JP4748933B2 - Rubber-like elastic body and its manufacturing method - Google Patents

Rubber-like elastic body and its manufacturing method Download PDF

Info

Publication number
JP4748933B2
JP4748933B2 JP2003409476A JP2003409476A JP4748933B2 JP 4748933 B2 JP4748933 B2 JP 4748933B2 JP 2003409476 A JP2003409476 A JP 2003409476A JP 2003409476 A JP2003409476 A JP 2003409476A JP 4748933 B2 JP4748933 B2 JP 4748933B2
Authority
JP
Japan
Prior art keywords
rubber
hydrogenated product
natural
natural polyisoprenoid
molecular weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003409476A
Other languages
Japanese (ja)
Other versions
JP2005170994A (en
Inventor
智博 西尾
晴彦 伊藤
眞一 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitta Corp
Original Assignee
Nitta Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitta Corp filed Critical Nitta Corp
Priority to JP2003409476A priority Critical patent/JP4748933B2/en
Priority to US10/582,000 priority patent/US8207386B2/en
Priority to CN2004800363673A priority patent/CN1890267B/en
Priority to PCT/JP2004/018237 priority patent/WO2005056612A1/en
Publication of JP2005170994A publication Critical patent/JP2005170994A/en
Application granted granted Critical
Publication of JP4748933B2 publication Critical patent/JP4748933B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明はゴム状弾性体とその製造法、より詳細には、天然ポリイソプレノイドを水素添加によって飽和度を高めることにより構造変性した天然ポリイソプレノイド水素添加物より形成されたゴム状弾性体とその製造法に関する。このゴム状弾性体は、耐熱性、耐候性、耐摩耗性、SET性及び耐寒性に優れており、タイヤ、チューブ、医療用ゴム製品、ラテックス浸漬製品、ゴム糸、ベルト、免震、防振、パッキンなどの工業用ゴム製品として有用である。   The present invention relates to a rubber-like elastic body and a method for producing the same, and more specifically, a rubber-like elastic body formed from a natural polyisoprenoid hydrogenated product that is structurally modified by increasing the degree of saturation of the natural polyisoprenoid by hydrogenation, and the production Regarding the law. This rubber-like elastic body is excellent in heat resistance, weather resistance, wear resistance, SET property and cold resistance, and tires, tubes, medical rubber products, latex immersion products, rubber yarns, belts, seismic isolation, vibration isolation It is useful as an industrial rubber product such as packing.

天然ポリイソプレノイドはヘベアブラジリエンシス種(ヘベア種ゴムノキ)の樹木から採取される天然ゴムに代表される、ある種の植物やキノコが生合成により作り出すイソプレン単位(C58)で構成される重合体の総称である。天然ポリイソプレノイドは、ヘベア種ゴムノキのほか、インドゴムノキ、トチュウ、チチタケなどのラクタリウス(Lactarius)属キノコ等の多くの植物やキノコから産生されることが知られている。しかし、天然ゴム以外の天然ポリイソプレノイドはほとんど工業的に利用されていない。これは、ゴムとして利用するには、多くのポリイソプレノイドの立体構造が天然ゴムほど規則的でないこと、重合度が小さく分子量が十分大きくないこと、多量に産出させることが経済的に難しいことなどの理由による。 Natural polyisoprenoids are composed of isoprene units (C 5 H 8 ) produced by biosynthesis by certain plants and mushrooms, typified by natural rubber extracted from trees of Hevea brasiliensis species (Hevea rubber tree). Is a general term for polymers. Natural polyisoprenoids are known to be produced from many plants and mushrooms such as Lactarius genus mushrooms such as Indian rubber tree, eucommia and chichitake, in addition to Hevea rubber tree. However, natural polyisoprenoids other than natural rubber are hardly used industrially. This is because, for use as rubber, the three-dimensional structure of many polyisoprenoids is not as regular as natural rubber, the degree of polymerization is small and the molecular weight is not sufficiently large, and it is economically difficult to produce a large amount. Depending on the reason.

一方、天然ゴムは、その栽培方法、品質の安定化など長年の研究と努力により、安定に、しかも安価に供給されるようになっており、タイヤをはじめとする種々のゴム製品に用いられている最も汎用的なゴム材料である。この天然ゴムは、ゴム弾性や強度に優れるが、耐油性、耐薬品性、耐熱性、耐候性に劣る特徴がある。このため、優れたエコマテリアルであるにもかかわらず、用途は限られ、いわゆる高性能、多機能材料としては使用されない。   Natural rubber, on the other hand, has come to be supplied stably and inexpensively through years of research and efforts such as cultivation methods and quality stabilization, and is used in various rubber products including tires. It is the most versatile rubber material. This natural rubber is excellent in rubber elasticity and strength, but is inferior in oil resistance, chemical resistance, heat resistance and weather resistance. For this reason, although it is an excellent eco-material, its application is limited and it is not used as a so-called high-performance, multifunctional material.

産業界では、近年になって、特に自動車においては、その低燃費化や排ガス規制への対応に伴って、エンジンルーム内の温度が上昇する傾向にあり、エンジンルーム内に用いられるゴム製品は、より高温環境下で使用されるようになってきている。このため、このようなゴム製品にはより高い耐熱性が求められている。また、世の中では環境浄化の気運が高まりつつあり、地球温暖化の要因の一つである二酸化炭素の削減が大きな課題となっている。ゴム・プラスチック産業においては、その大半は石油原料からなる合成ゴムが使用されており、この廃棄の際に発生する二酸化炭素に対する関心も高く、近年では廃棄せずに再利用可能な熱可塑性エラストマー(TPE)が多く開発、使用されるようになってきている。しかしながら、永久に再利用することは不可能で、最終的には廃棄されることとなる。また、TPEにおいても石油を原料とするものであるため、世界環境の観点からは、必ずしも理想的なゴム材料とは言えない。このため、植物より抽出した原料から作られ、且つ生分解性を有するプラスチックなどが開発されつつある。   In recent years, in the industry, especially in automobiles, the temperature in the engine room tends to rise in accordance with the reduction in fuel consumption and compliance with exhaust gas regulations. Rubber products used in the engine room are It has come to be used in higher temperature environments. For this reason, higher heat resistance is required for such rubber products. In addition, the trend of environmental purification is increasing in the world, and the reduction of carbon dioxide, which is one of the causes of global warming, has become a major issue. In the rubber and plastics industry, most of the synthetic rubber made from petroleum is used, and there is a great interest in the carbon dioxide generated during this disposal. Many TPEs have been developed and used. However, it cannot be reused permanently and will eventually be discarded. In addition, since TPE uses petroleum as a raw material, it is not necessarily an ideal rubber material from the viewpoint of the world environment. For this reason, plastics made from raw materials extracted from plants and having biodegradability are being developed.

ジャーナル オブ アプライド ポリマー サイエンス(Journal of Applied Polymer Science)、第66巻、第1647頁〜第1652頁(1997年)には、天然ゴムを有機溶媒中、ロジウム錯体触媒の存在下、100℃の温度で水素と反応させて、天然ゴムの水素添加物を得る方法が記載されている。しかし、この文献における研究は水素化反応の速度論的研究とポリマーの熱的物性の研究にとどまっている。   Journal of Applied Polymer Science, Vol. 66, pp. 1647 to 1652 (1997) describes natural rubber in an organic solvent at a temperature of 100 ° C. in the presence of a rhodium complex catalyst. A method is described for reacting with hydrogen to obtain hydrogenated natural rubber. However, research in this document is limited to kinetic studies of hydrogenation reactions and thermal properties of polymers.

ジャーナル オブ アプライド ポリマー サイエンス(Journal of Applied Polymer Science)、第66巻、第1647頁〜第1652頁(1997年)Journal of Applied Polymer Science, Vol. 66, pp. 1647-1652 (1997)

本発明の目的は、天然ポリイソプレノイドを原料として製造でき、優れた機械的特性と、高い耐熱性、耐寒性及び耐候性を備えたゴム状弾性体を提供することにある。   An object of the present invention is to provide a rubber-like elastic body which can be produced using natural polyisoprenoid as a raw material and has excellent mechanical properties and high heat resistance, cold resistance and weather resistance.

本発明者らは、上記目的を達成するため鋭意検討を重ねた結果、天然ポリイソプレノイドを水素添加して得られる高分子を成形加工すると、優れた機械的特性を有するとともに、耐熱性、耐寒性及び耐候性の高いゴム状弾性体が得られることを見出し、本発明を完成した。   As a result of intensive studies to achieve the above object, the present inventors have obtained excellent mechanical properties, heat resistance and cold resistance when molding a polymer obtained by hydrogenating natural polyisoprenoid. And it discovered that the rubber-like elastic body with high weather resistance was obtained, and completed this invention.

すなわち、本発明は、天然イソプレノイド水素添加物より形成されたゴム状弾性体を提供する。本発明のゴム状弾性体は、水素添加率が95%以上である天然ポリイソプレノイド水素添加物を含むゴム組成物より成形加工されたゴム状弾性体であって、上記成形加工が加硫を伴い、上記天然ポリイソプレノイド水素添加物は、天然ポリイソプレノイドを溶媒中、ロジウム錯体水素化触媒の存在下、水素と反応させて得られる高分子であり、該天然ポリイソプレノイド水素添加物の重量平均分子量が83万以上であり、且つ分子量分布が2.0以上であることで特徴付けられる。1つの実施形態において、上記ゴム状弾性体は、天然ポリイソプレノイド水素添加物が、ヘベア種ゴムノキ、インドゴムノキ、トチュウ又はラクタリウス(Lactarius)属キノコ由来のイソプレン単位重合物の水素添加物である。 That is, the present invention provides a rubber-like elastic body formed from a natural isoprenoid hydrogenated product. The rubber-like elastic body of the present invention is a rubber-like elastic body molded from a rubber composition containing a natural polyisoprenoid hydrogenated product having a hydrogenation rate of 95% or more, and the molding process involves vulcanization. The natural polyisoprenoid hydrogenated product is a polymer obtained by reacting natural polyisoprenoid with hydrogen in a solvent in the presence of a rhodium complex hydrogenation catalyst, and the natural polyisoprenoid hydrogenated product has a weight average molecular weight. It is characterized by 830,000 or more and a molecular weight distribution of 2.0 or more. In one embodiment, in the rubbery elastic body, the natural polyisoprenoid hydrogenated product is a hydrogenated product of an isoprene unit polymer derived from Hevea rubber tree, Indian rubber tree, eucommia or Lactarius genus mushroom.

本発明はまた、水素添加率が95%以上である天然ポリイソプレノイドラテックス水素添加物を含むゴム状組成物より成形加工されたゴム状弾性体を含む製品を提供する。本発明のゴム状弾性体を含む製品は、上記天然ポリイソプレノイドラテックス水素添加物の重量平均分子量が83万以上であり、且つ分子量分布が2.0以上であり、上記成形加工が加硫を伴う。1つの実施形態において、上記製品は、天然ポリイソプレノイド水素添加物が、天然ポリイソプレノイドを溶媒中、ロジウム錯体水素化触媒の存在下、水素と反応させて得られる高分子である。別の実施形態において、上記製品は、天然ポリイソプレノイド水素添加物が、ヘベア種ゴムノキ、インドゴムノキ、トチュウ又はラクタリウス(Lactarius)属キノコ由来のイソプレン単位重合物の水素添加物である。The present invention also provides a product comprising a rubbery elastic body molded from a rubbery composition containing a natural polyisoprenoid latex hydrogenated product having a hydrogenation rate of 95% or more. The product containing the rubber-like elastic body of the present invention has a weight average molecular weight of 830,000 or more and a molecular weight distribution of 2.0 or more, and the molding process involves vulcanization. . In one embodiment, the product is a polymer obtained by reacting a natural polyisoprenoid hydrogenated product with hydrogen in a solvent in the presence of a rhodium complex hydrogenation catalyst. In another embodiment, the product is a hydrogenation product of isoprene unit polymer derived from a natural polyisoprenoid hydrogenated product derived from Hevea rubber tree, Indian rubber tree, Eucommia or Lactarius genus mushroom.

本発明はさらに、水素添加率が95%以上である天然ポリイソプレノイド水素添加物を含むゴム組成物を成形加工に付すことを特徴とするゴム状弾性体の製造法を提供する。本発明のゴム状弾性体の製造法において、上記天然ポリイソプレノイド水素添加物が、天然ポリイソプレノイドを溶媒中、ロジウム錯体水素化触媒の存在下、水素と反応させて得られる高分子であり、上記天然ポリイソプレノイド水素添加物の重量平均分子量が83万以上であり、且つ分子量分布が2.0以上である。

The present invention further provides a method for producing a rubber-like elastic body, which comprises subjecting a rubber composition containing a natural polyisoprenoid hydrogenated product having a hydrogenation rate of 95% or more to molding. In the method for producing a rubbery elastic body of the present invention, the natural polyisoprenoid hydrogenated product is a polymer obtained by reacting natural polyisoprenoid with hydrogen in a solvent in the presence of a rhodium complex hydrogenation catalyst, The natural polyisoprenoid hydrogenated product has a weight average molecular weight of 830,000 or more and a molecular weight distribution of 2.0 or more.

本発明のゴム状弾性体は、天然ポリイソプレノイドから製造でき、優れた機械的特性と、高い耐熱性、耐寒性及び耐候性を備えている。   The rubber-like elastic body of the present invention can be produced from natural polyisoprenoid and has excellent mechanical properties and high heat resistance, cold resistance and weather resistance.

本発明のゴム状弾性体は天然ポリイソプレノイド水素添加物より形成されている。天然ポリイソプレノイド水素添加物は、天然ポリイソプレノイドを水素添加(水添、水素化)することにより得ることができる。天然ポリイソプレノイドとしては、イソプレン単位(C58)を構成単位とする重合体であれば特に限定されないが、代表的な例として、ヘベア種ゴムノキ、インドゴムノキ、トチュウ等の植物由来のポリイソプレノイド、チチタケなどのラクタリウス(Lactarius)属キノコ等のキノコ由来のポリイソプレノイドが挙げられる。天然ポリイソプレノイドは、植物やキノコから抽出又は採取したものをそのまま用いてもよく、それを適当な手段で精製したものを用いてもよい。 The rubber-like elastic body of the present invention is formed from a natural polyisoprenoid hydrogenated product. A natural polyisoprenoid hydrogenated product can be obtained by hydrogenating (hydrogenating, hydrogenating) a natural polyisoprenoid. The natural polyisoprenoid is not particularly limited as long as it is a polymer having an isoprene unit (C 5 H 8 ) as a structural unit, but representative examples include polyisoprenoids derived from plants such as Hevea rubber tree, Indian rubber tree, and Eucommia. And polyisoprenoids derived from mushrooms such as Lactarius genus mushrooms such as Chichitake. As the natural polyisoprenoid, those extracted or collected from plants or mushrooms may be used as they are, or those purified by appropriate means may be used.

天然ポリイソプレノイドの水素添加反応は、例えば、天然ポリイソプレノイドを適当な溶媒中、水素化触媒の存在下、水素と反応させることにより行われる。溶媒としては、天然ポリイソプレノイドを溶解又は分散可能であって反応を阻害しないものであればよく、例えば、ベンゼン、トルエン、キシレン、エチルベンゼンなどの芳香族炭化水素;ペンタン、ヘキサン、ヘプタン、オクタン、デカンなどの脂肪族炭化水素;シクロペンタン、シクロヘキサン、メチルシクロヘキサンなどの脂環式炭化水素;アセトン、メチルエチルケトンなどのケトン;酢酸エチル、酢酸ブチルなどのエステル;メタノール、エタノール、イソプロピルアルコール、ブタノールなどのアルコール;ジエチルエーテル、テトラヒドロフランなどのエーテル;水;これらの混合溶媒などが挙げられる。溶媒の使用量は、撹拌操作等が円滑に行えるような量であればよいが、一般には、原料として用いる天然ポリイソプレノイド1重量部に対して10〜200重量部、好ましくは15〜60重量部程度である。なお、天然ポリイソプレノイドは溶媒に完全に溶解していてもよく、分散状態であってもよい。   The hydrogenation reaction of natural polyisoprenoid is carried out, for example, by reacting natural polyisoprenoid with hydrogen in a suitable solvent in the presence of a hydrogenation catalyst. Any solvent may be used as long as it can dissolve or disperse natural polyisoprenoids and does not inhibit the reaction. Examples thereof include aromatic hydrocarbons such as benzene, toluene, xylene, and ethylbenzene; pentane, hexane, heptane, octane, decane. Aliphatic hydrocarbons such as cyclopentane, cyclohexane and methylcyclohexane; Ketones such as acetone and methyl ethyl ketone; Esters such as ethyl acetate and butyl acetate; Alcohols such as methanol, ethanol, isopropyl alcohol and butanol; Examples thereof include ethers such as diethyl ether and tetrahydrofuran; water; mixed solvents thereof. The amount of the solvent used is not particularly limited as long as the stirring operation and the like can be performed smoothly, but generally 10 to 200 parts by weight, preferably 15 to 60 parts by weight with respect to 1 part by weight of natural polyisoprenoid used as a raw material. Degree. The natural polyisoprenoid may be completely dissolved in the solvent or may be in a dispersed state.

反応で使用する水素化触媒としては、炭素−炭素二重結合の水素添加に一般に用いられる均一系又は不均一系触媒を用いることができる。均一系触媒としては、例えば、RhCl(PPh33等のロジウム錯体触媒などの金属錯体触媒(特に、周期表第8族、第9族又は第10族金属元素を含む錯体触媒)、カルボン酸ニッケル−トリアルキルアルミニウム触媒などが挙げられる。また、不均一系触媒としては、例えば、Pd/CaCO3等のパラジウム触媒などの固体触媒(特に、周期表第8族、第9族又は第10族金属元素を含む触媒活性成分を担体に担持した触媒)などが用いられる。触媒の使用量は、触媒の種類等によっても異なるが、一般には、原料として用いる天然ポリイソプレノイドに対して0.01〜30重量%、好ましくは0.1〜20重量%程度である。 As the hydrogenation catalyst used in the reaction, a homogeneous or heterogeneous catalyst generally used for hydrogenation of carbon-carbon double bonds can be used. Examples of homogeneous catalysts include metal complex catalysts such as rhodium complex catalysts such as RhCl (PPh 3 ) 3 (particularly, complex catalysts containing Group 8, Group 9 or Group 10 metal elements), carboxylic acids, and the like. Examples thereof include a nickel-trialkylaluminum catalyst. In addition, as the heterogeneous catalyst, for example, a solid catalyst such as a palladium catalyst such as Pd / CaCO 3 (particularly, a catalytic active component containing a metal element of Group 8, 9 or 10 of the periodic table is supported on a carrier. Catalyst). The amount of the catalyst used varies depending on the type of catalyst, but is generally about 0.01 to 30% by weight, preferably about 0.1 to 20% by weight, based on the natural polyisoprenoid used as a raw material.

反応温度は、触媒の種類等によって異なるが、例えば、前記金属錯体触媒などを用いる場合には、例えば50〜80℃、好ましくは60〜80℃、さらに好ましくは65〜75℃程度の範囲から選択できる。反応温度が高すぎると、ゴムのゲル化や分子切断(低分子量化)などの副反応が多く進行し、所望の機械的強度や熱的特性を有するゴム状弾性体に適したポリマーを得ることが困難になる。例えば、反応温度を90℃以上にすると、24時間の反応で重量平均分子量は18万まで低下し、機械的強度及びクリープ特性の高い成形品が得られなくなる。また、反応温度を100℃以上にすると、ゲル化が著しく起こり、ゴムとして後の加工を行うことができなくなる。反応温度が低すぎると反応速度が低下し、生産性の点で不利である。   Although the reaction temperature varies depending on the type of catalyst, for example, when the metal complex catalyst is used, it is selected from the range of, for example, 50 to 80 ° C., preferably 60 to 80 ° C., more preferably about 65 to 75 ° C. it can. If the reaction temperature is too high, many side reactions such as rubber gelation and molecular cutting (lower molecular weight) will proceed, and a polymer suitable for rubber-like elastic bodies having the desired mechanical strength and thermal characteristics will be obtained. Becomes difficult. For example, when the reaction temperature is 90 ° C. or higher, the weight average molecular weight decreases to 180,000 after 24 hours of reaction, and a molded article having high mechanical strength and creep characteristics cannot be obtained. On the other hand, if the reaction temperature is 100 ° C. or higher, gelation occurs remarkably, and subsequent processing as a rubber cannot be performed. If the reaction temperature is too low, the reaction rate decreases, which is disadvantageous in terms of productivity.

反応圧力としては、反応効率、操作性、装置のコスト等を考慮して適宜選択でき、触媒の種類や反応温度等によっても異なるが、例えば前記金属錯体触媒などを用いる場合には、通常0.1〜15MPa、好ましくは2〜10MPaである。反応時間は、反応温度や反応圧力に応じて適宜選択できる。   The reaction pressure can be appropriately selected in consideration of the reaction efficiency, operability, cost of the apparatus, etc., and varies depending on the type of catalyst, reaction temperature, etc. For example, when the metal complex catalyst or the like is used, it is usually 0. 1-15 MPa, preferably 2-10 MPa. The reaction time can be appropriately selected according to the reaction temperature and reaction pressure.

反応系に水が存在すると、触媒活性が低下する場合があるので、反応の前(触媒添加前)に、予めモレキュラーシーブ等の脱水剤を用いて系内の水分を除去しておいてもよい。反応は、水素の存在下又は水素の流通下で行われ、反応方式は、バッチ式、セミバッチ式、連続式等の何れの方式も採用できる。   If water is present in the reaction system, the catalytic activity may decrease, so the water in the system may be removed beforehand using a dehydrating agent such as molecular sieves before the reaction (before adding the catalyst). . The reaction is carried out in the presence of hydrogen or under the flow of hydrogen, and any reaction system such as a batch system, a semi-batch system, or a continuous system can be adopted.

反応終了後、反応で生成したポリマー(天然ポリイソプレノイド水素添加物)は、沈殿、再沈殿、濾過、洗浄、乾燥等の精製手段により精製、単離できる。   After completion of the reaction, the polymer (natural polyisoprenoid hydrogenated product) produced by the reaction can be purified and isolated by purification means such as precipitation, reprecipitation, filtration, washing and drying.

天然ポリイソプレノイド水素添加物の水素添加率は、好ましくは50%以上、さらに好ましくは70%以上、特に好ましくは90%以上(中でも95%以上)である。水素添加率が高いほど、耐熱性、耐老化性、耐候性、耐摩耗性、SET性に優れたゴム状弾性体を得ることができる。なお、水素添加率rは原料である天然ポリイソプレノイド中の炭素−炭素二重結合の水素添加された割合[r=(D0−D)/D0×100(%);D0は天然ポリイソプレノイド中の炭素−炭素二重結合の量(mol/g)、Dは反応後の水素添加物中の炭素−炭素二重結合の量(mol/g)である]を示す。本明細書では、天然ポリイソプレノイド中の炭素−炭素二重結合の量D0は、便宜上、イソプレンのホモポリマーと仮定した場合の値を採用する。反応後の水素添加物中の炭素−炭素二重結合の量Dは、1H−NMR又はヨウ素価測定により求めることができる。 The hydrogenation rate of the natural polyisoprenoid hydrogenated product is preferably 50% or more, more preferably 70% or more, and particularly preferably 90% or more (particularly 95% or more). As the hydrogenation rate is higher, a rubbery elastic body excellent in heat resistance, aging resistance, weather resistance, wear resistance, and SET property can be obtained. Incidentally, the carbon of the hydrogenation ratio r natural polyisoprenoid in isoprenoid which is the raw material - percentage of hydrogenated carbon double bond [r = (D 0 -D) / D 0 × 100 (%); D 0 is native polypeptide The amount of carbon-carbon double bonds in the isoprenoid (mol / g), D is the amount of carbon-carbon double bonds (mol / g) in the hydrogenated product after the reaction]. In the present specification, for the sake of convenience, a value assuming a homopolymer of isoprene is adopted as the amount D 0 of carbon-carbon double bonds in the natural polyisoprenoid. The amount D of carbon-carbon double bonds in the hydrogenated product after the reaction can be determined by 1 H-NMR or iodine value measurement.

天然ポリイソプレノイド水素添加物の重量平均分子量は、例えば20万以上(20万〜300万程度)、好ましくは40万以上(40万〜300万程度)、さらに好ましくは60万以上(60万〜300万程度)である。重量平均分子量が小さすぎると、物理的強度及びクリープ特性が低下し、好ましくない。なお、前述のように、水素添加反応の反応温度が高すぎると、重量平均分子量が小さくなる。   The weight average molecular weight of the natural polyisoprenoid hydrogenated product is, for example, 200,000 or more (about 200,000 to 3,000,000), preferably 400,000 or more (about 400,000 to 3,000,000), more preferably 600,000 or more (600,000 to 300,000). Ten thousand). If the weight average molecular weight is too small, the physical strength and creep properties are lowered, which is not preferable. As described above, when the reaction temperature of the hydrogenation reaction is too high, the weight average molecular weight decreases.

天然ポリイソプレノイド水素添加物の分子量分布[Mw(重量平均分子量)/Mn(数平均分子量)]は、例えば2.0以上(2.0〜7.0程度)、好ましくは2.3以上(2.3〜7.0程度)、さらに好ましくは2.6以上(2.6〜7.0程度)である。分子量分布が小さすぎると、加工性が低下し、好ましくない。なお、水素添加反応の反応温度が高すぎると、高分子量側のポリマーが切断されやすくなり、分子量分布が小さくなる。   The molecular weight distribution [Mw (weight average molecular weight) / Mn (number average molecular weight)] of the natural polyisoprenoid hydrogenated product is, for example, 2.0 or more (about 2.0 to 7.0), preferably 2.3 or more (2 .About.3 to 7.0), more preferably 2.6 or more (about 2.6 to 7.0). If the molecular weight distribution is too small, the processability is lowered, which is not preferable. If the reaction temperature of the hydrogenation reaction is too high, the polymer on the high molecular weight side is easily cleaved, and the molecular weight distribution becomes small.

本発明のゴム状弾性体は、こうして得られた天然ポリイソプレノイド水素添加物とを含むゴム組成物を成形加工(特に、架橋を伴った成形加工)に付すことにより製造できる。前記ゴム組成物には、成形品の用途等に応じて種々の配合剤が添加、配合される。このような配合剤として、例えば、素練り促進剤、軟化剤・可塑剤、架橋用配合剤、老化防止剤、発泡剤、カップリング剤、加工助剤、着色剤、充填剤、補強剤などが挙げられる。   The rubber-like elastic body of the present invention can be produced by subjecting a rubber composition containing the natural polyisoprenoid hydrogenated product thus obtained to a molding process (particularly, a molding process with crosslinking). Various compounding agents are added to and blended with the rubber composition according to the use of the molded product. Examples of such compounding agents include peptizers, softeners / plasticizers, crosslinking compounds, anti-aging agents, foaming agents, coupling agents, processing aids, colorants, fillers, reinforcing agents, and the like. Can be mentioned.

素練り促進剤としては、例えば、芳香族ジスルフィド系化合物、芳香族メルカプタン金属塩系化合物などが挙げられる。軟化剤・可塑剤には、鉱物油系軟化剤、植物油系軟化剤、合成軟化剤などが含まれる。   Examples of the peptizer include aromatic disulfide compounds and aromatic mercaptan metal salt compounds. The softener / plasticizer includes mineral oil softener, vegetable oil softener, synthetic softener and the like.

架橋用配合剤には、架橋剤、加硫促進剤、加硫促進助剤、スコーチリターダ等が使用される。架橋剤としては、硫黄や不溶性硫黄(加硫剤)、ジクミルペルオキシド等の過酸化物(パーオキサイド)、オキシムなどが挙げられる。架橋剤の使用量は、天然ポリイソプレノイド水素添加物100重量部に対して、例えば0.3〜5重量部程度である。加硫促進剤としては、例えば、グアニジン系化合物、チウラム系化合物、ジチオカルバミン酸塩系化合物、チアゾール系化合物、スルフェンアミド系化合物などが挙げられる。加硫促進剤の使用量は、天然ポリイソプレノイド水素添加物100重量部に対して、例えば0.2〜5重量部程度である。加硫促進助剤としては、例えば、酸化亜鉛などが挙げられる。加硫促進助剤の使用量は、天然ポリイソプレノイド水素添加物100重量部に対して、例えば1〜10重量部程度である。スコーチリターダとしては、例えば、無水フタル酸、N−シクロヘキシルチオフタルイミドなどが挙げられる。   As the crosslinking compounding agent, a crosslinking agent, a vulcanization accelerator, a vulcanization acceleration aid, a scooter retarder, and the like are used. Examples of the crosslinking agent include sulfur, insoluble sulfur (vulcanizing agent), peroxides such as dicumyl peroxide, and oxime. The usage-amount of a crosslinking agent is about 0.3-5 weight part with respect to 100 weight part of natural polyisoprenoid hydrogenation products, for example. Examples of the vulcanization accelerator include guanidine compounds, thiuram compounds, dithiocarbamate compounds, thiazole compounds, sulfenamide compounds, and the like. The usage-amount of a vulcanization accelerator is about 0.2-5 weight part with respect to 100 weight part of natural polyisoprenoid hydrogenation products, for example. Examples of the vulcanization acceleration aid include zinc oxide. The usage-amount of a vulcanization | cure acceleration | stimulation adjuvant is about 1-10 weight part with respect to 100 weight part of natural polyisoprenoid hydrogenation products, for example. Examples of the scooter retarder include phthalic anhydride and N-cyclohexylthiophthalimide.

老化防止剤としては、アミン系老化防止剤、フェノール系老化防止剤、硫黄系二次老化防止剤、リン系二次老化防止剤、トリブチルチオウレア、ワックスなどが挙げられる。発泡剤には、無機発泡剤及び有機発泡剤が含まれる。カップリング剤としては、白色充填剤用カップリング剤、カーボンブラック用カップリング剤などが用いられる。加工助剤としては、パラフィン、炭化水素樹脂、ステアリン酸等の高級脂肪酸、ステアリン酸アミド等の高級脂肪酸アミド、ステアリン酸ブチル等の高級脂肪酸エステル、ステアリルアルコールなどの高級脂肪族アルコール、グリセリン脂肪酸エステル等の脂肪酸と多価アルコールの部分エステル、ステアリン酸亜鉛等の高級脂肪酸金属塩などの滑剤;クマロン樹脂、フェノール樹脂・テルペン系樹脂、石油系炭化水素樹脂、ロジン誘導体等の粘着付与剤などが挙げられる。加工助剤の使用量は、天然ポリイソプレノイド水素添加物100重量部に対して、例えば0.1〜10重量部程度である。   Examples of the anti-aging agent include amine-based anti-aging agents, phenol-based anti-aging agents, sulfur-based secondary anti-aging agents, phosphorus-based secondary anti-aging agents, tributylthiourea, and waxes. The foaming agent includes an inorganic foaming agent and an organic foaming agent. As the coupling agent, a white filler coupling agent, a carbon black coupling agent, or the like is used. Processing aids include paraffins, hydrocarbon resins, higher fatty acids such as stearic acid, higher fatty acid amides such as stearic acid amide, higher fatty acid esters such as butyl stearate, higher fatty alcohols such as stearyl alcohol, glycerin fatty acid esters, etc. Lubricants such as partial esters of fatty acids and polyhydric alcohols, higher fatty acid metal salts such as zinc stearate; tackifiers such as coumarone resins, phenolic / terpene resins, petroleum hydrocarbon resins, rosin derivatives, etc. . The amount of the processing aid used is, for example, about 0.1 to 10 parts by weight with respect to 100 parts by weight of the natural polyisoprenoid hydrogenated product.

着色剤としては、無機顔料、有機顔料が使用される。また、充填剤としては、カーボンブラック、シリカなどの補強性充填剤;補強用短繊維;クレー・タルク類、炭酸塩類、アルミナ水和物、硫酸バリウムなどの非補強性充填剤;導電性物質などの機能性充填剤などが挙げられる。充填剤の使用量は、天然ポリイソプレノイド水素添加物100重量部に対して、例えば1〜200重量部、好ましくは5〜100重量部程度である。   As the colorant, inorganic pigments and organic pigments are used. Further, as fillers, reinforcing fillers such as carbon black and silica; reinforcing short fibers; non-reinforcing fillers such as clay, talc, carbonates, alumina hydrate, and barium sulfate; conductive materials, etc. And functional fillers. The usage-amount of a filler is 1-200 weight part with respect to 100 weight part of natural polyisoprenoid hydrogenated products, Preferably it is about 5-100 weight part.

前記ゴム組成物の成形加工は、ゴム組成物を混練りする混練り工程、及び前記混練り工程で得られた混練り物(配合ゴム)を成形する成形工程により行われる。混練り工程の前に、天然ポリイソプレノイド水素添加物を素練りする素練り工程を設けてもよい。混練りは、2本ロールや密閉式二軸混練り機などを用いて行うことができる。成形は、混練りした未架橋状態の流動性のある配合ゴムを成形と同時に加熱架橋する方式(型加硫)、混練りした未架橋状態の流動性のある配合ゴムを押出機、カレンダーなどで成形した後、缶加硫や連続加硫によって加熱架橋する方式などにより行われる。型加硫における成形方式としては、圧縮成形、トランスファー成形、射出成形、射出圧縮成形、液状射出などの何れの方式も採用できる。成形加工後、通常、仕上げ、表面処理が施される。   The molding process of the rubber composition is performed by a kneading process for kneading the rubber composition and a molding process for molding the kneaded product (compound rubber) obtained in the kneading process. Prior to the kneading step, a mastication step of masticating the natural polyisoprenoid hydrogenated product may be provided. Kneading can be performed using a two-roll or a closed biaxial kneader. Molding is a method in which a kneaded uncrosslinked fluid compounded rubber is heated and crosslinked simultaneously with molding (mold vulcanization), and a kneaded uncrosslinked fluid compounded rubber is extruded, calendered, etc. After molding, it is carried out by a method such as heat crosslinking by can vulcanization or continuous vulcanization. As a molding method in mold vulcanization, any method such as compression molding, transfer molding, injection molding, injection compression molding, and liquid injection can be adopted. After molding, finishing and surface treatment are usually performed.

こうして得られた本発明のゴム状弾性体(成形品)は、優れた機械的特性を有するとともに、天然ゴムと比較して、特に耐熱性が著しく高い。また、SET性や耐候性にも優れ、特にパーオキサイド架橋したものは耐摩耗性にも優れる。また、天然ポリイソプレノイド水素添加物が線状の擬エチレン−プロピレン完全交互共重合体であることから、代表的な合成ゴムであるEPDM(エチレン−プロピレン−ジエンゴム)等と比較して、ガラス転移温度が低く、優れた耐寒性を示す。また、加工性や疲労耐久性にも優れる。   The rubber-like elastic body (molded article) of the present invention thus obtained has excellent mechanical properties and has particularly high heat resistance as compared with natural rubber. Moreover, it is excellent also in SET property and a weather resistance, and especially what was peroxide-crosslinked is also excellent in abrasion resistance. In addition, since the natural polyisoprenoid hydrogenated product is a linear pseudo-ethylene-propylene complete alternating copolymer, it has a glass transition temperature as compared with EPDM (ethylene-propylene-diene rubber) which is a typical synthetic rubber. Is low and shows excellent cold resistance. Moreover, it is excellent in workability and fatigue durability.

本発明のゴム状弾性体は、タイヤ、チューブ、医療用ゴム製品、ラテックス浸漬製品、ゴム糸、ベルト、免震、防振、パッキンなどの工業用ゴム製品として使用できる。   The rubber-like elastic body of the present invention can be used as industrial rubber products such as tires, tubes, medical rubber products, latex immersion products, rubber yarns, belts, seismic isolation, vibration proofing, and packing.

以下に実施例を挙げて本発明をさらに具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。なお、ポリマーの平均分子量及び分子量分布の測定は、ゲル浸透クロマトグラフィー装置(GPC)を用い、以下の条件で行った。
検出器:示差屈折計(RI)
注入液:サンプルの0.1重量%テトラヒドロフラン溶液
溶離液:テトラヒドロフラン
定量 :標準ポリスチレン換算
The present invention will be described more specifically with reference to the following examples. However, the present invention is not limited to these examples. The average molecular weight and molecular weight distribution of the polymer were measured using a gel permeation chromatography apparatus (GPC) under the following conditions.
Detector: Differential refractometer (RI)
Injection solution: 0.1% by weight tetrahydrofuran solution of the sample Eluent: Tetrahydrofuran Determination: Standard polystyrene conversion

実施例1
固形天然ゴム[商品名「SMR−CV60」、マレーシア産天然ゴム、重量平均分子量(Mw)130万、分子量分布(Mw/Mn)5.7]140gをトルエン6.86kgに溶解した。この溶液に水分を除去するためモレキュラーシーブを投入し、1日静置した後、モレキュラーシーブを濾去した。オートクレーブに、この濾液と触媒[RhCl(PPh33]8gとを入れ、オートクレーブ内を水素ガスで置換した後、水素ガスを圧入し(8MPa)、70〜75℃に加温し、96時間撹拌して、水素添加反応を行った。反応後の溶液に、撹拌しながら、メタノールを少量ずつ、完全に固形ゴムが析出まで加えた。固形物を濾過し、メタノールにより洗浄した。この濾過及び洗浄操作を3回繰り返した後、固形物を60℃で24時間真空乾燥した。得られた固形物(水素添加物)の水素添加率は70%であり、重量平均分子量(Mw)は100万、分子量分布(Mw/Mn)は3.2であった。
得られた水素添加物100重量部、ステアリン酸1重量部、酸化亜鉛5重量部、カーボンブラック[商品名「N220」、東洋カーボン社製]20重量部を密閉式混練り機に投入し、40rpm、50℃で3分間混練りした。得られた混練り物と、加硫促進剤[商品名「ノクセラーCZ」、N−シクロヘキシルベンゾチアジルスルフォンアミド(CBS)、大内新興化学(株)製]2.5重量部と、硫黄1重量部とをオープンロールで混練り(50℃)し、金型形状に合わせて予備成形した後、160℃で約60分間プレス加硫して、2mm厚のシートを作製した。
Example 1
140 g of solid natural rubber [trade name “SMR-CV60”, natural rubber from Malaysia, weight average molecular weight (Mw) 1.3 million, molecular weight distribution (Mw / Mn) 5.7] was dissolved in 6.86 kg of toluene. In order to remove moisture from this solution, molecular sieves were added and allowed to stand for 1 day, and then the molecular sieves were removed by filtration. The filtrate and 8 g of the catalyst [RhCl (PPh 3 ) 3 ] were put into an autoclave, the inside of the autoclave was replaced with hydrogen gas, hydrogen gas was press-fitted (8 MPa), and the mixture was heated to 70 to 75 ° C. for 96 hours. The hydrogenation reaction was performed with stirring. To the solution after the reaction, methanol was added little by little until the solid rubber was completely precipitated while stirring. The solid was filtered and washed with methanol. After this filtration and washing operation was repeated three times, the solid was vacuum dried at 60 ° C. for 24 hours. The resulting solid (hydrogenated product) had a hydrogenation rate of 70%, a weight average molecular weight (Mw) of 1,000,000, and a molecular weight distribution (Mw / Mn) of 3.2.
100 parts by weight of the resulting hydrogenated product, 1 part by weight of stearic acid, 5 parts by weight of zinc oxide, and 20 parts by weight of carbon black [trade name “N220”, manufactured by Toyo Carbon Co., Ltd.] were put into a closed kneader and 40 rpm And kneading at 50 ° C. for 3 minutes. The obtained kneaded product, a vulcanization accelerator [trade name “Noxeller CZ”, N-cyclohexylbenzothiazylsulfonamide (CBS), manufactured by Ouchi Shinsei Chemical Co., Ltd.], 2.5 parts by weight, and 1 weight of sulfur The parts were kneaded with an open roll (50 ° C.) and preformed according to the shape of the mold, and then press vulcanized at 160 ° C. for about 60 minutes to produce a 2 mm thick sheet.

実施例2
実施例1において、触媒の量を9gとした以外は実施例1と同様の操作を行って、水素添加物を得た。得られた水素添加物の水素添加率は90%であり、重量平均分子量(Mw)は114万、分子量分布(Mw/Mn)は3.2であった。
得られた水素添加物100重量部、ステアリン酸1重量部、酸化亜鉛5重量部、カーボンブラック[商品名「N220」、東洋カーボン社製]20重量部を密閉式混練り機に投入し、40rpm、50℃で3分間混練りした。得られた混練り物と、加硫促進剤[商品名「ノクセラーCZ」、N−シクロヘキシルベンゾチアジルスルフォンアミド(CBS)、大内新興化学(株)製]2.5重量部と、硫黄1重量部とをオープンロールで混練り(50℃)し、金型形状に合わせて予備成形した後、160℃で約60分間プレス加硫して、2mm厚のシートを作製した。
Example 2
In Example 1, except that the amount of the catalyst was 9 g, the same operation as in Example 1 was performed to obtain a hydrogenated product. The resulting hydrogenated product had a hydrogenation rate of 90%, a weight average molecular weight (Mw) of 1.14 million and a molecular weight distribution (Mw / Mn) of 3.2.
100 parts by weight of the resulting hydrogenated product, 1 part by weight of stearic acid, 5 parts by weight of zinc oxide, and 20 parts by weight of carbon black [trade name “N220”, manufactured by Toyo Carbon Co., Ltd.] were put into a closed kneader and 40 rpm And kneading at 50 ° C. for 3 minutes. The obtained kneaded product, a vulcanization accelerator [trade name “Noxeller CZ”, N-cyclohexylbenzothiazylsulfonamide (CBS), manufactured by Ouchi Shinsei Chemical Co., Ltd.], 2.5 parts by weight, and 1 weight of sulfur The parts were kneaded with an open roll (50 ° C.) and preformed according to the shape of the mold, and then press vulcanized at 160 ° C. for about 60 minutes to produce a 2 mm thick sheet.

実施例3
実施例1において、触媒の量を18gとした以外は実施例1と同様の操作を行って、水素添加物を得た。得られた水素添加物の水素添加率は100%であり、重量平均分子量(Mw)は83万、分子量分布(Mw/Mn)は2.7であった。
得られた水素添加物100重量部、ステアリン酸1重量部、酸化亜鉛5重量部、及びカーボンブラック20重量部を密閉式混練り機に投入し、40rpm、150℃で3分間混練りした。得られた混練り物とパーオキサイド[商品名「ペロキシモンF40」、日本油脂(株)製]3重量部とをオープンロールで混練り(50℃)し、金型形状に合わせて予備成形した後、160℃で約60分間プレス加硫(架橋)して、2mm厚のシートを作製した。
Example 3
In Example 1, except that the amount of the catalyst was 18 g, the same operation as in Example 1 was performed to obtain a hydrogenated product. The resulting hydrogenated product had a hydrogenation rate of 100%, a weight average molecular weight (Mw) of 830,000, and a molecular weight distribution (Mw / Mn) of 2.7.
100 parts by weight of the obtained hydrogenated product, 1 part by weight of stearic acid, 5 parts by weight of zinc oxide, and 20 parts by weight of carbon black were put into a closed kneader and kneaded at 40 rpm and 150 ° C. for 3 minutes. The obtained kneaded product and peroxide [trade name “Peroximon F40”, manufactured by Nippon Oil & Fats Co., Ltd.] 3 parts by weight were kneaded with an open roll (50 ° C.) and pre-molded according to the mold shape, Press vulcanization (crosslinking) was performed at 160 ° C. for about 60 minutes to produce a 2 mm thick sheet.

比較例1
固形天然ゴム[商品名「SMR−CV60」、マレーシア産天然ゴム、重量平均分子量(Mw)130万、分子量分布(Mw/Mn)5.7]100重量部、ステアリン酸1重量部、酸化亜鉛5重量部、カーボンブラック[商品名「N220」、東洋カーボン社製]20重量部を密閉式混練り機に投入し、40rpm、50℃で3分間混練りした。得られた混練り物と、加硫促進剤[商品名「ノクセラーCZ」、N−シクロヘキシルベンゾチアジルスルフォンアミド(CBS)、大内新興化学(株)製]2.5重量部と、硫黄1重量部とをオープンロールで混練り(50℃)し、金型形状に合わせて予備成形した後、160℃で約60分間プレス加硫して、2mm厚のシートを作製した。
Comparative Example 1
Solid natural rubber [trade name “SMR-CV60”, natural rubber from Malaysia, weight average molecular weight (Mw) 1.3 million, molecular weight distribution (Mw / Mn) 5.7] 100 parts by weight, stearic acid 1 part by weight, zinc oxide 5 20 parts by weight of carbon black [trade name “N220”, manufactured by Toyo Carbon Co., Ltd.] was put into a closed kneader and kneaded at 40 rpm and 50 ° C. for 3 minutes. The obtained kneaded product, a vulcanization accelerator [trade name “Noxeller CZ”, N-cyclohexylbenzothiazylsulfonamide (CBS), manufactured by Ouchi Shinsei Chemical Co., Ltd.], 2.5 parts by weight, and 1 weight of sulfur The parts were kneaded with an open roll (50 ° C.) and preformed according to the shape of the mold, and then press vulcanized at 160 ° C. for about 60 minutes to produce a 2 mm thick sheet.

比較例2
固形天然ゴム[商品名「SMR−CV60」、マレーシア産天然ゴム、重量平均分子量(Mw)130万、分子量分布(Mw/Mn)5.7]100重量部、ステアリン酸1重量部、酸化亜鉛5重量部、及びカーボンブラック[商品名「N220」、東洋カーボン社製]20重量部を密閉式混練り機に投入し、40rpm、50℃で3分間混練りした。得られた混練り物とパーオキサイド[商品名「ペロキシモンF40」、日本油脂(株)製]3重量部とをオープンロールで混練り(50℃)し、金型形状に合わせて予備成形した後、160℃で約60分間プレス加硫(架橋)して、2mm厚のシートを作製した。
Comparative Example 2
Solid natural rubber [trade name “SMR-CV60”, natural rubber from Malaysia, weight average molecular weight (Mw) 1.3 million, molecular weight distribution (Mw / Mn) 5.7] 100 parts by weight, stearic acid 1 part by weight, zinc oxide 5 Part by weight and 20 parts by weight of carbon black [trade name “N220”, manufactured by Toyo Carbon Co., Ltd.] were put into a closed kneader and kneaded at 40 rpm and 50 ° C. for 3 minutes. The obtained kneaded product and peroxide [trade name “Peroximon F40”, manufactured by Nippon Oil & Fats Co., Ltd.] 3 parts by weight were kneaded with an open roll (50 ° C.) and pre-molded according to the mold shape, Press vulcanization (crosslinking) was performed at 160 ° C. for about 60 minutes to produce a 2 mm thick sheet.

比較例3
EPDM(エチレン−プロピレン−ジエンゴム)[商品名「8340A」、DSM(株)製、重量平均分子量(Mw)28万、分子量分布(Mw/Mn)2.5]100重量部、ステアリン酸1重量部、酸化亜鉛5重量部、カーボンブラック[商品名「N220」、東洋カーボン社製]20重量部を密閉式混練り機に投入し、40rpm、150℃で3分間混練りした。得られた混練り物と、加硫促進剤[商品名「ノクセラーCZ」、N−シクロヘキシルベンゾチアジルスルフォンアミド(CBS)、大内新興化学(株)製]と、硫黄1重量部とをオープンロールで混練り(50℃)し、金型形状に合わせて予備成形した後、160℃で約60分間プレス加硫して、2mm厚のシートを作製した。
Comparative Example 3
EPDM (ethylene-propylene-diene rubber) [trade name “8340A”, manufactured by DSM Corporation, weight average molecular weight (Mw) 280,000, molecular weight distribution (Mw / Mn) 2.5] 100 parts by weight, stearic acid 1 part by weight Then, 5 parts by weight of zinc oxide and 20 parts by weight of carbon black [trade name “N220”, manufactured by Toyo Carbon Co., Ltd.] were charged into a closed kneader and kneaded at 40 rpm and 150 ° C. for 3 minutes. Open roll of obtained kneaded material, vulcanization accelerator [trade name “Noxeller CZ”, N-cyclohexylbenzothiazylsulfonamide (CBS), manufactured by Ouchi Shinsei Chemical Co., Ltd.], and 1 part by weight of sulfur Were kneaded (50 ° C.) and preformed according to the shape of the mold, and then press vulcanized at 160 ° C. for about 60 minutes to produce a 2 mm thick sheet.

比較例4
EPDM(エチレン−プロピレン−ジエンゴム)[商品名「8340A」、DSM(株)製、重量平均分子量(Mw)28万、分子量分布(Mw/Mn)2.5]100重量部、ステアリン酸1重量部、酸化亜鉛5重量部、及びカーボンブラック20重量部を密閉式混練り機に投入し、40rpm、150℃で3分間混練りした。得られた混練り物とパーオキサイド[商品名「ペロキシモンF40」、日本油脂(株)製]3重量部とをオープンロールで混練り(50℃)し、金型形状に合わせて予備成形した後、160℃で約60分間プレス加硫(架橋)して、2mm厚のシートを作製した。
Comparative Example 4
EPDM (ethylene-propylene-diene rubber) [trade name “8340A”, manufactured by DSM Corporation, weight average molecular weight (Mw) 280,000, molecular weight distribution (Mw / Mn) 2.5] 100 parts by weight, stearic acid 1 part by weight Then, 5 parts by weight of zinc oxide and 20 parts by weight of carbon black were put into a closed kneader and kneaded at 40 rpm and 150 ° C. for 3 minutes. The obtained kneaded product and peroxide [trade name “Peroximon F40”, manufactured by Nippon Oil & Fats Co., Ltd.] 3 parts by weight were kneaded with an open roll (50 ° C.) and pre-molded according to the mold shape, Press vulcanization (crosslinking) was performed at 160 ° C. for about 60 minutes to produce a 2 mm thick sheet.

物性評価試験
実施例及び比較例で得られたシートにつき、引張試験(破断強度、破断伸び)、硬さ試験(硬度)、熱老化試験、摩耗試験、圧縮永久ひずみ(SET)試験、ガラス転移温度(Tg)の測定、及びオゾン劣化試験を行った。その結果を表1に示す。
Physical property evaluation test About sheets obtained in Examples and Comparative Examples, tensile test (breaking strength, breaking elongation), hardness test (hardness), thermal aging test, wear test, compression set (SET) test, glass transition temperature Measurement of (Tg) and an ozone deterioration test were performed. The results are shown in Table 1.

(引張試験)
JIS K6251に準拠し、2mm厚のシートを3号ダンベルで打ち抜き、標線間20mm、引張速度500mm/分の条件で引張試験を行い、破断強度[TB(MPa)]、破断伸び[EB(%)]を測定した。
(Tensile test)
In accordance with JIS K6251, a 2 mm thick sheet was punched out with a No. 3 dumbbell, a tensile test was performed under conditions of 20 mm between marked lines and a tensile speed of 500 mm / min, breaking strength [TB (MPa)], breaking elongation [EB (% )] Was measured.

(硬さ試験)
JIS K6253に準拠し、タイプAデュロメーターを用いて硬さ試験を行い、硬度を測定した。
(Hardness test)
In accordance with JIS K6253, a hardness test was performed using a type A durometer to measure the hardness.

(熱老化試験)
JIS K6257に準拠し、2mm厚のシートを3号ダンベルで打ち抜き、100℃で96時間ギアオーブン中で熱老化後、上記と同様にして引張試験及び硬さ試験を行い、破断強度TB、破断伸びEB及び硬度の老化の度合い[ΔTB(%)、ΔEB(%)、Δ硬度(%)]を測定した。
(Heat aging test)
In accordance with JIS K6257, a 2 mm thick sheet was punched out with a No. 3 dumbbell, heat-aged in a gear oven for 96 hours at 100 ° C., and then subjected to a tensile test and a hardness test in the same manner as described above. The degree of aging of EB and hardness [ΔTB (%), ΔEB (%), Δ hardness (%)] was measured.

(摩耗試験)
JIS K6264に準拠し、ピコ摩耗試験機を用い、44N荷重、60rpm,正逆各20回×2回、計80回の条件で摩耗試験を行い、摩耗量(g)を測定した。
(Abrasion test)
In accordance with JIS K6264, a wear test was performed using a pico abrasion tester under the conditions of 44 N load, 60 rpm, forward and reverse 20 times × 2 times, a total of 80 times, and the amount of wear (g) was measured.

(圧縮永久ひずみ試験)
JIS K6262に準拠し、大型試験片を用い、70℃×24時間の条件で圧縮永久ひずみ(SET)試験を行い、圧縮永久ひずみSET(%)を測定した。
(Compression set test)
In accordance with JIS K6262, a compression set (SET) test was performed using a large test piece under the conditions of 70 ° C. × 24 hours, and compression set (%) was measured.

(ガラス転移温度の測定)
動的粘弾性測定装置(DMS)を用い、20Hz、5℃/分、−100℃〜100℃の昇温過程におけるtanδピーク温度を測定し、ガラス転移温度[Tg(℃)]を求めた。
(Measurement of glass transition temperature)
Using a dynamic viscoelasticity measuring device (DMS), the tan δ peak temperature in a temperature rising process of 20 Hz, 5 ° C./min, −100 ° C. to 100 ° C. was measured, and the glass transition temperature [Tg (° C.)] was obtained.

(オゾン劣化試験)
JIS K6259に準拠し、2mm厚のシートを1号ダンベル(10mm幅短冊状)で打ち抜き、50%伸長させ、専用ホルダーに固定し、40℃、オゾン濃度50pphmの雰囲気下に96時間置き、オゾンクラックを調べた。
(Ozone degradation test)
In accordance with JIS K6259, a 2mm thick sheet is punched out with a No. 1 dumbbell (10mm width strip), stretched 50%, fixed to a dedicated holder, placed in an atmosphere of 40 ° C and ozone concentration of 50 pphm for 96 hours, ozone crack I investigated.

Figure 0004748933
Figure 0004748933

実施例1及び2と比較例1との比較から、本発明のゴム状弾性体が、天然ゴムから製造された弾性体より耐熱性(耐熱老化性)が著しく優れていることが分かる。実施例1及び2と比較例3との対比、実施例3と比較例4との対比から、本発明のゴム状弾性体が代表的な合成ゴムであるEPDMと比較して耐摩耗性の点で優れており、特にパーオキサイド架橋したもの(実施例3)は、天然ゴムから製造された弾性体(比較例2)と比べても耐摩耗性が著しく向上していることが分かる。また、本発明のゴム状弾性体のうち水素添加率が90%以上のもの(実施例2,3)は、天然ゴムから製造された弾性体(比較例1,2)よりも耐候性が向上し、特に水素添加率が100%のもの(実施例3)は著しく耐候性に優れる。また、実施例1及び2と比較例3との対比から分かるように、本発明ではSET性も向上する。さらに、本発明のゴム状弾性体はガラス転移温度が天然ゴムから製造された弾性体と同程度であり、耐寒性の点でEPDMよりも優れている。このように、本発明のゴム状弾性体によれば、天然ゴムの優れた特性を保持しつつ、耐熱性や耐候性等の天然ゴムの欠点を改善できるので、広い分野に使用できると共に、植物由来の原料を用いるため、資源、環境の面でも好ましい。
From a comparison between Examples 1 and 2 and Comparative Example 1, it can be seen that the rubber-like elastic body of the present invention is significantly superior in heat resistance (heat aging resistance) than an elastic body produced from natural rubber. From the comparison between Examples 1 and 2 and Comparative Example 3 and the comparison between Example 3 and Comparative Example 4, the rubbery elastic body of the present invention is a point of abrasion resistance as compared with EPDM which is a representative synthetic rubber. It can be seen that, in particular, those obtained by peroxide crosslinking (Example 3) have significantly improved wear resistance as compared with an elastic body produced from natural rubber (Comparative Example 2). Further, among the rubber-like elastic bodies of the present invention, those having a hydrogenation rate of 90% or more (Examples 2 and 3) have improved weather resistance compared to the elastic bodies produced from natural rubber (Comparative Examples 1 and 2). In particular, when the hydrogenation rate is 100% (Example 3), the weather resistance is remarkably excellent. As can be seen from the comparison between Examples 1 and 2 and Comparative Example 3, the present invention also improves the SET property. Furthermore, the rubber-like elastic body of the present invention has a glass transition temperature comparable to that of an elastic body produced from natural rubber, and is superior to EPDM in terms of cold resistance. As described above, according to the rubber-like elastic body of the present invention, it is possible to improve the disadvantages of natural rubber such as heat resistance and weather resistance while maintaining the excellent characteristics of natural rubber. Since the raw material is used, it is preferable in terms of resources and environment.

Claims (6)

水素添加率が95%以上である天然ポリイソプレノイド水素添加物を含むゴム組成物より成形加工されたゴム状弾性体であって、
該成形加工が加硫を伴い、
該天然ポリイソプレノイド水素添加物は、天然ポリイソプレノイドを溶媒中、ロジウム錯体水素化触媒の存在下、水素と反応させて得られる高分子であり、
該天然ポリイソプレノイド水素添加物の重量平均分子量が83万以上であり、且つ分子量分布が2.0以上である、
ゴム状弾性体。
A rubber-like elastic body molded from a rubber composition containing a natural polyisoprenoid hydrogenated product having a hydrogenation rate of 95% or more ,
The molding process involves vulcanization,
The natural polyisoprenoid hydrogenated product is a polymer obtained by reacting natural polyisoprenoid with hydrogen in a solvent in the presence of a rhodium complex hydrogenation catalyst,
The natural polyisoprenoid hydrogenated product has a weight average molecular weight of 830,000 or more and a molecular weight distribution of 2.0 or more.
Rubber elastic body.
天然ポリイソプレノイド水素添加物が、ヘベア種ゴムノキ、インドゴムノキ、トチュウ又はラクタリウス(Lactarius)属キノコ由来のイソプレン単位重合物の水素添加物である請求項1記載のゴム状弾性体。 Natural polyisoprenoid hydrogenated product, Hevea species rubber tree, India rubber tree, a hydrogenated product of Eucommia or Rakutariusu (Lactarius) genus mushroom-derived isoprene units polymer of rubber-like elastic body according to claim 1 Symbol placement. 水素添加率が95%以上である天然ポリイソプレノイドラテックス水素添加物を含むゴム状組成物より成形加工されたゴム状弾性体を含む製品であって、A product comprising a rubber-like elastic body molded from a rubber-like composition containing a natural polyisoprenoid latex hydrogenated product having a hydrogenation rate of 95% or more,
該天然ポリイソプレノイドラテックス水素添加物の重量平均分子量が83万以上であり、且つ分子量分布が2.0以上であり、  The natural polyisoprenoid latex hydrogenated product has a weight average molecular weight of 830,000 or more and a molecular weight distribution of 2.0 or more,
該成形加工が加硫を伴う、  The molding process involves vulcanization,
製品。Product.
天然ポリイソプレノイド水素添加物は、天然ポリイソプレノイドを溶媒中、ロジウム錯体水素化触媒の存在下、水素と反応させて得られる高分子である、請求項3記載の製品。The product according to claim 3, wherein the natural polyisoprenoid hydrogenated product is a polymer obtained by reacting natural polyisoprenoid with hydrogen in a solvent in the presence of a rhodium complex hydrogenation catalyst. 天然ポリイソプレノイド水素添加物が、ヘベア種ゴムノキ、インドゴムノキ、トチュウ又はラクタリウス(Lactarius)属キノコ由来のイソプレン単位重合物の水素添加物である、請求項3記載の製品。The product according to claim 3, wherein the natural polyisoprenoid hydrogenated product is a hydrogenated product of an isoprene unit polymer derived from Hevea rubber tree, Indian rubber tree, Eucommia or Lactarius genus mushroom. 水素添加率が95%以上である天然ポリイソプレノイド水素添加物を含むゴム組成物を成形加工に付すことを特徴とするゴム状弾性体の製造法であって、
該天然ポリイソプレノイド水素添加物は、天然ポリイソプレノイドを溶媒中、ロジウム錯体水素化触媒の存在下、水素と反応させて得られる高分子であり、
該天然ポリイソプレノイド水素添加物の重量平均分子量が83万以上であり、且つ分子量分布が2.0以上である、
製造法。
A method for producing a rubber-like elastic body, characterized by subjecting a rubber composition containing a natural polyisoprenoid hydrogenated product having a hydrogenation rate of 95% or more to molding ,
The natural polyisoprenoid hydrogenated product is a polymer obtained by reacting natural polyisoprenoid with hydrogen in a solvent in the presence of a rhodium complex hydrogenation catalyst,
The natural polyisoprenoid hydrogenated product has a weight average molecular weight of 830,000 or more and a molecular weight distribution of 2.0 or more.
Manufacturing method.
JP2003409476A 2003-12-08 2003-12-08 Rubber-like elastic body and its manufacturing method Expired - Lifetime JP4748933B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2003409476A JP4748933B2 (en) 2003-12-08 2003-12-08 Rubber-like elastic body and its manufacturing method
US10/582,000 US8207386B2 (en) 2003-12-08 2004-12-01 Rubber-like articles and rubber-like material-containing articles
CN2004800363673A CN1890267B (en) 2003-12-08 2004-12-01 Rubbery product or rubbery substance containing product
PCT/JP2004/018237 WO2005056612A1 (en) 2003-12-08 2004-12-01 Rubbery product or rubbery substance containing product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003409476A JP4748933B2 (en) 2003-12-08 2003-12-08 Rubber-like elastic body and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2005170994A JP2005170994A (en) 2005-06-30
JP4748933B2 true JP4748933B2 (en) 2011-08-17

Family

ID=34730850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003409476A Expired - Lifetime JP4748933B2 (en) 2003-12-08 2003-12-08 Rubber-like elastic body and its manufacturing method

Country Status (2)

Country Link
JP (1) JP4748933B2 (en)
CN (1) CN1890267B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4895600B2 (en) * 2005-12-20 2012-03-14 住友ゴム工業株式会社 Rubber composition for tire and tire having sidewall using the same
JP5001571B2 (en) * 2006-04-04 2012-08-15 株式会社ブリヂストン Rubber composition and pneumatic tire using the same.
CN102371687B (en) * 2011-08-07 2014-08-06 镇江苏惠乳胶制品有限公司 Processing method for bicolor rubber gloves
JP6099481B2 (en) * 2013-05-28 2017-03-22 日立造船株式会社 Antibacterial composition and method for producing the same
JP6329791B2 (en) * 2014-03-25 2018-05-23 住友理工株式会社 High damping rubber composition for vibration control damper and vibration control damper using the same
CN103923233B (en) * 2014-04-20 2016-03-02 北京化工大学 A kind of gutta-percha method for producing elastomers
CN105801754B (en) * 2016-03-24 2018-02-06 浙江旭源杜仲生物科技有限公司 Improve the preparation method of the modified natural gutta-percha of bark of eucommia glue elasticity

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4917033B1 (en) * 1970-06-15 1974-04-26
US4452950A (en) * 1983-02-22 1984-06-05 The Goodyear Tire & Rubber Company Process for hydrogenation of carbon-carbon double bonds in an unsaturated polymer in latex form
US4914160A (en) * 1988-06-23 1990-04-03 Hormoz Azizian Deuteration of unsaturated polymers and copolymers
US6521694B2 (en) * 1998-08-11 2003-02-18 Dsm N.V. Process for hydrogenation of carbon-carbon double bonds of an unsaturated polymer

Also Published As

Publication number Publication date
CN1890267B (en) 2010-04-28
JP2005170994A (en) 2005-06-30
CN1890267A (en) 2007-01-03

Similar Documents

Publication Publication Date Title
JP6389240B2 (en) Oil-extended functionalized styrene-butadiene copolymer
TWI458781B (en) Silane-containing rubber mixtures with optionally functionalized diene rubbers and with microgels, their use, and a production process
JP7317807B2 (en) Rubber additive, uncrosslinked rubber composition, crosslinked rubber and tire
CN1322041C (en) Hydrogenated nitrile rubber composites with improved processability
JP2006503128A (en) Low molecular weight nitrile rubber containing polymer composite
JP4748933B2 (en) Rubber-like elastic body and its manufacturing method
EP4397706A1 (en) Rubber composition, production method therefor, and tire product
TWI843861B (en) Silane coupling agent composition containing silane compound and protein modifier, and rubber composition containing the same
JP5030377B2 (en) Modified latex and natural polyisoprenoid hydrogenation product or modified product containing the same
JP4895600B2 (en) Rubber composition for tire and tire having sidewall using the same
JPWO2008029805A1 (en) Ricinoleic acid-based polyester composition and process for producing the same
JPH09249716A (en) Plasticizer
JPS60158225A (en) Rubber containing rosin acid ester
RU2771594C1 (en) Biomimetic synthetic rubber
JP2020070329A (en) Rubber composition and pneumatic tire using the same
US8207386B2 (en) Rubber-like articles and rubber-like material-containing articles
JPH0411501A (en) Pneumatic tire
JP6875051B2 (en) Improved rubber composition and its use
JP7452431B2 (en) Rubber composition and pneumatic tire using the same
JP2008120936A (en) Rubber composition and tire using it
JP2005054188A (en) Hydrogenated nitrile rubber composition having improved flowability
JP2021054992A (en) Rubber composition for tires, and pneumatic tire
JP2021031645A (en) Rubber composition, tire and rubber product
JP5078317B2 (en) Rubber composition and pneumatic tire using the same
JPWO2014208757A1 (en) Anti-aging agent, rubber composition, and tire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110517

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110517

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4748933

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 3

EXPY Cancellation because of completion of term