the monosaccharides or oligosaccharides constituting the hydrophilic portion, glucose and cellobiose are preferable from the viewpoint of surface activity.

セロオリゴ糖誘導体は、上記のように親水性部分と疎水性部分がブロック的に配列されており、これにより両親媒性及び界面活性能を有している。この親水性部分と疎水性部分の種類や両者の割合を適宜選択することにより、本発明のセロオリゴ糖誘導体に所望の界面活性能を付与できる。   As described above, the cellooligosaccharide derivative has a hydrophilic portion and a hydrophobic portion arranged in a block form, and thus has amphipathic properties and surface activity. By appropriately selecting the kind of the hydrophilic part and the hydrophobic part and the ratio of both, the cellooligosaccharide derivative of the present invention can be provided with a desired surface activity.

本発明のセロオリゴ糖誘導体の具体例としては、一般式(I):   Specific examples of the cellooligosaccharide derivative of the present invention include those represented by the general formula (I):

(式中、RはH又はC1〜4アルキル、RはC1〜4アルキル、mは1〜8の整数、nは1〜8の整数を示す。)
で表される化合物、又はこれらの混合物が挙げられる。これは、上記H−B−A−ORで示される化合物の下位概念に相当する。
(In the formula, R 1 is H or C 1-4 alkyl, R 2 is C 1-4 alkyl, m is an integer of 1-8, and n is an integer of 1-8.)
Or a mixture thereof. This corresponds to a subordinate concept of the compound represented by HB 1 -A 1 -OR 1 described above.

一般式(I)において、Rで示されるC1〜4のアルキルとしては、メチル、エチル、n−プロピル、イソプロピル、n−ブチル、イソブチル等が挙げられる。界面活性能の点から、H又はメチル基が好ましい。In the general formula (I), examples of the C 1-4 alkyl represented by R 1 include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl and the like. From the viewpoint of surface activity, H or a methyl group is preferable.

一般式(I)において、Rで示されるC1〜4のアルキルとして、メチル、エチル、n−プロピル、イソプロピル、n−ブチル、イソブチルが挙げられる。そのうち、合成の簡便性、界面活性能等の点から、メチル又はエチル好ましく、特にメチルが好ましい。In the general formula (I), examples of the C 1-4 alkyl represented by R 2 include methyl, ethyl, n-propyl, isopropyl, n-butyl, and isobutyl. Of these, methyl or ethyl is preferred, and methyl is particularly preferred from the standpoint of ease of synthesis and surface activity.

一般式(I)において、mは2〜6の整数が好ましく、2〜4の整数がより好ましい。また、nは1〜6の整数が好ましく、1〜4の整数がより好ましい。   In the general formula (I), m is preferably an integer of 2 to 6, and more preferably an integer of 2 to 4. Moreover, n is preferably an integer of 1 to 6, and more preferably an integer of 1 to 4.

また、mが2の時は、nが1〜2の整数が好ましく、mが3の時は、nが1〜3の整数が好ましく、mが4の時は、nが1〜4の整数が好ましく、mが5の時は、nが1〜5の整数が好ましく、mが6の時は、nが1〜6の整数が好ましく、mが7の時は、nが1〜8の整数が好ましく、mが8の時は、nが1〜8の整数が好ましい。   Further, when m is 2, n is preferably an integer of 1 to 2, when m is 3, n is preferably an integer of 1 to 3, and when m is 4, n is an integer of 1 to 4. Preferably, when m is 5, n is preferably an integer of 1 to 5, when m is 6, n is preferably an integer of 1 to 6, and when m is 7, n is 1 to 8. An integer is preferable, and when m is 8, n is preferably an integer of 1 to 8.

具体的には、一般式(I)で表されるセロオリゴ糖誘導体において、mとnの関係が、式:
0≦n≦1.3m−0.6
mは2〜6の整数、nは1〜6の整数
の関係を満たす場合、特に好ましい。
Specifically, in the cellooligosaccharide derivative represented by the general formula (I), the relationship between m and n is represented by the formula:
0 ≦ n ≦ 1.3m-0.6
It is particularly preferable when m is an integer of 2 to 6 and n is an integer of 1 to 6.

本発明のセロオリゴ糖誘導体の他の具体例としては、一般式(II):   Other specific examples of the cellooligosaccharide derivative of the present invention include those represented by the general formula (II):

(式中、RはH又はC1〜4アルキル、RはC1〜4アルキル、mは1〜8の整数、nは1〜8の整数を示す。)
で表される化合物、又はこれらの混合物が挙げられる。これは、上記R−A−B−OHで示される化合物の下位概念に相当する。
(In the formula, R 1 is H or C 1-4 alkyl, R 2 is C 1-4 alkyl, m is an integer of 1-8, and n is an integer of 1-8.)
Or a mixture thereof. This corresponds to a subordinate concept of the compound represented by R 1 -A 1 -B 1 -OH.

一般式(II)において、R、R、m及びnは、一般式(I)で示されるものと同じである。In the general formula (II), R 1 , R 2 , m and n are the same as those shown in the general formula (I).

一般式(II)において、RはH又はメチル基、Rはメチル基が好ましい。In general formula (II), R 1 is preferably H or a methyl group, and R 2 is preferably a methyl group.

一般式(II)において、mは2〜6の整数が好ましく、2〜4の整数がより好ましい。また、nは1〜6の整数が好ましく、1〜4の整数がより好ましい。   In the general formula (II), m is preferably an integer of 2 to 6, and more preferably an integer of 2 to 4. Moreover, n is preferably an integer of 1 to 6, and more preferably an integer of 1 to 4.

また、mが2の時は、nが1〜2の整数が好ましく、mが3の時は、nが1〜3の整数が好ましく、mが4の時は、nが1〜4の整数が好ましく、mが5の時は、nが1〜5の整数が好ましく、mが6の時は、nが1〜6の整数が好ましく、mが7の時は、nが1〜8の整数が好ましく、mが8の時は、nが1〜8の整数が好ましい。   Further, when m is 2, n is preferably an integer of 1 to 2, when m is 3, n is preferably an integer of 1 to 3, and when m is 4, n is an integer of 1 to 4. Preferably, when m is 5, n is preferably an integer of 1 to 5, when m is 6, n is preferably an integer of 1 to 6, and when m is 7, n is 1 to 8. An integer is preferable, and when m is 8, n is preferably an integer of 1 to 8.

具体的には、一般式(II)で表されるセロオリゴ糖誘導体において、mとnの関係が、式:
0≦n≦1.3m−0.6
mは2〜6の整数、nは1〜6の整数
の関係を満たす場合、特に好ましい。
Specifically, in the cellooligosaccharide derivative represented by the general formula (II), the relationship between m and n is represented by the formula:
0 ≦ n ≦ 1.3m-0.6
It is particularly preferable when m is an integer of 2 to 6 and n is an integer of 1 to 6.

本発明のセロオリゴ糖誘導体の他の具体例としては、一般式(III):   Other specific examples of the cellooligosaccharide derivative of the present invention include those represented by the general formula (III):

(式中、RはH又はC1〜4アルキル、RはC1〜4アルキル、m及びmは同一又は異なって1〜8の整数、nは1〜8の整数を示す。)
で表される化合物、又はこれらの混合物が挙げられる。これは、上記R−A−B−A−ORで示される化合物の下位概念に相当する。
(In the formula, R 1 is H or C 1-4 alkyl, R 2 is C 1-4 alkyl, m 1 and m 2 are the same or different and are an integer of 1-8, n 0 is an integer of 1-8. .)
Or a mixture thereof. This corresponds to a subordinate concept of the compound represented by R 1 -A 1 -B 1 -A 2 -OR 1 .

一般式(III)において、R及びRは一般式(I)で示されるものと同じである。In the general formula (III), R 1 and R 2 are the same as those shown in the general formula (I).

一般式(III)において、RはH又はメチル基、Rはメチル基が好ましい。In general formula (III), R 1 is preferably H or a methyl group, and R 2 is preferably a methyl group.

一般式(III)において、mは1〜6の整数が好ましく、1〜4の整数がより好ましい。mは1〜6の整数が好ましく、1〜4の整数がより好ましい。また、nは1〜8の整数が好ましく、1〜6の整数がより好ましい。In the general formula (III), m 1 is preferably an integer of 1 to 6, and more preferably an integer of 1 to 4. m 2 is preferably an integer of 1 to 6, an integer of 1 to 4 is more preferred. In addition, n 0 is preferably an integer of 1 to 8, and more preferably an integer of 1 to 6.

具体的には、一般式(III)で表されるセロオリゴ糖誘導体において、m、m及びnの関係が、式:
0≦n≦1.3(m+m)−0.6
+mは2〜8の整数、nは1〜8の整数
の関係を満たす場合、特に好ましい。
Specifically, in the cellooligosaccharide derivative represented by the general formula (III), the relationship between m 1 , m 2 and n 0 is represented by the formula:
0 ≦ n 0 ≦ 1.3 (m 1 + m 2 ) −0.6
m 1 + m 2 is particularly preferable when it satisfies the relationship of an integer of 2 to 8, and n 0 is an integer of 1 to 8.

本発明のセロオリゴ糖誘導体の他の具体例としては、一般式(IV):   Other specific examples of the cellooligosaccharide derivative of the present invention include those represented by the general formula (IV):

(式中、RはC1〜4のアルキル、n及びnは同一又は異なって1〜8の整数、mは1〜8の整数を示す。)
で表される化合物、又はこれらの混合物が挙げられる。これは、上記H−B−A−B−OHで示される化合物の下位概念に相当する。
(In the formula, R 2 is C 1-4 alkyl, n 1 and n 2 are the same or different and are an integer of 1-8, m 0 is an integer of 1-8)
Or a mixture thereof. This corresponds to a subordinate concept of the compound represented by H-B 1 -A 1 -B 2 —OH.

一般式(IV)において、R及びRは一般式(I)で示されるものと同じである。In the general formula (IV), R 1 and R 2 are the same as those shown in the general formula (I).

一般式(IV)において、nは1〜4の整数が好ましく、1〜3の整数がより好ましい。nは1〜4の整数が好ましく、1〜3の整数がより好ましい。mは2〜8の整数が好ましく、2〜6の整数がより好ましい。In the general formula (IV), n 1 is preferably an integer of 1 to 4, and more preferably an integer of 1 to 3. n 2 is preferably an integer of 1 to 4, an integer of 1 to 3 is more preferable. m 0 is preferably an integer of 2 to 8, and more preferably an integer of 2 to 6.

具体的には、一般式(IV)で表されるセロオリゴ糖誘導体において、m、n及びnの関係が、式:
0≦n+n≦1.3m−0.6
+nは2〜8の整数、mは2〜8の整数
の関係を満たす場合、特に好ましい。
Specifically, in the cellooligosaccharide derivative represented by the general formula (IV), the relationship between m 0 , n 1 and n 2 is represented by the formula:
0 ≦ n 1 + n 2 ≦ 1.3 m 0 −0.6
It is particularly preferable that n 1 + n 2 satisfies an integer of 2 to 8 and m 0 satisfies an integer of 2 to 8.

なお、一般式(I)〜(IV)のセロオリゴ糖誘導体において、各糖の1位(アノマー炭素)の立体配置は、α−又はβ−のいずれであっても良い。また、上述したように本発明のセロオリゴ糖誘導体は、単一化合物であっても、混合物であってもよい。混合物の場合、化合物の精製工程が簡便であり、作業性に優れている。   In the cellooligosaccharide derivatives of general formulas (I) to (IV), the steric configuration at the 1-position (anomeric carbon) of each sugar may be either α- or β-. As described above, the cellooligosaccharide derivative of the present invention may be a single compound or a mixture. In the case of a mixture, the purification process of the compound is simple and the workability is excellent.

本発明のセロオリゴ糖誘導体は、長鎖疎水基(C5以上、特にC8以上の疎水基)を有さず、親水性部分と疎水性部分がブロック的に結合したオリゴ糖鎖からなり、水及び有機溶媒に対し両親媒性を有し、しかも界面活性能を有している。そのため、本発明のセロオリゴ糖誘導体は、広く非イオン性界面活性剤として有用である。   The cellooligosaccharide derivative of the present invention does not have a long-chain hydrophobic group (C5 or more, particularly C8 or more hydrophobic group), and is composed of an oligosaccharide chain in which a hydrophilic portion and a hydrophobic portion are combined in a block manner, and water and organic It has amphiphilic properties with respect to the solvent and also has surface activity. Therefore, the cellooligosaccharide derivative of the present invention is widely useful as a nonionic surfactant.

また、その構成単位は、食品添加物として認可されているメチルセルロース乃至そのアルキル化体から形成されるため、人体への安全性が高く、生分解性を有している。
II.セロオリゴ糖誘導体の製造方法
本発明のセロオリゴ糖誘導体は、例えば、次のようにして製造することができる。これらは、セロオリゴ糖誘導体の製造方法の典型例を示すものであり、当業者であればこれらの記載及び公知の技術を参考にして容易に製造することができる。
II−1.一般式(I)で表されるセロオリゴ糖誘導体
一般式(I)で表されるセロオリゴ糖誘導体は、アルコール性水酸基を有するグルコース又はセロオリゴ糖由来の疎水性化合物に、単糖又はオリゴ糖をグリコシド結合させて製造することができる。必要に応じ、単糖又はオリゴ糖の水酸基は保護されていてもよく、保護された水酸基はグリコシド結合後に脱保護される。
Moreover, since the structural unit is formed from methylcellulose or an alkylated product thereof approved as a food additive, it has high safety to the human body and is biodegradable.
II. Method for producing cellooligosaccharide derivative The cellooligosaccharide derivative of the present invention can be produced, for example, as follows. These show typical examples of methods for producing cellooligosaccharide derivatives, and those skilled in the art can easily produce them with reference to these descriptions and known techniques.
II-1. Cellooligosaccharide derivative represented by general formula (I) Cellooligosaccharide derivative represented by general formula (I) is a glycoside bond of glucose or cellooligosaccharide-derived hydrophobic compound having an alcoholic hydroxyl group to a monosaccharide or oligosaccharide. Can be manufactured. If necessary, the hydroxyl group of the monosaccharide or oligosaccharide may be protected, and the protected hydroxyl group is deprotected after the glycosidic bond.

具体的には、一般式(I)で表されるセロオリゴ糖誘導体は、一般式(Ia):   Specifically, the cellooligosaccharide derivative represented by the general formula (I) has the general formula (Ia):

(式中、RはC1〜4アルキル、mは1〜8の整数を示す。)
で表される疎水性化合物に、単糖又はオリゴ糖を1,4−グリコシド結合させることにより製造することができる。一般式(Ia)で表される疎水性化合物は、例えば、次のようにして製造することができる(反応式1〜6を参照)。
(In the formula, R 2 represents C 1-4 alkyl, and m represents an integer of 1-8.)
It can manufacture by making a monosaccharide or an oligosaccharide connect with a 1, 4- glycosidic to the hydrophobic compound represented by these. The hydrophobic compound represented by the general formula (Ia) can be produced, for example, as follows (see reaction formulas 1 to 6).

一般式(Ia)のうち、mが1の化合物(9)は次のようにして製造できる。   Of the general formula (Ia), the compound (9) in which m is 1 can be produced as follows.

(式中、RはC1〜4アルキル、Xはハロゲン原子を示す。)
グルコース(1)に無水酢酸を反応させて、水酸基を全てアセチル化して化合物(2)を得る。化合物(2)のアノマー炭素上の−OAcを−SPhに変換して化合物(3)とし、これを脱アセチル化して化合物(4)を得る。化合物(4)の4,6位のジオールを、p−メトキシベンズアルデヒドジメチルアセタールで保護して化合物(5)とし、R−Xで全てのフリーの水酸基を−ORとして化合物(6)とする。なお、Xとしては、ヨウ素、臭素、塩素などが挙げられる。R−Xとしては、ヨウ化メチル、臭化メチル、ヨウ化エチル、ヨウ化プロピル等を例示できる。次に、化合物(6)を還元して一級水酸基を有する化合物(7)とし、この水酸基を−ORとして化合物(8)を得る。化合物(8)から酸化的にメトキシベンジル基を除去して化合物(9)を得る。化合物(9)の水酸基をアセチル化して化合物(10)とし、還元末端の1位(アノマー炭素)上の−SPhを−Fに置換して化合物(11)を得る。これらの反応は、いずれも公知の反応を用いて行うことができ、或いは公知の反応から当業者が適宜選択して行うことができる。
(In the formula, R 2 represents C 1-4 alkyl, and X represents a halogen atom.)
Glucose (1) is reacted with acetic anhydride to acetylate all hydroxyl groups to obtain compound (2). -OAc on the anomeric carbon of compound (2) is converted to -SPh to give compound (3), which is deacetylated to give compound (4). The diol at the 4- and 6-positions of compound (4) is protected with p-methoxybenzaldehyde dimethyl acetal to give compound (5), and R 2 -X makes all free hydroxyl groups -OR 2 to give compound (6). . Examples of X include iodine, bromine, and chlorine. Examples of R 2 -X include methyl iodide, methyl bromide, ethyl iodide, propyl iodide and the like. Next, the compound (6) is reduced to obtain a compound (7) having a primary hydroxyl group, and this hydroxyl group is -OR 2 to obtain a compound (8). The compound (9) is obtained by oxidatively removing the methoxybenzyl group from the compound (8). The hydroxyl group of compound (9) is acetylated to give compound (10), and -SPh on the 1-position (anomeric carbon) at the reducing end is substituted with -F to give compound (11). Any of these reactions can be carried out using known reactions, or can be carried out by appropriately selecting a known one from known reactions.

一般式(Ia)のうち、mが2の化合物(20)は次のようにして製造できる。   In general formula (Ia), compound (20) wherein m is 2 can be produced as follows.

(式中、RはC1〜4アルキル、Xはハロゲン原子を示す。)
セロビオース(12)を原料として、前記反応式1の工程a〜jに従って化合物(21)及び(22)を得る。これらの反応は、いずれも公知の反応を用いて行うことができ、或いは公知の反応から当業者が適宜選択して行うことができる。
(In the formula, R 2 represents C 1-4 alkyl, and X represents a halogen atom.)
Using cellobiose (12) as a raw material, compounds (21) and (22) are obtained according to steps a to j of Reaction Scheme 1. Any of these reactions can be carried out using known reactions, or can be carried out by appropriately selecting a known one from known reactions.

一般式(Ia)のうち、mが3の化合物(24)は次のようにして製造できる。   Of the general formula (Ia), the compound (24) in which m is 3 can be produced as follows.

(式中、RはC1〜4アルキルを示す。)
反応式1で得られた化合物(11)と反応式2で得られた化合物(20)とを、Cp2HfCl2及びAgClO4で処理してグリコシド結合させて化合物(23)を得、これを脱アセチル化することにより化合物(24)を得る。これらの反応は、いずれも公知の反応を用いて行うことができ、或いは公知の反応から当業者が適宜選択して行うことができる。
(In the formula, R 2 represents C 1-4 alkyl.)
The compound (11) obtained by the reaction formula 1 and the compound (20) obtained by the reaction formula 2 are treated with Cp 2 HfCl 2 and AgClO 4 to form a glycosidic bond to obtain a compound (23). The compound (24) is obtained by deacetylation. Any of these reactions can be carried out using known reactions, or can be carried out by appropriately selecting a known one from known reactions.

一般式(Ia)のうち、mが4の化合物(26)は次のようにして製造できる。   In general formula (Ia), compound (26) wherein m is 4 can be produced as follows.

(式中、RはC1〜4アルキルを示す。)
反応式2で得られた化合物(22)と化合物(20)を、Cp2HfCl2及びAgClO4で処理してグリコシド結合させて化合物(25)を得、これを脱アセチル化することにより化合物(26)を得る。これらの反応は、前記反応式3の工程k〜lに従って行うことができる。
(In the formula, R 2 represents C 1-4 alkyl.)
The compound (22) and the compound (20) obtained in the reaction formula 2 are treated with Cp 2 HfCl 2 and AgClO 4 to form a glycoside bond to obtain a compound (25), which is deacetylated to obtain the compound ( 26) is obtained. These reactions can be carried out according to steps k to l in the above reaction scheme 3.

一般式(Ia)のうち、mが5の化合物(28)は次のようにして製造できる。   In general formula (Ia), compound (28) wherein m is 5 can be produced as follows.

(式中、RはC1〜4アルキルを示す。)
反応式1で得られた化合物(11)と反応式4で得られた化合物(26)を、Cp2HfCl2及びAgClO4で処理してグリコシド結合させて化合物(27)を得、これを脱アセチル化することにより化合物(28)を得る。これらの反応は、前記反応式3の工程k〜lに従って行うことができる。
(In the formula, R 2 represents C 1-4 alkyl.)
The compound (11) obtained in the reaction formula 1 and the compound (26) obtained in the reaction formula 4 are treated with Cp 2 HfCl 2 and AgClO 4 to form glycosidic bonds to obtain a compound (27), which is removed. Compound (28) is obtained by acetylation. These reactions can be carried out according to steps k to l in the above reaction scheme 3.

一般式(Ia)のうち、mが6の化合物(31)は次のようにして製造できる。   In general formula (Ia), compound (31) in which m is 6 can be produced as follows.

(式中、RはC1〜4アルキルを示す。)
反応式3で得られた化合物(23)を、DAST/NBSを用いて−SPhを−Fに変換して化合物(29)を得る。化合物(29)と反応式3で得られた化合物(24)とを、Cp2HfCl2及びAgClO4で処理してグリコシド結合させて化合物(30)を得、これを脱アセチル化することにより化合物(31)を得る。
(In the formula, R 2 represents C 1-4 alkyl.)
The compound (23) obtained by the reaction formula 3 is converted to -F using -DAST / NBS to obtain the compound (29). The compound (29) and the compound (24) obtained by the reaction formula 3 are treated with Cp 2 HfCl 2 and AgClO 4 to form a glycoside bond to obtain a compound (30), which is deacetylated to obtain the compound (31) is obtained.

一般式(Ia)のうち、mが7の化合物、mが8の化合物も、上記の製造方法に準じて当業者が容易に製造できる。   Of the general formula (Ia), a compound having m = 7 and a compound having m = 8 can also be easily produced by those skilled in the art according to the above production method.

かくして、本発明のセロオリゴ糖誘導体における疎水性部分(Ia)を製造することができる。上記反応式1〜6で製造される化合物(9)、(20)、(24)、(26)、(28)、(31)等は、一般式(Ia)で表される疎水性化合物に相当する。   Thus, the hydrophobic moiety (Ia) in the cellooligosaccharide derivative of the present invention can be produced. Compounds (9), (20), (24), (26), (28), (31) and the like produced by the above reaction formulas 1 to 6 are the hydrophobic compounds represented by the general formula (Ia). Equivalent to.

次いで、上記一般式(Ia)で表される疎水性化合物に、還元末端の1位に水酸基を有する単糖又はオリゴ糖をグリコシド結合させて、本発明のセロオリゴ糖誘導体を得る。用いる糖の種類やグリコシド結合の方法は特に限定はなく、公知の方法を採用することができる。   Next, the cellooligosaccharide derivative of the present invention is obtained by glycosidating a monosaccharide or oligosaccharide having a hydroxyl group at the 1-position of the reducing end to the hydrophobic compound represented by the general formula (Ia). There are no particular limitations on the type of sugar used and the method of glycosidic linkage, and known methods can be employed.

典型例として、一般式(Ia)で表される疎水性部分に、グルコース誘導体(32)を反応させて化合物(Ib)を得て、これを脱保護して本発明の化合物(If)を得る方法を反応式7−1に示す。   As a typical example, the hydrophobic moiety represented by the general formula (Ia) is reacted with a glucose derivative (32) to obtain a compound (Ib), which is deprotected to obtain the compound (If) of the present invention. The method is shown in Reaction Scheme 7-1.

(式中、RはC1〜4アルキル、mは1〜8の整数、nは1〜8の整数を示す。)
化合物(Ia)とグルコースオルトエステル誘導体(32)を、ルイス酸(BF3・OEt2等)存在下反応させて、疎水性部分の非還元末端に3−O−ベンジル−2,6−ジ−O−ピバロイル−D−ピラノース単位を有するブロック型セロオリゴ糖誘導体(Ib)を得る。
(In the formula, R 2 is C 1-4 alkyl, m is an integer of 1-8, and n is an integer of 1-8.)
Compound (Ia) and glucose orthoester derivative (32) are reacted in the presence of Lewis acid (BF 3 · OEt 2 etc.), and 3-O-benzyl-2,6-di- is added to the non-reducing end of the hydrophobic moiety. A block type cellooligosaccharide derivative (Ib) having an O-pivaloyl-D-pyranose unit is obtained.

上記の工程mで得られる化合物(Ib)は、分子内に水酸基を有しているため、反応系中に存在するグルコースオルトエステル誘導体(32)とさらに反応して、グルコピラノシド単位が2個以上導入されたブロック型セロオリゴ糖誘導体も生成する。上記の工程mは、繰り返し行っても良く、これにより親水性のピラノース単位を増加させることができる。例えば、実施例1(14)(15)を参照。   Since the compound (Ib) obtained in the above step m has a hydroxyl group in the molecule, it further reacts with the glucose orthoester derivative (32) present in the reaction system to introduce two or more glucopyranoside units. Blocked cellooligosaccharide derivatives are also produced. The above step m may be repeated, thereby increasing the hydrophilic pyranose unit. For example, see Example 1 (14) (15).

化合物(Ib)をNIS/AgOTf/アセトン−水と反応させて-SPhを-OHに変換して化合物(Ic)を得、水酸基のアセチル化、ベンジル基の除去、次いでMeONaによるエステル除去により化合物(If)を得る。   Compound (Ib) is reacted with NIS / AgOTf / acetone-water to convert -SPh to -OH to obtain compound (Ic). Compound (Ic) is obtained by acetylation of hydroxyl group, removal of benzyl group, and then removal of ester with MeONa. If).

また、反応式7−1で得られる化合物(Ib)から、反応式7−2のようにして本発明の化合物(Ig)を得ることもできる。   Further, the compound (Ig) of the present invention can be obtained from the compound (Ib) obtained in the reaction formula 7-1 as shown in the reaction formula 7-2.

(式中、R11はC1〜4アルキル、RはC1〜4アルキル、mは1〜8の整数、nは1〜8の整数を示す。)
化合物(Ib)をNIS/AgOTf/R11-OH/CH2Cl2と反応させて-SPhを-OR11に変換して化合物(Ic)’を得、水酸基のアセチル化、ベンジル基の除去、次いでMeONaによるエステル除去により化合物(Ig)を得る。
(In the formula, R 11 is C 1-4 alkyl, R 2 is C 1-4 alkyl, m is an integer of 1-8, and n is an integer of 1-8.)
Compound (Ib) is reacted with NIS / AgOTf / R 11 —OH / CH 2 Cl 2 to convert —SPh to —OR 11 to obtain Compound (Ic) ′, acetylation of hydroxyl group, removal of benzyl group, Subsequent ester removal with MeONa gives compound (Ig).

他の典型例として、一般式(Ia)で表される疎水性化合物に、親水性部分に相当する単糖又は二糖類を反応させた例を以下に示す。まず、親水性部分の前駆体の製造例を反応式8〜11に示す。   As another typical example, an example in which the monosaccharide or disaccharide corresponding to the hydrophilic portion is reacted with the hydrophobic compound represented by the general formula (Ia) is shown below. First, production examples of the precursor of the hydrophilic portion are shown in Reaction Formulas 8 to 11.

反応式2で得られた化合物(16)の水酸基をピバロイル化して化合物(33)とし、これを酸処理(p-TsOH等)して保護基p−メトキシベンジリデン基を除去して化合物(34)を得る。これに1級水酸基のみをピバロイル化して化合物(35)とし、これにレブリン酸で2級水酸基をエステル化して化合物(36)を得、DAST/NISで−SPhを−Fに変換して化合物(37)を得る。   The hydroxyl group of the compound (16) obtained by the reaction formula 2 is pivaloylated to obtain a compound (33), which is treated with an acid (p-TsOH, etc.) to remove the protecting group p-methoxybenzylidene group to obtain the compound (34). Get. Only the primary hydroxyl group was converted to pivaloyl to give compound (35), and the secondary hydroxyl group was esterified with levulinic acid to obtain compound (36), and -SPh was converted to -F with DAST / NIS to give compound ( 37) is obtained.

化合物(38)をジブチルチンオキシドで処理(105℃)し、−10℃でピリジンを加えた反応溶液中に、トルエンで希釈したピバロイルクロライドを滴下しピバロイル化して化合物(39)とし、この1位及び4位の水酸基を無水酢酸・ピリジンで処理しアセチル化して化合物(40)を得る。例えば、木材学会誌40,302-307、Carbohydrate Research 337(10): 951-954 (2002)を参照。これを、PhSH/ BF3・OEt2で処理して−OAcを−SPhに変換して化合物(41)を得る。この化合物(41)をDBU/MeOHで処理して化合物(42)を得る。この化合物(41)をDAST/NBSで処理して化合物(43)を得る。この化合物(41)をNIS/AgOTfで処理して−SPhを−OHとして化合物(42)を得、これをCCl3CN/DBUで処理して化合物(45)を得る。Compound (38) was treated with dibutyltin oxide (105 ° C.), and pivaloyl chloride diluted with toluene was added dropwise to the reaction solution to which pyridine was added at −10 ° C. to give pivaloyl to obtain compound (39). The hydroxyl groups at the 1-position and 4-position are treated with acetic anhydride / pyridine and acetylated to obtain the compound (40). For example, see Journal of Wood Society 40, 302-307, Carbohydrate Research 337 (10): 951-954 (2002). This is treated with PhSH / BF 3 .OEt 2 to convert -OAc to -SPh to obtain compound (41). The compound (41) is treated with DBU / MeOH to obtain the compound (42). This compound (41) is treated with DAST / NBS to obtain the compound (43). To give compound -SPh as -OH (42) The compound (41) was treated with NIS / AgOTf, obtain the compound is treated with CCl 3 CN / DBU (45) which.

ラクトース(46)の全ての水酸基をアセチル化して化合物(47)を得、これを30% HBr/AcOHで処理して化合物(48)を得る。   All hydroxyl groups of lactose (46) are acetylated to give compound (47), which is treated with 30% HBr / AcOH to give compound (48).

反応式2で得られた化合物(15)の水酸基を、ベンズアルデヒドジメチルアセタール保護して化合物(49)とし、水酸基をベンジル化して化合物(50)とする。これをNaCNBH3で還元して化合物(51)とし、水酸基をアセチル化して化合物(52)を得る。
DSAT/NBSで−SPhを−Fに変換して化合物(53)とし、脱アセチル化して化合物(54)を得る。また、化合物(52)の−SPhを−OHに変換して化合物(55)を得、これをCCl3CN/DBUで処理して化合物(56)を得る。
The hydroxyl group of compound (15) obtained in Reaction Scheme 2 is protected with benzaldehyde dimethyl acetal to give compound (49), and the hydroxyl group is benzylated to give compound (50). This is reduced with NaCNBH 3 to obtain the compound (51), and the hydroxyl group is acetylated to obtain the compound (52).
DSP / NBS converts -SPh to -F to give compound (53), which is deacetylated to give compound (54). Further, the -SPh compound (52) was converted to -OH to give the compound (55) to obtain the compound is treated with CCl 3 CN / DBU the (56) which.

次に、一般式(Ia)で表される疎水性部分と、上記反応式8〜11で得られた親水性部分の前駆体とを反応させて、一般式(I)で表される化合物を製造する。その製造例を、以下の反応式12、13,13’、14,15及び15’に示す。   Next, the hydrophobic part represented by the general formula (Ia) and the precursor of the hydrophilic part obtained in the above reaction formulas 8 to 11 are reacted to obtain the compound represented by the general formula (I). To manufacture. The production examples are shown in the following reaction formulas 12, 13, 13 ', 14, 15 and 15'.

(式中、RはC1〜4アルキルを示す。)
反応式8で得られた化合物(37)と反応式2で得られた化合物(20)をグリコシド結合させて化合物(57)を得、−SPhを−OHに変換し、ナトリウムメトキシドで脱エステル化させて化合物(58)を得る。
(In the formula, R 2 represents C 1-4 alkyl.)
Compound (37) obtained in Reaction Formula 8 and compound (20) obtained in Reaction Formula 2 are glycosidically bonded to obtain Compound (57), -SPh is converted to -OH, and deesterified with sodium methoxide. To give compound (58).

(式中、RはC1〜4アルキルを示す。)
反応式9で得られた化合物(43)と反応式2で得られた化合物(20)をグリコシド結合させて化合物(59)を得、これにNIS/AgOTfを反応させて−SPhを−OHに変換して化合物(60)を得る。化合物(60)を還元し、ナトリウムメトキシドで脱エステル化させて化合物(61)を得る。
(In the formula, R 2 represents C 1-4 alkyl.)
The compound (43) obtained in the reaction formula 9 and the compound (20) obtained in the reaction formula 2 are glycosidically bonded to obtain a compound (59), which is reacted with NIS / AgOTf to convert -SPh to -OH. Conversion yields compound (60). Compound (60) is reduced and deesterified with sodium methoxide to give compound (61).

(式中、RはC1〜4アルキルを示す。)
反応式9で得られた化合物(43)と反応式4で得られた化合物(26)をグリコシド結合させて化合物(89)を得、これにNIS/AgOTfを反応させて−SPhを−OHに変換して化合物(90)を得る。化合物(90)を還元し、ナトリウムメトキシドで脱エステル化させて化合物(91)を得る。
(In the formula, R 2 represents C 1-4 alkyl.)
The compound (43) obtained by the reaction formula 9 and the compound (26) obtained by the reaction formula 4 are glycosidically bonded to obtain a compound (89), which is reacted with NIS / AgOTf to convert -SPh to -OH. Conversion yields compound (90). Compound (90) is reduced and deesterified with sodium methoxide to give compound (91).

(式中、RはC1〜4アルキルを示す。)
反応式10で得られた化合物(48)と反応式2で得られた化合物(20)をグリコシド結合させて化合物(62)を得、これにNIS/AgOTfを反応させて−SPhを−OHに変換して化合物(63)を得る。化合物(63)をナトリウムメトキシドで脱エステル化させて化合物(64)を得る。
(In the formula, R 2 represents C 1-4 alkyl.)
Compound (48) obtained in Reaction Formula 10 and compound (20) obtained in Reaction Formula 2 were glycosidically bonded to obtain Compound (62), which was reacted with NIS / AgOTf to convert -SPh to -OH. Conversion yields compound (63). Compound (63) is deesterified with sodium methoxide to give compound (64).

(式中、RはC1〜4アルキルを示す。)
反応式11で得られた化合物(56)と反応式2で得られた化合物(20)をグリコシド結合させて化合物(65)を得、これにNIS/AgOTfを反応させて−SPhを−OHに変換して化合物(66)を得る。化合物(66)を還元し、ナトリウムメトキシドで脱エステル化させて化合物(67)を得る。
(In the formula, R 2 represents C 1-4 alkyl.)
The compound (56) obtained by the reaction formula 11 and the compound (20) obtained by the reaction formula 2 are glycosidically bonded to obtain the compound (65), which is reacted with NIS / AgOTf to convert -SPh to -OH. Conversion yields compound (66). Compound (66) is reduced and deesterified with sodium methoxide to give compound (67).

(式中、RはC1〜4アルキルを示す。)
反応式11で得られた化合物(56)と反応式5で得られた化合物(26)をグリコシド結合させて化合物(86)を得、これにNIS/AgOTfを反応させて−SPhを−OHに変換して化合物(87)を得る。化合物(87)を還元し、ナトリウムメトキシドで脱エステル化させて化合物(88)を得る。
II−2.一般式(II)で表されるセロオリゴ糖誘導体
一般式(II)で表されるセロオリゴ糖誘導体は、アルコール性水酸基を有する単糖又はオリゴ糖と、グルコース又はセロオリゴ糖由来の疎水性化合物とをグリコシド結合させて製造することができる。必要に応じ、単糖又はオリゴ糖の水酸基は保護されていてもよく、保護された水酸基はグリコシド結合後に脱保護される。
(In the formula, R 2 represents C 1-4 alkyl.)
The compound (56) obtained by the reaction formula 11 and the compound (26) obtained by the reaction formula 5 are glycosidically bonded to obtain a compound (86), which is reacted with NIS / AgOTf to convert -SPh to -OH. Conversion yields compound (87). Compound (87) is reduced and deesterified with sodium methoxide to give compound (88).
II-2. Cellooligosaccharide derivative represented by general formula (II) Cellooligosaccharide derivative represented by general formula (II) is a glycoside comprising a monosaccharide or oligosaccharide having an alcoholic hydroxyl group and a hydrophobic compound derived from glucose or cellooligosaccharide. It can be manufactured by bonding. If necessary, the hydroxyl group of the monosaccharide or oligosaccharide may be protected, and the protected hydroxyl group is deprotected after the glycosidic bond.

一般式(II)で表されるセロオリゴ糖誘導体の典型的な製造例を、以下反応式16〜17に示す。   Typical production examples of the cellooligosaccharide derivative represented by the general formula (II) are shown in Reaction Formulas 16 to 17 below.

(式中、RはC1〜4アルキルを示す。)
反応式2で得られた化合物(21)と反応式11で得られた化合物(54)を、無水塩化メチレン中NIS/AgOTfでグリコシド結合させて化合物(68)を得、これに水系溶媒中でCp2HfCl2/AgClO4を反応させて−Fを−OHに変換し、還元して脱ベンジル化し、ナトリウムメトキシドで脱エステル化して化合物(69)を得る。
(In the formula, R 2 represents C 1-4 alkyl.)
The compound (21) obtained in the reaction formula 2 and the compound (54) obtained in the reaction formula 11 were glycoside-bonded with NIS / AgOTf in anhydrous methylene chloride to obtain a compound (68), which was added to an aqueous solvent. Cp 2 HfCl 2 / AgClO 4 is reacted to convert —F to —OH, reduced to debenzylate, and deesterified with sodium methoxide to give compound (69).

(式中、RはC1〜4アルキルを示す。)
反応式2で得られた化合物(22)と反応式9で得られた化合物(42)をグリコシド結合させて化合物(70)を得、これにNIS/AgOTfを反応させて−SPhを−OHに変換して、接触還元により脱ベンジル化、ナトリウムメトキシドで脱エステル化させて化合物(71)を得る。
II−3.一般式(III)で表されるセロオリゴ糖誘導体
一般式(III)で表されるセロオリゴ糖誘導体の典型的な製造例を、以下反応式18〜19に示す。
(In the formula, R 2 represents C 1-4 alkyl.)
The compound (22) obtained by the reaction formula 2 and the compound (42) obtained by the reaction formula 9 are glycosidically bonded to obtain a compound (70), which is reacted with NIS / AgOTf to convert -SPh to -OH. Conversion and debenzylation by catalytic reduction and deesterification with sodium methoxide give compound (71).
II-3. A typical production example of cellooligosaccharide derivative represented by the general formula (III) in cellooligosaccharide derivative general formula represented (III), shown below in Scheme 18-19.

(式中、RはC1〜4アルキルを示す。)
反応式9で得られた化合物(43)と反応式2で得られた化合物(20)をグリコシド結合させて化合物(72)を得、これをDBUを用いて選択的に脱アセチル化して化合物(73)を得る。化合物(73)と化合物(22)をグリコシド結合させて化合物(74)を得、これにNIS/AgOTfを反応させて−SPhを−OHに変換して、接触還元による脱ベンジル化、ナトリウムメトキシドで脱エステル化して化合物(75)を得る。
(In the formula, R 2 represents C 1-4 alkyl.)
The compound (43) obtained in the reaction formula 9 and the compound (20) obtained in the reaction formula 2 are glycosidically bonded to obtain a compound (72), which is selectively deacetylated using DBU to obtain a compound ( 73). Compound (73) and compound (22) are glycosidically bonded to obtain compound (74), which is reacted with NIS / AgOTf to convert -SPh to -OH, debenzylation by catalytic reduction, sodium methoxide To give compound (75).

(式中、RはC1〜4アルキルを示す。)
反応式2で得られた化合物(22)と反応式9で得られた化合物(42)をグリコシド結合させて化合物(76)を得、この−SPhを−Fに変換して化合物(77)を得る。一方、反応式2で得られた化合物(20)と反応式9で得られた化合物(43)をグリコシド結合させて化合物(78)を得、これを脱アセチル化して化合物(79)を得る。化合物(77)と化合物(79)をグリコシド結合させて化合物(80)を得、これにNIS/AgOTfを反応させて−SPhを−OHに変換して化合物(81)とし、これを接触還元により脱ベンジル化、ナトリウムメトキシドで脱エステル化して化合物(82)を得る。
II−4.一般式(IV)で表されるセロオリゴ糖誘導体
一般式(IV)で表されるセロオリゴ糖誘導体の典型的な製造例を、以下反応式20に示す。
(In the formula, R 2 represents C 1-4 alkyl.)
The compound (22) obtained by the reaction formula 2 and the compound (42) obtained by the reaction formula 9 are glycosidically bonded to obtain the compound (76), and this -SPh is converted to -F to convert the compound (77). obtain. On the other hand, the compound (20) obtained by the reaction formula 2 and the compound (43) obtained by the reaction formula 9 are glycoside-bonded to obtain the compound (78), which is deacetylated to obtain the compound (79). Compound (77) and compound (79) are glycosidically bonded to obtain compound (80), which is reacted with NIS / AgOTf to convert -SPh to -OH to obtain compound (81), which is obtained by catalytic reduction. Debenzylation and deesterification with sodium methoxide give compound (82).
II-4. A typical production example of cellooligosaccharide derivative represented by the general formula cellooligosaccharide derivative general formula represented by (IV) (IV), shown below in Scheme 20.

(式中、RはC1〜4アルキルを示す。)
反応式16で得られた化合物(65)を、DAST/NBSで-SPhを-Fに変換して化合物(83)を得、これに反応式11で得られた化合物(51)をグリコシド結合させて化合物(84)を得る。化合物(84)を水系溶媒中でCp2HfCl2/AgClO4を反応させて−Fを−OHに変換し、THF-MeOH中接触還元して脱ベンジル化し、ナトリウムメトキシドで脱エステル化して化合物(85)を得る。
(In the formula, R 2 represents C 1-4 alkyl.)
The compound (65) obtained by the reaction formula 16 is converted to -F by DAST / NBS to obtain the compound (83), and the compound (51) obtained by the reaction formula 11 is glycosidically bonded thereto. To obtain the compound (84). Compound (84) is reacted with Cp 2 HfCl 2 / AgClO 4 in an aqueous solvent to convert —F to —OH, debenzylated by catalytic reduction in THF-MeOH, and deesterified with sodium methoxide. (85) is obtained.

以上の典型例から、また該典型例から公知の反応を用いて、本発明のセロオリゴ糖誘導体を製造することができる。
III.セロオリゴ糖誘導体の特徴
本発明のセロオリゴ糖誘導体は、水や有機溶媒に対し両親媒性を示すとともに、界面活性能を有している。特に、5糖以上、好ましくは5〜7糖程度のセロオリゴ糖誘導体は良好な界面活性剤能を有している。具体例として、試験例1及び2の結果より明らかである。
The cellooligosaccharide derivative of the present invention can be produced from the above typical examples and using known reactions from the typical examples.
III. Features of Cellooligosaccharide Derivatives The cellooligosaccharide derivatives of the present invention are amphiphilic with respect to water and organic solvents and have surface activity. In particular, cellooligosaccharide derivatives having 5 or more sugars, preferably about 5 to 7 sugars have good surfactant ability. As a specific example, it is clear from the results of Test Examples 1 and 2.

また、本発明のセロオリゴ糖誘導体(特に、5糖以上のセロオリゴ糖誘導体)は、臨界ミセル濃度(mg/ml)程度以上で調製された水溶液、或いはこの水溶液を超音波処理(超音波処理時間:5〜30秒程度)した水溶液において、平均粒子半径が2.5〜250nm程度、特に5〜150nm程度の棒状ないしラグビーボール状のナノ粒子を生成する。なお、平均粒子半径は、ナノ粒子を原子間力顕微鏡で観察した時の粒子半径の平均値を意味する。   In addition, the cellooligosaccharide derivative of the present invention (particularly a cellooligosaccharide derivative of 5 or more sugars) is prepared by sonication (sonication time: sonication time) of an aqueous solution prepared at a critical micelle concentration (mg / ml) or higher. In an aqueous solution (about 5 to 30 seconds), rod-shaped or rugby ball-shaped nanoparticles having an average particle radius of about 2.5 to 250 nm, particularly about 5 to 150 nm are generated. The average particle radius means an average value of particle radii when the nanoparticles are observed with an atomic force microscope.

このナノ粒子の形状は、概ね扁平楕円球体であり、乾燥工程を経てもナノ粒子の径に変化が見られなかったことから、該ナノ粒子内部はセロオリゴ糖誘導体により充填されていると考えられる。   The shape of this nanoparticle is generally a flat ellipsoidal sphere, and no change was observed in the diameter of the nanoparticle even after the drying step. Therefore, it is considered that the inside of the nanoparticle is filled with a cellooligosaccharide derivative.

本発明の長鎖疎水基を有さないセロオリゴ糖誘導体からなるナノ粒子は、食品添加物や医薬品コーティング剤として認可されているメチルセルロースの部分構造に相当する。そのため、安全性が高く生分解性を有し生体にやさしい材料である。この高い安全性の鑑み、ドラッグデリバリーシステム(DDS)の用途、例えば、難水溶性薬物を担持するナノサイズ運搬体(キャリア)として有用である。さらに、DDS用途に利用する場合は、ミセル外側に突き出した糖部分の構造をテイラーメードすること、すなわち、グリコシル化により望みの糖を自由に選択、導入することができる。これにより、作用させたい場所への特異的に薬物を運搬でき、薬物による副作用の軽減、効率的な治療等が可能となる。   The nanoparticles composed of cellooligosaccharide derivatives having no long-chain hydrophobic group according to the present invention correspond to the partial structure of methylcellulose approved as a food additive or a pharmaceutical coating agent. Therefore, it is a highly safe and biodegradable material that is friendly to living bodies. In view of this high safety, it is useful as a drug delivery system (DDS), for example, as a nano-sized carrier (carrier) carrying a poorly water-soluble drug. Furthermore, when used for DDS applications, the desired sugar can be freely selected and introduced by tailoring the structure of the sugar moiety protruding outside the micelle, that is, by glycosylation. As a result, the drug can be transported specifically to the place where it is desired to act, and the side effects caused by the drug can be reduced, and efficient treatment can be performed.

ところで、これまでシクロデキストリンの包摂機能は医薬品の製剤特性の改善やDDS用担体などに利用されているが、本発明のようなオリゴ糖からなるナノ粒子を調製する方法は見あたらない。   By the way, the inclusion function of cyclodextrin has been used so far for improving the pharmaceutical properties of pharmaceuticals and carriers for DDS, but there is no method for preparing nanoparticles comprising oligosaccharides as in the present invention.

このように、疎水性薬剤をナノ粒子中に取り込ませ、霧状に噴霧したミセル中の薬剤を粘膜、肺へ吸入させる薬物担体として利用することもできる。また、造影剤の担体や化粧料の担体として用いることも可能である。   Thus, the hydrophobic drug can be incorporated into the nanoparticles and used as a drug carrier for inhaling the drug in the micelle sprayed in a mist to the mucous membrane and lung. Further, it can be used as a carrier for a contrast agent or a carrier for cosmetics.

本発明のセロオリゴ糖誘導体は、疎水性部分と親水性部分をブロック的に配列した糖鎖からなり、両親媒性及び界面活性能を有することから、広く非イオン性界面活性剤として用いることができる。しかも、原料がセルロースや澱粉由来のグルコース、セロビオース等であり入手が極めて容易であるため、大量生産に向いている。   The cellooligosaccharide derivative of the present invention is composed of a sugar chain in which a hydrophobic part and a hydrophilic part are arranged in a block form, and has amphiphilic properties and surface activity, so that it can be widely used as a nonionic surfactant. . Moreover, since the raw materials are cellulose, glucose derived from starch, cellobiose and the like, and they are very easily available, they are suitable for mass production.

試験例1におけるブロック的メチル化セロオリゴ糖の分画の工程を示す図である。It is a figure which shows the process of the fractionation of the block methylated cellooligosaccharide in Test Example 1. 試験例2における表面張力の測定結果を示すグラフである。6 is a graph showing the measurement results of surface tension in Test Example 2. 試験例4におけるナノ粒子のTEM観察写真である。6 is a TEM observation photograph of nanoparticles in Test Example 4. 試験例5におけるナノ粒子のAFM観察写真であるIt is an AFM observation photograph of the nanoparticles in Test Example 5. 試験例5におけるナノ粒子のAFM観察写真であるIt is an AFM observation photograph of the nanoparticles in Test Example 5.

本発明を、実施例を用いて更に詳述するが、これに限定されるものではない。   The present invention will be described in more detail with reference to examples, but is not limited thereto.

1H-および13C-NMRスペクトルの測定は、Varian Inova 300 FT-NMR(300MHz)を用いた。飛行時間型質量分析装置(MALDI-TOF-MS)スペクトルの測定は、Bruker MALDI-TOF-MS REFLEX IIIを用いた。
[実施例1](R 2 =Me)
(1)セロビオース オクタアセテート(13)
セロビオース(12)(12.04g)及び酢酸ナトリウムを無水酢酸(60 mL)に加え、混合物を55℃で終夜及び100℃で3時間撹拌した。反応混合物を、氷水(600 mL)中に注いで、有機層を集め濃縮した。クルード結晶を濾過し、蒸留水で洗浄し、エタノールで再結晶して、無色結晶の標記化合物(20.8g、収率88%)を得た。
(2)フェニル 2、3、6-トリ-O-アセチル-β-D-グルコピラノシル-(1→4)-2,3,6-トリ-O-アセチル-1-チオ-β-D-グルコピラノシド(14)
セロビオース オクタアセテート(13)(20.0g)を、無水塩化メチレン(70 mL)に溶解し、これにチオフェノール(2.98 mL、0.98当量)を室温で加えた。その後、三フッ化ホウ素エーテル錯体(4.46 mL、1.2当量)を0°Cで加えた。反応温度を徐々に室温まで昇温し、室温にて終夜維持した。三フッ化ホウ素エーテル錯体(9 mL)を加え、反応混合物を1日間撹拌した。反応混合物を酢酸エチルで希釈し、飽和NaHCO3aq及びブラインで洗浄、Na2SO4で乾燥後、濃縮乾燥して淡黄色結晶を得た。クルード結晶をエタノールに懸濁させ、濾過し、エタノールで洗浄して無色結晶の標記化合物(18.1g、収率84.0%)を得た。
Varian Inova 300 FT-NMR (300 MHz) was used for measurement of 1 H- and 13 C-NMR spectra. Bruker MALDI-TOF-MS REFLEX III was used for measurement of time-of-flight mass spectrometer (MALDI-TOF-MS) spectrum.
Example 1 (R 2 = Me)
(1) Cellobiose octaacetate (13)
Cellobiose (12) (12.04 g) and sodium acetate were added to acetic anhydride (60 mL) and the mixture was stirred at 55 ° C. overnight and at 100 ° C. for 3 hours. The reaction mixture was poured into ice water (600 mL), and the organic layer was collected and concentrated. Crude crystals were filtered, washed with distilled water, and recrystallized with ethanol to obtain the title compound (20.8 g, yield 88%) as colorless crystals.
(2) Phenyl 2,3,6-tri-O-acetyl-β-D-glucopyranosyl- (1 → 4) -2,3,6-tri-O-acetyl-1-thio-β-D-glucopyranoside ( 14)
Cellobiose octaacetate (13) (20.0 g) was dissolved in anhydrous methylene chloride (70 mL), and thiophenol (2.98 mL, 0.98 equivalent) was added thereto at room temperature. Then boron trifluoride ether complex (4.46 mL, 1.2 eq) was added at 0 ° C. The reaction temperature was gradually raised to room temperature and maintained at room temperature overnight. Boron trifluoride ether complex (9 mL) was added and the reaction mixture was stirred for 1 day. The reaction mixture was diluted with ethyl acetate, washed with saturated NaHCO 3 aq and brine, dried over Na 2 SO 4 and concentrated to dryness to give pale yellow crystals. The crude crystals were suspended in ethanol, filtered, and washed with ethanol to give the title compound (18.1 g, yield 84.0%) as colorless crystals.

1H-NMR (CDCl3): δ 1.9-2.2 (21H, CH3CO), 3.63-3.73 (m, 2H, C5'-H, C5-H), 3.75 (1H, C4-H), 4.04 (d, 1H, J5', 6' = 2.1, J6', 6'= 12.3, C6'-H), 4.11 (dd, 1H, J5, 6 = 5.4, J6, 6= 11.7, C6-H), 4.40 (dd, 1H, J5', 6' = 4.2, J6', 6'= 12.3, C6'-H), 4.49 (d, 1H, J1', 2' = 7.8, C1'-H), 4.58 (d, 1H, J5, 6 = 1.8, J6, 6 = 11.7, C6-H), 4.66 (d, 1H, J1, 2 = 9.9, C1-H), 4.91 (t, 1H, J2, 3= 9.6, C2-H), 4.92 (t, 1H, J2', 3' = 9.0, C2'-H), 5.07 (t, 1H, J4', 5' = 9.6, C4'-H), 5.14 (t, 1H, J3', 4' = 9.3, C3'-H), 5.19 (t, 1H, J3, 4 = 9.0, C3-H),
13C-NMR (CDCl3):δ 20.5, 20.5, 20.6, 20.7, 20.8 (CH3CO), 61.4 (C-6'), 61.9 (C-6), 67.6, 70.1, 71.5, 71.9, 72.8, 73.5 , 76.3 , 76.7, 85.4 (C-1), 100.7 (C-1'), 128.3, 128.8, 131.7, 133.0 (aromatic C), 169.0, 169.2, 169.5, 169.7, 170.2, 170.4 (CH3CO).
(3)フェニル β-D-グルコピラノシル-(1→4)-1-チオ-β-D-グルコピラノシド(15)
化合物(14)(18.1g)のテトラヒドロフラン(80 mL)及びメタノール(20 mL)の溶液に、28%ナトリウムメトキシドのメタノール溶液を加え、室温で終夜撹拌した。その溶液を、Dawex H+で中和し、Dawex H+を濾過し、メタノール及び20%のメタノール/塩化メチレン(v/v)で洗浄した。ろ液をあわせて濃縮乾燥し、標記化合物を得た(10.8g、収率約100%)。
(4)フェニル 4,6-O-p-メトキシベンジリデン-β-D-グルコピラノシル-(1→4)-1-チオ-β-グルコピラノシド(16)
化合物(15)(19.5g、44.7 mM)及びアニスアルデヒドジメチルアセタール(19.5 mL、0.115 mol, 2.56当量)のN,N'-ジメチルホルムアミド(50 mL)懸濁液に、p-トルエンスルホン酸(6.1g、0.7当量)を加え、25 mmHg下、45°Cで4h維持した。その後、固体のNaHCO3(6g)を混合物に加え、濃縮した。不溶物を濾過し、20%のメタノール/塩化メチレンで洗浄してシロップを得た。クルード生成物をシリカゲルカラム(溶出液: 10%メタノール/CH2Cl2)で精製して、クルード結晶を得た。これをメタノールで再結晶して、無色結晶の標記化合物(12.0g、収率48.0%)を得た。
1 H-NMR (CDCl 3 ): δ 1.9-2.2 (21H, CH 3 CO), 3.63-3.73 (m, 2H, C 5 ' -H, C 5 -H), 3.75 (1H, C 4 -H) , 4.04 (d, 1H, J 5 ', 6' = 2.1, J 6 ', 6' = 12.3, C 6 ' -H), 4.11 (dd, 1H, J 5, 6 = 5.4, J 6, 6 = 11.7, C 6 -H), 4.40 (dd, 1H, J 5 ', 6' = 4.2, J 6 ', 6' = 12.3, C 6 ' -H), 4.49 (d, 1H, J 1', 2 ' = 7.8, C 1' -H), 4.58 (d, 1H, J 5, 6 = 1.8, J 6, 6 = 11.7, C 6 -H), 4.66 (d, 1H, J 1, 2 = 9.9, C 1 -H), 4.91 (t, 1H, J 2, 3 = 9.6, C 2 -H), 4.92 (t, 1H, J 2 ', 3' = 9.0, C 2 ' -H), 5.07 (t , 1H, J 4 ', 5' = 9.6, C 4 ' -H), 5.14 (t, 1H, J 3', 4 ' = 9.3, C 3' -H), 5.19 (t, 1H, J 3, 4 = 9.0, C 3 -H),
13 C-NMR (CDCl 3 ): δ 20.5, 20.5, 20.6, 20.7, 20.8 (CH 3 CO), 61.4 (C-6 '), 61.9 (C-6), 67.6, 70.1, 71.5, 71.9, 72.8, 73.5, 76.3, 76.7, 85.4 (C-1), 100.7 (C-1 '), 128.3, 128.8, 131.7, 133.0 (aromatic C), 169.0, 169.2, 169.5, 169.7, 170.2, 170.4 (CH 3 CO).
(3) Phenyl β-D-glucopyranosyl- (1 → 4) -1-thio-β-D-glucopyranoside (15)
To a solution of compound (14) (18.1 g) in tetrahydrofuran (80 mL) and methanol (20 mL) was added 28% sodium methoxide in methanol and stirred at room temperature overnight. The solution was neutralized with Dawex H +, filtered and Dawex H +, washed with methanol and 20% methanol / methylene chloride (v / v). The filtrates were combined and concentrated to dryness to give the title compound (10.8 g, yield about 100%).
(4) Phenyl 4,6-O-p-methoxybenzylidene-β-D-glucopyranosyl- (1 → 4) -1-thio-β-glucopyranoside (16)
To a suspension of compound (15) (19.5 g, 44.7 mM) and anisaldehyde dimethyl acetal (19.5 mL, 0.115 mol, 2.56 equivalent) in N, N′-dimethylformamide (50 mL) was added p-toluenesulfonic acid (6.1 g, 0.7 equivalents) was added and maintained at 45 ° C for 4 h under 25 mmHg. Then solid NaHCO 3 (6 g) was added to the mixture and concentrated. The insoluble material was filtered and washed with 20% methanol / methylene chloride to give a syrup. The crude product was purified with a silica gel column (eluent: 10% methanol / CH 2 Cl 2 ) to obtain crude crystals. This was recrystallized from methanol to obtain the title compound (12.0 g, yield 48.0%) as colorless crystals.

m. p. 225-226℃; Rf value = 0.62 (10% MeOH / CH2Cl2, (v/v))
1H-NMR (CD3OD/CDCl3= 1/4, v/v): δ 3.33 - 3.40 (1H, H2), 3.40 (t, 1H, J2', 3' = 8.7, H2'), 3.42 - 3.50 (m, 1H, H5), 3.48 - 3.55 (m, 1H, H5’), 3.56 - 3.64 (2H, H3, H4), 3.66 - 3.76 (t, 1H, H4'), 3.70 (t, 1H, J = 9.0, H3’), 3.7 - 3.8 (1H, H6), 3.81 (s, 3H, CH3OPh), 3.89 (d, 2H, J5, 6 = 2.7, H6), 4.31 (dd, 1H, J5', 6' = 3.6, J6', 6' = 9.9, H6'), 4.53 (d, 1H, J1', 2' = 7.8, H1'), 4.62 (d, 1H, J1, 2 = 9.9, H1), 5.51 (s, 1H, -CHPh), 7.2 - 7.6 (aromatic H)
13C-NMR (CD3OD/CDCl3= 1/4, v/v): δ 54.7 (CH3OPh), 60.7 (C6), 66.1, 67.7 (C6’), 71.6 (C2), 72.6, 73.9 (C2’), 75.8, 78.3, 79.7, 79.9, 87.5, 101.4 (-CHPh), 103.6 (C1’), 113.1, 127.2, 127.3, 128.5, 129.1, 131.7, 132.4, 159.7
Anal. Calcd for C26H32O11S: C, 56.51; H, 5.84; Found: C, 56.11; H, 5.83
(5)フェニル 4,6-O-p-メトキシベンジリデン-2,3-ジ-O-メチル-β-D-グルコピラノシル-(1→4)-2,3,6-トリ-O-メチル-1-チオ-β-D-グルコピラノシド(17)(R 2 =Me)
化合物(16)(5.95g、10.8 mM)のテトラヒドロフラン(40 mL)溶液に、室温で、ヨウ化メチル(4.72 mL、75.8 mM)及び水素化ナトリウム(1.43g、59.6 mM)を加えた。反応混合物を終夜撹拌後、酢酸エチルで希釈し、飽和NaHCO3水溶液及びブラインで洗浄し、Na2SO4で乾燥後、濃縮乾燥して淡黄色結晶を得た。クルード結晶をエタノールに懸濁させて、濾過し、エタノールで洗浄して、無色結晶の標記化合物(6.31g、収率94%)を得た。
mp 225-226 ° C; R f value = 0.62 (10% MeOH / CH 2 Cl 2 , (v / v))
1 H-NMR (CD 3 OD / CDCl 3 = 1/4, v / v): δ 3.33-3.40 (1H, H2), 3.40 (t, 1H, J 2 ', 3' = 8.7, H2 '), 3.42-3.50 (m, 1H, H5), 3.48-3.55 (m, 1H, H5 '), 3.56-3.64 (2H, H 3 , H4), 3.66-3.76 (t, 1H, H4'), 3.70 (t , 1H, J = 9.0, H3 '), 3.7-3.8 (1H, H6), 3.81 (s, 3H, CH 3 OPh), 3.89 (d, 2H, J 5, 6 = 2.7, H6), 4.31 (dd , 1H, J 5 ', 6' = 3.6, J 6 ', 6' = 9.9, H6 '), 4.53 (d, 1H, J 1', 2 ' = 7.8, H1'), 4.62 (d, 1H, J 1, 2 = 9.9, H1), 5.51 (s, 1H, -CHPh), 7.2-7.6 (aromatic H)
13 C-NMR (CD 3 OD / CDCl 3 = 1/4, v / v): δ 54.7 (CH 3 OPh), 60.7 (C 6 ), 66.1, 67.7 (C 6 ' ), 71.6 (C 2 ), 72.6, 73.9 (C 2 ' ), 75.8, 78.3, 79.7, 79.9, 87.5, 101.4 (-CHPh), 103.6 (C 1' ), 113.1, 127.2, 127.3, 128.5, 129.1, 131.7, 132.4, 159.7
Anal. Calcd for C 26 H 32 O 11 S: C, 56.51; H, 5.84; Found: C, 56.11; H, 5.83
(5) Phenyl 4,6-O-p-methoxybenzylidene-2,3-di-O-methyl-β-D-glucopyranosyl- (1 → 4) -2,3,6-tri-O-methyl-1 -Thio-β-D-glucopyranoside (17) (R 2 = Me)
Methyl iodide (4.72 mL, 75.8 mM) and sodium hydride (1.43 g, 59.6 mM) were added to a solution of compound (16) (5.95 g, 10.8 mM) in tetrahydrofuran (40 mL) at room temperature. The reaction mixture was stirred overnight, diluted with ethyl acetate, washed with saturated aqueous NaHCO 3 solution and brine, dried over Na 2 SO 4 and concentrated to dryness to give pale yellow crystals. The crude crystals were suspended in ethanol, filtered, and washed with ethanol to obtain the title compound (6.31 g, yield 94%) as colorless crystals.

Rf値=0.43(EtOAc/n-ヘキサン=1:2、v/v)
m.p. 137-138℃
[α] 26.3=-43.2°(c 1.01、クロロホルム)
1H-NMR (CDCl3): δ 3.01 (t, 1H, J2', 3' = 8.0, C2'-H), 3.10 (t, 1H, J2, 3= 8.4, C2-H), 3.28 (t, 1H, J3, 4 = 8.7, C3-H), 3.39, 3.58, 3.60, 3.61, 3.63 (s, 3H, C6OCH3, s, 3H, C2’OCH3, s, 3H, C2OCH3, s, 3H, C3OCH3, s, 3H, C3’OCH3), 3.81 (s, 3H, CH3OPh), 4.37 (dd, 1H, J5', 6' = 6.4 J6', 6' = 13.6, C6'-H), 4.50 (d, 1H, J1', 2' = 2.9, C1'-H), 4.52 (d, 1H, J1, 2= 5.1, C1-H), 5.50 (s, 1H, -CHPh), 7.2-7.6 (aromatic H),
13C-NMR (CDCl3): δ 55.3 (CH3OPh), 59.2, 60.8, 60.9, 61.1, 65.8, 68.8, 70.4, 77.5, 78.8, 81.4, 81.9, 83.2, 84.1, 86.8, 87.3, 101.1 (-CHPh), 103.5 (C1’), 113.5, 127.3, 127.3, 128.8, 129.7, 131.8, 133.7, 160.0
Anal. Calcd for C31H42O11S: C, 59.79; H, 6.80; Found: C, 59.53; H, 6.63
(6)フェニル 4,6-O-p-メトキシベンジル-2,3-ジ-O-メチル-β-D-グルコピラノシル-(1→4)-2,3,6-トリ-O-メチル-1-チオ-β-D-グルコピラノシド(18)(R 2 =Me)
化合物(17)(3.06g、4.92 mM)無水塩化メチレン(6 mL)溶液に、-19℃で、ボラン-テトラヒドロフラン錯体のTHF溶液(36.4 mL)を加えた。溶液の温度を、15分かけて徐々に昇温して-16℃とした。15min後、トリメチルシリル トリフルオロメタンスルホネート(TMSOTf; 約540μL)を、-16℃下、反応混合物に加えた。反応混合物の温度を2時間かけて徐々に昇温して0℃とし、0℃で4.5h維持した。混合物を-40℃に冷却し、トリエチルアミン(10 mL)を加えた。次に、水素が発生しなくなるまでメタノールを溶液に加えた。混合物を酢酸エチルで希釈し、3N-HCl、飽和NaHCO3水溶液及びブラインで洗浄、Na2SO4で乾燥後、濃縮乾燥してクルード結晶を得た。化合物を、酢酸エチル:n-ヘキサン=1:1(v/v)で溶出されたシリカゲルカラム(Wacogel C-200)で精製して無色結晶の標記化合物(2.77g、収率90.0%)を得た。
Rf value = 0.43 (EtOAc / n-hexane = 1: 2, v / v)
mp 137-138 ℃
[α] D 26.3 = -43.2 ° (c 1.01, chloroform)
1 H-NMR (CDCl 3 ): δ 3.01 (t, 1H, J 2 ', 3' = 8.0, C 2 ' -H), 3.10 (t, 1H, J 2, 3 = 8.4, C 2 -H) , 3.28 (t, 1H, J 3, 4 = 8.7, C 3 -H), 3.39, 3.58, 3.60, 3.61, 3.63 (s, 3H, C 6 OCH 3 , s, 3H, C 2 ' OCH 3 , s , 3H, C 2 OCH 3 , s, 3H, C 3 OCH 3 , s, 3H, C 3 ' OCH 3 ), 3.81 (s, 3H, CH 3 OPh), 4.37 (dd, 1H, J 5', 6 ' = 6.4 J 6', 6 ' = 13.6, C 6' -H), 4.50 (d, 1H, J 1 ', 2' = 2.9, C 1 ' -H), 4.52 (d, 1H, J 1, 2 = 5.1, C 1 -H), 5.50 (s, 1H, -CHPh), 7.2-7.6 (aromatic H),
13 C-NMR (CDCl 3 ): δ 55.3 (CH 3 OPh), 59.2, 60.8, 60.9, 61.1, 65.8, 68.8, 70.4, 77.5, 78.8, 81.4, 81.9, 83.2, 84.1, 86.8, 87.3, 101.1 (- CHPh), 103.5 (C 1 ' ), 113.5, 127.3, 127.3, 128.8, 129.7, 131.8, 133.7, 160.0
Anal. Calcd for C 31 H 42 O 11 S: C, 59.79; H, 6.80; Found: C, 59.53; H, 6.63
(6) Phenyl 4,6-O-p-methoxybenzyl-2,3-di-O-methyl-β-D-glucopyranosyl- (1 → 4) -2,3,6-tri-O-methyl-1 -Thio-β-D-glucopyranoside (18) (R 2 = Me)
To a solution of compound (17) (3.06 g, 4.92 mM) in anhydrous methylene chloride (6 mL) was added a THF solution (36.4 mL) of borane-tetrahydrofuran complex at −19 ° C. The temperature of the solution was gradually raised to -16 ° C over 15 minutes. After 15 min, trimethylsilyl trifluoromethanesulfonate (TMSOTf; about 540 μL) was added to the reaction mixture at −16 ° C. The temperature of the reaction mixture was gradually raised to 0 ° C. over 2 hours and maintained at 0 ° C. for 4.5 h. The mixture was cooled to −40 ° C. and triethylamine (10 mL) was added. Next, methanol was added to the solution until no more hydrogen was generated. The mixture was diluted with ethyl acetate, washed with 3N-HCl, saturated aqueous NaHCO 3 solution and brine, dried over Na 2 SO 4 and concentrated to dryness to obtain crude crystals. The compound was purified by silica gel column (Wacogel C-200) eluted with ethyl acetate: n-hexane = 1: 1 (v / v) to give the title compound (2.77 g, yield 90.0%) as colorless crystals. It was.

Rf value = 0.46 (EtOAc / n-Hexane=1:1, v/v)
m.p. 94-95℃
[α] 26.9=-8.4° (c 0.771, chloroform);
1H-NMR (CDCl3): δ 2.93 (t, 1H, J2', 3' = 8.0, C2'-H), 3.02 (t, 1H, J2, 3= 9.6, C2-H), 3.23 (t, 2H, J3, 4 = 8.7, J3’, 4’= 8.7, C3-H, C3’-H), 3.34, 3.53, 3.57, 3.57, 3.63 (s, 3H, C6OCH3, s, 3H, C2’OCH3, s, 3H, C2OCH3, s, 3H, C3OCH3, s, 3H, C3’OCH3), 3.78 (s, 3H, CH3OPh), 4.37 (dd, 1H, J5', 6' = 6.4, J6', 6' = 13.6, C6'-H), 4.31 (d, 1H, J1', 2' = 7.6, C1'-H), 4.47 (d, 1H, J1, 2 = 10.0, C1-H), 4.51, 4.72 (d, 2H, 2H, Jgem= 10.8, 11.0, -CH2Ph), 7.2-7.6 (aromatic H)
13C-NMR (CDCl3): δ 55.3 (CH3OPh), 59.1, 60.6, 60.9, 61.1, 62.6 (C6’), 70.5, 74.4, 74.6, 77.7, 79.9, 82.2, 84.3, 86.4, 87.0, 87.3, 102.6, 113.9, 127.4, 128.8, 129.8, 130.1, 131.8, 133.7, 159.4
Anal. Calcd for C31H44O11S: C, 59.60; H, 7.10; Found: C, 59.46; H, 7.07
(7)フェニル 4-O-p-メトキシベンジル-2,3,6-トリ-O-メチル-β-D-グルコピラノシル-(1→4)-2,3,6-トリ-O-メチル-1-チオ-β-D-グルコピラノシド(19)(R 2 =Me)
化合物(18)(6.66g、10.7 mM)のテトラヒドロフラン(30 mL)溶液に、0℃下、水素化ナトリウム(ミネラルオイル中60%、0.512g)及びヨウ化メチル(0.8 mL、12.8 mM)を加えた。反応混合物を室温で5h維持し、混合物を酢酸エチルで希釈し、飽和NaHCO3水溶液及びブラインで洗浄、Na2SO4で乾燥後、濃縮乾燥してクルード結晶を得た。クルード結晶をエタノールで再結晶して、無色結晶の標記化合物(5.78g、収率84.9%)を得た。
R f value = 0.46 (EtOAc / n-Hexane = 1: 1, v / v)
mp 94-95 ℃
[α] D 26.9 = -8.4 ° (c 0.771, chloroform);
1 H-NMR (CDCl 3 ): δ 2.93 (t, 1H, J 2 ', 3' = 8.0, C 2 ' -H), 3.02 (t, 1H, J 2, 3 = 9.6, C 2 -H) , 3.23 (t, 2H, J 3, 4 = 8.7, J 3 ', 4' = 8.7, C 3 -H, C 3 ' -H), 3.34, 3.53, 3.57, 3.57, 3.63 (s, 3H, C 6 OCH 3 , s, 3H, C 2 ' OCH 3 , s, 3H, C 2 OCH 3 , s, 3H, C 3 OCH 3 , s, 3H, C 3' OCH 3 ), 3.78 (s, 3H, CH 3 OPh), 4.37 (dd, 1H, J 5 ', 6' = 6.4, J 6 ', 6' = 13.6, C 6 ' -H), 4.31 (d, 1H, J 1', 2 ' = 7.6, C 1 ' -H), 4.47 (d, 1H, J 1, 2 = 10.0, C 1 -H), 4.51, 4.72 (d, 2H, 2H, J gem = 10.8, 11.0, -CH 2 Ph), 7.2 -7.6 (aromatic H)
13 C-NMR (CDCl 3 ): δ 55.3 (CH 3 OPh), 59.1, 60.6, 60.9, 61.1, 62.6 (C 6 ' ), 70.5, 74.4, 74.6, 77.7, 79.9, 82.2, 84.3, 86.4, 87.0, 87.3, 102.6, 113.9, 127.4, 128.8, 129.8, 130.1, 131.8, 133.7, 159.4
Anal.Calcd for C 31 H 44 O 11 S: C, 59.60; H, 7.10; Found: C, 59.46; H, 7.07
(7) Phenyl 4-O-p-methoxybenzyl-2,3,6-tri-O-methyl-β-D-glucopyranosyl- (1 → 4) -2,3,6-tri-O-methyl-1 -Thio-β-D-glucopyranoside (19) (R 2 = Me)
To a solution of compound (18) (6.66 g, 10.7 mM) in tetrahydrofuran (30 mL) at 0 ° C., sodium hydride (60% in mineral oil, 0.512 g) and methyl iodide (0.8 mL, 12.8 mM) were added. It was. The reaction mixture was maintained at room temperature for 5 h, and the mixture was diluted with ethyl acetate, washed with saturated aqueous NaHCO 3 solution and brine, dried over Na 2 SO 4 and concentrated to dryness to obtain crude crystals. The crude crystals were recrystallized with ethanol to obtain the title compound (5.78 g, yield 84.9%) as colorless crystals.

Rf値=0.70(EtOAc/n-ヘキサン=1:1、v/v)
m.p. 82-84 ℃
[α] 27.3= -22.7° (c 0.998, chloroform)
1H-NMR (CDCl3): δ 2.93 (t, 1H, J2', 3' = 8.0, C2'-H), 3.06 (t, 1H, J2, 3= 9.6, C2-H), 3.19 (t, 1H, J3’, 4’ = 9.1, C3’-H), 3.27 (t, 1H, J3, 4= 8.7, C3-H), 3.34, 3.36, 3.52, 3.57, 3.59, 3.62 (s, 3H, C6OCH3, s, 3H, C6’OCH3, s, 3H, C2’OCH3, s, 3H, C2OCH3, s, 3H, C3OCH3, s, 3H, C3’OCH3), 3.78 (s, 3H, CH3OPh), 4.29 (d, 1H, J1', 2' = 8.0, C1'-H), 4.48 (d, 1H, J1, 2 = 9.6, C1-H), 4.53, 4.72 (d, 2H, 2H, Jgem= 10.4, 10.4, -CH2Ph), 7.2-7.6 (aromatic H)
13C-NMR (CDCl3): δ 55.2, 59.1, 59.3, 60.6, 60.6, 60.7, 61.0, 70.5, 71.1, 74.5, 74.6, 77.1, 77.7, 79.0, 81.9, 84.2, 86.7, 87.0, 87.3, 103.3, 113.8, 127.3, 128.8, 129.7, 130.4, 131.7, 133.9, 159.3
(8)フェニル 2,3,6-トリ-O-メチル-β-D-グルコピラノシル-(1→4)-2,3,6-トリ-O-メチル-1-チオ-β-D-グルコピラノシド(20)(R 2 =Me)
化合物(19)(2.00g、3.21 mM)のアセトニトリル:水=9:1(v/v)(66.7 mL)溶液に、0℃で、アンモニウムセリウム(IV)ニトレート(3.52g、6.41 mM)を加えた。反応混合物を0℃で12h維持した。混合物を酢酸エチルで希釈し、飽和NaHCO3水溶液及びブラインで洗浄、Na2SO4で乾燥後、濃縮乾燥してクルード結晶を得た。クルード生成物を、塩化メチレン、酢酸エチル:n-ヘキサン=1:1(v/v)及び酢酸エチルで溶出するシリカゲルカラムで精製して、無色結晶の標記化合物(1.52g、収率91.4%)を得た。
Rf value = 0.70 (EtOAc / n-hexane = 1: 1, v / v)
mp 82-84 ℃
[α] D 27.3 = -22.7 ° (c 0.998, chloroform)
1 H-NMR (CDCl 3 ): δ 2.93 (t, 1H, J 2 ', 3' = 8.0, C 2 ' -H), 3.06 (t, 1H, J 2, 3 = 9.6, C 2 -H) , 3.19 (t, 1H, J 3 ', 4' = 9.1, C 3 ' -H), 3.27 (t, 1H, J 3, 4 = 8.7, C 3 -H), 3.34, 3.36, 3.52, 3.57, 3.59, 3.62 (s, 3H, C 6 OCH 3 , s, 3H, C 6 ' OCH 3 , s, 3H, C 2' OCH 3 , s, 3H, C 2 OCH 3 , s, 3H, C 3 OCH 3 , s, 3H, C 3 ' OCH 3 ), 3.78 (s, 3H, CH 3 OPh), 4.29 (d, 1H, J 1', 2 ' = 8.0, C 1' -H), 4.48 (d, 1H , J 1, 2 = 9.6, C 1 -H), 4.53, 4.72 (d, 2H, 2H, J gem = 10.4, 10.4, -CH 2 Ph), 7.2-7.6 (aromatic H)
13 C-NMR (CDCl 3 ): δ 55.2, 59.1, 59.3, 60.6, 60.6, 60.7, 61.0, 70.5, 71.1, 74.5, 74.6, 77.1, 77.7, 79.0, 81.9, 84.2, 86.7, 87.0, 87.3, 103.3, 113.8, 127.3, 128.8, 129.7, 130.4, 131.7, 133.9, 159.3
(8) Phenyl 2,3,6-tri-O-methyl-β-D-glucopyranosyl- (1 → 4) -2,3,6-tri-O-methyl-1-thio-β-D-glucopyranoside ( 20) (R 2 = Me)
To a solution of compound (19) (2.00 g, 3.21 mM) in acetonitrile: water = 9: 1 (v / v) (66.7 mL) at 0 ° C., ammonium cerium (IV) nitrate (3.52 g, 6.41 mM) was added. It was. The reaction mixture was maintained at 0 ° C. for 12 h. The mixture was diluted with ethyl acetate, washed with saturated aqueous NaHCO 3 solution and brine, dried over Na 2 SO 4 and concentrated to dryness to obtain crude crystals. The crude product was purified by silica gel column eluting with methylene chloride, ethyl acetate: n-hexane = 1: 1 (v / v) and ethyl acetate to give the title compound as colorless crystals (1.52 g, yield 91.4%) Got.

m.p. 96-97 ℃
[α] 27.5= -47.0° (c 1.03, chloroform)
Rf value = 0.17 (EtOAc / n-Hexane)
1H-NMR (CDCl3): δ 2.93 (t, 1H, J2', 3' = 8.0, C2'-H), 3.06 (t, 1H, J2, 3= 9.2, C2-H), 3.08 (t, 1H, J3’, 4’ = 9.2, C3’-H), 3.25 (t, 1H, J3, 4= 8.7, C3-H), 3.36, 3.38, 3.51, 3.57, 3.57, 3.61 (s, 3H, C6OCH3, s, 3H, C6’OCH3, s, 3H, C2’OCH3, s, 3H, C2OCH3, s, 3H, C3OCH3, s, 3H, C3’OCH3), 4.34 (d, 1H, J1', 2' = 7.8, C1'-H), 4.48 (d, 1H, J1, 2= 9.8, C1-H), 7.2-7.6 (aromatic H)
13C-NMR (CDCl3): δ 59.1, 59.5, 60.4, 60.5, 60.6, 60.8, 70.4, 71.7 (C4’), 72.8, 73.4 (C5’), 77.5 (C4), 78.9 (C5), 81.8 (C2), 83.7 (C2’), 86.1 (C3’), 86.6 (C3), 87.2 (C1), 103.2 (C1'), 127.3, 128.7, 131.7, 133.8
Anal. Calcd for C24H38O10S: C, 55.58; H, 7.39; Found: C, 55.50; H, 7.24
(9)フェニル 4-O-アセチル-2,3,6-トリ-O-メチル-β-D-グルコピラノシル-(1→4)-2,3,6-トリ-O-メチル-1-チオ-β-D-グルコピラノシド(21)(R 2 =Me)
化合物(20)(800mg、1.54 mM)の塩化メチレン(5 mL)溶液に、無水酢酸(320μL)及びピリジン(275μL)を加え、一晩撹拌した。混合物を酢酸エチルで希釈し、1N-HCl及び飽和NaHCO3水溶液及びブラインで洗浄、Na2SO4で乾燥後、濃縮乾燥して、無色結晶の標記化合物を定量的に得た。
mp 96-97 ℃
[α] D 27.5 = -47.0 ° (c 1.03, chloroform)
Rf value = 0.17 (EtOAc / n-Hexane)
1 H-NMR (CDCl 3 ): δ 2.93 (t, 1H, J 2 ', 3' = 8.0, C 2 ' -H), 3.06 (t, 1H, J 2, 3 = 9.2, C 2 -H) , 3.08 (t, 1H, J 3 ', 4' = 9.2, C 3 ' -H), 3.25 (t, 1H, J 3, 4 = 8.7, C 3 -H), 3.36, 3.38, 3.51, 3.57, 3.57, 3.61 (s, 3H, C 6 OCH 3 , s, 3H, C 6 ' OCH 3 , s, 3H, C 2' OCH 3 , s, 3H, C 2 OCH 3 , s, 3H, C 3 OCH 3 , s, 3H, C 3 ' OCH 3 ), 4.34 (d, 1H, J 1', 2 ' = 7.8, C 1' -H), 4.48 (d, 1H, J 1, 2 = 9.8, C 1- H), 7.2-7.6 (aromatic H)
13 C-NMR (CDCl 3 ): δ 59.1, 59.5, 60.4, 60.5, 60.6, 60.8, 70.4, 71.7 (C 4 ' ), 72.8, 73.4 (C 5' ), 77.5 (C 4 ), 78.9 (C 5 ), 81.8 (C 2 ), 83.7 (C 2 ' ), 86.1 (C 3' ), 86.6 (C 3 ), 87.2 (C 1 ), 103.2 (C 1 ' ), 127.3, 128.7, 131.7, 133.8
Anal. Calcd for C 24 H 38 O 10 S: C, 55.58; H, 7.39; Found: C, 55.50; H, 7.24
(9) Phenyl 4-O-acetyl-2,3,6-tri-O-methyl-β-D-glucopyranosyl- (1 → 4) -2,3,6-tri-O-methyl-1-thio- β-D-glucopyranoside (21) (R 2 = Me)
Acetic anhydride (320 μL) and pyridine (275 μL) were added to a solution of compound (20) (800 mg, 1.54 mM) in methylene chloride (5 mL), and the mixture was stirred overnight. The mixture was diluted with ethyl acetate, washed with 1N-HCl and saturated aqueous NaHCO 3 and brine, dried over Na 2 SO 4 and concentrated to dryness to quantitatively obtain the title compound as colorless crystals.

m.p. 94.8-95.7°C
[α] 27.2= -37.8° (c 3.76, chloroform)
1H-NMR (CDCl3): δ 2.09 (COCH3), J2', 3' = 9.3, C2'-H), 3.08 (dd, 1H, J2, 3= 9.0, C2-H), 3.24 (t, 1H, J3’, 4’ = 9.0, C3’-H), 3.28 (t, 1H, J3, 4 = 8.7, C3-H), 3.34, 3.39, 3.51, 3.54, 3.59, 3.60 (s, 3H, C6OCH3, s, 3H, C6’OCH3, s, 3H, C2’OCH3, s, 3H, C2OCH3, s, 3H, C3OCH3, s, 3H, C3’OCH3), 4.38 (d, 1H, J1', 2' = 7.8, C1'-H), 4.51 (d, 1H, J1, 2= 9.9, C1-H), 4.87 (t, 1H, J4’, 5’ = 9.6, C4’-H), 7.2-7.6 (aromatic H)
13C-NMR (CDCl3): δ 20.8 (Ac), 59.1, 59.4, 60.3, 60.6, 60.6, 60.7, 70.3, 70.8 (C4’), 72.0, 72.9 (C5’), 77.6 (C4), 78.8, 81.7 (C2), 83.5 (C2’), 83.9 (C3’), 86.5 (C3), 87.2 (C1), 103.0 (C1’), 127.3, 128.7, 131.7, 133.8, 169.8
(10)4-O-アセチル-2,3,6-トリ-O-メチル-β-D-グルコピラノシル-(1→4)-2,3,6-トリ-O-メチル-D-グルコピラノシル フルオライド (22)(R 2 =Me)
化合物(21)(864mg、1.54 mM)の無水塩化メチレン(20 mL)溶液に、-78℃下、(ジエチルアミノ)サルファ トリフルオライド(DAST)(612μL、4.63 mM,3.0当量)及びN-ブロモスクシンイミド(NBS)(320mg、1.80 mM、1.17当量)を加えた。反応混合物の温度を、11hかけて徐々に昇温し-25℃とし、溶液を-25℃で9h維持した。混合物を酢酸エチルで希釈し、飽和NaHCO3水溶液及びブラインで洗浄、Na2SO4で乾燥後、濃縮乾燥して、無色オイルを定量的に得た。クルード生成物を、酢酸エチル:n-ヘキサン=1:2(v/v)で溶出するシリカゲルカラム(Wacogel C-200)で精製して、無色結晶の標記化合物(725mg、収率約100%)を得た。α:β=4:1(1H-NMRデータから算出).
m.p. 56.0-63.5℃
[α] 27.7= +27.7° (c 3.76, chloroform)
1H-NMR (CDCl3): δ 2.06 (s, 3H, CH3CO), 3.05 (t, 1H, J2', 3' = 9.3, C2'-H), 3.16 - 3.32 (1H, C2-H), 3.25 (t, 1H, J3’, 4’= 9.6, C3’-H), 3.50 - 3.62 (1H, C3-H), 3.33, 3.38, 3.50, 3.52, 3.54, 3.57 (s, 3H, C6OCH3, s, 3H, C6’OCH3, s, 3H, C2’OCH3, s, 3H, C2OCH3, s, 3H, C3OCH3, s, 3H, C3’OCH3), 4.35 (d, 1H, J1', 2' = 7.8,C1'-H), 4.86 (t, 1H, J4’,5’= 7.0, C4’-H), 5.16 (dd, 1H, J1β, 2 = 6.3, J1β,F= 53.1, C1-H), 5.65 (dd, 1H, J1α,2 = 2.7, J1α,F= 53.4, C1-H)
13C-NMR (CDCl3): δ 20.9, 58.9, 59.1, 59.2, 59.5, 60.1, 60.3, 60.7, 60.7, 69.4 (C6), 70.8 (C4’), 72.0 (C6’), 72.3 (C5), 72.3 (C5), 73.1 (C5’), 76.7 (C4), 76.8 (C4), 80.2 (C2), 80.6 (C2), 80.8 (C3), 83.5 (C2’), 83.9 (C3’), 103.0, 103.1 (C1’), 103.4 (C), 106.4 (C), 169.9 (CH3CO)
MALDI-TOF-MS found [M+Na]+ = 493.15
(11)反応式1で示される化合物(2)〜(11)
反応式1で示される化合物(2)〜(11)は、実施例1(1)〜(10)に示される反応式2の化合物(13)〜(22)の製法に準じて製造することができる。
(12)アルキル化セロオリゴ糖鎖形成の一般的方法
上記(8)で得られた化合物(20)(69.6mg、0.134 mM)及び上記(10)で得られた化合物(22)(70.2mg、0.149 mM)を、減圧下で終夜乾燥した後、化合物(20)及び化合物(22)を、無水ベンゼン(5 mL)に溶解した。反応混合物を、窒素雰囲気下で、活性モレキュラーシーブ4A(500mg)と共に室温で2h撹拌した。化合物(20)及び化合物(22)の溶液に、Cp2HfCl2(62.3mg、0.164 mM)及びAgClO4(68.1mg、0.328 mM)を室温で加え、混合物を連続して1h撹拌した。不溶物を濾去し、酢酸エチルで洗浄した。ろ液を酢酸エチルで希釈し、蒸留水、NaHCO3水溶液及びブラインで洗浄、Na2SO4で乾燥後、濃縮乾燥した。生成物は、プレパラティブTLC(以下PTLCと表記する)(溶出液: EtOAc: n-ヘキサン=1:1、1:2(v/v))で単離して、原料化合物(20)(15.0 mg)、化合物(25) (28.0 mg)及び化合物(25α)(40.8mg)を得た。
フェニル 4-O-アセチル-2,3,6-トリ-O-メチル-β-D-グルコピラノシル-(1→4)-2,3,6-トリ-O-メチル-β-D-グルコピラノシル-(1→4)-2,3,6-トリ-O-メチル-β-D-グルコピラノシル-(1→4)-2,3,6-トリ-O-メチル-1-チオ-β-D-グルコピラノシド (25)(R 2 =Me)
[α] 28.8= -15.7° (c 0.942, chloroform)
1H-NMR (CDCl3): δ 2.09 (COCH3), 2.96, 2.96 (t, t, 1H, 1H, J = 9.0, C2’-H or C2’’-H), 3.02 (t, 1H, J2'’’, 3'’’= 9.3, C2'’’-H), 3.09 (t, 1H, J2, 3 = 9.0, C2-H), 3.21 (t, 2H, J = 9.0, C3’-H and C3’’-H), 3.24 (t, 1H, J3’’’, 4’’’= 9.0, C3’’’-H), 3.28 (t, 1H, J3, 4 = 9.0, C3-H), 3.24 - 3.32 (C5’-H and C5’’-H), 3.32 - 3.38 (C5-H), 3.42 - 3.49 (m, 1H, C5'’’-H), 3.68 (2H, J = 9.0, C4’-H and C4’’-H), 3.71 (t, 1H, J4, 5= 9.3, C4-H), 4.32 (d. 1H, J = 7.8, C1'-H or C1'’-H), 4.34 (d. 1H, J = 8.4, C1'-H or C1'’-H), 4.41 (d, 1H, J1'’’, 2'’’= 7.8, C1'’’-H), 4.51 (d, 1H, J1, 2 = 9.9, C1-H), 4.87 (t, 1H, J4’’’,5’’’ = 9.6, C4’’’-H), 7.2-7.6 (aromatic H)
13C-NMR (CDCl3): δ 20.9, 59.1, 59.4, 60.1, 60.3, 60.4, 60.5, 60.6, 60.6, 60.7, 60.8, 70.1 (C6 or C6’ or C6’’or C6’’’), 70.4 (C6 or C6’ or C6’’or C6’’’), 70.9 (C4’’’), 72.0 (C6 or C6’ or C6’’ or C6’’’), 72.9 (C5’’’), 74.7 (C5’ or C5’’), 74.8 (C5’ or C5’’), 77.3 (C4 or C4’ or C4’’), 77.4 (C4 or C4’ or C4’’), 77.8 (C4’ or C4’’), 78.9 (C5), 81.9 (C2), 83.2 (C2’ or C2’’ or C2’’’), 83.4 (C2’ or C2’’or C2’’’), 83.5 (C2’ or C2’’ or C2’’’), 83.9 (C3’’’), 84.8 (C3’ or C3’’), 85.0 (C3’ or C3’’), 86.7 (C3), 87.2 (C1), 102.9 (C1’ or C1’’ or C1’’’), 103.2 (C1’ or C1’’or C1’’’), 103.3 (C1’ or C1’’or C1’’’),, 127.2, 128.7, 131.7, 133.8 (aromatic C), 169.9 (CH3CO)
ESI in methanol [M+Na]+ = 991, [M+K]+ = 1007
MALDI-TOF-MS [M+Na]+ = 991.18, [M+K]+= 1007.12
フェニル 4-O-アセチル-2,3,6-トリ-O-メチル-β-D-グルコピラノシル-(1→4)-2,3,6-トリ-O-メチル-α-D-グルコピラノシル-(1→4)-2,3,6-トリ-O-メチル-β-D-グルコピラノシル-(1→4)-2,3,6-トリ-O-メチル-1-チオ-β-D-グルコピラノシド (25α)(R 2 =Me)
[α] 29.2= +26.2° (c 2.67, chloroform)
1H-NMR (CDCl3): δ 2.09 (COCH3), 3.33, 3.35, 3.37, 3.38, 3.52, 3.52, 3.54, 3.55, 3.57, 3.57, 3.58, 3.60, 3.61 (OCH3), 4.50 (d, 1H, J1, 2 = 9.8, H1), 4.90 (t, 1H, J4’’’, 5’’’ = 9.2, H4’’’), 5.67 (d. 1H, J = 3.8, H1'’), 7.2 - 7.6 (aromatic H)
13C-NMR (CDCl3): δ 20.9, 59.0, 59.1, 59.5, 60.3, 60.4, 60.5, 60.6, 60.7, 68.2, 69.8, 70.4, 70.6, 71.1, 72.1, 73.1, 73.9, 79.0, 81.1, 81.3, 81.9, 83.6, 84.2, 84.3, 86.7, 86.9, 87.4, 95.8, 103.9, 127.3, 128.8, 131.9, 133.9, 169.9;
ESI in methanol [M+Na]+ = 991.2, [M+K]+= 1007.1
フェニル 4-O-アセチル-2,3,6-トリ-O-メチル-β-D-グルコピラノシル-(1→4)-2,3,6-トリ-O-メチル-β-D-グルコピラノシル-(1→4)-2,3,6-トリ-O-メチル-β-D-グルコピラノシル-(1→4)-2,3,6-トリ-O-メチル-1-チオ-α-D-グルコピラノシド (25’)(R 2 =Me)
1H-NMR (CDCl3): δ 2.10 (COCH3), 3.35, 3.38, 3.41, 3.52, 3.52, 3.53, 3.56, 3.58, 3.59, 3.61, 3.62 (OCH3), 4,32 (d, 1H, J= 7.8), 4.37(d, 1H, J= 7.8), 4.42 (d, 1H, J= 7.8), 4.90 (t, 1H, J4’’’, 5’’’ = 9.3, H4’’’), 5.75 (d. 1H, J = 5.1, H1) 7.2 - 7.6 (aromatic H)
13C-NMR (CDCl3): δ 20.9, 58.1, 58.9, 59.1, 59.2, 59.4, 60.2, 60.3, 60.6, 60.6, 60.7, 60.8, 69.9, 70.1, 70.9, 72.1, 72.9, 73.0, 74.7, 74.8, 77.4, 77.6, 80.8, 81.8, 83.3, 83.4, 83.5, 83.9, 84.8, 85.0, 86.3, 102.9, 103.2, 103.4, 126.9, 128.9, 130.8, 134.6, 169.9
フェニル 4-O-アセチル-2,3,6-トリ-O-メチル-β-D-グルコピラノシル-(1→4)-2,3,6-トリ-O-メチル-α-D-グルコピラノシル-(1→4)-2,3,6-トリ-O-メチル-β-D-グルコピラノシル-(1→4)-2,3,6-トリ-O-メチル-1-チオ-α-D-グルコピラノシド (25α’)(R 2 =Me)
1H-NMR (CDCl3): δ 2.10 (COCH3), 3.34, 3.36, 3.37, 3.40, 3.51, 3.52, 3.55, 3.56, 3.57, 3.58, 3.58, 3.62 (OCH3), 4.33 (d, 1H, J= 7.8), 4.36 (d, 1H, J= 7.8), 4.90 (t, 1H, J4’’’, 5’’’= 9.3, H4’’’), 5.69 (d. 1H, J = 3.6, H1'’), 5.76 (d, 1H, J1, 2 = 5.1, H1)
13C-NMR (CDCl3): δ 20.9, 58.1, 58.9, 59.1, 59.4, 59.5, 59.5, 60.3, 60.5, 60.6, 60.8, 69.6, 69.8, 70.4, 70.9, 72.0, 73.0, 73.8, 77.7, 80.7, 80.9, 81.2, 81.7, 83.4, 84.1, 86.3, 86.9, 95.6, 103.2, 103.3, 126.9, 128.9, 130.7, 134.6, 169.9
(13)フェニル 2,3,6-トリ-O-メチル-β-D-グルコピラノシル-(1→4)-2,3,6-トリ-O-メチル-β-D-グルコピラノシル-(1→4)-2,3,6-トリ-O-メチル-β-D-グルコピラノシル-(1→4)-2,3,6-トリ-O-メチル-1-チオ-β-D-グルコピラノシド (26)(R 2 =Me)
化合物(25)(29.7mg、30.6μM)のテトラヒドロフラン(1 mL)及びメタノール(0.1 mL)溶液に、28%ナトリウムメトキシドのメタノール溶液(4μL、70μM)を室温で加え、30分間撹拌した。反応混合物を酢酸エチルで希釈し、水及びブラインで洗浄、Na2SO4で乾燥後、濃縮乾燥して化合物(26)(28.4mg、収率約100%)を得た。
mp 94.8-95.7 ° C
[α] D 27.2 = -37.8 ° (c 3.76, chloroform)
1 H-NMR (CDCl 3 ): δ 2.09 (COCH3), J 2 ', 3' = 9.3, C 2 ' -H), 3.08 (dd, 1H, J 2, 3 = 9.0, C 2 -H), 3.24 (t, 1H, J 3 ', 4' = 9.0, C 3 ' -H), 3.28 (t, 1H, J 3, 4 = 8.7, C 3 -H), 3.34, 3.39, 3.51, 3.54, 3.59 , 3.60 (s, 3H, C 6 OCH 3 , s, 3H, C 6 ' OCH 3 , s, 3H, C 2' OCH 3 , s, 3H, C 2 OCH 3 , s, 3H, C 3 OCH 3 , s, 3H, C 3 ' OCH 3 ), 4.38 (d, 1H, J 1', 2 ' = 7.8, C 1' -H), 4.51 (d, 1H, J 1, 2 = 9.9, C 1 -H ), 4.87 (t, 1H, J 4 ', 5' = 9.6, C 4 ' -H), 7.2-7.6 (aromatic H)
13 C-NMR (CDCl 3 ): δ 20.8 (Ac), 59.1, 59.4, 60.3, 60.6, 60.6, 60.7, 70.3, 70.8 (C 4 ' ), 72.0, 72.9 (C 5' ), 77.6 (C 4 ) , 78.8, 81.7 (C 2 ), 83.5 (C 2 ' ), 83.9 (C 3' ), 86.5 (C 3 ), 87.2 (C 1 ), 103.0 (C 1 ' ), 127.3, 128.7, 131.7, 133.8, 169.8
(10) 4-O-acetyl-2,3,6-tri-O-methyl-β-D-glucopyranosyl- (1 → 4) -2,3,6-tri-O-methyl-D-glucopyranosyl fluoride ( 22) (R 2 = Me)
To a solution of compound (21) (864 mg, 1.54 mM) in anhydrous methylene chloride (20 mL) at −78 ° C., (diethylamino) sulfur trifluoride (DAST) (612 μL, 4.63 mM, 3.0 equivalents) and N-bromosuccinimide ( NBS) (320 mg, 1.80 mM, 1.17 equiv) was added. The temperature of the reaction mixture was gradually raised to -25 ° C over 11h and the solution was maintained at -25 ° C for 9h. The mixture was diluted with ethyl acetate, washed with saturated aqueous NaHCO 3 solution and brine, dried over Na 2 SO 4 and concentrated to dryness to give a colorless oil quantitatively. The crude product was purified by silica gel column (Wacogel C-200) eluting with ethyl acetate: n-hexane = 1: 2 (v / v) to give the title compound as colorless crystals (725 mg, about 100% yield) Got. α: β = 4: 1 (calculated from 1 H-NMR data).
mp 56.0-63.5 ℃
[α] D 27.7 = + 27.7 ° (c 3.76, chloroform)
1 H-NMR (CDCl 3 ): δ 2.06 (s, 3H, CH 3 CO), 3.05 (t, 1H, J 2 ', 3' = 9.3, C 2 ' -H), 3.16-3.32 (1H, C 2 -H), 3.25 (t, 1H, J 3 ', 4' = 9.6, C 3 ' -H), 3.50-3.62 (1H, C 3 -H), 3.33, 3.38, 3.50, 3.52, 3.54, 3.57 (s, 3H, C 6 OCH 3 , s, 3H, C 6 ' OCH 3 , s, 3H, C 2' OCH 3 , s, 3H, C 2 OCH 3 , s, 3H, C 3 OCH 3 , s, 3H, C 3 ' OCH 3 ), 4.35 (d, 1H, J 1', 2 ' = 7.8, C 1' -H), 4.86 (t, 1H, J 4 ', 5' = 7.0, C 4 ' - H), 5.16 (dd, 1H, J 1β, 2 = 6.3, J 1β, F = 53.1, C 1 -H), 5.65 (dd, 1H, J 1α, 2 = 2.7, J 1α, F = 53.4, C 1 -H)
13 C-NMR (CDCl 3 ): δ 20.9, 58.9, 59.1, 59.2, 59.5, 60.1, 60.3, 60.7, 60.7, 69.4 (C 6 ), 70.8 (C 4 ' ), 72.0 (C 6' ), 72.3 ( C 5 ), 72.3 (C 5 ), 73.1 (C 5 ' ), 76.7 (C 4 ), 76.8 (C 4 ), 80.2 (C 2 ), 80.6 (C 2 ), 80.8 (C 3 ), 83.5 (C 2 ' ), 83.9 (C 3' ), 103.0, 103.1 (C 1 ' ), 103.4 (C ), 106.4 (C ), 169.9 (CH3CO)
MALDI-TOF-MS found [M + Na] + = 493.15
(11) Compounds (2) to (11) represented by reaction formula 1
Compounds (2) to (11) represented by Reaction Formula 1 can be produced according to the production methods of Compounds (13) to (22) represented by Reaction Formula 2 shown in Examples 1 (1) to (10). it can.
(12) General method of alkylated cellooligosaccharide chain formation Compound (20) obtained in (8) above (69.6 mg, 0.134 mM) and compound (22) obtained in (10) above (70.2 mg, 0.149) mM) was dried overnight under reduced pressure, and then compound (20) and compound (22) were dissolved in anhydrous benzene (5 mL). The reaction mixture was stirred for 2 h at room temperature with active molecular sieve 4A (500 mg) under a nitrogen atmosphere. To the solution of compound (20) and compound (22), Cp 2 HfCl 2 (62.3 mg, 0.164 mM) and AgClO 4 (68.1 mg, 0.328 mM) were added at room temperature, and the mixture was continuously stirred for 1 h. The insoluble material was removed by filtration and washed with ethyl acetate. The filtrate was diluted with ethyl acetate, washed with distilled water, aqueous NaHCO 3 solution and brine, dried over Na 2 SO 4 and concentrated to dryness. The product was isolated by preparative TLC (hereinafter referred to as PTLC) (eluent: EtOAc: n-hexane = 1: 1, 1: 2 (v / v)) to obtain the starting compound (20) (15.0 mg ), Compound (25) (28.0 mg) and compound (25α) (40.8 mg) were obtained.
Phenyl 4-O-acetyl-2,3,6-tri-O-methyl-β-D-glucopyranosyl- (1 → 4) -2,3,6-tri-O-methyl-β-D-glucopyranosyl- ( 1 → 4) -2,3,6-Tri-O-methyl-β-D-glucopyranosyl- (1 → 4) -2,3,6-tri-O-methyl-1-thio-β-D-glucopyranoside (25) (R 2 = Me)
[α] D 28.8 = -15.7 ° (c 0.942, chloroform)
1 H-NMR (CDCl 3 ): δ 2.09 (COCH 3 ), 2.96, 2.96 (t, t, 1H, 1H, J = 9.0, C 2 ' -H or C 2'' -H), 3.02 (t, 1H, J 2 ''',3''' = 9.3, C 2 ''' -H), 3.09 (t, 1H, J 2, 3 = 9.0, C 2 -H), 3.21 (t, 2H, J = 9.0, C 3 ' -H and C 3'' -H), 3.24 (t, 1H, J 3''', 4 ''' = 9.0, C 3''' -H), 3.28 (t, 1H , J 3, 4 = 9.0, C 3 -H), 3.24 - 3.32 (C 5 '-H and C 5''-H), 3.32 - 3.38 (C 5 -H), 3.42 - 3.49 (m, 1H, C 5 ''' -H), 3.68 (2H, J = 9.0, C 4' -H and C 4 '' -H), 3.71 (t, 1H, J 4, 5 = 9.3, C 4 -H), 4.32 (d. 1H, J = 7.8, C 1 '-H or C 1''-H), 4.34 (d. 1H, J = 8.4, C 1' -H or C 1 '' -H), 4.41 ( d, 1H, J 1 ''',2''' = 7.8, C 1 ''' -H), 4.51 (d, 1H, J 1, 2 = 9.9, C 1 -H), 4.87 (t, 1H , J 4 ''',5''' = 9.6, C 4 ''' -H), 7.2-7.6 (aromatic H)
13 C-NMR (CDCl 3 ): δ 20.9, 59.1, 59.4, 60.1, 60.3, 60.4, 60.5, 60.6, 60.6, 60.7, 60.8, 70.1 (C 6 or C 6 ' or C 6'' or C 6''' ), 70.4 (C 6 or C 6' or C 6 '' or C 6 ''' ), 70.9 (C 4''' ), 72.0 (C 6 or C 6 ' or C 6'' or C 6''' ), 72.9 (C 5 ''' ), 74.7 (C 5' or C 5 '' ), 74.8 (C 5 ' or C 5'' ), 77.3 (C 4 or C 4' or C 4 '' ), 77.4 (C 4 or C 4 ' or C 4'' ), 77.8 (C 4' or C 4 '' ), 78.9 (C 5 ), 81.9 (C 2 ), 83.2 (C 2 ' or C 2'' or C 2''' ), 83.4 (C 2 ' or C 2'' or C 2''' ), 83.5 (C 2 ' or C 2'' or C 2''' ), 83.9 (C 3 ''' ), 84.8 (C 3 ' or C 3'' ), 85.0 (C 3' or C 3 '' ), 86.7 (C 3 ), 87.2 (C 1 ), 102.9 (C 1 ' or C 1'' or C 1 ''' ), 103.2 (C 1' or C 1 '' or C 1 ''' ), 103.3 (C 1' or C 1 '' or C 1 ''' ), 127.2, 128.7, 131.7 , 133.8 (aromatic C), 169.9 (CH 3 CO)
ESI in methanol [M + Na] + = 991, [M + K] + = 1007
MALDI-TOF-MS [M + Na] + = 991.18, [M + K] + = 1007.12
Phenyl 4-O-acetyl-2,3,6-tri-O-methyl-β-D-glucopyranosyl- (1 → 4) -2,3,6-tri-O-methyl-α-D-glucopyranosyl- ( 1 → 4) -2,3,6-Tri-O-methyl-β-D-glucopyranosyl- (1 → 4) -2,3,6-tri-O-methyl-1-thio-β-D-glucopyranoside (25α) (R 2 = Me)
[α] D 29.2 = + 26.2 ° (c 2.67, chloroform)
1 H-NMR (CDCl 3 ): δ 2.09 (COCH 3 ), 3.33, 3.35, 3.37, 3.38, 3.52, 3.52, 3.54, 3.55, 3.57, 3.57, 3.58, 3.60, 3.61 (OCH 3 ), 4.50 (d, 1H, J 1, 2 = 9.8, H1), 4.90 (t, 1H, J 4 ''',5''' = 9.2, H4 '''), 5.67 (d. 1H, J = 3.8, H1'' ), 7.2-7.6 (aromatic H)
13 C-NMR (CDCl 3 ): δ 20.9, 59.0, 59.1, 59.5, 60.3, 60.4, 60.5, 60.6, 60.7, 68.2, 69.8, 70.4, 70.6, 71.1, 72.1, 73.1, 73.9, 79.0, 81.1, 81.3, 81.9, 83.6, 84.2, 84.3, 86.7, 86.9, 87.4, 95.8, 103.9, 127.3, 128.8, 131.9, 133.9, 169.9;
ESI in methanol [M + Na] + = 991.2, [M + K] + = 1007.1
Phenyl 4-O-acetyl-2,3,6-tri-O-methyl-β-D-glucopyranosyl- (1 → 4) -2,3,6-tri-O-methyl-β-D-glucopyranosyl- ( 1 → 4) -2,3,6-Tri-O-methyl-β-D-glucopyranosyl- (1 → 4) -2,3,6-tri-O-methyl-1-thio-α-D-glucopyranoside (25 ') (R 2 = Me)
1 H-NMR (CDCl 3 ): δ 2.10 (COCH 3 ), 3.35, 3.38, 3.41, 3.52, 3.52, 3.53, 3.56, 3.58, 3.59, 3.61, 3.62 (OCH 3 ), 4,32 (d, 1H, J = 7.8), 4.37 (d, 1H, J = 7.8), 4.42 (d, 1H, J = 7.8), 4.90 (t, 1H, J 4 ''',5''' = 9.3, H4 ''' ), 5.75 (d. 1H, J = 5.1, H 1 ) 7.2-7.6 (aromatic H)
13 C-NMR (CDCl 3 ): δ 20.9, 58.1, 58.9, 59.1, 59.2, 59.4, 60.2, 60.3, 60.6, 60.6, 60.7, 60.8, 69.9, 70.1, 70.9, 72.1, 72.9, 73.0, 74.7, 74.8, 77.4, 77.6, 80.8, 81.8, 83.3, 83.4, 83.5, 83.9, 84.8, 85.0, 86.3, 102.9, 103.2, 103.4, 126.9, 128.9, 130.8, 134.6, 169.9
Phenyl 4-O-acetyl-2,3,6-tri-O-methyl-β-D-glucopyranosyl- (1 → 4) -2,3,6-tri-O-methyl-α-D-glucopyranosyl- ( 1 → 4) -2,3,6-Tri-O-methyl-β-D-glucopyranosyl- (1 → 4) -2,3,6-tri-O-methyl-1-thio-α-D-glucopyranoside (25α ') (R 2 = Me)
1 H-NMR (CDCl 3 ): δ 2.10 (COCH 3 ), 3.34, 3.36, 3.37, 3.40, 3.51, 3.52, 3.55, 3.56, 3.57, 3.58, 3.58, 3.62 (OCH 3 ), 4.33 (d, 1H, J = 7.8), 4.36 (d, 1H, J = 7.8), 4.90 (t, 1H, J 4 ''',5''' = 9.3, H4 '''), 5.69 (d. 1H, J = 3.6 , H1``), 5.76 (d, 1H, J 1, 2 = 5.1, H1)
13 C-NMR (CDCl 3 ): δ 20.9, 58.1, 58.9, 59.1, 59.4, 59.5, 59.5, 60.3, 60.5, 60.6, 60.8, 69.6, 69.8, 70.4, 70.9, 72.0, 73.0, 73.8, 77.7, 80.7, 80.9, 81.2, 81.7, 83.4, 84.1, 86.3, 86.9, 95.6, 103.2, 103.3, 126.9, 128.9, 130.7, 134.6, 169.9
(13) Phenyl 2,3,6-tri-O-methyl-β-D-glucopyranosyl- (1 → 4) -2,3,6-tri-O-methyl-β-D-glucopyranosyl- (1 → 4 ) -2,3,6-Tri-O-methyl-β-D-glucopyranosyl- (1 → 4) -2,3,6-tri-O-methyl-1-thio-β-D-glucopyranoside (26) (R 2 = Me)
To a solution of compound (25) (29.7 mg, 30.6 μM) in tetrahydrofuran (1 mL) and methanol (0.1 mL) was added 28% sodium methoxide in methanol (4 μL, 70 μM) at room temperature, and the mixture was stirred for 30 minutes. The reaction mixture was diluted with ethyl acetate, washed with water and brine, dried over Na 2 SO 4 and concentrated to dryness to give compound (26) (28.4 mg, about 100% yield).

m.p. 144-145 ℃;
[α] 29.5=-16.0°(c 1.59, chloroform)
1H-NMR (CDCl3): δ 2.92 -3.02 (dd, J = 8.1, 9.0, dd, J = 8.1, 9.3, 3H, C2’-H, C2’’-H, and C2’’’-H), 3.09 (t, 1H, J2, 3 = 9.0, C2-H), 3.12 (t, 1H, J3’’’,4’’’= 8.1, C3’’’-H), 3.22 (t, 2H, J = 9.0, C3’-H and C3’’-H), 3.29 (t, 1H, J3, 4 = 8.4, C3-H), 3.33 - 3.39 (m, 1H, C5'’’-H), 3.35 - 3.40 (m, 1H, C5-H), 3.53 - 3.56 (1H, C4’’’-H), 3.66 - 3.74 (C4-H, C4’-H, and C4’’-H), 3.62 - 3.84 (C6-H, C6’-H, C6’’-H, C6’’’-H), 4.32 (d. 1H, J = 8.7, C1'-H or C1'’-H), 4.35 (d. 1H, J = 7.8, C1'-H or C1'’-H), 4.40 (d, 1H, J1'’’, 2'’’= 7.8, C1'’’-H), 4.51 (d, 1H, J1, 2 = 9.9, C1-H), 3.38, 3.39, 3.40, 3.40, 3.54, 3.56, 3.59, 3.60, 3.61, 3.64 (s, 3H, 3H, 3H, 3H, 9H, 3H, 3H, 3H, 3H, 3H, OCH3), 7.2-7.6 (aromatic H)
13C-NMR (CDCl3): δ 59.1, 59.6, 60.0, 60.4, 60.4, 60.6, 60.6, 60.7, 60.8, 60.8, 70.1 (C6 or C6’ or C6’’or C6’’’), 70.4 (C6 or C6’ or C6’’or C6’’’), 72.0 (C4’’’), 73.0 (C6 or C6’ or C6’’ or C6’’’), 73.1 (C5’’’), 74.7 (C5’ and C5’’), 77.1 (C4 or C4’or C4’’), 77.8 (C4 or C4’ or C4’’), 78.9 (C5), 81.9 (C2), 83.2 (C2’ or C2’’or C2’’’), 83.4 (C2’ or C2’’ or C2’’’), 83.6 (C2’ or C2’’ or C2’’’), 84.8 (C3’ or C3’’), 85.0 (C3’ or C3’’), 86.0 (C3’’’), 86.7 (C3), 87.3 (C1), 103.1 (C1’ or C1’’or C1’’’), 103.2 (C1’ or C1’’ or C1’’’), 103.3 (C1’ or C1’’ or C1’’’), 127.3, 128.8, 131.7, 133.9 (aromatic C)
MALDI-TOF-MS (Positive Reflector mode): calculated m/z 926.42; found m/z: [M+Na]+ = 949.34, [M+K]+ = 965.32
(14)3-O-ベンジル-6-O-ピバロイル-α-D-グルコピラノース 1,2,4-オルトピバレート(32)と化合物(26)[(Ia)(R 2 =Me m=4)]の反応
反応はすべて、1×10-3Torrの真空を維持することができる高真空ラインを用いて行った。化合物(26)(18mg、19.4μM)及び化合物(32)(16.3mg、38.9μM)を活性モレキュラーシーブ4A(200mg)と共に、ガラス製反応容器中で減圧下約1日間乾燥を行った。塩化メチレンをCaH2から蒸留し、高真空ラインで凍結及び解凍を3回行い脱気し、反応容器中に移した。ラバーセプタムを通してシリンジでBF3・Et2Oを反応容器に加えた。その後、ガラス製反応容器をガスバーナーで焼き切り分離して、適当な温度の浴に移し19h連続して撹拌した。反応混合物に、トリエチルアミン(8.1 mL、58μM)を加え、濾過し、酢酸エチルで洗浄した。あわせたろ液を蒸留水及びブラインで洗浄、無水硫酸ナトリウムで乾燥後、濃縮乾燥した。得られた混合物中、原料テトラマー(59%)、ペンタマー(32%)、ヘキサマー(10%)、ヘプタマー(1%)、オクタマー(1%)であった。
mp 144-145 ° C;
[α] D 29.5 = -16.0 ° (c 1.59, chloroform)
1 H-NMR (CDCl 3 ): δ 2.92 -3.02 (dd, J = 8.1, 9.0, dd, J = 8.1, 9.3, 3H, C 2 ' -H, C 2'' -H, and C 2''' -H), 3.09 (t, 1H, J 2, 3 = 9.0, C 2 -H), 3.12 (t, 1H, J 3''', 4 ''' = 8.1, C 3''' -H ), 3.22 (t, 2H, J = 9.0, C 3 ' -H and C 3'' -H), 3.29 (t, 1H, J 3, 4 = 8.4, C 3 -H), 3.33-3.39 (m , 1H, C 5 ''' -H), 3.35-3.40 (m, 1H, C 5 -H), 3.53-3.56 (1H, C 4''' -H), 3.66-3.74 (C 4 -H, C 4 ' -H, and C 4'' -H), 3.62-3.84 (C 6 -H, C 6' -H, C 6 '' -H, C 6 ''' -H), 4.32 (d. 1H, J = 8.7, C 1 ' -H or C 1'' -H), 4.35 (d. 1H, J = 7.8, C 1' -H or C 1 '' -H), 4.40 (d, 1H, J 1 ''',2''' = 7.8, C 1 ''' -H), 4.51 (d, 1H, J 1, 2 = 9.9, C 1 -H), 3.38, 3.39, 3.40, 3.40, 3.54 , 3.56, 3.59, 3.60, 3.61, 3.64 (s, 3H, 3H, 3H, 3H, 9H, 3H, 3H, 3H, 3H, 3H, OCH 3 ), 7.2-7.6 (aromatic H)
13 C-NMR (CDCl 3 ): δ 59.1, 59.6, 60.0, 60.4, 60.4, 60.6, 60.6, 60.7, 60.8, 60.8, 70.1 (C 6 or C 6 ' or C 6'' or C 6''' ) , 70.4 (C 6 or C 6 ' or C 6'' or C 6''' ), 72.0 (C 4 ''' ), 73.0 (C 6 or C 6' or C 6 '' or C 6 ''' ), 73.1 (C 5 ''' ), 74.7 (C 5' and C 5 '' ), 77.1 (C 4 or C 4 ' or C 4'' ), 77.8 (C 4 or C 4' or C 4 '' ), 78.9 (C 5 ), 81.9 (C 2 ), 83.2 (C 2' or C 2 '' or C 2 ''' ), 83.4 (C 2' or C 2 '' or C 2 ''' ) , 83.6 (C 2 ' or C 2'' or C 2''' ), 84.8 (C 3 ' or C 3'' ), 85.0 (C 3' or C 3 '' ), 86.0 (C 3 ''' ), 86.7 (C 3 ), 87.3 (C 1 ), 103.1 (C 1 ' or C 1'' or C 1''' ), 103.2 (C 1 ' or C 1'' or C 1''' ), 103.3 (C 1 ' or C 1'' or C 1''' ), 127.3, 128.8, 131.7, 133.9 (aromatic C)
MALDI-TOF-MS (Positive Reflector mode): calculated m / z 926.42; found m / z: [M + Na] + = 949.34, [M + K] + = 965.32
(14) 3-O-benzyl-6-O-pivaloyl-α-D-glucopyranose 1,2,4-orthopivalate (32) and compound (26) [(Ia) (R 2 = Me m = 4)] All of the reaction reactions were carried out using a high vacuum line capable of maintaining a vacuum of 1 × 10 −3 Torr. Compound (26) (18 mg, 19.4 μM) and compound (32) (16.3 mg, 38.9 μM) were dried together with active molecular sieve 4A (200 mg) in a glass reaction vessel under reduced pressure for about 1 day. Distilling methylene chloride from CaH 2, it was degassed three times freezing and thawing in a high vacuum line, was transferred into the reaction vessel. BF 3 · Et 2 O was added to the reaction vessel with a syringe through a rubber septum. Thereafter, the glass reaction vessel was burned and separated with a gas burner, transferred to a bath at an appropriate temperature, and stirred continuously for 19 hours. To the reaction mixture was added triethylamine (8.1 mL, 58 μM), filtered and washed with ethyl acetate. The combined filtrate was washed with distilled water and brine, dried over anhydrous sodium sulfate, and concentrated to dryness. In the obtained mixture, the raw material tetramer (59%), pentamer (32%), hexamer (10%), heptamer (1%) and octamer (1%) were obtained.

なお、ここで、便宜上、テトラマーとは単糖が4個結合した化合物(n=0)、ペンタマーとは単糖が5個結合した化合物(n=1)、ヘキサマーとは単糖が6個結合した化合物(n=2)、ヘプタマーとは単糖が7個結合した化合物(n=3)、オクタマーとは単糖が8個結合した化合物(n=4)の意味に用いる。   For convenience, tetramer is a compound with 4 monosaccharides (n = 0), pentamer is a compound with 5 monosaccharides (n = 1), and hexamer is 6 monosaccharides. The compound (n = 2), the heptamer is used to mean a compound (n = 3) in which seven monosaccharides are bonded, and the octamer is used to mean a compound (n = 4) in which eight monosaccharides are bonded.

このように、上記の反応では、原料化合物(26)のセロテトラマーに対し、グルコース単位が1個だけでなく、2個以上を結合(重合)させることができる。   Thus, in the above reaction, not only one glucose unit but also two or more glucose units can be bonded (polymerized) to the cellotetramer of the raw material compound (26).

以下に、各生成物(Ib)のスペクトルデータを示す。
フェニル 3-O-ベンジル-2,6-ジ-O-ピバロイル-β-D-グルコピラノシル-(1→4)-2,3,6-トリ-O-メチル-β-D-グルコピラノシル-(1→4)-2,3,6-トリ-O-メチル-β-D-グルコピラノシル-(1→4)-2,3,6-トリ-O-メチル-β-D-グルコピラノシル-(1→4)-2,3,6-トリ-O-メチル-1-チオ-β-D-グルコピラノシド (Ib)(m=4, n=1)
1H-NMR (CDCl3): δ 1.84, 1.21 (s, s, 9H, 9H, COC(CH3)3), 2.86-3.00 (3H, C2’-H, C2’’’-H), 3.07 (1H, C2-H), 3.78, 3.40, 3.42, 3.53, 3.54, 3.57, 3.58, 3.58, 3.60, 3.61 (OCH3), 4.22 (dd, 1H, J = 2.0, J = 12.3, C6’’’’-H), 4.29, 4.31 (1H, 1H, J = 6.9, J = 7.8, C1’-H or C1’’-H), 4.34 (d, 1H, J = 8.1, C1’’’-H), 4.51 (d, 1H, J = 9.9, C1-H), 4.57 (d, 1H, J = 8.1, C1’’’’-H), 4.61 (dd, 1H, J = 3.0, J = 12.3, C6’’’’-H), 4.82 (d, 1H, J = 11.4, CH2Ph), 4.68 (d, 1H, J = 11.0, CH2Ph), 4.97 (t, 1H, J = 8.4, C2’’’’-H), 7.2-7.6 (aromatic H)
13C-NMR (CDCl3): δ 27.2(COC(CH3)3), 27.2 (COC(CH3)3), 38.8 (COC(CH3)3), 39.0 (COC(CH3)3), 59.1, 59.4, 60.4, 60.6, 60.7, 60.9, 62.6, 70.1, 72.9, 74.0, 74.6, 747, 74.8, 75.8, 77.2, 77.8, 78.9, 81.9, 82.4, 83.3, 83.4, 84.9, 86.7, 87.3, 100.0 (C1’’’’), 103.2, 103.3, 127.3, 127.7, 128.5, 128.8, 131.7, 133.9, 138.1, 176.8 (COC(CH3)3), 179.8 (COC(CH3)3)
MALDI-TOF-MS (Positive Reflector mode): calculatedm/z 1346.63; found m/z: [M+Na]+= 1369.33
フェニル 3-O-ベンジル-2,6-ジ-O-ピバロイル-β-D-グルコピラノシル-(1→4)-3-O-ベンジル-2,6-ジ-O-ピバロイル-β-D-グルコピラノシル-(1→4)-2,3,6-トリ-O-メチル-β-D-グルコピラノシル-(1→4)-2,3,6-トリ-O-メチル-β-D-グルコピラノシル-(1→4)-2,3,6-トリ-O-メチル-β-D-グルコピラノシル-(1→4)-2,3,6-トリ-O-メチル-1-チオ-β-D-グルコピラノシド (Ib)(m=4, n=2)
1H-NMR (CDCl3): δ 1.04, 1.05, 1.21, 1.24 (s, s, s, s, 9H, 9H, 9H, 9H, COC(CH3)3), 2.82-3.01 (3H, C2’-H, C2’’-H, C2’’’-H), 3.37, 3.38, 3.38, 3.40, 3.51, 3.53, 3.56, 3.58, 3.60, 3.61 (OCH3), 3.97 (t, 1H, J = 9.3, C4’’’’-H), 4.18-4.24 (2H, C6’’’’’-H), 4.27, 4.31, 4.33 (d, d, d, 1H, 1H, 1H, J = 7.8, J = 7.5, J = 7.2, C1’-H or C1’’-H or C1’’’-H), 4.33-4.38 (2H, C6’’’’-H), 4.42(t, 1H, J = 8.1, C1’’’’’-H), 4.48 (d, 1H, J = 11.4, CH2Ph), 4.48-4.54 (d, 1H, C1’’’’-H), 4.51 (d, 1H, J = 9.9, C1-H), 4.48 (d, 1H, J = 11.4, CH2Ph), 4.76 (d, 1H, J = 11.7, CH2Ph), 5.01 (t, 1H, J = 8.1, C2’’’’’-H), 4.91 (t, 1H, J = 8.7, C2’’’’-H), 5.11 (d, 1H, J = 11.4, CH2Ph), 7.2-7.6 (aromatic H)
13C-NMR (CDCl3): δ 27.0 (COC(CH3)3), 27.0 (COC(CH3)3), 27.2 (COC(CH3)3), 27.2 (COC(CH3)3), 38.6 (COC(CH3)3), 38.7 (COC(CH3)3), 38.9 (COC(CH3)3), 38.9 (COC(CH3)3), 59.1, 59.1, 59.4, 60.4, 60.6, 60.7, 60.8, 60.8, 60.9, 63.0, 70.1, 70.5, 72.3, 72.9, 74.2, 74.9, 76.2, 77.2, 78.9, 81.2, 81.9, 82.4, 83.4, 84.7, 85.0, 86.7, 87.3, 100.0, 100.2, 103.1, 126.8, 127.4, 127.9, 128.0, 128.5, 128.8, 130.9, 131.7, 133.9, 137.9, 138.8, 176.7 (COC(CH3)3), 176.8 (COC(CH3)3), 177.9 (COC(CH3)3), 179.4 (COC(CH3)3)
MALDI-TOF-MS (Positive Reflector mode): calculated m/z 1766.85; found m/z: [M+Na]+ = 1790.00
フェニル 3-O-ベンジル-2,6-ジ-O-ピバロイル-β-D-グルコピラノシル-(1→4)-3-O-ベンジル-2,6-ジ-O-ピバロイル-β-D-グルコピラノシル-(1→4)-3-O-ベンジル-2,6-ジ-O-ピバロイル-β-D-グルコピラノシル-(1→4)-2,3,6-トリ-O-メチル-β-D-グルコピラノシル-(1→4)-2,3,6-トリ-O-メチル-β-D-グルコピラノシル-(1→4)-2,3,6-トリ-O-メチル-β-D-グルコピラノシル-(1→4)-2,3,6-トリ-O-メチル-1-チオ-β-D-グルコピラノシド(Ib)(m=4, n=3)
MALDI-TOF-MS (Positive Linear mode): calculated m/z 2188.55; found m/z: [M+Na]+= 2211.86
フェニル 3-O-ベンジル-2,6-ジ-O-ピバロイル-β-D-グルコピラノシル-(1→4)-3-O-ベンジル-2,6-ジ-O-ピバロイル-β-D-グルコピラノシル-(1→4)-3-O-ベンジル-2,6-ジ-O-ピバロイル-β-D-グルコピラノシル-(1→4)-3-O-ベンジル-2,6-ジ-O-ピバロイル-β-D-グルコピラノシル-(1→4)-2,3,6-トリ-O-メチル-β-D-グルコピラノシル-(1→4)-2,3,6-トリ-O-メチル-β-D-グルコピラノシル-(1→4)-2,3,6-トリ-O-メチル-β-D-グルコピラノシル-(1→4)-2,3,6-トリ-O-メチル-1-チオ-β-D-グルコピラノシド (Ib) (m=4, n=4)
MALDI-TOF-MS (Positive Linear mode): calculated m/z 2609.04; found m/z: [M+Na]+= 2632.29
(15)化合物(26)と3-O-ベンジル-6-O-ピバロイル-α-D-グルコピラノース 1,2,4-オルトピバレート(32)との重合方法の検討
上記(134)の反応生成物を、繰り返して上記(13)の工程に付した場合の、重合反応生成物の分布割合を調べた。表1から分かるように、上記(13)の工程を繰り返すことにより、グルコース単位の重合度が増えた化合物が増加していくことが確認された。
The spectral data of each product (Ib) is shown below.
Phenyl 3-O-benzyl-2,6-di-O-pivaloyl-β-D-glucopyranosyl- (1 → 4) -2,3,6-tri-O-methyl-β-D-glucopyranosyl- (1 → 4) -2,3,6-Tri-O-methyl-β-D-glucopyranosyl- (1 → 4) -2,3,6-tri-O-methyl-β-D-glucopyranosyl- (1 → 4) -2,3,6-Tri-O-methyl-1-thio-β-D-glucopyranoside (Ib) (m = 4, n = 1)
1 H-NMR (CDCl 3 ): δ 1.84, 1.21 (s, s, 9H, 9H, COC (CH 3 ) 3 ), 2.86-3.00 (3H, C 2 ' -H, C 2''' -H) , 3.07 (1H, C 2 -H), 3.78, 3.40, 3.42, 3.53, 3.54, 3.57, 3.58, 3.58, 3.60, 3.61 (OCH 3 ), 4.22 (dd, 1H, J = 2.0, J = 12.3, C 6`` '' -H), 4.29, 4.31 (1H, 1H, J = 6.9, J = 7.8, C 1 ' -H or C 1'' -H), 4.34 (d, 1H, J = 8.1, C 1 ''' -H), 4.51 (d, 1H, J = 9.9, C 1 -H), 4.57 (d, 1H, J = 8.1, C 1`` '' -H), 4.61 (dd, 1H, J = 3.0, J = 12.3, C 6`` '' -H), 4.82 (d, 1H, J = 11.4, CH 2 Ph), 4.68 (d, 1H, J = 11.0, CH 2 Ph), 4.97 ( t, 1H, J = 8.4, C 2`` '' -H), 7.2-7.6 (aromatic H)
13 C-NMR (CDCl 3 ): δ 27.2 (COC (CH 3 ) 3 ), 27.2 (COC (CH 3 ) 3 ), 38.8 (COC (CH 3 ) 3 ), 39.0 (COC (CH 3 ) 3 ), 59.1, 59.4, 60.4, 60.6, 60.7, 60.9, 62.6, 70.1, 72.9, 74.0, 74.6, 747, 74.8, 75.8, 77.2, 77.8, 78.9, 81.9, 82.4, 83.3, 83.4, 84.9, 86.7, 87.3, 100.0 ( C 1 '''' ), 103.2, 103.3, 127.3, 127.7, 128.5, 128.8, 131.7, 133.9, 138.1, 176.8 (COC (CH 3 ) 3 ), 179.8 (COC (CH 3 ) 3 )
MALDI-TOF-MS (Positive Reflector mode): calculated m / z 1346.63; found m / z: [M + Na] + = 1369.33
Phenyl 3-O-benzyl-2,6-di-O-pivaloyl-β-D-glucopyranosyl- (1 → 4) -3-O-benzyl-2,6-di-O-pivaloyl-β-D-glucopyranosyl -(1 → 4) -2,3,6-Tri-O-methyl-β-D-glucopyranosyl- (1 → 4) -2,3,6-tri-O-methyl-β-D-glucopyranosyl- ( 1 → 4) -2,3,6-Tri-O-methyl-β-D-glucopyranosyl- (1 → 4) -2,3,6-tri-O-methyl-1-thio-β-D-glucopyranoside (Ib) (m = 4, n = 2)
1 H-NMR (CDCl 3 ): δ 1.04, 1.05, 1.21, 1.24 (s, s, s, s, 9H, 9H, 9H, 9H, COC (CH 3 ) 3 ), 2.82-3.01 (3H, C 2 ' -H, C 2'' -H, C 2''' -H), 3.37, 3.38, 3.38, 3.40, 3.51, 3.53, 3.56, 3.58, 3.60, 3.61 (OCH 3 ), 3.97 (t, 1H, J = 9.3, C 4`` '' -H), 4.18-4.24 (2H, C 6 ''''' -H), 4.27, 4.31, 4.33 (d, d, d, 1H, 1H, 1H, J = 7.8, J = 7.5, J = 7.2, C 1 ' -H or C 1'' -H or C 1''' -H), 4.33-4.38 (2H, C 6 '''' -H), 4.42 (t, 1H, J = 8.1, C 1 ''''' -H), 4.48 (d, 1H, J = 11.4, CH 2 Ph), 4.48-4.54 (d, 1H, C 1'''' - H), 4.51 (d, 1H, J = 9.9, C 1 -H), 4.48 (d, 1H, J = 11.4, CH 2 Ph), 4.76 (d, 1H, J = 11.7, CH 2 Ph), 5.01 (t, 1H, J = 8.1, C 2 ''''' -H), 4.91 (t, 1H, J = 8.7, C 2'''' -H), 5.11 (d, 1H, J = 11.4, CH 2 Ph), 7.2-7.6 (aromatic H)
13 C-NMR (CDCl 3 ): δ 27.0 (COC (CH 3 ) 3 ), 27.0 (COC (CH 3 ) 3 ), 27.2 (COC (CH 3 ) 3 ), 27.2 (COC (CH 3 ) 3 ), 38.6 (COC (CH 3 ) 3 ), 38.7 (COC (CH 3 ) 3 ), 38.9 (COC (CH 3 ) 3 ), 38.9 (COC (CH 3 ) 3 ), 59.1, 59.1, 59.4, 60.4, 60.6, 60.7, 60.8, 60.8, 60.9, 63.0, 70.1, 70.5, 72.3, 72.9, 74.2, 74.9, 76.2, 77.2, 78.9, 81.2, 81.9, 82.4, 83.4, 84.7, 85.0, 86.7, 87.3, 100.0, 100.2, 103.1, 126.8, 127.4, 127.9, 128.0, 128.5, 128.8, 130.9, 131.7, 133.9, 137.9, 138.8, 176.7 (COC (CH 3 ) 3 ), 176.8 (COC (CH 3 ) 3 ), 177.9 (COC (CH 3 ) 3 ), 179.4 (COC (CH 3 ) 3 )
MALDI-TOF-MS (Positive Reflector mode): calculated m / z 1766.85; found m / z: [M + Na] + = 1790.00
Phenyl 3-O-benzyl-2,6-di-O-pivaloyl-β-D-glucopyranosyl- (1 → 4) -3-O-benzyl-2,6-di-O-pivaloyl-β-D-glucopyranosyl -(1 → 4) -3-O-benzyl-2,6-di-O-pivaloyl-β-D-glucopyranosyl- (1 → 4) -2,3,6-tri-O-methyl-β-D -Glucopyranosyl- (1 → 4) -2,3,6-tri-O-methyl-β-D-glucopyranosyl- (1 → 4) -2,3,6-tri-O-methyl-β-D-glucopyranosyl -(1 → 4) -2,3,6-Tri-O-methyl-1-thio-β-D-glucopyranoside (Ib) (m = 4, n = 3)
MALDI-TOF-MS (Positive Linear mode): calculated m / z 2188.55; found m / z: [M + Na] + = 2211.86
Phenyl 3-O-benzyl-2,6-di-O-pivaloyl-β-D-glucopyranosyl- (1 → 4) -3-O-benzyl-2,6-di-O-pivaloyl-β-D-glucopyranosyl -(1 → 4) -3-O-benzyl-2,6-di-O-pivaloyl-β-D-glucopyranosyl- (1 → 4) -3-O-benzyl-2,6-di-O-pivaloyl -β-D-glucopyranosyl- (1 → 4) -2,3,6-tri-O-methyl-β-D-glucopyranosyl- (1 → 4) -2,3,6-tri-O-methyl-β -D-Glucopyranosyl- (1 → 4) -2,3,6-tri-O-methyl-β-D-glucopyranosyl- (1 → 4) -2,3,6-tri-O-methyl-1-thio -β-D-Glucopyranoside (Ib) (m = 4, n = 4)
MALDI-TOF-MS (Positive Linear mode): calculated m / z 2609.04; found m / z: [M + Na] + = 2632.29
(15) Examination of polymerization method of compound (26) and 3-O-benzyl-6-O-pivaloyl-α-D-glucopyranose 1,2,4-orthopivalate (32) Reaction product of (134) above Was repeatedly subjected to the above step (13) to examine the distribution ratio of the polymerization reaction product. As can be seen from Table 1, it was confirmed that by repeating the step (13), the number of compounds having an increased degree of polymerization of glucose units increased.

(16)ライブラリー(Ib)の一般的な脱保護方法
化合物(Ib)(25.6mg、19.4μM)の微量のMeOHと水を含む塩化メチレン(5 mL)溶液に、NIS(6.1mg、27.2μM)及び触媒量のAgOTfを室温下に加え、室温で3h連続して撹拌した。反応混合物を酢酸エチルで希釈し、NaHCO3水溶液及びブラインで洗浄、Na2SO4で乾燥後、濃縮乾燥してクルード生成物を得た。クルード生成物をカラムクロマトグラフィー(溶出液:酢酸エチル: n-ヘキサン=1:4、v/v)で精製して、化合物(Ic)及び(Ic)’(25.3mg)を得た。
(16) General Deprotection Method for Library (Ib) Compound (Ib) (25.6 mg, 19.4 μM) in a methylene chloride (5 mL) solution containing a small amount of MeOH and water was mixed with NIS (6.1 mg, 27.2 μM). ) And a catalytic amount of AgOTf were added at room temperature and stirred continuously for 3 h at room temperature. The reaction mixture was diluted with ethyl acetate, washed with aqueous NaHCO 3 solution and brine, dried over Na 2 SO 4 and concentrated to dryness to give a crude product. The crude product was purified by column chromatography (eluent: ethyl acetate: n-hexane = 1: 4, v / v) to obtain compounds (Ic) and (Ic) ′ (25.3 mg).

化合物(Ic)及び(Ic)’を、無水酢酸(1 mL)およびピリジン(1 mL)で室温下終夜でアセチル化して、化合物(Id)及び(Id)’を得た。   Compounds (Ic) and (Ic) 'were acetylated with acetic anhydride (1 mL) and pyridine (1 mL) at room temperature overnight to obtain compounds (Id) and (Id)'.

化合物(Id)及び(Icd)’のテトラヒドロフラン(1 mL)及びエタノール(1 mL)溶液に、水酸化パラジウム/炭素(80mg)を加え、水素雰囲気下、室温で11h撹拌した。水酸化パラジウム/炭素を濾別し、20%のメタノール/塩化メチレン(v/v)で洗浄した。あわせたろ液を濃縮乾燥して化合物(Ie)及び(Ie)’(21.8mg)を得た。   To a solution of compounds (Id) and (Icd) 'in tetrahydrofuran (1 mL) and ethanol (1 mL) was added palladium hydroxide / carbon (80 mg), and the mixture was stirred at room temperature for 11 h in a hydrogen atmosphere. Palladium hydroxide / carbon was filtered off and washed with 20% methanol / methylene chloride (v / v). The combined filtrates were concentrated and dried to obtain compounds (Ie) and (Ie) ′ (21.8 mg).

化合物(Ie)及び(Ie)’のテトラヒドロフラン(4 mL)及びメタノール(1 mL)溶液に、28%のナトリウムメトキシド(0.1 mL)を加え、室温で終夜撹拌した。その混合物をDawex H+で中和し、Dawex H+を濾別して、20%のメタノール/塩化メチレン(v/v)及びメタノールで洗浄した。あわせたろ液を濃縮乾燥して化合物(If)及び(Ig)(19.0mg)を得た。   To a solution of compounds (Ie) and (Ie) 'in tetrahydrofuran (4 mL) and methanol (1 mL) was added 28% sodium methoxide (0.1 mL), and the mixture was stirred at room temperature overnight. The mixture was neutralized with Dawex H +, Dawex H + was filtered off and washed with 20% methanol / methylene chloride (v / v) and methanol. The combined filtrate was concentrated and dried to obtain compounds (If) and (Ig) (19.0 mg).

化合物(Ig):
1H-NMR (CDCl3): δ 2.96 (C2-H (methylated glucose)), 3.40, 3.54, 3.57, 3.58, 3.59 (OCH3), 4.33 (C1-H (methylated glucose), 4.58 (C1-H (non-methylated glucose)); 1H-NMR (D2O at 20°C): δ 3.14 (C2-H (methylated glucose)), 3.41, 3.58, 3.59 (OCH3), 4.43 (C1-H (methylated glucose), 4.45 (C1-H (non-methylated glucose)); 1H-NMR (CD3OD): δ 2.90 (C2-H (methylated glucose)), 3.40, 3.53, 3.56, 3.58 (OCH3), 4.38 (C1-H (methylated glucose), (C1-H (non-methylated glucose)); 13C-NMR (CDCl3): δ 61.0, 61.8, 63.1, 72.6, 76.3, 78.8, 84.9, 85.7, 105.2
MALDI-TOF-MS data.
化合物(If): calculated m/z n=0: 834.41, n=1: 996.46, n=2: 1158.52, n=3: 1320.57, n=4: 1482.62; found m/z [M+Na]+ =857.4 (n=0), [M+Na]+=1019.4 (n=1), [M+Na]+ =1181.5 (n=2), [M+Na]+ =1343.7 (n=3), [M+Na]+ =1505.6 (n=4);
化合物(Ig): calculated m/z n=0: 848.43, n=1: 1010.48, n=2: 1172.53, n=3: 1334.58, n=4: 1496.64; found m/z [M+Na]+=871.4 (n=0), [M+Na]+ =1033.5 (n=1), [M+Na]+ =1195.5 (n=2), [M+Na]+=1357.6 (n=3), [M+Na]+ =1519.6 (n=4)

[試験例1]
実施例1で得られるブロック的メチル化セロオリゴ糖ライブラリー(化合物(If)及び(Ig))について、各種溶媒に対する溶解性を検討した。
Compound (Ig):
1 H-NMR (CDCl 3 ): δ 2.96 (C 2 -H (methylated glucose)), 3.40, 3.54, 3.57, 3.58, 3.59 (OCH 3 ), 4.33 (C 1 -H (methylated glucose), 4.58 (C 1 -H (non-methylated glucose)); 1 H-NMR (D 2 O at 20 ° C): δ 3.14 (C 2 -H (methylated glucose)), 3.41, 3.58, 3.59 (OCH 3 ), 4.43 ( C 1 -H (methylated glucose), 4.45 (C 1 -H (non-methylated glucose)); 1 H-NMR (CD 3 OD): δ 2.90 (C 2 -H (methylated glucose)), 3.40, 3.53, 3.56, 3.58 (OCH 3 ), 4.38 (C 1 -H (methylated glucose), (C 1 -H (non-methylated glucose)); 13 C-NMR (CDCl 3 ): δ 61.0, 61.8, 63.1, 72.6, 76.3, 78.8, 84.9, 85.7, 105.2
MALDI-TOF-MS data.
Compound (If) : calculated m / zn = 0: 834.41, n = 1: 996.46, n = 2: 1158.52, n = 3: 1320.57, n = 4: 1482.62; found m / z [M + Na] + = 857.4 (n = 0), [M + Na] + = 1019.4 (n = 1), [M + Na] + = 1181.5 (n = 2), [M + Na] + = 1343.7 (n = 3), [M + Na] + = 1505.6 (n = 4);
Compound (Ig) : calculated m / zn = 0: 848.43, n = 1: 1010.48, n = 2: 1172.53, n = 3: 1334.58, n = 4: 1496.64; found m / z [M + Na] + = 871.4 (n = 0), [M + Na] + = 1033.5 (n = 1), [M + Na] + = 1195.5 (n = 2), [M + Na] + = 1357.6 (n = 3), [M + Na] + = 1519.6 (n = 4)

[Test Example 1]
The block methylated cellooligosaccharide library (compounds (If) and (Ig)) obtained in Example 1 was examined for solubility in various solvents.

このライブラリーは、水又はメタノールに任意の量で溶解することが分かった。また、このライブラリーのクロロホルム(CDCl3)に対する溶解性を調べるために、図1に示した方法に従いライブラリーを分画したところ、クロロホルム可溶部(part A)及びクロロホルム不溶部(part B)が重量比44:56で分画できた。This library was found to dissolve in any amount in water or methanol. In order to examine the solubility of this library in chloroform (CDCl 3 ), the library was fractionated according to the method shown in FIG. Was fractionated at a weight ratio of 44:56.

この分画されたライブラリー(part A及びB)を、MALDI-TOF-MSにより分析した結果を表2に示す。なお、表2中、置換度(D.S.、degree of substitution)とは、セロオリゴ糖誘導体の水酸基に導入された置換基の平均値を表す尺度であり、導入された置換基の数をセロオリゴ糖誘導体の全水酸基の数で割り、これに3を掛けた値である。   Table 2 shows the results of analyzing this fractionated library (parts A and B) by MALDI-TOF-MS. In Table 2, the degree of substitution (DS) is a scale representing the average value of substituents introduced into the hydroxyl group of the cellooligosaccharide derivative. Divide by the number of all hydroxyl groups of the sugar derivative and multiply this by 3.

ライブラリー(化合物(If)及び(Ig))中に含まれるそれぞれのセロオリゴ糖誘導体の含有割合は、MALDI-TOF-MSスペクトル上で検出されたピークの高さから推定した。いずれのセロオリゴ糖も水溶性であったが、4,5量体はクロロホルムに溶解しやすく、6量体以上のオリゴ糖は水に溶解しやすかった。また、還元性末端が水酸基である(21)の6,7量体は特に水溶性が高かった。   The content ratio of each cellooligosaccharide derivative contained in the library (compounds (If) and (Ig)) was estimated from the height of the peak detected on the MALDI-TOF-MS spectrum. All of the cellooligosaccharides were water-soluble, but the tetramer and the pentamer were easily dissolved in chloroform, and the oligosaccharide and the hexamer or more were easily dissolved in water. In addition, the hexamer of (21) whose reducing end is a hydroxyl group was particularly highly water-soluble.

以上、グリコシル化と重合法を組み合わせた本合成法は、ブロックコポリマーのモデル合成に有効であり、MALDI-TOF-MSによる微量分析法は、オリゴ糖誘導体の溶解性をスクリーニングするのに有効であった。また、ブロック的メチル化セロオリゴ糖ライブラリーは両親媒性を示したが、重合度(D.P.:degree of polymerization)や置換度(D.S.:degree of substitution)によりその溶解性が変化することが確認された。   As described above, this synthesis method combining glycosylation and polymerization is effective for model synthesis of block copolymers, and microanalysis using MALDI-TOF-MS is effective for screening the solubility of oligosaccharide derivatives. It was. The block methylated cellooligosaccharide library was amphipathic, but its solubility was confirmed to change depending on the degree of polymerization (DP) and the degree of substitution (DS). .

[試験例2]
全自動表面張力計CBVP-Z(協和界面科学株式会社製)を用いて、試験例1のPart Aの水溶液の表面張力を測定した。測定は、気温28℃の室温条件下、ウイルヘルミ(プレート)法により行った。
[Test Example 2]
The surface tension of the aqueous solution of Part A of Test Example 1 was measured using a fully automatic surface tension meter CBVP-Z (manufactured by Kyowa Interface Science Co., Ltd.). The measurement was performed by a Wilhelmi (plate) method under a room temperature condition of 28 ° C.

蒸留水の表面張力が約71mN/mであったのに対し、本発明のセロオリゴ糖誘導体を含む水溶液(Part A)の表面張力は約45mN/mであり、界面活性能が確認された。水溶液の化合物濃度と表面張力との関係を図2に示す。   While the surface tension of distilled water was about 71 mN / m, the surface tension of the aqueous solution (Part A) containing the cellooligosaccharide derivative of the present invention was about 45 mN / m, confirming the surface activity. FIG. 2 shows the relationship between the compound concentration of the aqueous solution and the surface tension.

なお、Part Aの固体サンプルを蒸留水に溶かし、濃度(mg/mL)を横軸、表面張力(nN/m)を縦軸として、所定の濃度溶液をそれぞれ調製してプロットを行った。   Part A solid sample was dissolved in distilled water, and a concentration solution (mg / mL) was plotted on the horizontal axis and surface tension (nN / m) was plotted on the vertical axis.

図2より、臨界ミセル濃度(CMC)は、1mg/mL程度であることが認められた。

[実施例2](R 2 =Et)
実施例1(5)において、ヨウ化メチルに代えてヨウ化エチルを用いること以外は、実施例1(1)〜(15)と同様にして、本発明のセロオリゴ糖誘導体(R2=Et)を製造した。かかるセロオリゴ糖誘導体も、試験例1のような両親媒性を示すと共に、試験例2で示すような界面活性能を有している。

[実施例3]
(1)フェニル 4,6-O-ベンジリデン-β-D-グルコピラノシル-(1→4)-1-チオ-β-D-グルコピラノシド(49)
フェニル チオ-β-セロビロシド(15)(5.99g、13.7 mM)とベンズアルデヒド ジメチルアセタール(3.09 mL、1.5当量)のN、N'-ジメチルホルムアミド(30 mL)懸濁液に、トルエンスルホン酸(0.2g)を加えた。反応液を15 mmHg下45°Cで3.5h維持した。トルエンスルホン酸(1.78g)を反応混合物に加え、溶液を15 mmHg下50°Cで30分維持した。その後、ベンズアルデヒド ジメチルアセタール (2.50 mL)を加え、溶液を15 mmHg下50°Cで1時間維持した。溶液をAmberlite IR-400(OH-)で中和し、混合物を濾過してクルード生成物を得た。これを、シリカゲル・カラム(溶離剤:10%のメタノール/CH2Cl2)で精製して、無色の油状の標記化合物(7.1g、収率約100%)を得た。
From FIG. 2, it was confirmed that the critical micelle concentration (CMC) was about 1 mg / mL.

Example 2 (R 2 = Et)
In Example 1 (5), the cellooligosaccharide derivative (R 2 = Et) of the present invention was used in the same manner as in Examples 1 (1) to (15) except that ethyl iodide was used instead of methyl iodide. Manufactured. Such a cellooligosaccharide derivative also exhibits an amphipathic property as in Test Example 1 and also has a surface activity as shown in Test Example 2.

[Example 3]
(1) Phenyl 4,6-O-benzylidene-β-D-glucopyranosyl- (1 → 4) -1-thio-β-D-glucopyranoside (49)
To a suspension of phenylthio-β-cellobiloside (15) (5.99 g, 13.7 mM) and benzaldehyde dimethylacetal (3.09 mL, 1.5 eq) in N, N'-dimethylformamide (30 mL), toluenesulfonic acid (0.2 g ) Was added. The reaction was maintained at 45 ° C under 15 mmHg for 3.5 h. Toluenesulfonic acid (1.78 g) was added to the reaction mixture, and the solution was maintained at 50 ° C. under 15 mmHg for 30 minutes. Benzaldehyde dimethylacetal (2.50 mL) was then added and the solution was maintained at 50 ° C. under 15 mmHg for 1 hour. The solution was neutralized with Amberlite IR-400 (OH ) and the mixture was filtered to give the crude product. This was purified on a silica gel column (eluent: 10% methanol / CH 2 Cl 2 ) to give the title compound (7.1 g, about 100% yield) as a colorless oil.

なお、標記化合物(49)は、アセチル化して次の化合物に変換して同定した。
フェニル 2,3-ジ-O-アセチル-4,6-O-ベンジリデン-β-D-グルコピラノシル-(1→4)-2,3,6-トリ-O-アセチル-1-チオ-β-D-グルコピラノシド[(49)のAc体]
1H-NMR (CDCl3): δ 1.9-2.2 (15H, CH3CO), 3.46 (m, 1H, C5'-H), 3.61 (m, 1H, C5-H), 3.67 (t, 1H, J4', 5' = 9.6, C4'-H), 3.71 (1H, C4-H), 3.8-3.7 (1H, C6'-H), 4.08 (dd, 1H, J5, 6 = 5.1, J6, 6 = 12.0, C6-H), 4.34 (dd, 1H, J5', 6' = 4.5, J6', 6' = 9.9, C6'-H), 4.56 (d, 1H, J6, 6 = 18.3, C6-H), 4.58 (d, 1H, J1', 2' = 7.5, C1'-H), 4.66 (d, 1H, J1, 2 = 10.2, C1-H), 4.88 (t, 1H, J2, 3 = 9.6, C2-H), 4.91 (t, 1H, J2', 3' = 9.3, C2'-H), 5.19 (t, 1H, J3, 4 = 9.0, C3-H), 5.25 (t, 1H, J3', 4'= 9.6, C3'-H), 5.47 (s, 1H, -CHPh)
13C-NMR (CDCl3): δ 20.6, 20.7, 20.7, 20.8, 20.9 (CH3CO), 61.9, 66.3, 68.4, 70.1, 71.9, 72.5, 74.1, 76.5 , 76.8 , 77.9, 85.2 (C-1), 101.5 (C-1'), 126.0, 128.2, 128.3,128.8, 129.2, 131.4, 133.2, 136.5 (aromatic C), 169.3, 169.5, 169.5, 170.1, 170.2 (CH3CO)
(2)フェニル 2,3-ジ-O-ベンジル-4,6-O-ベンジリデン-β-D-グルコピラノシル-(1→4)-2,3,6-トリ-O-ベンジル-1-チオ-β-D-グルコピラノシド(50)
上記(1)で得られた化合物(49)のテトラヒドロフラン(10 mL)溶液に、ミネラルオイルを含む60%NaH(920mg、23.0 mM)及び臭化ベンジル(2.74 mL、23.0 mM)を加えた。反応混合物を、室温で11h、50℃で1日間撹拌した。これに0℃にてメタノールを加えて、反応混合物を酢酸エチルで希釈し、水及びブラインで洗浄し、Na2SO4で乾燥し、濃縮乾燥して結晶を得た。クルード結晶をn-ヘキサンで洗浄して無色結晶の標記化合物(2.54g、収率68%)を得た。
The title compound (49) was identified by acetylation and conversion to the following compound.
Phenyl 2,3-di-O-acetyl-4,6-O-benzylidene-β-D-glucopyranosyl- (1 → 4) -2,3,6-tri-O-acetyl-1-thio-β-D -Glucopyranoside [Ac form of (49)]
1 H-NMR (CDCl 3 ): δ 1.9-2.2 (15H, CH 3 CO), 3.46 (m, 1H, C 5 ' -H), 3.61 (m, 1H, C 5 -H), 3.67 (t, 1H, J 4 ', 5' = 9.6, C 4 ' -H), 3.71 (1H, C 4 -H), 3.8-3.7 (1H, C 6' -H), 4.08 (dd, 1H, J 5, 6 = 5.1, J 6, 6 = 12.0, C 6 -H), 4.34 (dd, 1H, J 5 ', 6' = 4.5, J 6 ', 6' = 9.9, C 6 ' -H), 4.56 ( d, 1H, J 6, 6 = 18.3, C 6 -H), 4.58 (d, 1H, J 1 ', 2' = 7.5, C 1 ' -H), 4.66 (d, 1H, J 1, 2 = 10.2, C 1 -H), 4.88 (t, 1H, J 2, 3 = 9.6, C 2 -H), 4.91 (t, 1H, J 2 ', 3' = 9.3, C 2 ' -H), 5.19 (t, 1H, J 3, 4 = 9.0, C 3 -H), 5.25 (t, 1H, J 3 ', 4' = 9.6, C 3 ' -H), 5.47 (s, 1H, -CHPh)
13 C-NMR (CDCl 3 ): δ 20.6, 20.7, 20.7, 20.8, 20.9 (CH 3 CO), 61.9, 66.3, 68.4, 70.1, 71.9, 72.5, 74.1, 76.5, 76.8, 77.9, 85.2 (C-1 ), 101.5 (C-1 '), 126.0, 128.2, 128.3,128.8, 129.2, 131.4, 133.2, 136.5 (aromatic C), 169.3, 169.5, 169.5, 170.1, 170.2 (CH 3 CO)
(2) Phenyl 2,3-di-O-benzyl-4,6-O-benzylidene-β-D-glucopyranosyl- (1 → 4) -2,3,6-tri-O-benzyl-1-thio- β-D-Glucopyranoside (50)
To a tetrahydrofuran (10 mL) solution of the compound (49) obtained in (1) above, 60% NaH (920 mg, 23.0 mM) containing mineral oil and benzyl bromide (2.74 mL, 23.0 mM) were added. The reaction mixture was stirred at room temperature for 11 h and at 50 ° C. for 1 day. Methanol was added thereto at 0 ° C., and the reaction mixture was diluted with ethyl acetate, washed with water and brine, dried over Na 2 SO 4 and concentrated to dryness to obtain crystals. The crude crystals were washed with n-hexane to give the title compound (2.54 g, yield 68%) as colorless crystals.

1H-NMR (CDCl3): δ 3.37 (t, 1H, J2', 3' = 8.1, C2'-H), 3.74 (dd, 1H, J5, 6= 1.2, J6, 6 = 7.5, C6-H), 3.88 (dd, 1H, J5, 6= 4.5, J6, 6 = 7.5, C6-H), 4.21 (dd, 1H, J5', 6'= 5.4, J6', 6' = 9.9, C6'-H), (4.57 (d, 1H, J1', 2' = 7.8, C1'-H), 4.62 (d, 1H, J1, 2 = 9.6, C1-H), 5.48 (s, 1H, -CHPh)
13C-NMR (CDCl3): δ 65.8, 68.0 (C6), 68.7, 73.1, 75.0, 75.5, 75.5, 75.6, 76.6, 79.2, 80.0, 81.2, 81.7, 82.5, 84.9, 87.3 (C-1), 101.1 (-CHPh), 102.8 (C-1'), 126.0, 127.6-138.8 (aromatic C)
(3)フェニル 2,3,6-トリ-O-ベンジル-β-D-グルコピラノシル-(1→4)-2,3,6-トリ-O-ベンジル-1-チオ-β-D-グルコピラノシド(51)
上記(2)で得られた化合物(50) (2.00g、2.06 mM)のアセトニトリル(10ml)溶液に、粉末モレキュラーシーブ4A (2.0g)及びナトリウム シアノボロハイドライド(0.53g、8 mM)を加えた。これにトリメチルクロロシラン(2.0ml、15.8 mM)を、2時間かけてゆっくり滴下した。反応混合物を室温で3時間維持し、セライト535で濾過して、残渣を酢酸エチルで洗浄した。ろ液を常法によりワークアップして黄色シロップのクルード生成物を得た。これを塩化メチレン溶出のシリカゲル・カラム(Wacogel C-200)で洗浄して、無色結晶の標記化合物(1.28g、収率64%)を得た。
1 H-NMR (CDCl 3 ): δ 3.37 (t, 1H, J 2 ', 3' = 8.1, C 2 ' -H), 3.74 (dd, 1H, J 5, 6 = 1.2, J 6, 6 = 7.5, C 6 -H), 3.88 (dd, 1H, J 5, 6 = 4.5, J 6, 6 = 7.5, C 6 -H), 4.21 (dd, 1H, J 5 ', 6' = 5.4, J 6 ', 6' = 9.9, C 6 ' -H), (4.57 (d, 1H, J 1', 2 ' = 7.8, C 1' -H), 4.62 (d, 1H, J 1, 2 = 9.6 , C 1 -H), 5.48 (s, 1H, -CHPh)
13 C-NMR (CDCl 3 ): δ 65.8, 68.0 (C 6 ), 68.7, 73.1, 75.0, 75.5, 75.5, 75.6, 76.6, 79.2, 80.0, 81.2, 81.7, 82.5, 84.9, 87.3 (C-1) , 101.1 (-CHPh), 102.8 (C-1 '), 126.0, 127.6-138.8 (aromatic C)
(3) Phenyl 2,3,6-tri-O-benzyl-β-D-glucopyranosyl- (1 → 4) -2,3,6-tri-O-benzyl-1-thio-β-D-glucopyranoside ( 51)
Powder molecular sieve 4A (2.0 g) and sodium cyanoborohydride (0.53 g, 8 mM) were added to a solution of the compound (50) obtained in (2) above (2.00 g, 2.06 mM) in acetonitrile (10 ml). . Trimethylchlorosilane (2.0 ml, 15.8 mM) was slowly added dropwise thereto over 2 hours. The reaction mixture was maintained at room temperature for 3 hours, filtered through Celite 535, and the residue was washed with ethyl acetate. The filtrate was worked up in the usual manner to give a crude product of yellow syrup. This was washed with a silica gel column (Wacogel C-200) eluting with methylene chloride to obtain the title compound (1.28 g, yield 64%) as colorless crystals.

1H-NMR (CDCl3): δ 3.2-3.6 (9H), 3.84 (dd, 1H, J=3.9, 10.8, H6 or H6’), 3.74 (dd, 1H, H6 or H6’), 4.00 (t, 1H, J= 9.0, C4-H), 4.50 (d, 1H, J=7.2, H1’), 4.63 (d, 1H, J=9.9, H1),4.1-5.1 (12H, CH2Ph), 7.2-7.6 (aromatic H)
13C-NMR (CDCl3): δ 68.1, 71.0, 73.0, 73.4, 73.5, 74.9, 75.3, 75.4, 75.4, 76.3, 76.3, 79.2, 80.0, 82.0, 84.3, 84.8, 87.3 (C-1), 102.4 (C-1'), 127.3-138.9 (aromatic C)
(4)フェニル(4-O-アセチル-2,3,6-トリ-O-ベンジル-β-D-グルコピラノシル)-(1→4)-2,3,6-トリ-O-ベンジル-1-チオ-D-グルコピラノシド(52)
上記(3)で得られた化合物(51)のピリジン2 mL溶液に、無水酢酸2mLを室温で加えた。反応混合物を終夜撹拌し、濃縮乾燥した。残ったピリジン及び無水酢酸は、トルエンとエタノールで共沸して除いた。クルード生成物をn-ヘキサンで洗浄して、結晶の標記化合物(1.17g、収率90%)を得た。
1 H-NMR (CDCl 3 ): δ 3.2-3.6 (9H), 3.84 (dd, 1H, J = 3.9, 10.8, H6 or H6 '), 3.74 (dd, 1H, H6 or H6'), 4.00 (t , 1H, J = 9.0, C 4 -H), 4.50 (d, 1H, J = 7.2, H1 '), 4.63 (d, 1H, J = 9.9, H1), 4.1-5.1 (12H, CH 2 Ph) , 7.2-7.6 (aromatic H)
13 C-NMR (CDCl 3 ): δ 68.1, 71.0, 73.0, 73.4, 73.5, 74.9, 75.3, 75.4, 75.4, 76.3, 76.3, 79.2, 80.0, 82.0, 84.3, 84.8, 87.3 (C-1), 102.4 (C-1 '), 127.3-138.9 (aromatic C)
(4) Phenyl (4-O-acetyl-2,3,6-tri-O-benzyl-β-D-glucopyranosyl)-(1 → 4) -2,3,6-tri-O-benzyl-1- Thio-D-glucopyranoside (52)
To a solution of the compound (51) obtained in (3) above in 2 mL of pyridine was added 2 mL of acetic anhydride at room temperature. The reaction mixture was stirred overnight and concentrated to dryness. The remaining pyridine and acetic anhydride were removed by azeotropy with toluene and ethanol. The crude product was washed with n-hexane to obtain the crystalline title compound (1.17 g, yield 90%).

1H-NMR (CDCl3): δ 1.81 (s, 3H, COCH3), 3.26-3.55 (7H), 3.61 (t, 1H, J=8.7), 3.85 (dd, 1H, J=3.9, 11.1, H6 or H6’), 3.75 (dd,1H, H6 or H6’), 4.22 (t, 1H, C4-H), 4.24 (d, 1H, J=11.4, CH2Ph), 4.37 (d, 1H, J=11.7, CH2Ph),4.4-4.9 (9H, CH2Ph), 4.47 (d, 1H, J=12.3, CH2Ph), 4.52 (d, 1H, J=7.5, H1’),4.63(d, 1H, J=9.6, H1), 4.97 (t, 1H, J3’,4’=9.6, J4',5'= 9.9, C4'-H), 7.2-7.6 (aromatic H)
13C-NMR (CDCl3):δ68.1, 71.0, 73.0, 73.1, 73.4, 74.9, 75.3, 75.4, 75.4, 76.3, 79.2, 80.0, 82.0, 84.3, 74.8, 87.3 (C1), 102.4 (C1’), 127.5-128.4 (aromatic C), 128.8, 132.0, 133.6, 137.7, 138.1, 138,2, 138.3, 138.6, 138.9
(5)4-O-アセチル-2,3,6-トリ-O-ベンジル-β-D-グルコピラノシル-(1→4)-2,3,6-トリ-O-ベンジル-D-グルコピラノシル フルオライド(53)
上記(4)で得られた化合物(52)(100 mg、0.0984 mM)の無水塩化メチレン(2 mL)溶液に、DAST(39μL、0.295 mM)およびNBS(24.5 mg、0.138 mM)を-45℃で加えた。反応混合物の温度を、2時間かけて5°Cまで徐々に昇温した。混合物を酢酸エチルで希釈し、飽和NaHCO3aq及びブラインで洗浄し、Na2SO4で乾燥後、濃縮乾燥してクルード生成物を得た。クルード生成物をシリカゲルカラム(溶出液;塩化メチレン→酢酸エチル:n−ヘキサン= 1:4 (v/v))で精製して標記化合物を定量的に得た。
1 H-NMR (CDCl 3 ): δ 1.81 (s, 3H, COCH 3 ), 3.26-3.55 (7H), 3.61 (t, 1H, J = 8.7), 3.85 (dd, 1H, J = 3.9, 11.1, H6 or H6 '), 3.75 (dd, 1H, H6 or H6'), 4.22 (t, 1H, C 4 -H), 4.24 (d, 1H, J = 11.4, CH 2 Ph), 4.37 (d, 1H , J = 11.7, CH 2 Ph), 4.4-4.9 (9H, CH 2 Ph), 4.47 (d, 1H, J = 12.3, CH 2 Ph), 4.52 (d, 1H, J = 7.5, H1 '), 4.63 (d, 1H, J = 9.6, H1), 4.97 (t, 1H, J 3 ', 4' = 9.6, J 4 ', 5' = 9.9, C 4 ' -H), 7.2-7.6 (aromatic H )
13 C-NMR (CDCl 3 ): δ 68.1, 71.0, 73.0, 73.1, 73.4, 74.9, 75.3, 75.4, 75.4, 76.3, 79.2, 80.0, 82.0, 84.3, 74.8, 87.3 (C 1 ), 102.4 (C 1 ' ), 127.5-128.4 (aromatic C), 128.8, 132.0, 133.6, 137.7, 138.1, 138,2, 138.3, 138.6, 138.9
(5) 4-O-acetyl-2,3,6-tri-O-benzyl-β-D-glucopyranosyl- (1 → 4) -2,3,6-tri-O-benzyl-D-glucopyranosyl fluoride ( 53)
To a solution of compound (52) (100 mg, 0.0984 mM) obtained in (4) above in anhydrous methylene chloride (2 mL), DAST (39 μL, 0.295 mM) and NBS (24.5 mg, 0.138 mM) were added at −45 ° C. Added in. The temperature of the reaction mixture was gradually raised to 5 ° C over 2 hours. The mixture was diluted with ethyl acetate, washed with saturated NaHCO 3 aq and brine, dried over Na 2 SO 4 and concentrated to dryness to give the crude product. The crude product was purified by a silica gel column (eluent; methylene chloride → ethyl acetate: n-hexane = 1: 4 (v / v)) to quantitatively obtain the title compound.

1H-NMR (CDCl3): δ 1.84 (s, 3H, COCH3), 4.95 (1H, C4'-H), 5.21 (dd, J1β,2= 6.4, J1β,F = 53.6, C-H), 5.47 (dd, J1α,2 = 2.7, J1α,F = 50.7, C-H), 7.1-7.5 (aromatic H)
(6)4-O-アセチル-2,3,6-トリ-O-ベンジル-β-D-グルコピラノシル-(1→4)-2,3,6-トリ-O-ベンジル-D-グルコピラノシル フルオライド(54)
上記(5)で得られた化合物(53)(5mg)のテトラヒドロフラン−メタノール溶液(1.1 mL, 10:1 (v/v))に、28%ナトリウムメトキシドのメタノール溶液 (5μL)を加えた。反応混合物を、室温で1h撹拌した。混合物を酢酸エチルで希釈し、水及びブラインで洗浄、Na2SO4で乾燥後、濃縮乾燥して標記化合物を定量的に得た。
(7)4-O-アセチル-2,3,6-トリ-O-ベンジル-β-D-グルコピラノシル-(1→4)-2,3,6-トリ-O-ベンジル-D-グルコピラノース(55)
上記(4)で得られた化合物(52)(150 mg、0.148 mM)のアセトン/水(9:1,v/v)(5 mL)の溶液に、N-iodosuccinimide(NIS)(65 mg、0.289 mM)及び触媒量の銀トリフルオロメタンスルホネート(AgOTf)を、室温で加え、混合物を2h撹拌した。反応混合物を酢酸エチルで希釈し、水とブラインで洗浄し、Na2SO4で乾燥して、濃縮乾燥した。クルード生成物を、分取薄層クロマトグラフィーで精製して、標記化合物(55) (103mg、収率76%)を得た。
(8)4-O-アセチル-2,3,6-トリ-O-ベンジル-β-D-グルコピラノシル-(1→4)-2,3,6-トリ-O-ベンジル-α-D-グルコピラノシル イミデート(56)
上記(7)で得られた化合物(55) (103.1mg、0.109 mM)の無水塩化メチレン(5 mL)溶液に、トリクロロアセトニトリル(32.8μL、0.327 mM)及びDBU(8.2μL、0.0546 mM)を室温で加え、反応混合物を4.5h撹拌した。混合物をアルミナカラムで精製して、標記化合物を定量的に得た。
(9)アセチル 2,3,4,6-テトラ-O-アセチル-β-D-ガラクトピラノシル-(1→4)-2,3,6-トリ-O-アセチル-D-グルコピラノース(47)
ラクトース(46)(1g)及び酢酸ナトリウム(0.5g)を、無水酢酸(6 mL)の中に懸濁させて、130°Cで35分撹拌した。混合物を氷水に注ぎ、クルード結晶を濾過し集めた。クルード結晶をメタノールから再結晶して、標記化合物(0.962g、収率51%)を得た。
1 H-NMR (CDCl 3 ): δ 1.84 (s, 3H, COCH 3 ), 4.95 (1H, C 4 ' -H), 5.21 (dd, J 1β, 2 = 6.4, J 1β, F = 53.6, C -H), 5.47 (dd, J 1α, 2 = 2.7, J 1α, F = 50.7, C -H), 7.1-7.5 (aromatic H)
(6) 4-O-acetyl-2,3,6-tri-O-benzyl-β-D-glucopyranosyl- (1 → 4) -2,3,6-tri-O-benzyl-D-glucopyranosyl fluoride ( 54)
To a tetrahydrofuran-methanol solution (1.1 mL, 10: 1 (v / v)) of the compound (53) (5 mg) obtained in (5) above, a methanol solution (5 μL) of 28% sodium methoxide was added. The reaction mixture was stirred at room temperature for 1 h. The mixture was diluted with ethyl acetate, washed with water and brine, dried over Na 2 SO 4 and concentrated to dryness to give the title compound quantitatively.
(7) 4-O-acetyl-2,3,6-tri-O-benzyl-β-D-glucopyranosyl- (1 → 4) -2,3,6-tri-O-benzyl-D-glucopyranose ( 55)
To a solution of the compound (52) (150 mg, 0.148 mM) obtained in (4) above in acetone / water (9: 1, v / v) (5 mL), N-iodosuccinimide (NIS) (65 mg, 0.289 mM) and a catalytic amount of silver trifluoromethanesulfonate (AgOTf) were added at room temperature and the mixture was stirred for 2 h. The reaction mixture was diluted with ethyl acetate, washed with water and brine, dried over Na 2 SO 4 and concentrated to dryness. The crude product was purified by preparative thin layer chromatography to give the title compound (55) (103 mg, 76% yield).
(8) 4-O-acetyl-2,3,6-tri-O-benzyl-β-D-glucopyranosyl- (1 → 4) -2,3,6-tri-O-benzyl-α-D-glucopyranosyl Immediate (56)
To a solution of compound (55) (103.1 mg, 0.109 mM) obtained in (7) above in anhydrous methylene chloride (5 mL), trichloroacetonitrile (32.8 μL, 0.327 mM) and DBU (8.2 μL, 0.0546 mM) were added at room temperature. And the reaction mixture was stirred for 4.5 h. The mixture was purified with an alumina column to give the title compound quantitatively.
(9) Acetyl 2,3,4,6-tetra-O-acetyl-β-D-galactopyranosyl- (1 → 4) -2,3,6-tri-O-acetyl-D-glucopyranose ( 47)
Lactose (46) (1 g) and sodium acetate (0.5 g) were suspended in acetic anhydride (6 mL) and stirred at 130 ° C. for 35 minutes. The mixture was poured into ice water and crude crystals were collected by filtration. The crude crystals were recrystallized from methanol to obtain the title compound (0.962 g, yield 51%).

1H-NMR (CDCl3): δ 3.75 (m, 1H, C5-H), 3.85 (t, 1H, J3, 4 = 8.8, C4-H), 3.87 (dt, 1H, J5’, 6’= 8.0, C5’-H), 4.13 (dd, 1H, J5, 6 = 4.8, J5, 6= 11.6, C6-H), 4.0-4.2 (2H, C6'-H), 4.45 (dd, 1H, C6-H), 4.48 (d, 1H, J1’, 2’ = 7.8, C1’-H), 4.95 (dd, 1H, J3’, 4’ = 3.4, C3’-H), 5.04 (dd, J1, 2= 8.3, J2, 3= 9.4, C2-H), 5.10 (dd, 1H, C2’-H), 5.24 (t, 1H, C3-H), 5.35 (dd, 1H, J4’, 5’ = 0.9, C4’-H), 5.67 (d, 1H, J1, 2 = 8.2, C1-H)
(10)2,3,4,6-テトラ-O-アセチル-β-D-ガラクトピラノシル-(1→4)-2,3,6-トリ-O-アセチル-α-D-グルコピラノシル ブロマイド(48)
上記(9)で得られた化合物(47) (0.7584g、1.118 mM)の無水塩化メチレン(5 mL)溶液に、30%の臭化水素の酢酸溶液 (0.668 mL、3.355 mM)を0℃で加えた。反応混合物を、0℃で2h、その後室温で7h撹拌した。溶液を酢酸エチルで希釈し、水、飽和NaHCO3aq及びブラインで洗浄し、Na2SO4で乾燥して、濃縮乾燥して、無色オイルの標記化合物を得た。
(11)1,4-ジ-O-アセチル-3-O-ベンジル-2,6-O-ピバロイル-D-グルコピラノース(40)
標記化合物は、Mokuzai Gakkaishi 40, 302-307.、Carbohydrate Research 337(10): 951-954 (2002)に従って製造した。
(12)フェニル 4-O-アセチル-3-O-ベンジル-2,6-O-ピバロイル-1-チオ-β-D-グルコピラノシド(41)
上記(11)で得られた化合物(40)(69mg、0.132 mM)の無水塩化メチレン(5 mL)の溶液に、チオフェノール(12.9μL、0.126 mM)及び三フッ化ホウ素ジエチルエーテル錯体(20.1μL、0.159mM)を室温で加えた。11h撹拌した後、チオフェノール(13μL)を室温で加えた。1.5h後に、三フッ化ホウ素ジエチルエーテル錯体(60μL)を室温で加えた。16.5h後に、反応混合物を酢酸エチルで希釈し、水、飽和NaHCO3aq及びブラインで洗浄し、Na2SO4で乾燥して、濃縮乾燥してクルード生成物を得た。生成物をPTLC(溶離剤: EtOAc: n-ヘキサン=1:4(v/v))で精製して、結晶の標記化合物(53.5mg、収率71%)を得た。
1 H-NMR (CDCl 3 ): δ 3.75 (m, 1H, C 5 -H), 3.85 (t, 1H, J 3, 4 = 8.8, C 4 -H), 3.87 (dt, 1H, J 5 ' , 6 ' = 8.0, C 5' -H), 4.13 (dd, 1H, J 5, 6 = 4.8, J 5, 6 = 11.6, C 6 -H), 4.0-4.2 (2H, C 6 ' -H ), 4.45 (dd, 1H, C 6 -H), 4.48 (d, 1H, J 1 ', 2' = 7.8, C 1 ' -H), 4.95 (dd, 1H, J 3', 4 ' = 3.4 , C 3 ' -H), 5.04 (dd, J 1, 2 = 8.3, J 2, 3 = 9.4, C 2 -H), 5.10 (dd, 1H, C 2' -H), 5.24 (t, 1H , C 3 -H), 5.35 (dd, 1H, J 4 ', 5' = 0.9, C 4 ' -H), 5.67 (d, 1H, J 1, 2 = 8.2, C 1 -H)
(10) 2,3,4,6-tetra-O-acetyl-β-D-galactopyranosyl- (1 → 4) -2,3,6-tri-O-acetyl-α-D-glucopyranosyl bromide (48)
To a solution of compound (47) (0.7584 g, 1.118 mM) obtained in (9) above in anhydrous methylene chloride (5 mL) was added 30% hydrogen bromide in acetic acid (0.668 mL, 3.355 mM) at 0 ° C. added. The reaction mixture was stirred at 0 ° C. for 2 h and then at room temperature for 7 h. The solution was diluted with ethyl acetate, washed with water, saturated NaHCO 3 aq and brine, dried over Na 2 SO 4 and concentrated to dryness to give the title compound as a colorless oil.
(11) 1,4-Di-O-acetyl-3-O-benzyl-2,6-O-pivaloyl-D-glucopyranose (40)
The title compound was prepared according to Mokuzai Gakkaishi 40, 302-307., Carbohydrate Research 337 (10): 951-954 (2002).
(12) Phenyl 4-O-acetyl-3-O-benzyl-2,6-O-pivaloyl-1-thio-β-D-glucopyranoside (41)
To a solution of compound (40) (69 mg, 0.132 mM) obtained in (11) above in anhydrous methylene chloride (5 mL) was added thiophenol (12.9 μL, 0.126 mM) and boron trifluoride diethyl ether complex (20.1 μL). 0.159 mM) was added at room temperature. After stirring for 11 h, thiophenol (13 μL) was added at room temperature. After 1.5 h, boron trifluoride diethyl ether complex (60 μL) was added at room temperature. After 16.5 h, the reaction mixture was diluted with ethyl acetate, washed with water, saturated NaHCO 3 aq and brine, dried over Na 2 SO 4 and concentrated to dryness to give the crude product. The product was purified by PTLC (eluent: EtOAc: n-hexane = 1: 4 (v / v)) to give the title compound as crystals (53.5 mg, 71% yield).

1H-NMR (CDCl3): δ 1.21 (s, 9H, COC(CH3)3), 1.26 (s, 9H, COC(CH3)3), 3.66 (ddd, 1H, C5-H), 3.78 (t 1H, J2, 3 = 9.0, C3-H), 4.07 (dd, 1H, J5, 6= 6.0, J6, 6 = 12.3, C6-H), 4.24 (dd, 1H, J5, 6= 2.1, J6, 6 = 12.3, C6-H), 4.52 (d, 1H, J - 11.1), 7.18-7.58 (aromatic H)
13C-NMR (CDCl3): δ 20.7, 27.1, 27.1, 38.7, 38.8, 62.7, 69.2, 70.8, 74.0, 76.4, 81.8, 86.7 (C-1), 127.5, 127.8, 128.0, 128.4, 128.9, 132.4, 132.8, 137.6, 169.3, 176.4, 178.2
(13)フェニル 3-O-ベンジル-2,6-O-ピバロイル-1-チオ-β-D-グルコピラノシド(42)
上記(12)で得られた化合物(41) (200mg、0.350 mM)のメタノール(20 mL)溶液に、1,8-diazabicyclo[5,4,0]-7-undecene(DBU)(366μL、2.45 mM))を0℃で加え、反応混合物を0℃で2h撹拌した。反応混合物を酢酸エチルで希釈し、4N-HCl、飽和NaHCO3aq、水及びブラインで洗浄し、Na2SO4で乾燥後、濃縮乾燥して、クルード生成物を得た。生成物をPTLC(溶離剤: EtOAc: n-ヘキサン=1:4(v/v))で精製して、結晶の標記化合物(112.6mg、収率61%)を得た。
1 H-NMR (CDCl 3 ): δ 1.21 (s, 9H, COC (CH 3 ) 3 ), 1.26 (s, 9H, COC (CH 3 ) 3 ), 3.66 (ddd, 1H, C 5 -H), 3.78 (t 1H, J 2, 3 = 9.0, C 3 -H), 4.07 (dd, 1H, J 5, 6 = 6.0, J 6, 6 = 12.3, C 6 -H), 4.24 (dd, 1H, J 5, 6 = 2.1, J 6, 6 = 12.3, C 6 -H), 4.52 (d, 1H, J-11.1), 7.18-7.58 (aromatic H)
13 C-NMR (CDCl 3 ): δ 20.7, 27.1, 27.1, 38.7, 38.8, 62.7, 69.2, 70.8, 74.0, 76.4, 81.8, 86.7 (C-1), 127.5, 127.8, 128.0, 128.4, 128.9, 132.4 , 132.8, 137.6, 169.3, 176.4, 178.2
(13) Phenyl 3-O-benzyl-2,6-O-pivaloyl-1-thio-β-D-glucopyranoside (42)
To a solution of the compound (41) (200 mg, 0.350 mM) obtained in (12) above in methanol (20 mL), 1,8-diazabicyclo [5,4,0] -7-undecene (DBU) (366 μL, 2.45 mM)) was added at 0 ° C. and the reaction mixture was stirred at 0 ° C. for 2 h. The reaction mixture was diluted with ethyl acetate, washed with 4N-HCl, saturated NaHCO 3 aq, water and brine, dried over Na 2 SO 4 and concentrated to dryness to give the crude product. The product was purified by PTLC (eluent: EtOAc: n-hexane = 1: 4 (v / v)) to give the title compound as crystals (112.6 mg, 61% yield).

1H-NMR (CDCl3): δ 1.22 (s, 9H, COC(CH3)3), 1.26 (s, 9H, COC(CH3)3), 3.44-3.62 (C3-H, C4-H, C5-H), 4.33 (dd, 1H, J5,6 = 4.5, J6,6 = 12.3, C6-H), 4.40 (dd, 1H, J5,6 = 1.8, J6,6 = 12.0, C6-H), 4.67 (d, 1H, J1,2=10.2, C1-H), 4.68 (d, 1H, J = 11.4, CH2Ph), 4.74 (d, 1H, J = 11.4, CH2Ph), 5.02 (dd 1H, J1, 2 = 9.0, J2, 3= 9.0, C2-H), 7.2-7.6 (aromatic H)
13C-NMR (CDCl3): δ 27.1, 38.7, 38.8, 63.4, 69.8, 71.0, 74.9, 77.9, 83.9, 86.6, 127.6, 127.9, 128.0, 128.6, 128.8, 132.3, 132.9, 137.8, 176.6, 179.0
(14)4-O-アセチル-3-O-ベンジル-2,6-O-ピバロイル-D-グルコピラノシル フルオライド(43)
上記(12)で得られた化合物(41)(200mg、0.350 mM)の無水塩化メチレン(5 mL)溶液に、(diethylamino)sulfur trifluoride (DAST) (139μL, 1.05 mM, 3.0 当量)及びN-bromosuccinimide(NBS)(87.1mg、0.489 mM、1.4当量)を-40℃で加えた。反応混合物の温度を5hかけて0℃まで徐々に昇温した。混合物を酢酸エチルで希釈し、飽和NaHCO3aq及びブラインで洗浄し、Na2SO4で乾燥後、濃縮乾燥して、クルード生成物を得た。生成物を分取TLC(溶離剤: EtOAc: n-ヘキサン=1:4(v/v))で精製して、結晶の標記化合物(132.5mg、収率79%)を得た。
(15)4-O-アセチル-3-O-ベンジル-2,6-O-ピバロイル-D-グルコピラノース(44)
上記(12)で得られた化合物(41) (295.3mg、0.516 mM)のアセトン/水(9:1,v/v)(10 mL)溶液に、N-iodosuccinimide(NIS)(162.4mg、0.722 mM)及び触媒量の銀トリフルオロメタンスルホネート(AgOTf)を室温で加え、混合物を2h撹拌した。反応混合物を酢酸エチルで希釈し、水及びブラインで洗浄し、Na2SO4で乾燥後、濃縮乾燥した。クルード生成物をPTLCで精製して、標記化合物 (180.9mg、収率73%)を得た。
(16)4-O-アセチル-3-O-ベンジル-2,6-O-ピバロイル-α-D-グルコピラノシル イミデート(45)
上記(15)で得られた化合物(44) (180.9mg、0.377 mM)の無水塩化メチレン(5 mL)溶液に、トリクロロアセトニトリル(113μL、1.13 mM))及びDBU(28μL、0.188 mM)を室温で加えた。反応混合物を3h撹拌し、アルミナカラムで精製して標記化合物を定量的に得た。
(17)4-O-アセチル-2,3,6-トリ-O-メチル-β-D-グルコピラノシル-(1→4)-2,3,6-トリ-O-メチル-β-D-グルコピラノシル-(1→4)-2,3,6-トリ-O-ベンジル-β-D-グルコピラノシル-(1→4)-2,3,6-トリ-O-ベンジル-D-グルコピラノシル フルオライド(68)(R 2 =Me)
実施例1(9)で得られた化合物(21)(11mg、0.020 mM)及び上記(6)得られた化合物(54)(15mg、0.017 mM)の無水塩化メチレン(1 mL)溶液に、MS4A(100mg)を加えて、室温で1.5h撹拌した。混合物に、-78℃で、NIS(13.3mg、0.059 mM)及び触媒量のAgOTf(1.5mg)を加えた。反応混合物を徐々に室温まで昇温し、22時間撹拌した。不溶物を濾別して酢酸エチルで洗浄した。ろ液を酢酸エチルで希釈し、蒸留水、NaHCO3aq及びブラインで洗浄し、Na2SO4で乾燥後、濃縮乾燥した。生成物をPTLC(溶離剤: EtOAc: n-ヘキサン=1:2(v/v)で2回)で分離して、標記化合物 (4mg、収率18%)を得た。
1 H-NMR (CDCl 3) : δ 1.22 (s, 9H, COC (CH 3) 3), 1.26 (s, 9H, COC (CH 3) 3), 3.44-3.62 (C 3 -H, C 4 - H, C 5 -H), 4.33 (dd, 1H, J 5,6 = 4.5, J 6,6 = 12.3, C 6 -H), 4.40 (dd, 1H, J 5,6 = 1.8, J 6, 6 = 12.0, C 6 -H), 4.67 (d, 1H, J 1,2 = 10.2, C 1 -H), 4.68 (d, 1H, J = 11.4, CH 2 Ph), 4.74 (d, 1H, J = 11.4, CH 2 Ph), 5.02 (dd 1H, J 1, 2 = 9.0, J 2, 3 = 9.0, C 2 -H), 7.2-7.6 (aromatic H)
13 C-NMR (CDCl 3 ): δ 27.1, 38.7, 38.8, 63.4, 69.8, 71.0, 74.9, 77.9, 83.9, 86.6, 127.6, 127.9, 128.0, 128.6, 128.8, 132.3, 132.9, 137.8, 176.6, 179.0
(14) 4-O-acetyl-3-O-benzyl-2,6-O-pivaloyl-D-glucopyranosyl fluoride (43)
To a solution of compound (41) (200 mg, 0.350 mM) obtained in (12) above in anhydrous methylene chloride (5 mL), (diethylamino) sulfur trifluoride (DAST) (139 μL, 1.05 mM, 3.0 equivalents) and N-bromosuccinimide (NBS) (87.1 mg, 0.489 mM, 1.4 eq) was added at −40 ° C. The temperature of the reaction mixture was gradually raised to 0 ° C. over 5 h. The mixture was diluted with ethyl acetate, washed with saturated NaHCO 3 aq and brine, dried over Na 2 SO 4 and concentrated to dryness to give the crude product. The product was purified by preparative TLC (eluent: EtOAc: n-hexane = 1: 4 (v / v)) to give the title compound as crystals (132.5 mg, 79% yield).
(15) 4-O-acetyl-3-O-benzyl-2,6-O-pivaloyl-D-glucopyranose (44)
N-iodosuccinimide (NIS) (162.4 mg, 0.722) was added to a solution of compound (41) (295.3 mg, 0.516 mM) obtained in (12) above in acetone / water (9: 1, v / v) (10 mL). mM) and a catalytic amount of silver trifluoromethanesulfonate (AgOTf) were added at room temperature and the mixture was stirred for 2 h. The reaction mixture was diluted with ethyl acetate, washed with water and brine, dried over Na 2 SO 4 and concentrated to dryness. The crude product was purified by PTLC to give the title compound (180.9 mg, 73% yield).
(16) 4-O-acetyl-3-O-benzyl-2,6-O-pivaloyl-α-D-glucopyranosyl imidate (45)
To a solution of compound (44) obtained in (15) above (180.9 mg, 0.377 mM) in anhydrous methylene chloride (5 mL), trichloroacetonitrile (113 μL, 1.13 mM)) and DBU (28 μL, 0.188 mM) were added at room temperature. added. The reaction mixture was stirred for 3 h and purified on an alumina column to give the title compound quantitatively.
(17) 4-O-acetyl-2,3,6-tri-O-methyl-β-D-glucopyranosyl- (1 → 4) -2,3,6-tri-O-methyl-β-D-glucopyranosyl -(1 → 4) -2,3,6-Tri-O-benzyl-β-D-glucopyranosyl- (1 → 4) -2,3,6-tri-O-benzyl-D-glucopyranosyl fluoride (68) (R 2 = Me)
To a solution of compound (21) (11 mg, 0.020 mM) obtained in Example 1 (9) and compound (54) (15 mg, 0.017 mM) obtained above (6) in anhydrous methylene chloride (1 mL) was added MS4A. (100 mg) was added and stirred at room temperature for 1.5 h. To the mixture was added NIS (13.3 mg, 0.059 mM) and catalytic amount of AgOTf (1.5 mg) at −78 ° C. The reaction mixture was gradually warmed to room temperature and stirred for 22 hours. Insoluble material was filtered off and washed with ethyl acetate. The filtrate was diluted with ethyl acetate, washed with distilled water, NaHCO 3 aq and brine, dried over Na 2 SO 4 and concentrated to dryness. The product was separated by PTLC (eluent: EtOAc: n-hexane = 1: 2 (v / v) twice) to give the title compound (4 mg, 18% yield).

Calculated for C74H91FO21: 1334.6; ESI-MS: [M+Na]+= 1357
1H-NMR (CDCl3): δ 3.18, 3.32, 3.46, 3.48, 3.52, 3.63 (OCH3), 5.46 (dd, C1-Hα), 5.47 (dd, C1-Hβ)
(18)化合物(69)(R 2 =Me)の製法
上記(17)で得られる化合物(68)を含水溶媒(例えばacetone-water)中でCp2HfCl2/AgClO4を反応させて−Fを−OHに変換し、水素気流下、Pd(OH)2-炭素による接触還元により脱ベンジル化し、ナトリウムメトキシドで脱エステル化して標記化合物を得た。

[実施例4]
(1)フェニル 4-O-アセチル-2,3,6-トリ-O-メチル-β-D-グルコピラノシル-(1→4)-2,3,6-トリ-O-メチル-β-D-グルコピラノシル-(1→4)-3-O-ベンジル-2,6-ジ-O-ピバロイル-1-チオ-β-D-グルコピラノシド(70)(R 2 =Me)
実施例3(13)で得られた化合物(42)(10 mg、0.019 mM)及び実施例1(10)で得られた化合物(22)(17.7 mg、0.038 mM)の無水ベンゼン(2 mL)溶液に、活性MS4A(200ml)を加え、室温で3h撹拌した。反応混合物に、Cp2HfCl2(15.7mg、0.041 mM)及びAgClO4(17.2mg、0.083 mM)を室温で加えて、2.5h撹拌した。不溶物を濾別し、酢酸エチルで洗浄した。ろ液を酢酸エチルで希釈し、蒸留水、NaHCO3aq及びブラインで洗浄し、Na2SO4で乾燥後、濃縮乾燥した。生成物をPTLC(溶離剤: EtOAc: n-ヘキサン=1:2(v/v)、数回)で精製して、標記化合物(6.0mg、収率32%)を得た。
Calculated for C 74 H 91 FO 21 : 1334.6; ESI-MS: [M + Na] + = 1357
1 H-NMR (CDCl 3 ): δ 3.18, 3.32, 3.46, 3.48, 3.52, 3.63 (OCH 3 ), 5.46 (dd, C1-Hα), 5.47 (dd, C1-Hβ)
(18) Production Method of Compound (69) (R 2 = Me) Compound (68) obtained in the above (17) is reacted with Cp 2 HfCl 2 / AgClO 4 in a water-containing solvent (for example, acetone-water) to give −F Was converted to —OH, debenzylated by catalytic reduction with Pd (OH) 2 -carbon under a stream of hydrogen, and deesterified with sodium methoxide to give the title compound.

[Example 4]
(1) Phenyl 4-O-acetyl-2,3,6-tri-O-methyl-β-D-glucopyranosyl- (1 → 4) -2,3,6-tri-O-methyl-β-D- Glucopyranosyl- (1 → 4) -3-O-benzyl-2,6-di-O-pivaloyl-1-thio-β-D-glucopyranoside (70) (R 2 = Me)
Compound (42) (10 mg, 0.019 mM) obtained in Example 3 (13) and compound (22) (17.7 mg, 0.038 mM) obtained in Example 1 (10) in anhydrous benzene (2 mL) To the solution was added active MS4A (200 ml) and stirred at room temperature for 3 h. To the reaction mixture, Cp 2 HfCl 2 (15.7 mg, 0.041 mM) and AgClO 4 (17.2 mg, 0.083 mM) were added at room temperature and stirred for 2.5 h. Insoluble material was filtered off and washed with ethyl acetate. The filtrate was diluted with ethyl acetate, washed with distilled water, NaHCO 3 aq and brine, dried over Na 2 SO 4 and concentrated to dryness. The product was purified by PTLC (eluent: EtOAc: n-hexane = 1: 2 (v / v), several times) to give the title compound (6.0 mg, 32% yield).

Calculated for C49H72O18S: 980.44; MALDI-TOF MS: [M+Na]+ = 1003.17
1H-NMR (CDCl3): δ 1.17, 1.22 (s, s, 9H, 9H, COC(CH3)3), 2.08 (s, 3H, COCH3), 3.08, 3.34, 3.48, 3.49, 3.55 (s, 3H, 3H, 3H, 3H, 6H, OCH3), 2.94-3.02 (t, t, C2’-H and C2’’-H), 3.12-3.24 (t, t, C3’-H and C3’’-H), 3.3-3.6 (C6’’-H), 3.36-3.44 (C5'’-H), 3.6-3.7 (m, 1H, C5-H), 3.71 (t, 1H, J = 8.4, C3-H), 3.82 (t, 1H, J = 9.0, C4-H), 4.20 (dd, 1H, J = 6.0, J = 12.0, C6-H), 4.30 (d, 1H, J = 7.8, C1'-H or C1'’-H), 4.35 (d, 1H, J = 8.1, C1'-H or C1'’-H), 4.58 (d, 1H, J = 11.7, CH2Ph), 4.66 (d, 1H, J = 10.2, C1-H), 4.71 (dd, 1H, J = 2.1, J = 12.3, C6-H), 4.84 (t, 1H, J = 9.5, C4’’-H), 5.04 (dd, 1H, J = 9.0, J = 10.2, C2-H), 5.08 (d, 1H, J = 11.4, CH2Ph), 7.18-7.50 (aromatic H)
13C-NMR (CDCl3): δ 20.9, 27.0, 27.2, 38.7, 38.8, 58.7, 59.5, 60.3, 60.4, 60.6, 63.0, 69.7, 70.9, 72.1, 73.0, 74.3, 75.0, 78.2, 83.0, 83.5, 83.9, 85.0, 86.5, 103.0, 103.5, 126.6, 127.0, 127.8, 128.0, 128.8, 132.4, 133.2, 138.7, 169.8, 177.9
(2)化合物(71)(R 2 =Me)の製法
上記(1)で得られた化合物(70)を、NIS/AgOTfで処理して-SPhを−OHに変換し、水素雰囲気下Pd(OH)2-炭素による接触還元により脱ベンジル化し、ナトリウムメトキシドで脱エステル化して標記化合物を得た。

[実施例5]
(1)フェニル 4-O-アセチル-3-O-ベンジル-2,6-ジ-O-ピバロイル-β-D-グルコピラノシル-(1→4)-2,3,6-トリ-O-メチル-β-D-グルコピラノシル-(1→4)-2,3,6-トリ-O-メチル-1-チオ-β-D-グルコピラノシド(59)(R 2 =Me)
実施例1(8)で得られた化合物(20)(12.2 mg、0.024 mM)及び実施例3(14)で得られた化合物(43)(22.7 mg、0.047 mM)の無水ベンゼン(2 mL)溶液に、活性MS4A(200mg)を加え、室温で1.5h撹拌した。反応混合物に、Cp2HfCl2(19.7mg、0.052 mM)及びAgClO4(21.5mg、0.104 mM)を室温で加え、3.5h撹拌した。不溶物を濾別し、酢酸エチルで洗浄した。ろ液を酢酸エチルで希釈して、蒸留水、NaHCO3aq及びブラインで洗浄し、Na2SO4で乾燥後、濃縮乾燥した。生成物はPTLC(溶離剤: EtOAc: n-ヘキサン=1:2(v/v)で分離して、標記化合物(12.7mg、収率55%)を得た。
Calculated for C 49 H 72 O 18 S: 980.44; MALDI-TOF MS: [M + Na] + = 1003.17
1 H-NMR (CDCl 3 ): δ 1.17, 1.22 (s, s, 9H, 9H, COC (CH 3 ) 3 ), 2.08 (s, 3H, COCH 3 ), 3.08, 3.34, 3.48, 3.49, 3.55 ( s, 3H, 3H, 3H, 3H, 6H, OCH 3 ), 2.94-3.02 (t, t, C 2 ' -H and C 2'' -H), 3.12-3.24 (t, t, C 3'- H and C 3 '' -H), 3.3-3.6 (C 6 '' -H), 3.36-3.44 (C 5 '' -H), 3.6-3.7 (m, 1H, C 5 -H), 3.71 ( t, 1H, J = 8.4, C 3 -H), 3.82 (t, 1H, J = 9.0, C 4 -H), 4.20 (dd, 1H, J = 6.0, J = 12.0, C 6 -H), 4.30 (d, 1H, J = 7.8, C 1 '-H or C 1''-H), 4.35 (d, 1H, J = 8.1, C 1' -H or C 1 '' -H), 4.58 ( d, 1H, J = 11.7, CH 2 Ph), 4.66 (d, 1H, J = 10.2, C 1 -H), 4.71 (dd, 1H, J = 2.1, J = 12.3, C 6 -H), 4.84 (t, 1H, J = 9.5, C 4 '' -H), 5.04 (dd, 1H, J = 9.0, J = 10.2, C 2 -H), 5.08 (d, 1H, J = 11.4, CH 2 Ph ), 7.18-7.50 (aromatic H)
13 C-NMR (CDCl 3 ): δ 20.9, 27.0, 27.2, 38.7, 38.8, 58.7, 59.5, 60.3, 60.4, 60.6, 63.0, 69.7, 70.9, 72.1, 73.0, 74.3, 75.0, 78.2, 83.0, 83.5, 83.9, 85.0, 86.5, 103.0, 103.5, 126.6, 127.0, 127.8, 128.0, 128.8, 132.4, 133.2, 138.7, 169.8, 177.9
(2) Preparation of Compound (71) (R 2 = Me) Compound (70) obtained in (1) above was treated with NIS / AgOTf to convert -SPh to -OH, and Pd ( Debenzylation by catalytic reduction with OH) 2 -carbon and deesterification with sodium methoxide gave the title compound.

[Example 5]
(1) Phenyl 4-O-acetyl-3-O-benzyl-2,6-di-O-pivaloyl-β-D-glucopyranosyl- (1 → 4) -2,3,6-tri-O-methyl- β-D-glucopyranosyl- (1 → 4) -2,3,6-tri-O-methyl-1-thio-β-D-glucopyranoside (59) (R 2 = Me)
Compound (20) obtained in Example 1 (8) (12.2 mg, 0.024 mM) and compound (43) (22.7 mg, 0.047 mM) obtained in Example 3 (14) in anhydrous benzene (2 mL) To the solution was added active MS4A (200 mg), and the mixture was stirred at room temperature for 1.5 h. To the reaction mixture, Cp 2 HfCl 2 (19.7 mg, 0.052 mM) and AgClO 4 (21.5 mg, 0.104 mM) were added at room temperature and stirred for 3.5 h. Insoluble material was filtered off and washed with ethyl acetate. The filtrate was diluted with ethyl acetate, washed with distilled water, NaHCO 3 aq and brine, dried over Na 2 SO 4 and concentrated to dryness. The product was separated by PTLC (eluent: EtOAc: n-hexane = 1: 2 (v / v)) to give the title compound (12.7 mg, 55% yield).

Calculated for C49H72O18S: 980.44; MALDI-TOF MS: [M+Na]+ = 1003.29
1H-NMR (CDCl3): δ 1.19, 1.21 (s, s, 9H, 9H, COC(CH3)3), 1.93 (s, 3H, COCH3), 3.38, 3.42, 3.52, 3.57, 3.59 (s, 3H, 3H, 3H, 3H, 6H, OCH3), 2.88 (dd, 1H, J = 7.8, J = 9.0, C2’-H), 3.07 (dd, 1H, J = 8.7, J = 9.9, C2-H), 3.17 (t, 1H, J = 9.3, C3’-H), 3.15-3.22 (C5’-H), 3.26 (t, 1H, J = 8.4, C3-H), 3.34-3.42 (C5-H), 3.56-3.64 (1H, C5’’-H), 3.64-3.76 (1H, C4-H), 3.68-3.76 (C6-H and C6’-H), 3.73-3.78 (1H, C3’’-H), 3.74-3.80 (1H, C4’-H), 4.15 (dd, 1H, J = 12.6, J = 3.0, C6’’-H), 4.20 (dd, 1H, J = 4.2, J = 12.3, C6’’-H), 4.27 (d, 1H, J = 7.8, C1'-H), 4.50 (d, 1H, J = 9.9, C1-H), 4.53 (d, 1H, J = 12.3, CH2Ph), 4.61 (d, 1H, J = 8.1, C1’’-H), 4.63 (d, 1H, J = 11.4, CH2Ph), 5.09 (dd, 1H, J = 8.1, J = 9.6, C2’’-H), 5.19 (t, 1H, J = 9.6, C4’’-H), 7.19-7.55 (aromatic H)
13C-NMR (CDCl3): δ 20.7 (COCH3), 27.1 (COC(CH3)3), 27.2 (COC(CH3)3), 38.8 (COC(CH3)3), 59.1 (C6OCH3 or C6’OCH3), 59.4 (C6OCH3 or C6’OCH3), 60.7 (C2OCH3 or C2’OCH3, or C3OCH3 or C3’OCH3), 60.8 (C2OCH3 or C2’OCH3, or C3OCH3 or C3’OCH3), 62.1 (C6’’), 69.3 (C4’’), 70.3 (C6 or C6’), 70.4 (C6 or C6’), 72.1 (C5’’), 72.5 (C2’’), 73.2 (CH2Ph), 74.6 (C5’), 75.8 (C4’), 77.8 (C4), 79.0 (C5), 80.8 (C3’’), 82.0 (C2), 83.4 (C2’), 84.7 (C3’), 86.8 (C3), 87.3 (C1), 99.9 (C1’’), 103.3 (C1’), 127.3, 127.5, 127.7, 128.4, 128.8, 131.8, 133.9, 137.6 (aromatic C), 169.2 (COCH3), 176.5 (COC(CH3)3), 178.2 (COC(CH3)3)
(2)化合物(60)(R 2 =Me)の製法
上記(1)で得られた化合物(59)を、NIS/AgOTf/アセトン-H20で処理して-SPhを−OHに変換して標記化合物を得た。
(3)化合物(61)(R 2 =Me)の製法
上記(2)で得られた化合物(59)を、水素雰囲気下Pd(OH)2-炭素による接触還元により脱ベンジル化し、ナトリウムメトキシドで脱エステル化して標記化合物を得た。

[実施例6]
(1)フェニル 2,3,4,6-テトラ-O-アセチル-β-D-ガラクトピラノシル-(1→4)-2,3,6-トリ-O-アセチル-β-D-グルコピラノシル-(1→4)-2,3,6-トリ-O-メチル-β-D-グルコピラノシル-(1→4)-2,3,6-トリ-O-メチル-1-チオ-β-D-グルコピラノシド(62)(R 2 =Me)
実施例1(8)で得られた化合物(20)(10mg、0.019 mM)及び実施例3(10)で得られた化合物(48)(26.9mg、0.039 mM)の無水塩化メチレン(5 mL)溶液に、活性MS4A(200mg)を加えて、室温で4h撹拌した。反応混合物に、AgOTf(19.8mg、0.077 mM)を室温で加えて3日間撹拌した。不溶物を濾別し、酢酸エチルで洗浄した。ろ液を酢酸エチルで希釈して、蒸留水、NaHCO3aq及びブラインで洗浄し、Na2SO4で乾燥後、濃縮乾燥した。生成物はPTLC(溶離剤: EtOAc: n-ヘキサン=2:1(v/v)で分離して、標記化合物(1.8mg、収率6%)を得た。
Calculated for C 49 H 72 O 18 S: 980.44; MALDI-TOF MS: [M + Na] + = 1003.29
1 H-NMR (CDCl 3 ): δ 1.19, 1.21 (s, s, 9H, 9H, COC (CH 3 ) 3 ), 1.93 (s, 3H, COCH 3 ), 3.38, 3.42, 3.52, 3.57, 3.59 ( s, 3H, 3H, 3H, 3H, 6H, OCH 3 ), 2.88 (dd, 1H, J = 7.8, J = 9.0, C 2 ' -H), 3.07 (dd, 1H, J = 8.7, J = 9.9 , C 2 -H), 3.17 (t, 1H, J = 9.3, C 3 ' -H), 3.15-3.22 (C 5' -H), 3.26 (t, 1H, J = 8.4, C 3 -H) , 3.34-3.42 (C 5 -H), 3.56-3.64 (1H, C 5 '' -H), 3.64-3.76 (1H, C 4 -H), 3.68-3.76 (C 6 -H and C 6 '- H), 3.73-3.78 (1H, C 3 '' -H), 3.74-3.80 (1H, C 4 ' -H), 4.15 (dd, 1H, J = 12.6, J = 3.0, C 6'' -H ), 4.20 (dd, 1H, J = 4.2, J = 12.3, C 6 '' -H), 4.27 (d, 1H, J = 7.8, C 1 ' -H), 4.50 (d, 1H, J = 9.9 , C 1 -H), 4.53 (d, 1H, J = 12.3, CH 2 Ph), 4.61 (d, 1H, J = 8.1, C 1 '' -H), 4.63 (d, 1H, J = 11.4, CH 2 Ph), 5.09 (dd , 1H, J = 8.1, J = 9.6, C 2 '' -H), 5.19 (t, 1H, J = 9.6, C 4 '' -H), 7.19-7.55 (aromatic H)
13 C-NMR (CDCl 3 ): δ 20.7 (COCH 3 ), 27.1 (COC (CH 3 ) 3 ), 27.2 (COC (CH 3 ) 3 ), 38.8 (COC (CH 3 ) 3 ), 59.1 (C 6 OCH 3 or C 6 ' OCH 3 ), 59.4 (C 6 OCH 3 or C 6' OCH 3 ), 60.7 (C 2 OCH 3 or C 2 ' OCH 3 , or C 3 OCH 3 or C 3' OCH 3 ), 60.8 (C 2 OCH 3 or C 2 ' OCH 3 , or C 3 OCH 3 or C 3' OCH 3 ), 62.1 (C 6 '' ), 69.3 (C 4 '' ), 70.3 (C 6 or C 6 ' ), 70.4 (C 6 or C 6 ' ), 72.1 (C 5'' ), 72.5 (C 2'' ), 73.2 (CH 2 Ph), 74.6 (C 5' ), 75.8 (C 4 ' ), 77.8 (C 4 ), 79.0 (C 5 ), 80.8 (C 3 '' ), 82.0 (C 2 ), 83.4 (C 2 ' ), 84.7 (C 3' ), 86.8 (C 3 ), 87.3 (C 1 ) , 99.9 (C 1 '' ), 103.3 (C 1 ' ), 127.3, 127.5, 127.7, 128.4, 128.8, 131.8, 133.9, 137.6 (aromatic C), 169.2 (COCH 3 ), 176.5 (COC (CH 3 ) 3 ), 178.2 (COC (CH 3 ) 3 )
(2) Preparation of compound (60) (R 2 = Me) Compound (59) obtained in (1) above was treated with NIS / AgOTf / acetone-H 2 0 to convert -SPh to -OH. To give the title compound.
(3) Preparation of Compound (61) (R 2 = Me) Compound (59) obtained in (2) above was debenzylated by catalytic reduction with Pd (OH) 2 -carbon in a hydrogen atmosphere, and sodium methoxide. To give the title compound.

[Example 6]
(1) Phenyl 2,3,4,6-tetra-O-acetyl-β-D-galactopyranosyl- (1 → 4) -2,3,6-tri-O-acetyl-β-D-glucopyranosyl -(1 → 4) -2,3,6-Tri-O-methyl-β-D-glucopyranosyl- (1 → 4) -2,3,6-tri-O-methyl-1-thio-β-D -Glucopyranoside (62) (R 2 = Me)
Anhydrous methylene chloride (5 mL) of the compound (20) obtained in Example 1 (8) (10 mg, 0.019 mM) and the compound (48) obtained in Example 3 (10) (26.9 mg, 0.039 mM) Active MS4A (200 mg) was added to the solution and stirred at room temperature for 4 h. To the reaction mixture, AgOTf (19.8 mg, 0.077 mM) was added at room temperature and stirred for 3 days. Insoluble material was filtered off and washed with ethyl acetate. The filtrate was diluted with ethyl acetate, washed with distilled water, NaHCO 3 aq and brine, dried over Na 2 SO 4 and concentrated to dryness. The product was separated by PTLC (eluent: EtOAc: n-hexane = 2: 1 (v / v) to give the title compound (1.8 mg, 6% yield).

1H-NMR (CDCl3): δ 2.92 (dd, 1H, J = 8.1, J = 8.7, C2’-H), 3.07 (dd, 1H, J = 8.7, J = 9.9, C2-H), 3.17 (t, 1H, J = 9.0, C3’-H), 3.18-3.26 (C5’-H), 3.29 (t, 1H, J = 9.0 C3-H), 3.3-3.44 (m), 3.37, 3.40, 3.52, 3.53 (3H, 3H, 3H, 3H, OCH3), 3.59 (6H, OCH3), 3.5-3.9 (m), 4.07 (dd, J = 7.2, J = 11.7), 4.10 (t, 1H, J = 7.2), 4.17 (dd, 1H, J = 3.9, J = 11.1), 4.28 (d, 1H, J = 7.5), 4.36-4.56 (3H), 4.71 (d, 1H, J = 8.1, 4.88 (t, 1H, J = 7.8), 4.95 (dd, 1H, J = 3.3, J = 10.8), 5.10 (dd, 1H, J = 7.5, J = 9.9), 5.17 (t, 1H, J = 9.0), 5.35 (dd, 1H, J3’, 4’ = 3.6, C4’’’-H)
(2)化合物(63)(R 2 =Me)の製法
上記(1)で得られた化合物(62)を、NIS/AgOTf/アセトン-H20で処理して-SPhを−OHに変換して標記化合物を得た。
(3)化合物(64)(R 2 =Me)の製法
上記(2)で得られた化合物(63)を、ナトリウムメトキシドで脱エステル化して標記化合物を得た。

[実施例7]
(1)フェニル 4-O-アセチル-2,3,6-トリ-O-ベンジル-β-D-グルコピラノシル-(1→4)-2,3,6-トリ-O-ベンジル-β-D-グルコピラノシル-(1→4)-2,3,6-トリ-O-メチル-β-D-グルコピラノシル-(1→4)-2,3,6-トリ-O-メチル-1-チオ-β-D-グルコピラノシド(65)(R 2 =Me)
実施例3(8)で得られた化合物(56) (38.9mg、0.036 mM)及び実施例1(8)で得られた化合物(20)(10mg、0.019 mM)の無水塩化メチレン(1.0mL)溶液に、三フッ化ホウ素ジエチルエーテル錯体(0.24μL、0.0019 mM)を-78℃で加えた。反応温度を-50℃まで徐々に昇温し2h撹拌した。三フッ化ホウ素ジエチルエーテル錯体(1.0μL)を再度-50℃で加えて1日間撹拌した。混合物を酢酸エチルで希釈して、飽和NaHCO3aq及びブラインで洗浄し、Na2SO4で乾燥後、濃縮乾燥した。生成物はPTLC(溶離剤: EtOAc: n-ヘキサン=1:2(v/v)で分離して、標記化合物(22.4mg、収率81%)を得た。
1 H-NMR (CDCl 3 ): δ 2.92 (dd, 1H, J = 8.1, J = 8.7, C 2 ' -H), 3.07 (dd, 1H, J = 8.7, J = 9.9, C 2 -H) , 3.17 (t, 1H, J = 9.0, C 3 ' -H), 3.18-3.26 (C 5' -H), 3.29 (t, 1H, J = 9.0 C 3 -H), 3.3-3.44 (m) , 3.37, 3.40, 3.52, 3.53 (3H, 3H, 3H, 3H, OCH 3 ), 3.59 (6H, OCH 3 ), 3.5-3.9 (m), 4.07 (dd, J = 7.2, J = 11.7), 4.10 (t, 1H, J = 7.2), 4.17 (dd, 1H, J = 3.9, J = 11.1), 4.28 (d, 1H, J = 7.5), 4.36-4.56 (3H), 4.71 (d, 1H, J = 8.1, 4.88 (t, 1H, J = 7.8), 4.95 (dd, 1H, J = 3.3, J = 10.8), 5.10 (dd, 1H, J = 7.5, J = 9.9), 5.17 (t, 1H, J = 9.0), 5.35 (dd, 1H, J 3 ', 4' = 3.6, C 4 ''' -H)
(2) Preparation of Compound (63) (R 2 = Me) Compound (62) obtained in (1) above was treated with NIS / AgOTf / acetone-H 2 0 to convert -SPh to -OH. To give the title compound.
(3) Preparation of compound (64) (R 2 = Me) Compound (63) obtained in (2) above was deesterified with sodium methoxide to give the title compound.

[Example 7]
(1) Phenyl 4-O-acetyl-2,3,6-tri-O-benzyl-β-D-glucopyranosyl- (1 → 4) -2,3,6-tri-O-benzyl-β-D- Glucopyranosyl- (1 → 4) -2,3,6-tri-O-methyl-β-D-glucopyranosyl- (1 → 4) -2,3,6-tri-O-methyl-1-thio-β- D-Glucopyranoside (65) (R 2 = Me)
Compound (56) (38.9 mg, 0.036 mM) obtained in Example 3 (8) and compound (20) (10 mg, 0.019 mM) obtained in Example 1 (8) in anhydrous methylene chloride (1.0 mL) To the solution was added boron trifluoride diethyl ether complex (0.24 μL, 0.0019 mM) at −78 ° C. The reaction temperature was gradually raised to −50 ° C. and stirred for 2 h. Boron trifluoride diethyl ether complex (1.0 μL) was added again at −50 ° C. and stirred for 1 day. The mixture was diluted with ethyl acetate, washed with saturated NaHCO 3 aq and brine, dried over Na 2 SO 4 and concentrated to dryness. The product was separated by PTLC (eluent: EtOAc: n-hexane = 1: 2 (v / v)) to give the title compound (22.4 mg, 81% yield).

1H-NMR (CDCl3): δ 1.8 (3H, COCH3), 2.95 (dd, 1H, J = 7.8, J = 9.0, C2’-H), 3.09 (dd, 1H, J = 8.7, J = 9.6, C2-H), 3.18 (t, 1H, J = 8.7, C3’-H), 3.28, 3.40, 3.55, 3.56, 3.59, 3.60 (3H, 3H, 3H, 3H, 3H, 3H, OCH3), 4.04 (t, 1H, J = 9.6, C4’’-H), 4.31 (d, 1H, J = 7.8, C1'-H), 4.43 (d, 1H, J = 7.5, C1'’-H), 4.51 (d, 1H, J = 10.2, C1-H), 4.56 (d, 1H, J = 7.2, C1'’’-H), 4.96 (t, 1H, J = 8.7, C4’’’-H), 7.2-7.6 (aromatic H)
13C-NMR (CDCl3): δ 20.8 (COCH3), 59.0 (OCH3), 59.2 (OCH3), 60.7 (OCH3), 60.7 (OCH3), 60.8 (OCH3), 67.7, 69.9, 70.4, 71.5 (C4’’’), 73.3, 73.5, 74.7, 75.1, 75.2, 76.4 (C4’’), 76.5-77.0 (C4’), 77.9, 78.9, 82.0 (C2), 82.5, 83.2, 83.4 (C2’), 85.0 (C3’), 86.7 (C3), 87.2 (C1), 102.2 (C1’’’), 102.8 (C1’’), 103.4 (C1’), 127.3, 127.4, 127.5, 127.5, 127.7, 127.7, 127.9, 127.9, 128.0, 128.2, 128.2, 128.3, 128.8, 131.7, 133.8, 136.5,, 138.1, 138.3, 138.3, 139.0, 169.9 (COCH3)
(2)化合物(66)(R 2 =Me)の製法
上記(1)で得られた化合物(65)を、NIS/AgOTf/アセトン-H20で処理して-SPhを−OHに変換して標記化合物を得た。
(3)化合物(67)(R 2 =Me)の製法
上記(2)で得られた化合物(66)を、水素雰囲気下Pd(OH)2-炭素による接触還元により脱ベンジル化し、ナトリウムメトキシドで脱エステル化して標記化合物を得た。

[実施例8]
(1)化合物(37)の製法
実施例1(4)で得られた化合物(16)を、本文の反応式8に記載の方法に従って化合物(37)を得た。
(2)化合物(57)(R 2 =Me)の製法
上記(1)で得られた化合物(37)(11.3mg、0.012 mM)及び実施例1(8)で得られた化合物(20)(5.6mg、0.011 mM)の無水ベンゼン(2 mL)溶液に、活性MS4A(200mg)を加えて、室温で1.5h撹拌した。反応混合物に、Cp2HfCl2(5.0mg、0.013 mM)およびAgClO4(5.4mg、0.026 mM)を室温で加えて、3日間撹拌した。不溶物を濾別し、酢酸エチルで洗浄後、ろ液を酢酸エチルで希釈して、蒸留水、NaHCO3aq及びブラインで洗浄し、Na2SO4で乾燥後、濃縮乾燥した。生成物をPTLC(溶離剤: EtOAc:n-ヘキサン=1:2(v/v)で単離して、標記化合物(1.6mg、収率10%)。
(3)化合物(58)(R 2 =Me)の製法
上記(2)で得られた化合物(57)を、ナトリウムメトキシドで脱エステル化して標記化合物を得た。

[実施例9]
(1)フェニル 4-O-アセチル-2,3,6-トリ-O-ベンジル-β-D-グルコピラノシル-(1→4)-2,3,6-トリ-O-ベンジル-β-D-グルコピラノシル-(1→4)-2,3,6-トリ-O-メチル-β-D-グルコピラノシル-(1→4)-2,3,6-トリ-O-メチル-β-D-グルコピラノシル-(1→4)-2,3,6-トリ-O-メチル-β-D-グルコピラノシル-(1→4)-2,3,6-トリ-O-メチル-1-チオ-β-D-グルコピラノシド(86)(R 2 =Me)
真空ラインに接続したガラス反応管に、実施例3(8)で得られた化合物(56) (40 mg, 0.0375 mmol, 1.4 equiv.)及び実施例1(8)で得られた化合物(26) (25.5 mg, 0.0276 mmol, 1.0 equiv.)を入れて、高真空下一晩乾燥させた。無水塩化メチレン (1mL)を真空ライン中でガラス反応管に移し、反応管部分を液体窒素で冷却しながら、ガスバーナーを用いてガラス反応管と真空ラインの接続ガラス部を焼き切った。反応管を-78℃の恒温槽に移し攪拌した。三フッ化ホウ素エーテル錯体(0.24 μL, 1.87×10-3 mmol, 0.05 mol%)を加え-78℃で27.5時間反応させた。その後、反応溶液を酢酸エチルで抽出し、飽和炭酸水素ナトリウム、蒸留水、飽和食塩水で洗浄し、硫酸ナトリウムで乾燥後、濃縮した。反応混合物をPTLCによって分離精製(溶離剤:EtOAc/n-ヘキサン=1:1, v/v, 2回)して、標記化合物(14.7 mg, 5.95´10-3 mmol, 収率29.1%)を得た。
1 H-NMR (CDCl 3 ): δ 1.8 (3H, COCH 3 ), 2.95 (dd, 1H, J = 7.8, J = 9.0, C 2 ' -H), 3.09 (dd, 1H, J = 8.7, J = 9.6, C 2 -H), 3.18 (t, 1H, J = 8.7, C 3 ' -H), 3.28, 3.40, 3.55, 3.56, 3.59, 3.60 (3H, 3H, 3H, 3H, 3H, 3H, OCH 3 ), 4.04 (t, 1H, J = 9.6, C 4 '' -H), 4.31 (d, 1H, J = 7.8, C 1 ' -H), 4.43 (d, 1H, J = 7.5, C 1 '' -H), 4.51 (d, 1H, J = 10.2, C 1 -H), 4.56 (d, 1H, J = 7.2, C 1 ''' -H), 4.96 (t, 1H, J = 8.7, C 4 ''' -H), 7.2-7.6 (aromatic H)
13 C-NMR (CDCl 3 ): δ 20.8 (COCH 3 ), 59.0 (OCH 3 ), 59.2 (OCH 3 ), 60.7 (OCH 3 ), 60.7 (OCH 3 ), 60.8 (OCH 3 ), 67.7, 69.9, 70.4, 71.5 (C 4 ''' ), 73.3, 73.5, 74.7, 75.1, 75.2, 76.4 (C 4'' ), 76.5-77.0 (C 4' ), 77.9, 78.9, 82.0 (C 2 ), 82.5, 83.2, 83.4 (C 2 ' ), 85.0 (C 3' ), 86.7 (C 3 ), 87.2 (C 1 ), 102.2 (C 1 ''' ), 102.8 (C 1'' ), 103.4 (C 1' ), 127.3, 127.4, 127.5, 127.5, 127.7, 127.7, 127.9, 127.9, 128.0, 128.2, 128.2, 128.3, 128.8, 131.7, 133.8, 136.5 ,, 138.1, 138.3, 138.3, 139.0, 169.9 (COCH 3 )
(2) Preparation of Compound (66) (R 2 = Me) Compound (65) obtained in (1) above was treated with NIS / AgOTf / acetone-H 2 0 to convert -SPh to -OH. To give the title compound.
(3) Preparation of Compound (67) (R 2 = Me) Compound (66) obtained in (2) above was debenzylated by catalytic reduction with Pd (OH) 2 -carbon in a hydrogen atmosphere, and sodium methoxide. To give the title compound.

[Example 8]
(1) Preparation of Compound (37) Compound (37) was obtained from Compound (16) obtained in Example 1 (4) according to the method described in Reaction Scheme 8 in the text.
(2) Preparation of Compound (57) (R 2 = Me) Compound (37) (11.3 mg, 0.012 mM) obtained in (1) above and Compound (20) (1) obtained in Example 1 (8) ( Active MS4A (200 mg) was added to a solution of 5.6 mg, 0.011 mM) in anhydrous benzene (2 mL), and the mixture was stirred at room temperature for 1.5 h. To the reaction mixture, Cp 2 HfCl 2 (5.0 mg, 0.013 mM) and AgClO 4 (5.4 mg, 0.026 mM) were added at room temperature and stirred for 3 days. The insoluble material was filtered off and washed with ethyl acetate. The filtrate was diluted with ethyl acetate, washed with distilled water, NaHCO 3 aq and brine, dried over Na 2 SO 4 and concentrated to dryness. The product was isolated by PTLC (eluent: EtOAc: n-hexane = 1: 2 (v / v) to give the title compound (1.6 mg, 10% yield).
(3) Preparation of Compound (58) (R 2 = Me) Compound (57) obtained in (2) above was deesterified with sodium methoxide to give the title compound.

[Example 9]
(1) Phenyl 4-O-acetyl-2,3,6-tri-O-benzyl-β-D-glucopyranosyl- (1 → 4) -2,3,6-tri-O-benzyl-β-D- Glucopyranosyl- (1 → 4) -2,3,6-tri-O-methyl-β-D-glucopyranosyl- (1 → 4) -2,3,6-tri-O-methyl-β-D-glucopyranosyl- (1 → 4) -2,3,6-Tri-O-methyl-β-D-glucopyranosyl- (1 → 4) -2,3,6-tri-O-methyl-1-thio-β-D- Glucopyranoside (86) (R 2 = Me)
In a glass reaction tube connected to a vacuum line, the compound (56) obtained in Example 3 (8) (40 mg, 0.0375 mmol, 1.4 equiv.) And the compound (26) obtained in Example 1 (8) were used. (25.5 mg, 0.0276 mmol, 1.0 equiv.) Was added and dried overnight under high vacuum. Anhydrous methylene chloride (1 mL) was transferred to a glass reaction tube in a vacuum line, and while the reaction tube part was cooled with liquid nitrogen, the connecting glass part of the glass reaction tube and the vacuum line was burned out using a gas burner. The reaction tube was transferred to a -78 ° C constant temperature bath and stirred. Boron trifluoride ether complex (0.24 μL, 1.87 × 10 −3 mmol, 0.05 mol%) was added and reacted at −78 ° C. for 27.5 hours. Thereafter, the reaction solution was extracted with ethyl acetate, washed with saturated sodium bicarbonate, distilled water and saturated brine, dried over sodium sulfate, and concentrated. The reaction mixture was separated and purified by PTLC (eluent: EtOAc / n-hexane = 1: 1, v / v, 2 times) to give the title compound (14.7 mg, 5.95 × 10 −3 mmol, yield 29.1%). Obtained.

1H-NMR (CDCl3): δ 1.8 (3H, COCH3), 2.91-3.00 (3H, t, t, t), 3.09 (dd, 1H, J=9, 9.6, H2), 3.28, 3.38, 3.39, 3.41, 3.54, 3.56, 3.57, 3.59, 3.60, 3.62 (OCH3), 3.88 (dd, 1H, H6’’’’), 4.04 (t, 1H, J=9.3, H4’’’’), 4.22 (d, 1H, J=11.7, CH2Ph), 4.32 (d, 1H, J=7.8, H1’ or, H1’’ or H1’’’), 4.32-4.36 (2H, H1’ or, H1’’ or H1’’’), (4.37 (d, 1H, J=11.7, CH2Ph), 4.43 (d, 1H, J=7.5, H1’’’’), 4.51 (d, 1H, J=9.9, H1), 4.56 (d, 1H, J=7.2, H1’’’’’), 4.61 (d, 1H, J=11.4, CH2Ph), 4.66 (d, 1H, J=11.4, CH2Ph), 4.68-4.84 (7H, CH2Ph), 4.96 (t, 1H, J = 9.0, H4’’’’’), 5.01 (d, 1H, J=11.1, CH2Ph), 7.2-7.6 (aromatic H)
13C-NMR (CDCl3): δ 20.8 (COCH3), 59.0, 59.1, 59.2, 59.2, 60.3, 60.4, 60.6, 60.6, 60.7, 60.7, 60.8 (OCH3), 67.8 (C6’’’’), 70.0, 70.2, 70.5, 71.6 (C4’’’’’), 73.3, 73.5, 74.9, 75.1, 75.2, 75.3, 76.4 (C4’’’’), 76.8, 77.2, 77.6, 77.8, 79.0, 82.1, 82.5, 83.3, 83.5, 83.6, 85.1, 85.1, 85.1, 86.8, 87.3 (C1), 102.2 (C1’’’’’), 102.8 (C1’’’’), 103.1 (C1’ or C1’’ or C1’’’), 103.2 (C1’ or C1’’ or C1’’’), 103.3 (C1’ or C1’’ or C1’’’), 127.3, 127.4, 127.5, 127.7, 127.7, 127.9, 128.0, 128.0, 128.2, 128.2, 128.3, 128.8, 131.7, 133.9, 138.2, 138.3, 138.3, 138.4, 138.4, 139.1 (aromatic C), 169.9 (COCH3)
MALDI-TOF: calculated m/z 1832.82; found m/z: found [M+Na]+ = 1855.795
(2)化合物(87)(R 2 =Me)の製法
上記(1)で得られた化合物(86)を、NIS/AgOTf/アセトン-H20で処理して-SPhを−OHに変換して標記化合物を得た。
(3)化合物(88)(R 2 =Me)の製法
上記(2)で得られた化合物(87)を、水素雰囲気下Pd(OH)2-炭素による接触還元により脱ベンジル化し、ナトリウムメトキシドで脱エステル化して標記化合物を得た。

[実施例10]
(1)フェニル 4-O-アセチル-3−O-ベンジル-2,6-ジ-O-ピバロイル−β-D-グルコピラノシル-(1→4)-2,3,6-トリ-O-メチル-β-D-グルコピラノシル-(1→4)-2,3,6-トリ-O-メチル-β-D-グルコピラノシル-(1→4)-2,3,6-トリ-O-メチル-β-D-グルコピラノシル-(1→4)-2,3,6-トリ-O-メチル-1-チオ-β-D-グルコピラノシド(89)(R 2 =Me)
真空ラインに接続したガラス反応管に実施例3(14)で得られた化合物(43) (10.8 mg, 0.0224 mmol, 2.1 equiv.)、実施例1(8)で得られた化合物(26)(10 mg, 0.0107 mmol, 1.0 equiv.)及びMolecular Sieves 4A (500mg)を入れて、高真空下一晩乾燥させた。無水benzene (5mL)を真空ライン中でガラス反応管に移した。Cp2HfCl2 (9.1 mg, 0.0237 mmol, 1,1 equiv.)とAgClO4 (9.9 mg, 0.0475 mmol, 2.2 equiv.)を真空ライン中、反応容器へ移し、室温で反応を開始した。19時間後、セライトを用いて濾過し、EtOAcで洗浄した。濾液を酢酸エチルで希釈し、飽和炭酸水素ナトリウム、蒸留水、飽和食塩水で洗浄、硫酸ナトリウムで乾燥、濃縮した。反応混合物はPTLCによって分離精製(EtOAc/n-Hexane=2:1, v/v, )し、標記化合物(4.6 mg, 3.31´10-3mmol, 収率30.1%)を得た。
1 H-NMR (CDCl 3 ): δ 1.8 (3H, COCH 3 ), 2.91-3.00 (3H, t, t, t), 3.09 (dd, 1H, J = 9, 9.6, H2), 3.28, 3.38, 3.39, 3.41, 3.54, 3.56, 3.57, 3.59, 3.60, 3.62 (OCH 3 ), 3.88 (dd, 1H, H6`` ''), 4.04 (t, 1H, J = 9.3, H4 ''''), 4.22 (d, 1H, J = 11.7, CH 2 Ph), 4.32 (d, 1H, J = 7.8, H1 'or, H1''orH1'''), 4.32-4.36 (2H, H1 'or, H1 '' or H1 '''), (4.37 (d, 1H, J = 11.7, CH 2 Ph), 4.43 (d, 1H, J = 7.5, H1``''), 4.51 (d, 1H, J = 9.9, H1), 4.56 (d, 1H, J = 7.2, H1 '''''), 4.61 (d, 1H, J = 11.4, CH 2 Ph), 4.66 (d, 1H, J = 11.4, CH 2 Ph), 4.68-4.84 (7H, CH 2 Ph), 4.96 (t, 1H, J = 9.0, H4 '''''), 5.01 (d, 1H, J = 11.1, CH 2 Ph), 7.2-7.6 (aromatic H)
13 C-NMR (CDCl 3 ): δ 20.8 (COCH 3 ), 59.0, 59.1, 59.2, 59.2, 60.3, 60.4, 60.6, 60.6, 60.7, 60.7, 60.8 (OCH 3 ), 67.8 (C6`` '') , 70.0, 70.2, 70.5, 71.6 (C4 '''''), 73.3, 73.5, 74.9, 75.1, 75.2, 75.3, 76.4 (C4''''), 76.8, 77.2, 77.6, 77.8, 79.0, 82.1, 82.5, 83.3, 83.5, 83.6, 85.1, 85.1, 85.1, 86.8, 87.3 (C1), 102.2 (C1 '''''), 102.8 (C1''''), 103.1 (C1' or C1 '' or C1 '''), 103.2 (C1' or C1 '' or C1 '''), 103.3 (C1' or C1 '' or C1 '''), 127.3, 127.4, 127.5, 127.7, 127.7, 127.9, 128.0, 128.0 , 128.2, 128.2, 128.3, 128.8, 131.7, 133.9, 138.2, 138.3, 138.3, 138.4, 138.4, 139.1 (aromatic C), 169.9 (COCH 3 )
MALDI-TOF: calculated m / z 1832.82; found m / z: found [M + Na] + = 1855.795
(2) Preparation of Compound (87) (R 2 = Me) Compound (86) obtained in (1) above was treated with NIS / AgOTf / acetone-H 2 0 to convert -SPh to -OH. To give the title compound.
(3) Preparation of Compound (88) (R 2 = Me) Compound (87) obtained in (2) above was debenzylated by catalytic reduction with Pd (OH) 2 -carbon in a hydrogen atmosphere to obtain sodium methoxide. To give the title compound.

[Example 10]
(1) Phenyl 4-O-acetyl-3-O-benzyl-2,6-di-O-pivaloyl-β-D-glucopyranosyl- (1 → 4) -2,3,6-tri-O-methyl- β-D-glucopyranosyl- (1 → 4) -2,3,6-tri-O-methyl-β-D-glucopyranosyl- (1 → 4) -2,3,6-tri-O-methyl-β- D-glucopyranosyl- (1 → 4) -2,3,6-tri-O-methyl-1-thio-β-D-glucopyranoside (89) (R 2 = Me)
The compound (43) (10.8 mg, 0.0224 mmol, 2.1 equiv.) Obtained in Example 3 (14) and the compound (26) obtained in Example 1 (8) were placed in a glass reaction tube connected to a vacuum line. 10 mg, 0.0107 mmol, 1.0 equiv.) And Molecular Sieves 4A (500 mg) were added and dried overnight under high vacuum. Anhydrous benzene (5 mL) was transferred to a glass reaction tube in a vacuum line. Cp 2 HfCl 2 (9.1 mg, 0.0237 mmol, 1,1 equiv.) And AgClO 4 (9.9 mg, 0.0475 mmol, 2.2 equiv.) Were transferred to a reaction vessel in a vacuum line, and the reaction was started at room temperature. After 19 hours, filtered through celite and washed with EtOAc. The filtrate was diluted with ethyl acetate, washed with saturated sodium bicarbonate, distilled water and saturated brine, dried over sodium sulfate, and concentrated. The reaction mixture was separated and purified by PTLC (EtOAc / n-Hexane = 2: 1, v / v,) to obtain the title compound (4.6 mg, 3.31′10 −3 mmol, yield 30.1%).

1H-NMR (CDCl3): δ 1.19, 1.22 (9H, 9H, C2-O-COC(CH3)3, C6-O-COC(CH3)3, respectively), 1.93 (3H, COCH3), 2.88 (dd, 1H, J=7.8, 9.3, H2’’’), 2.9-3.0 (dd, dd, 2H, H2’ and H2’’), 3.08 (dd, 1H, J=8.7, 9.9, H2), 3.13-3.24 (3H, H3’ and H3’’ and H3’’’), 3.26-3.42 (H5, H5’, H5’’, and H5’’’), 3.28 (t, J=8.7, H3), 3.38, 3.38, 3.39, 3.42, 3.52, 3.54, 3.56, 3.57, 3.58, 3.60, 3.61 (OCH3), 3.58-3.66 (H5’’’’), 3.66-3.80 (H4, H4’, and H4’’), 3.75-3.84 (H4’’’), 3.65-3.84 (H6, H6’, H6’’, and H6’’’), 4.15 (dd, 1H, J=3.0, H6’’’’), 4.21 (dd, 1H, J=4.2, 12.6, H6’’’’), 4.29 (d, 1H, J=7.2, H1’’’), 4.31 (d, 1H, J=7.6), 4.34 (d, 1H, J=7.8), 4.51 (d, 1H, J=9.9, H1), 4.53 (d, 1H, J=11.1, CH2Ph), 4.61 (d, 1H, J=7.8, H1’’’’), 4.63 (d, 1H, J=11.1, CH2Ph), 5.09 (dd, 1H, J=7.8, 9.3, H2’’’’), 5.19 (t, 1H, J=9.3, H4’’’’)
13C-NMR (CDCl3): δ 20.7 (COCH3), 27.1, 27.2 (COC(CH3)3), 38.8 (COC(CH3)3), 59.2, 59.4, 60.4, 60.6, 60.7, 60.8 (OCH3), 62.1 (C6’’’’), 69.2 (C4’’’’), 70.2 (C6 and/or C6’ and/or C6’’ and/or C6’’’), 70.5 (C6 and/or C6’ and/or C6’’ and/or C6’’’), 72.1 (C5’’’’), 72.5 (C2’’’’), 73.2 (CH2Ph), 74.5 (C5’ and/or C5’’ or C5’’’), 74.7 (C5’ or C5’’ or C5’’’), 74.8 (C5’ or C5’’ or C5’’’), 75.9 (C4’’’), 77.8 (C4 and C4’ and C4’’), 79.0 (C5), 80.8 (C3’’’’), 82.0 (C2), 83.4 (C2’ and/or C2’’ and/or C2’’’), 83.5 (C2’ and/or C2’’ and/or C2’’’), 84.8 (C3’ and/or C3’’ and/or C3’’’), 85.0(C3’ and/or C3’’ and/or C3’’’), 86.7 (C3), 87.3 (C1), 99.9 (C1’’’’), 103.1 (C1’ and/or C1’’ and/or C1’’’), 103.3 (C1’ and/or C1’’ and/or C1’’’), 127.3, 127.5, 127.7, 128.4, 137.6 (aromatic C), 169.2 (COCH3), 176.5, 178.2 (COC(CH3)3)
MALDI-TOF: calculated m/z 1388.64 found m/z: found [M+Na]+ = 1411.319
(2)化合物(90)(R 2 =Me)の製法
上記(1)で得られた化合物(89)を、NIS/AgOTf/アセトン-H20で処理して-SPhを−OHに変換して標記化合物を得た。
(3)化合物(91)(R 2 =Me)の製法
上記(2)で得られた化合物(90)を、水素雰囲気下Pd(OH)2-炭素による接触還元により脱ベンジル化し、ナトリウムメトキシドで脱エステル化して標記化合物を得た。

[試験例3](光散乱法)
水溶液中でのセロオリゴ糖誘導体の会合状態を知るため、光散乱法を用いて、セロオリゴ糖誘導体からなる会合体(ナノ粒子)の形状を観察した。
(1)会合体(ナノ粒子)の半径の測定条件
試験例1で得られたPart Aの水溶液について、光散乱光度計(SLS-5000HM、大塚電子(株)製)を用いて、下記の条件で静的光散乱を測定した。また、動的光散乱(DLS)は、ALV-5000/E correlator (ALV Co.)を備えた光散乱光度計(SLS-5000HM、大塚電子(株)製)を用いて測定した。
1 H-NMR (CDCl 3 ): δ 1.19, 1.22 (9H, 9H, C2-O-COC (CH 3 ) 3 , C6-O-COC (CH 3 ) 3 , respectively), 1.93 (3H, COCH 3 ) , 2.88 (dd, 1H, J = 7.8, 9.3, H2 '''), 2.9-3.0 (dd, dd, 2H, H2' and H2 ''), 3.08 (dd, 1H, J = 8.7, 9.9, H2 ), 3.13-3.24 (3H, H3 'and H3''andH3'''), 3.26-3.42 (H5, H5 ', H5'', and H5'''), 3.28 (t, J = 8.7, H3 ), 3.38, 3.38, 3.39, 3.42, 3.52, 3.54, 3.56, 3.57, 3.58, 3.60, 3.61 (OCH 3 ), 3.58-3.66 (H5`` ''), 3.66-3.80 (H4, H4 ', and H4 ''), 3.75-3.84 (H4 '''), 3.65-3.84 (H6, H6', H6 '', and H6 '''), 4.15 (dd, 1H, J = 3.0, H6'''') , 4.21 (dd, 1H, J = 4.2, 12.6, H6`` ''), 4.29 (d, 1H, J = 7.2, H1 '''), 4.31 (d, 1H, J = 7.6), 4.34 (d , 1H, J = 7.8), 4.51 (d, 1H, J = 9.9, H1), 4.53 (d, 1H, J = 11.1, CH 2 Ph), 4.61 (d, 1H, J = 7.8, H1 ''''), 4.63 (d, 1H, J = 11.1, CH 2 Ph), 5.09 (dd, 1H, J = 7.8, 9.3, H2``''), 5.19 (t, 1H, J = 9.3, H4'''')
13 C-NMR (CDCl 3 ): δ 20.7 (COCH 3 ), 27.1, 27.2 (COC (CH 3 ) 3 ), 38.8 (COC (CH 3 ) 3 ), 59.2, 59.4, 60.4, 60.6, 60.7, 60.8 ( OCH 3 ), 62.1 (C6`` ''), 69.2 (C4 ''''), 70.2 (C6 and / or C6 'and / or C6''and / or C6'''), 70.5 (C6 and / or C6 'and / or C6''and / or C6'''), 72.1 (C5`` ''), 72.5 (C2 ''''), 73.2 (CH 2 Ph), 74.5 (C5 'and / or C5 '' or C5 '''), 74.7 (C5' or C5 '' or C5 '''), 74.8 (C5' or C5 '' or C5 '''), 75.9 (C4'''), 77.8 ( C4 and C4 'and C4``), 79.0 (C5), 80.8 (C3''''), 82.0 (C2), 83.4 (C2' and / or C2 '' and / or C2 '''), 83.5 ( C2 'and / or C2''and / or C2'''), 84.8 (C3 'and / or C3''and / or C3'''), 85.0 (C3 'and / or C3''and / or C3 '''), 86.7 (C3), 87.3 (C1), 99.9 (C1''''), 103.1 (C1' and / or C1 '' and / or C1 '''), 103.3 (C1' and / or C1 '' and / or C1 '''), 127.3, 127.5, 127.7, 128.4, 137.6 (aromatic C), 169.2 (COCH 3 ), 176.5, 178.2 (COC (CH 3 ) 3 )
MALDI-TOF: calculated m / z 1388.64 found m / z: found [M + Na] + = 1411.319
(2) Preparation of Compound (90) (R 2 = Me) Compound (89) obtained in (1) above was treated with NIS / AgOTf / acetone-H 2 0 to convert -SPh to -OH. To give the title compound.
(3) Preparation of Compound (91) (R 2 = Me) Compound (90) obtained in (2) above was debenzylated by catalytic reduction with Pd (OH) 2 -carbon in a hydrogen atmosphere, and sodium methoxide. To give the title compound.

[Test Example 3] (Light scattering method)
In order to know the association state of the cellooligosaccharide derivative in an aqueous solution, the shape of the aggregate (nanoparticle) composed of the cellooligosaccharide derivative was observed using a light scattering method.
(1) Measurement conditions for the radius of aggregates (nanoparticles) About the aqueous solution of Part A obtained in Test Example 1, using a light scattering photometer (SLS-5000HM, manufactured by Otsuka Electronics Co., Ltd.), the following conditions Static light scattering was measured. Dynamic light scattering (DLS) was measured using a light scattering photometer (SLS-5000HM, manufactured by Otsuka Electronics Co., Ltd.) equipped with ALV-5000 / E correlator (ALV Co.).

波長(wavelength):λ0=632.8 nm (ヘリウムーネオンレーザー)
散乱角(scattering angle):30°から150°まで15°おきに測定した。
Wavelength: λ 0 = 632.8 nm (helium-neon laser)
Scattering angle: measured every 15 ° from 30 ° to 150 °.

平均温度(Avg. Temp.):25.08 °C
屈折率増分:dn/dc=0.1340 mL/g(メチルセルロース):Polymer Handbook 4th edition/ editors, J. Brandrup, E.H. Immergut, and E.A. Grulke ; associate editors, A. Abe, D.R. Bloch; New York : Wiley , c1999を参照した。
Average temperature (Avg. Temp.): 25.08 ° C
Refractive index increment: dn / dc = 0.1340 mL / g (methyl cellulose): Polymer Handbook 4th edition / editors, J. Brandrup, EH Immergut, and EA Grulke; associate editors, A. Abe, DR Bloch; New York: Wiley, c1999 Referred to.

Part Aの水溶液を、細孔径(pore size)0.2 μmのPTFE膜ろ紙(東洋濾紙(株)製)で数回濾過した後、測定を行った。
(2)会合体(ナノ粒子)の半径と会合数
静的光散乱の解析結果を以下に示す。なお、これらの解析は、「新高分子実験学1 高分子実験の基礎 分子特性解析:高分子学会編、共立出版 1994年10月25日発行」に準じて行った。
The aqueous solution of Part A was filtered several times with PTFE membrane filter paper (manufactured by Toyo Filter Paper Co., Ltd.) having a pore size of 0.2 μm, and then measurement was performed.
(2) The analysis result of the radius of the aggregate (nanoparticle) and the association number static light scattering is shown below. These analyzes were carried out in accordance with “New Polymer Experimental Science 1 Basic Molecular Analysis of Polymer Experiments: edited by the Society of Polymer Science, Kyoritsu Shuppan October 25, 1994”.

Part Aのセロオリゴ糖:重量平均分子量Mw = 1003 (MALDI-TOF MS スペクトルのピーク強度から見積もった)
高濃度側と低濃度側(図2を参照)のナノ粒子の平均二乗慣性回転半径は次の通り。
<高濃度側(0.349-0.5048 mg/mL)>
ナノ粒子の重量平均分子量(Mw)=6.947×105;会合数(Aggregation Number)= 693(Mw = 1003で割った。)
第二ビリアル係数(A2)=3.119×10-3 cm3g-2mol
平均二乗慣性回転半径< Rg 2>1/2= 111.8 nm
<低濃度側(0.200284-0.30105 mg/mL)>
ナノ粒子の重量平均分子量(Mw)=2.975×105;会合数(Aggregation Number)= 297(Mw = 1003で割った。)
第二ビリアル係数(A2)=9.912×10-4 cm3g-2mol
平均二乗慣性回転半径< Rg 2>1/2= 52.17 nm
この結果から、界面活性能を有するセロオリゴ糖誘導体は、水溶液中の濃度により平均二乗慣性回転半径が変化することがわかった。高濃度の方が水溶液中でナノ粒子の大きさが大きくなる傾向が見出された。また、光散乱法によって計算されたナノ粒子の重量平均分子量は、合成したセロオリゴ糖誘導体Part Aの重量平均分子量Mw=1003に比較して、極めて大きいことがわかった。よって、ナノ粒子はセロオリゴ糖誘導体が上記の計算結果のように数多く会合した集合体であると結論付けた。一般に、第二ビリアル係数について、高分子を溶解する溶媒の中でも、高分子との親和性が高い溶媒(良溶媒:good solvent)は10-4 mol cm3/g2以上の第二ビリアル係数A2を与え、低い溶媒(貧溶媒:poor solvent)はそれ以下の値を与える。よって、合成したセロオリゴ糖誘導体Part Aにとって、溶媒としての水は良溶媒であることがわかった。
Cellooligosaccharide of Part A: Weight average molecular weight Mw = 1003 (estimated from peak intensity of MALDI-TOF MS spectrum)
The mean square inertial radius of nanoparticles on the high and low concentrations (see Figure 2) is as follows:
<High concentration side (0.349-0.5048 mg / mL)>
Nanoparticle weight average molecular weight (Mw) = 6.947 × 10 5 ; Aggregation Number = 693 (divided by Mw = 1003)
Second virial coefficient (A 2 ) = 3.119 × 10 -3 cm 3 g -2 mol
Mean square inertial radius <R g 2 > 1/2 = 111.8 nm
<Low concentration side (0.200284-0.30105 mg / mL)>
Nanoparticle weight average molecular weight (Mw) = 2.975 × 10 5 ; Aggregation Number = 297 (divided by Mw = 1003)
Second virial coefficient (A 2 ) = 9.912 × 10 -4 cm 3 g -2 mol
Mean square inertial radius <R g 2 > 1/2 = 52.17 nm
From these results, it was found that the cellooligosaccharide derivative having surface active ability changes the mean square inertial turning radius depending on the concentration in the aqueous solution. It was found that the higher the concentration, the larger the size of the nanoparticles in the aqueous solution. Further, it was found that the weight average molecular weight of the nanoparticles calculated by the light scattering method was extremely large compared to the weight average molecular weight Mw = 1003 of the synthesized cellooligosaccharide derivative Part A. Therefore, it was concluded that the nanoparticles were aggregates in which many cellooligosaccharide derivatives were associated as in the above calculation results. In general, for the second virial coefficient, among solvents that dissolve the polymer, a solvent having a high affinity with the polymer (good solvent) is a second virial coefficient A of 10 −4 mol cm 3 / g 2 or more. 2 , low solvent (poor solvent) gives a lower value. Therefore, it was found that for the synthesized cellooligosaccharide derivative Part A, water as a solvent is a good solvent.

一方、0.200284-0.30105 mg/mLまでの光散乱の測定データからZimmプロットを行った場合に、計算された結果を以下に示した。   On the other hand, when a Zimm plot was performed from measurement data of light scattering up to 0.200284-0.30105 mg / mL, the calculated results are shown below.

静的光散乱:平均二乗慣性回転半径 <Rg 2>1/2 64.4 nm
動的光散乱:流体力学的半径 Rh 45.4 nm
Rg/Rh=1.42
この数値から粒子は球体というよりむしろ棒状であると判断できる。(なお、Rg/Rhの値が1に近いほど真球に近くなる。)
以上の結果をまとめると、セロオリゴ糖からなる界面活性剤が高濃度になると、徐々に分子集合体(会合体)の大きさが大きくなることが計算上で示された。
Static light scattering: Mean square inertial radius <R g 2 > 1/2 64.4 nm
Dynamic light scattering: hydrodynamic radius R h 45.4 nm
R g / R h = 1.42
From this value, it can be determined that the particles are rod-like rather than spherical. (The closer the value of R g / R h is to 1, the closer it is to a true sphere.)
Summarizing the above results, it was shown by calculation that the molecular aggregate (aggregate) gradually increases in size when the surfactant composed of cellooligosaccharide becomes high in concentration.

また、本発明のセロオリゴ糖誘導体は、非イオン性界面活性剤として比較的大きな会合数を有することがわかった。また、粒子は球体というよりむしろ棒状の構造であることが示された。化合物の濃度が高くなると本界面活性剤の会合数が増加することが示された。単分子としては分子量が低いこのようなオリゴ糖が、分子サイズに比較して巨大な会合体を形成することはこれまでに知られていない。このような現象を光散乱法という物理化学的な手法により解析することができた。

[試験例4](TEM観察)
1mg/mLのセロオリゴ糖水溶液(試験例1のPart Aの水溶液)2.5μLを、高分子薄膜でコートした銅グリッド上でウラニルアセテート(ca. 2.0 wt %)の飽和水溶液2.5μLと混合した後、減圧乾燥、蒸留水で3回洗浄した。
Moreover, it was found that the cellooligosaccharide derivative of the present invention has a relatively large number of associations as a nonionic surfactant. It was also shown that the particles are rod-like structures rather than spheres. It was shown that the association number of the surfactant increases as the concentration of the compound increases. It has not been known so far that such an oligosaccharide having a low molecular weight as a single molecule forms a huge aggregate compared with the molecular size. Such a phenomenon could be analyzed by a physicochemical method called light scattering.

[Test Example 4] (TEM observation)
After 2.5 μL of 1 mg / mL cellooligosaccharide aqueous solution (part A aqueous solution of Test Example 1) was mixed with 2.5 μL of a saturated aqueous solution of uranyl acetate (ca. 2.0 wt%) on a copper grid coated with a polymer thin film, It was dried under reduced pressure and washed 3 times with distilled water.

得られた粒子を、加速電圧100 KeVで透過型電子顕微鏡(TEM, JEOL JEM 1220)で観察した。倍率(Magnification)は、25,000倍であった。測定時におけるセロオリゴ糖水溶液の濃度は、1.0 mg/mLであった。ウラニルアセテートでネガティブ染色した。図3に示すようにラグビーボール型のやや細長い粒子が観察された
すなわち、水溶液中でセロオリゴ糖誘導体が自己組織化し、ナノ粒子構造が形成することを実際に確認することができた。粒子のサイズは、上記の光散乱データと矛盾しなかった。

[試験例5](原子間力顕微鏡観察)
1mg/mLのセロオリゴ糖水溶液(試験例1のPart Aの水溶液)を10s間超音波処理し、マイカ上へ滴下した。次いで、自然乾燥後、原子間力顕微鏡(AFM)で観察した。原子間力顕微鏡は、Olympus NV2000(オリンパス(株)製)を用いた。ノンコンタクトモードで、カンチレバー(Olympus AC240TS-C1)を用いて測定した。
The obtained particles were observed with a transmission electron microscope (TEM, JEOL JEM 1220) at an acceleration voltage of 100 KeV. The magnification (Magnification) was 25,000 times. The concentration of the cellooligosaccharide aqueous solution at the time of measurement was 1.0 mg / mL. Negative staining with uranyl acetate. As shown in FIG. 3, rugby ball-type slightly elongated particles were observed, that is, it was actually confirmed that the cellooligosaccharide derivative self-assembled in an aqueous solution to form a nanoparticle structure. The particle size was consistent with the above light scattering data.

[Test Example 5] (Atomic force microscope observation)
A 1 mg / mL cellooligosaccharide aqueous solution (part A aqueous solution of Test Example 1) was sonicated for 10 s and dropped onto mica. Subsequently, after natural drying, it observed with the atomic force microscope (AFM). As the atomic force microscope, Olympus NV2000 (manufactured by Olympus Corporation) was used. Measurement was performed using a cantilever (Olympus AC240TS-C1) in a non-contact mode.

図4の(a)と(b)はマイカ上の異なる場所におけるナノ粒子を観察したものである。図4(a)及び(b)から、どの場所を観察しても同じような粒子構造体が観察されたことが言える。   4 (a) and 4 (b) are observations of nanoparticles at different locations on the mica. 4 (a) and 4 (b), it can be said that the same particle structure was observed no matter which place was observed.

図4(b)と図5は同じ場所におけるナノ粒子の観察結果であり、ナノ粒子の高さ(粒子直径)を示すために異なる表示法で示したものである。これより、高さ30-300nm程度の粒子状構造物が観測された。真空乾燥後も粒子の高さ方向に変化はなかったため、粒子状構造物は内部が充填されたナノ粒子であることがわかった。   FIG. 4B and FIG. 5 are the observation results of the nanoparticles at the same place, and are shown by different display methods to show the height (particle diameter) of the nanoparticles. As a result, a particulate structure having a height of about 30 to 300 nm was observed. Since there was no change in the height direction of the particles even after vacuum drying, it was found that the particulate structure was a nanoparticle filled inside.

図5では、左側の正方形部分に右上から左下方向に引かれた斜線に沿った断面の形状を右側の長方形のwindowに示している。一つ一つの山が一つのオリゴ糖からなるナノ粒子を表している。AFMは高さ方向の長さが正確に測定できるという特徴を持つことから、ナノ粒子の高さが比較的そろっており、その高さデータは試験例3における光散乱法によるデータと矛盾しないということがわかった。   In FIG. 5, the shape of the cross section along the oblique line drawn from the upper right to the lower left in the left square portion is shown in the right rectangular window. Each mountain represents a nanoparticle composed of one oligosaccharide. Since AFM has the feature that the length in the height direction can be measured accurately, the heights of the nanoparticles are relatively uniform, and the height data is consistent with the data obtained by the light scattering method in Test Example 3. I understood it.

TEM像は高真空下で測定されており、粒子形態が変形する可能性があるが、AFM観察では常圧下大気中で観察されており、粒子形態が変化する可能性が低い。これらのデータが、実際の溶液中の光散乱実験データと矛盾しないことから、溶液中でも乾燥してもオリゴ糖からなるナノ粒子の構造は安定に存在することが示唆される。   TEM images are measured under high vacuum, and the particle morphology may be deformed, but AFM observation is observed in the atmosphere under atmospheric pressure, and the possibility that the particle morphology will change is low. These data are consistent with the actual light scattering experimental data in solution, which suggests that the structure of nanoparticles composed of oligosaccharides is stable even when dried in solution.

Claims (12)

アルキル化されたグルコース又はセロオリゴ糖からなる疎水性部分と単糖又はオリゴ糖からなる親水性部分とがブロック的に結合しているセロオリゴ糖誘導体からなる界面活性剤であって、
一般式:
H−B−A−OR
H−A−B−A−OR
−A−B−OH 又は
−B−A−B−OH
(式中、Aは、一般式:
(式中、R はC 1〜4 アルキル、mは1〜8の整数を示す。)
で表される疎水性部分であり、Bは、ピラノース型単糖からアノマー性水酸基を除きかつ1個のアルコール性水酸基から−Hを除いて得られる親水性部分、又は、ピラノース型単糖からなる群から選ばれる2以上が1,4−グリコシド結合したオリゴ糖から還元性末端糖残基のアノマー性水酸基を除きかつ非還元性末端糖残基の4位のアルコール性水酸基から−Hを除いて得られる親水性部分であり、2以上のAを含む場合Aは互いに同一又は異なっていてもよく、2以上のBを含む場合Bは互いに同一又は異なっていてもよく、R はH又はC 1−4 アルキルを示す。但し、糖鎖は還元性末端を紙面右側になるように配置する。)
で示されるセロオリゴ糖誘導体からなる界面活性剤。
A surfactant comprising a cellooligosaccharide derivative in which a hydrophobic moiety comprising an alkylated glucose or cellooligosaccharide and a hydrophilic moiety comprising a monosaccharide or oligosaccharide are bound in a block manner ,
General formula:
HBA AOR 1
H-A-B-A-OR 1
R 1 -A-B-OH or
R 1 -B-A-B-OH
(In the formula, A is a general formula:
(In the formula, R 2 represents C 1-4 alkyl, and m represents an integer of 1-8.)
B is composed of a hydrophilic part obtained by removing an anomeric hydroxyl group from a pyranose type monosaccharide and removing -H from one alcoholic hydroxyl group, or a pyranose type monosaccharide. 2 or more selected from the group except for the anomeric hydroxyl group of the reducing terminal sugar residue from the oligosaccharide having a 1,4-glycoside bond and -H from the alcoholic hydroxyl group at the 4-position of the non-reducing terminal sugar residue The resulting hydrophilic part, when two or more A are contained, A may be the same or different from each other, and when two or more B is contained, B may be the same or different from each other, and R 1 is H or C 1-4 alkyl is shown. However, the sugar chain is arranged so that the reducing end is on the right side of the page. )
A surfactant comprising a cellooligosaccharide derivative represented by:
一般式:General formula:
H−B−A−OR  H-B-A-OR 1 又は  Or
  R 1 −A−B−OH-A-B-OH
(式中、R(Wherein R 1 、A及びBは前記に同じ), A and B are the same as above)
示されるセロオリゴ糖誘導体からなる請求項1に記載の界面活性剤。The surfactant according to claim 1, comprising the cellooligosaccharide derivative shown.
R 1 がメチルであり、前記ピラノース型単糖がグルコース、ガラクトース、マンノース、キシロース、リボース、N−アセチルグルコサミン、グルコサミン、アラビノース、ラムノース、フコース、N−アセチルガラクトサミン、及びガラクトサミンからなる群より選ばれる単糖であるセロオリゴ糖誘導体からなる請求項1又は2に記載の界面活性剤。Is a monosaccharide selected from the group consisting of glucose, galactose, mannose, xylose, ribose, N-acetylglucosamine, glucosamine, arabinose, rhamnose, fucose, N-acetylgalactosamine, and galactosamine The surfactant according to claim 1 or 2, comprising a cellooligosaccharide derivative. 前記ピラノース型単糖がグルコースであるセロオリゴ糖誘導体からなる請求項3に記載の界面活性剤。The surfactant according to claim 3, comprising a cellooligosaccharide derivative in which the pyranose type monosaccharide is glucose. 一般式(I):
(式中、RはH又はC1〜4アルキル、RはC1〜4アルキル、mは1〜8の整数、nは1〜8の整数を示す。)
で表されるセロオリゴ糖誘導体からなる請求項1に記載の界面活性剤。
Formula (I):
(In the formula, R 1 is H or C 1-4 alkyl, R 2 is C 1-4 alkyl, m is an integer of 1-8, and n is an integer of 1-8.)
The surfactant according to claim 1, comprising a cellooligosaccharide derivative represented by the formula:
一般式(II):
(式中、RはH又はC1〜4アルキル、RはC1〜4アルキル、mは1〜8の整数、nは1〜8の整数を示す。)
で表されるセロオリゴ糖誘導体からなる請求項1に記載の界面活性剤。
General formula (II):
(In the formula, R 1 is H or C 1-4 alkyl, R 2 is C 1-4 alkyl, m is an integer of 1-8, and n is an integer of 1-8.)
The surfactant according to claim 1, comprising a cellooligosaccharide derivative represented by the formula:
一般式(III):
(式中、RはH又はC1〜4アルキル、RはC1〜4アルキル、m及びmは同一又は異なって1〜8の整数、nは1〜8の整数を示す。)
で表されるセロオリゴ糖誘導体からなる請求項1に記載の界面活性剤。
General formula (III):
(In the formula, R 1 is H or C 1-4 alkyl, R 2 is C 1-4 alkyl, m 1 and m 2 are the same or different and are an integer of 1-8, n 0 is an integer of 1-8. .)
The surfactant according to claim 1, comprising a cellooligosaccharide derivative represented by the formula:
一般式(IV):
(式中、RはC1〜4アルキル、n及びnは同一又は異なって1〜8の整数、mは1〜8の整数を示す。)
で表されるセロオリゴ糖誘導体からなる請求項1に記載の界面活性剤。
Formula (IV):
(In the formula, R 2 represents C 1-4 alkyl, n 1 and n 2 are the same or different and represent an integer of 1 to 8, and m 0 represents an integer of 1 to 8.)
The surfactant according to claim 1, comprising a cellooligosaccharide derivative represented by the formula:
アルキル化されたグルコース又はセロオリゴ糖からなる疎水性部分と単糖又はオリゴ糖からなる親水性部分とがブロック的に結合している、平均粒子半径が2.5〜250nmであるセロオリゴ糖誘導体からなるナノ粒子であって、
一般式:
H−B−A−OR
H−A−B−A−OR
−A−B−OH 又は
−B−A−B−OH
(式中、Aは、一般式:
(式中、R はC 1〜4 アルキル、mは1〜8の整数を示す。)
で表される疎水性部分であり、Bは、ピラノース型単糖からアノマー性水酸基を除きかつ1個のアルコール性水酸基から−Hを除いて得られる親水性部分、又は、ピラノース型単糖からなる群から選ばれる2以上が1,4−グリコシド結合したオリゴ糖から還元性末端糖残基のアノマー性水酸基を除きかつ非還元性末端糖残基の4位のアルコール性水酸基から−Hを除いて得られる親水性部分であり、2以上のAを含む場合Aは互いに同一又は異なっていてもよく、2以上のBを含む場合Bは互いに同一又は異なっていてもよく、R はH又はC 1−4 アルキルを示す。但し、糖鎖は還元性末端を紙面右側になるように配置する。)
で示されるセロオリゴ糖誘導体からなるナノ粒子。
It consists of a cellooligosaccharide derivative having an average particle radius of 2.5 to 250 nm, in which a hydrophobic portion composed of alkylated glucose or cellooligosaccharide and a hydrophilic portion composed of monosaccharide or oligosaccharide are bound in a block manner. Nanoparticles ,
General formula:
HBA AOR 1
H-A-B-A-OR 1
R 1 -A-B-OH or
R 1 -B-A-B-OH
(In the formula, A is a general formula:
(In the formula, R 2 represents C 1-4 alkyl, and m represents an integer of 1-8.)
B is composed of a hydrophilic part obtained by removing an anomeric hydroxyl group from a pyranose type monosaccharide and removing -H from one alcoholic hydroxyl group, or a pyranose type monosaccharide. 2 or more selected from the group except for the anomeric hydroxyl group of the reducing terminal sugar residue from the oligosaccharide having a 1,4-glycoside bond and -H from the alcoholic hydroxyl group at the 4-position of the non-reducing terminal sugar residue The resulting hydrophilic part, when two or more A are contained, A may be the same or different from each other, and when two or more B is contained, B may be the same or different from each other, and R 1 is H or C 1-4 alkyl is shown. However, the sugar chain is arranged so that the reducing end is on the right side of the page. )
Nanoparticles comprising cellooligosaccharide derivatives represented by
一般式:
−A−B−A−OR 又は
H−B−A−B−OH
(式中、Aは、同一又は異なって、一般式:
(式中、R はC 1〜4 アルキル、mは1〜8の整数を示す。)
で表される疎水性部分でありBは、ピラノース型単糖からアノマー性水酸基を除きかつ1個のアルコール性水酸基から−Hを除いて得られる親水性部分、又は、ピラノース型単糖からなる群から選ばれる2以上が1,4−グリコシド結合したオリゴ糖から還元性末端糖残基のアノマー性水酸基を除きかつ非還元性末端糖残基の4位のアルコール性水酸基から−Hを除いて得られる親水性部分であり、RはH又はC1−4アルキルを示す。但し、糖鎖は還元性末端を紙面右側になるように配置する。)
で示されるセロオリゴ糖誘導体。
General formula:
R 1 -A-B-A- OR 1 or H-B-A-B- OH
(In the formula, A is the same or different, and the general formula:
(In the formula, R 2 represents C 1-4 alkyl, and m represents an integer of 1-8.)
In a hydrophobic moiety represented, B is a hydrophilic moiety obtained by removing -H from pyranose form except anomeric hydroxyl group from a monosaccharide and one alcoholic hydroxyl group, or consists of pyranose monosaccharide 2 or more selected from the group except for the anomeric hydroxyl group of the reducing terminal sugar residue from the oligosaccharide having a 1,4-glycoside bond and -H from the alcoholic hydroxyl group at the 4-position of the non-reducing terminal sugar residue The resulting hydrophilic moiety , R 1 represents H or C 1-4 alkyl. However, the sugar chain is arranged so that the reducing end is on the right side of the page. )
A cellooligosaccharide derivative represented by:
一般式(III):
(式中、RはH又はC1〜4アルキル、RはC1〜4アルキル、m及びmは同一又は異なって1〜8の整数、nは1〜8の整数を示す。)
で表される請求項10に記載のセロオリゴ糖誘導体。
General formula (III):
(In the formula, R 1 is H or C 1-4 alkyl, R 2 is C 1-4 alkyl, m 1 and m 2 are the same or different and are an integer of 1-8, n 0 is an integer of 1-8. .)
The cellooligosaccharide derivative | guide_body of Claim 10 represented by these.
一般式(IV):
(式中、RはC1〜4アルキル、n及びnは同一又は異なって1〜8の整数、mは1〜8の整数を示す。)
で表される請求項10に記載のセロオリゴ糖誘導体。
Formula (IV):
(In the formula, R 2 represents C 1-4 alkyl, n 1 and n 2 are the same or different and represent an integer of 1 to 8, and m 0 represents an integer of 1 to 8.)
The cellooligosaccharide derivative | guide_body of Claim 10 represented by these.
JP2006548688A 2004-12-21 2005-06-30 Cellooligosaccharide derivative and method for producing the same Expired - Fee Related JP4749339B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006548688A JP4749339B2 (en) 2004-12-21 2005-06-30 Cellooligosaccharide derivative and method for producing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004369005 2004-12-21
JP2004369005 2004-12-21
PCT/JP2005/012127 WO2006067883A1 (en) 2004-12-21 2005-06-30 Cellooligosaccharide derivative and process for producing the same
JP2006548688A JP4749339B2 (en) 2004-12-21 2005-06-30 Cellooligosaccharide derivative and method for producing the same

Publications (2)

Publication Number Publication Date
JPWO2006067883A1 JPWO2006067883A1 (en) 2008-08-07
JP4749339B2 true JP4749339B2 (en) 2011-08-17

Family

ID=36601494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006548688A Expired - Fee Related JP4749339B2 (en) 2004-12-21 2005-06-30 Cellooligosaccharide derivative and method for producing the same

Country Status (2)

Country Link
JP (1) JP4749339B2 (en)
WO (1) WO2006067883A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7483673B2 (en) 2019-02-28 2024-05-15 信越化学工業株式会社 Diblock oligosaccharide and surfactant containing same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07138278A (en) * 1993-11-12 1995-05-30 Shin Etsu Chem Co Ltd Cellobiose derivative and cello-oligomer derivative and their production

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07138278A (en) * 1993-11-12 1995-05-30 Shin Etsu Chem Co Ltd Cellobiose derivative and cello-oligomer derivative and their production

Also Published As

Publication number Publication date
JPWO2006067883A1 (en) 2008-08-07
WO2006067883A1 (en) 2006-06-29

Similar Documents

Publication Publication Date Title
AU2001291960B2 (en) Polysaccharides with antithrombotic activity comprising at least a covalent bond with biotin or a biotin derivative
JP3345020B2 (en) Synthetic polysaccharides, their preparation and pharmaceutical compositions containing them
JP2005505565A (en) Synthetic heparin pentasaccharide
JP2004509902A5 (en)
US8492352B2 (en) Polysaccharides with antithrombotic activity, including a covalent bond and an amino chain
US5280111A (en) Sulfated tocopheryl oligosaccharides and antiviral agents including the same as active ingredients
Vogl et al. Preparation of a sulfated linear (1→ 4)-β-d-galactan with variable degrees of sulfation
WO1999036443A1 (en) Synthetic polysaccharides, their method of production and pharmaceutical compositions containing same
JP4749339B2 (en) Cellooligosaccharide derivative and method for producing the same
EP0904299B1 (en) Synthetic polysaccharides, method for preparing same and pharmaceutical compositions containing said polysaccharides
Bernhard et al. Protein aggregation nucleated by functionalized dendritic polyglycerols
JPH0885703A (en) Polysaccharide derivative having organotropy and drug carrier
EP0749976B1 (en) Anthracycline derivatives containing trifluoromethylated sugar unit
JPH10502093A (en) Regioselective sulfation
Donnier‐Maréchal et al. Protecting Groups at the Primary Position of Carbohydrates
JP4605919B2 (en) Protein purification carrier, production method thereof, and protein purification method using the same
Garg et al. Increase in the growth inhibition of bovine pulmonary artery smooth muscle cells by an O-hexanoyl low-molecular-weight heparin derivative
JP2001514685A (en) Polyvalent carbohydrate molecule
Kobayashi Biological functions of synthetic polysaccharides
JP3265425B2 (en) Phosphorylated trisaccharide serine, sulfated / phosphorylated trisaccharide serine, and methods for their synthesis
Zhang Regioselective synthesis of curdlan derivatives
Buisson et al. Multigram scale preparation of a semi-synthetic N-trifluoroacetyl protected chondroitin disaccharide building block: Towards the stereoselective synthesis of chondroitin sulfates disaccharides
CN114437157A (en) Sialic acid Neu5Ac derivative and preparation method and application thereof
Nissen The synthesis of disaccharides for the functionalization of PAMAM dendrimers
JPH07188276A (en) Sulfated oligosaccharide tocopherol clycoside acylated product and an antiviral containing the same as an active ingredient

Legal Events

Date Code Title Description
A529 Written submission of copy of amendment under article 34 pct

Free format text: JAPANESE INTERMEDIATE CODE: A5211

Effective date: 20070507

A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20070528

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110214

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110311

TRDD Decision of grant or rejection written
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110311

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110517

R150 Certificate of patent or registration of utility model

Ref document number: 4749339

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees