JP4748476B2 - Particle measuring device - Google Patents

Particle measuring device Download PDF

Info

Publication number
JP4748476B2
JP4748476B2 JP2005369382A JP2005369382A JP4748476B2 JP 4748476 B2 JP4748476 B2 JP 4748476B2 JP 2005369382 A JP2005369382 A JP 2005369382A JP 2005369382 A JP2005369382 A JP 2005369382A JP 4748476 B2 JP4748476 B2 JP 4748476B2
Authority
JP
Japan
Prior art keywords
fine particles
particle
fine
particles
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005369382A
Other languages
Japanese (ja)
Other versions
JP2007171001A (en
Inventor
英直 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Traffic Safety and Environment Laboratory
Original Assignee
National Traffic Safety and Environment Laboratory
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Traffic Safety and Environment Laboratory filed Critical National Traffic Safety and Environment Laboratory
Priority to JP2005369382A priority Critical patent/JP4748476B2/en
Publication of JP2007171001A publication Critical patent/JP2007171001A/en
Application granted granted Critical
Publication of JP4748476B2 publication Critical patent/JP4748476B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Sampling And Sample Adjustment (AREA)

Description

本発明は、流体中の微粒子を連続的に、且つ粒径に関する情報を含めて計測する技術に関する。   The present invention relates to a technique for measuring fine particles in a fluid continuously and including information on particle diameter.

内燃機関は、小型でありながら比較的大きな動力を出力可能という優れた特性を備えていることから、自動車や船舶、航空機などの各種輸送機関の動力源として、あるいは定置式の各種機器の動力源として広く使用されている。これら内燃機関は、燃焼室内で圧縮した混合気を燃焼させ、そのときに発生する燃焼圧力を機械的な仕事に変換して、動力として取り出すことを動作原理としている。   Since the internal combustion engine is small and has an excellent characteristic of being able to output relatively large power, it can be used as a power source for various transportation engines such as automobiles, ships and aircraft, or as a power source for various stationary devices. As widely used. These internal combustion engines have an operating principle of combusting an air-fuel mixture compressed in a combustion chamber, converting the combustion pressure generated at that time into mechanical work, and taking it out as power.

こうした内燃機関の中でも燃料を燃焼室内に直接噴射し、燃料噴霧を拡散燃焼させる方式の内燃機関(いわゆるディーゼルエンジンや筒内噴射ガソリンエンジンなど)は、燃料消費効率が高いという優れた特性を有している。しかし、その一方で、排気ガス中に含まれる粒子状物質(Paticulate Matter 、以下ではPM)が健康に悪影響を与える可能性が指摘されているため、ディーゼルエンジン等のこうした燃焼方式の内燃機関には、排気ガス中に含まれるPMの重量濃度を許容値以下に抑制する旨の法律的な規制が定められている。また近年では、PMの中でも比較的小さな特定の粒径範囲の微粒子が、人体に何らかの影響を与える可能性が指摘されており、これら微粒子の健康に与える影響が、規制の必要性も含めて検討されている。   Among such internal combustion engines, an internal combustion engine (a so-called diesel engine, in-cylinder injection gasoline engine, etc.) that directly injects fuel into the combustion chamber and diffuses and burns fuel spray has excellent characteristics such as high fuel consumption efficiency. ing. However, on the other hand, particulate matter (Paticulate Matter, hereinafter referred to as PM) contained in exhaust gas has been pointed out to have an adverse effect on health. In addition, there is a legal regulation that suppresses the weight concentration of PM contained in the exhaust gas to a value below an allowable value. In recent years, it has been pointed out that particulates with a specific particle size range that is relatively small among PMs may have some effect on the human body. The impact of these particulates on health, including the need for regulation, has been examined. Has been.

このような排気ガス中の微粒子を計測する技術としては、例えば、捕集部材を用いて微粒子を粒径別に捕集して計測する技術や(例えば、特許文献1)、排気ガス中に光を入射した時の微粒子からの散乱光に基づいて微粒子濃度を計測する技術(例えば、特許文献2)、更には、帯電させた微粒子が流体からの抵抗を受けながら電場中を移動する速度の違いを利用して、微粒子を分級しながら計測する技術(特許文献3)などが提案されている。   As a technique for measuring such fine particles in the exhaust gas, for example, a technique for collecting and measuring fine particles according to particle diameter using a collecting member (for example, Patent Document 1), light in the exhaust gas is used. A technique for measuring the concentration of fine particles based on scattered light from the fine particles when incident (for example, Patent Document 2), and further, the difference in speed at which the charged fine particles move in the electric field while receiving resistance from the fluid. A technique (Patent Document 3) that uses and measures fine particles while classifying them has been proposed.

特開2003−35636号公報JP 2003-35636 A 特開2003−114192号公報JP 2003-114192 A 特開2005−24409号公報JP 2005-24409 A

しかし、提案されている技術では、何れも、計測対象とする小さな粒径範囲の微粒子を、安定して正確に且つ時系列的に計測することは困難であるという問題があった。すなわち、計測対象とする小さな粒径範囲では、分子間力や、静電力、熱泳動などの作用が大きく現れるので、捕集部材を用いて微粒子を捕集したのでは計測条件の影響が強く受けてしまい、対象とする粒径範囲の微粒子だけを高い精度で且つ安定して計測することは困難である。もちろん、時系列的な計測を行うこともできない。また、微粒子からの散乱光を検出する方法では、時系列的な計測が可能であるものの、微粒子の粒径に関する情報を得ることは困難である。更に、帯電させた微粒子が電場中を移動する速度の違いを利用して、微粒子を分級しながら計測する方法では、高い精度で且つ安定して時系列的な計測が可能ではあるものの、予め計測対象に設定しておいた非常に狭い粒径範囲(実質的には、ある特定の粒径)の微粒子しか計測することができない。従って、対象とする粒径範囲を計測するためには、計測する粒径を少しずつ変更しながら、何回にも分けて計測しなければならないので、計測に手間がかかるだけでなく、最終的な計測精度も低下してしまう。   However, all of the proposed techniques have a problem that it is difficult to stably and accurately measure fine particles having a small particle size range to be measured in a time series. That is, in the small particle size range to be measured, actions such as intermolecular force, electrostatic force, and thermophoresis appear greatly, so if the particles are collected using a collection member, the measurement conditions are strongly affected. Therefore, it is difficult to measure only fine particles having a target particle size range with high accuracy and stability. Of course, time series measurements cannot be performed. In addition, in the method of detecting scattered light from fine particles, time series measurement is possible, but it is difficult to obtain information on the particle size of the fine particles. Furthermore, the method of measuring particles while classifying the particles using the difference in the speed at which the charged particles move in the electric field is capable of highly accurate and stable time-series measurement, but it is possible to measure in advance. Only fine particles in a very narrow particle size range (substantially a specific particle size) set for the target can be measured. Therefore, in order to measure the target particle size range, it is necessary to divide the particle size to be measured little by little and measure it several times. Measurement accuracy is also reduced.

また、上述した課題は、排気ガス中の微粒子を計測する場合に限られず、流体中の微粒子の中から計測対象とする粒径範囲の微粒子だけを、連続的に計測しようとする場合にも、全く同様に生じ得る。   In addition, the above-described problem is not limited to measuring fine particles in exhaust gas, but also when trying to continuously measure only fine particles in a particle size range to be measured from fine particles in fluid. It can occur just as well.

この発明は、従来の技術における上述した課題を解決するためになされたものであり、流体に含まれる微粒子の中から、所定の粒径範囲内の微粒子だけを、高い精度で且つ安定して、しかも時系列的に計測することを可能とする技術の提供を目的とする。   The present invention has been made to solve the above-described problems in the prior art, and among the fine particles contained in the fluid, only fine particles within a predetermined particle size range can be stably and accurately obtained. Moreover, it aims to provide a technique that enables time-series measurement.

上述した課題の少なくとも一部を解決するために、本発明の微粒子計測装置は次の構成を採用した。すなわち、
流体中に含まれる微粒子を計測する微粒子計測装置であって、
前記計測対象の微粒子を含んだ流体たる計測対象流体と、該計測対象流体と共に供給される搬送流体とが、層を成して流れる通路部と、
前記通路部の上流側に設けられて、前記微粒子を帯電させる微粒子帯電部と、
前記微粒子帯電部の下流側で、前記搬送流体の流れに交差する方向の電場を形成する電場形成部と、
前記計測対象流体および前記搬送流体が前記電場内を通過する際に、前記帯電した微粒子が該電場の力を受けて該搬送流体の流れを横切る方向に移動する速度が、該微粒子の粒径に応じて異なる性質を利用して、該帯電した微粒子の中から、該移動速度が所定の第1の閾値速度よりも小さな微粒子を、計測対象外の大径の微粒子として除去する第1の微粒子除去部と、
前記帯電した微粒子の中から、前記移動速度が所定の第2の閾値速度(但し、前記第1の閾値速度よりも大きい)よりも大きな微粒子を、計測対象外の小径の微粒子として除去する第2の微粒子除去部と、
前記計測対象外の大径の微粒子および小径の微粒子が除かれた残余の微粒子を検出する微粒子検出部と
を備え、
前記第1の微粒子除去部は、前記通路部の側面から突設されて、先端がエッジ形状に形成されており、
前記第2の微粒子除去部は、前記第1の微粒子除去部よりも上流側の前記通路部の側面から突設されて、先端がエッジ形状に形成されていることを要旨とする。
In order to solve at least a part of the problems described above, the fine particle measuring apparatus of the present invention employs the following configuration. That is,
A particle measuring device for measuring particles contained in a fluid,
A passage portion in which a measurement target fluid, which is a fluid containing fine particles to be measured, and a carrier fluid supplied together with the measurement target fluid flow in layers;
A fine particle charging portion provided on the upstream side of the passage portion to charge the fine particles;
An electric field forming unit that forms an electric field in a direction crossing the flow of the carrier fluid on the downstream side of the fine particle charging unit;
When the measurement target fluid and the carrier fluid pass through the electric field, the speed at which the charged fine particles move in the direction crossing the flow of the carrier fluid under the force of the electric field depends on the particle size of the fine particles. Correspondingly by utilizing different properties, from among the charged particles, the moving speed is fine particles having a small than a predetermined first threshold speed, the first to be removed as fine particles of a large diameter outside the measurement object A particulate removal section;
A second particle in which the moving speed is larger than a predetermined second threshold speed (however, larger than the first threshold speed) is removed from the charged fine particles as small-sized fine particles that are not to be measured. A fine particle removing portion of
A fine particle detection unit that detects the remaining fine particles from which the large-sized fine particles and the small-sized fine particles that are not measured are removed , and
The first fine particle removing portion is protruded from a side surface of the passage portion, and a tip is formed in an edge shape,
The gist of the present invention is that the second fine particle removing portion protrudes from the side surface of the passage portion on the upstream side of the first fine particle removing portion and has a tip formed in an edge shape .

かかる本発明の微粒子計測装置においては、計測対象の微粒子を含んだ計測対象流体と、搬送流体とが、層を成した状態の流れを通路内に形成しておき、この流れに交差する方向に電場を加えるとともに、流れの上流では計測対象の微粒子を帯電させる。帯電した微粒子は、計測対象流体の流れに載って上流から下流へと流されながら、電場からの力を受けて、流れと交差する方向に少しずつ移動し、やがて搬送流体の中に進入する。ここで、帯電した微粒子が流れと交差する方向に移動する速度は、微粒子の粒径に応じて異なっており、粒径が大きくなるほど流体から受ける抵抗が大きくなるので移動速度は小さくなる。その結果、帯電した微粒子は、通路内を、粒径に応じて異なった経路を通って、下流側へと流されていくことになる。 Oite the particulate measurement equipment such invention, and inclusive measurement object fluid particles to be measured, and a carrier fluid, previously formed flow state where layered in the passage, intersecting the flow In addition to applying an electric field in the direction of the flow, the particles to be measured are charged upstream of the flow. The charged fine particles are carried on the flow of the fluid to be measured from the upstream to the downstream, receive the force from the electric field, move little by little in the direction crossing the flow, and eventually enter the carrier fluid. Here, the speed at which the charged fine particles move in the direction intersecting the flow varies depending on the particle diameter of the fine particles, and the larger the particle diameter, the greater the resistance received from the fluid, so the moving speed becomes smaller. As a result, the charged fine particles are caused to flow downstream in the passage through different paths depending on the particle diameter.

本発明の微粒子計測装置および計測方法では、こうした性質を利用して、移動速度が所定の閾値速度よりも大きいか小さいかによって微粒子を分離し、何れか一方の微粒子を検出する。すなわち、通路部の側面から突設されて先端がエッジ形状に形成された第1の微粒子除去部を用いて、移動速度が第1の閾値速度よりも小さな微粒子を計測対象外の大径の微粒子として除去する。また、第1の微粒子除去部よりも上流側の通路部の側面から突設されて先端がエッジ形状に形成された第2の微粒子除去部を用いて、所定の第2の閾値速度(但し、第1の閾値速度よりも大きい)よりも大きな微粒子を計測対象外の小径の微粒子として除去する。上述したように、移動速度が異なれば通路内で微粒子が通過する経路も異なるので、通路部の側面から適切な位置に第1の微粒子除去部および第2の微粒子除去部を突設しておくことで、計測対象外の大径の微粒子および計測対象外の小径の微粒子を除去することができる。そして、これら計測対象外の大径の微粒子、および計測対象外の小径の微粒子を除いた残余の微粒子を、計測対象の微粒子として検出する In the fine particle measurement apparatus and measurement method of the present invention, using these properties, the fine particles are separated depending on whether the moving speed is larger or smaller than a predetermined threshold speed, and one of the fine particles is detected. That is, by using the first fine particle removing portion that protrudes from the side surface of the passage portion and has a tip formed in an edge shape, fine particles whose moving speed is smaller than the first threshold speed are excluded from the measurement target. Remove as. Further, by using a second fine particle removal unit that protrudes from the side surface of the passage portion upstream from the first fine particle removal unit and has a tip formed in an edge shape, a predetermined second threshold speed (however, Fine particles larger than the first threshold speed are removed as small-diameter fine particles that are not measured. As described above, if the moving speed is different, the path through which the fine particles pass in the passage is also different. Therefore, the first fine particle removing portion and the second fine particle removing portion are protruded at appropriate positions from the side surface of the passage portion. In this way, it is possible to remove large-sized fine particles that are not measured and small-sized fine particles that are not measured. Then, the remaining fine particles excluding the large-sized fine particles that are not measured and the small-sized fine particles that are not measured are detected as fine particles to be measured .

上述したように、粒子の粒径が大きくなるほど、流れを横切る方向への移動速度は小さくなることから、移動速度が閾値速度よりも大きな微粒子のみを採取した場合には、対応する粒径よりも小さな微粒子のみが検出され、逆に、移動速度が閾値速度よりも小さな微粒子のみを採取した場合には、大きな微粒子のみが検出されることになる。このことから、本発明の微粒子計測装置においては、電場の強さや、搬送流体の流速、微粒子の採取位置などを、予め適切に設定した上で、第1の閾値速度および第2の閾値速度を適切に設定することで、所望の粒径範囲の微粒子だけを、高い精度で且つ安定して、しかも時系列的に計測することが可能となる。 As described above, as the particle size of the particles increases, the moving speed in the direction crossing the flow decreases, so when only fine particles whose moving speed is greater than the threshold speed are collected, the particle size is larger than the corresponding particle size. When only small particles are detected, and conversely, when only particles having a moving speed smaller than the threshold speed are collected, only large particles are detected. Therefore, Oite the particulate measuring equipment of the present invention, the strength and the electric field, the flow rate of the carrier fluid, and sampling position of the particles, on a preset properly, the first threshold speed and a second By appropriately setting the threshold speed, it is possible to measure only fine particles having a desired particle size range with high accuracy and stability in a time series.

また、本発明の微粒子計測装置によれば、計測対象流体および搬送流体を、互いに層を成した状態で通路内に流しておき、上流側では微粒子を帯電させ、下流側では電場を形成するという極めて簡素な構成で、所望の粒径範囲の微粒子のみを検出することができる。このため、装置全体を簡素な構成とすることができるので、信頼性が高く、しかも小型で製造が容易な計測装置とすることが可能となる。 Further, according to the fine particle measuring equipment of the present invention, the measurement object fluid and transport fluid, keep flowing in the passage in a state where the layered each other, it charges the fine particles on the upstream side, to form an electric field in the downstream With such a very simple configuration, only fine particles having a desired particle size range can be detected. For this reason, since the whole apparatus can be made into a simple structure, it becomes possible to set it as the measurement apparatus with high reliability, and being small and easy to manufacture.

更に、本願発明の微粒子計測装置では、検出した微粒子の粒径範囲を、電場の強さや、搬送流体の流速、微粒子の採取位置などから、較正によらず正確に且つ一意的に決定することができる。このため、極めて信頼性の高い計測値を得ることが可能となる。 Further, the fine measurement equipment of the present invention, the particle size range of the detected particles, the strength and the electric field, the flow rate of the carrier fluid, and the like sampling position of the fine particles, is determined accurately and uniquely regardless of the calibration be able to. For this reason, it becomes possible to obtain a highly reliable measurement value.

以下では、上述した本願の発明について、実施例に基づいて詳細に説明する。図1は、本実施例の微粒子計測装置100を使用して、内燃機関10の排気ガス中に含まれる微粒子を計測する様子を、概念的に示した説明図である。先ず、図示した微粒子計測装置100の大まかな構造について説明する。   Hereinafter, the above-described invention of the present application will be described in detail based on examples. FIG. 1 is an explanatory view conceptually showing a state in which fine particles contained in the exhaust gas of the internal combustion engine 10 are measured using the fine particle measuring apparatus 100 of the present embodiment. First, the rough structure of the illustrated particle measuring apparatus 100 will be described.

図1に示されているように、本実施例の微粒子計測装置100は、大まかには、分級通路110と、粒子検出器120と、高圧電源130などから構成されている。分級通路110の上流側には、微粒子を含んだ計測対象流体を導入するための計測対象流体導入管140と、分級通路内に搬送流体を供給するための搬送流体供給管150とが接続されており、分級通路110の下流側には、計測対象流体および搬送流体を放出するための放出通路160が接続されている。また、計測対象流体導入管140の途中には帯電器170が設けられている。帯電器170は、内部でコロナ放電などを行うことにより、通過する微粒子に電荷を付与することが可能となっている。分級通路110は、断面が略円形状に形成されており、分級通路110のほぼ中心には、円柱状の電極180が設けられている。電極180と分級通路110の内壁面との間には、高圧電源130によって電場を形成可能となっている。   As shown in FIG. 1, the particle measuring apparatus 100 of the present embodiment is roughly composed of a classification passage 110, a particle detector 120, a high-voltage power source 130, and the like. Connected to the upstream side of the classification passage 110 are a measurement target fluid introduction pipe 140 for introducing a measurement target fluid containing fine particles and a transport fluid supply pipe 150 for supplying the transport fluid into the classification passage. A discharge passage 160 for discharging the measurement target fluid and the carrier fluid is connected to the downstream side of the classification passage 110. A charger 170 is provided in the middle of the measurement target fluid introduction pipe 140. The charger 170 can give electric charge to the passing fine particles by performing corona discharge or the like inside. The classification passage 110 has a substantially circular cross section, and a columnar electrode 180 is provided at substantially the center of the classification passage 110. An electric field can be formed between the electrode 180 and the inner wall surface of the classification passage 110 by the high voltage power source 130.

微粒子計測装置100を用いて、内燃機関10の排気ガス中に含まれる微粒子を計測する場合には、計測対象流体導入管140を内燃機関の排気管12に装着するとともに、放出通路160に排気ブロア20を接続して、排気ガスを計測対象流体導入管140に吸引する。排気ガス中に含まれている微粒子は、計測対象流体導入管140に設けられた帯電器170で電荷が付与された後、分級通路110内に流入する。また、搬送流体供給管150の上流は、圧送ポンプ30に接続されており、排気ガスの流入に合わせて、搬送流体供給管150からは搬送ガスを分級通路110内に供給する。搬送ガスとしては、空気など、微粒子を含まない種々の気体を用いることができる。   When the particulate measurement device 100 is used to measure particulates contained in the exhaust gas of the internal combustion engine 10, the measurement target fluid introduction pipe 140 is attached to the exhaust pipe 12 of the internal combustion engine and the exhaust passage is connected to the discharge passage 160. 20 is connected and the exhaust gas is sucked into the measurement target fluid introduction pipe 140. The fine particles contained in the exhaust gas flow into the classification passage 110 after being charged by the charger 170 provided in the measurement target fluid introduction pipe 140. Further, the upstream of the carrier fluid supply pipe 150 is connected to the pressure feed pump 30, and the carrier gas is supplied from the carrier fluid supply pipe 150 into the classification passage 110 in accordance with the inflow of exhaust gas. As the carrier gas, various gases that do not contain fine particles, such as air, can be used.

図1では、微粒子を含んだ排気ガスの流れを、斜線を付した矢印で表し、搬送ガスの流れを白抜きの矢印で表している。図示されているように、排気ガスと搬送ガスとは互いに層を成した状態で、ほとんど混じり合うことなく分級通路110内を流れていく。前述したように、分級通路110の中心に設けられた電極180と、分級通路110の内壁面との間には電場が形成されているので、排気ガス中に含まれている微粒子は、電場からのクーロン力を受けて流れを横切る方向に移動する。   In FIG. 1, the flow of exhaust gas containing fine particles is represented by hatched arrows, and the flow of carrier gas is represented by white arrows. As shown in the figure, the exhaust gas and the carrier gas flow in the classification passage 110 with being mixed with each other in a layered state. As described above, since an electric field is formed between the electrode 180 provided at the center of the classification passage 110 and the inner wall surface of the classification passage 110, the fine particles contained in the exhaust gas are separated from the electric field. It moves in the direction crossing the flow under the Coulomb force.

分級通路110の壁面には、大きな採取口122が設けられている。上述したように、排気ガス中の微粒子は、排気ガスあるいは搬送ガスによって分級通路110内を下流に向かって流されているから、流れを横切る移動速度があまりに遅い微粒子は採取口122では採取されずに、放出通路160へと排出される。また、移動速度があまりに速い微粒子は、採取口122の上流側で分級通路110の内壁面に捕捉されてしまうので、採取口122で採取されることはない。その結果、所定の粒径範囲の微粒子だけが採取口122で採取されて、粒子検出器120に導かれるようになっている。採取口122で所定の粒径範囲の微粒子だけが採取されるメカニズムについては、後ほど詳しく説明する。   A large sampling port 122 is provided on the wall surface of the classification passage 110. As described above, since the particulates in the exhaust gas are caused to flow downstream in the classification passage 110 by the exhaust gas or the carrier gas, the particulates that move too slowly across the flow are not collected at the sampling port 122. Then, it is discharged into the discharge passage 160. In addition, fine particles whose movement speed is too fast are captured by the inner wall surface of the classification passage 110 on the upstream side of the collection port 122 and are not collected by the collection port 122. As a result, only fine particles having a predetermined particle size range are collected at the collection port 122 and guided to the particle detector 120. The mechanism by which only fine particles having a predetermined particle size range are collected at the collection port 122 will be described in detail later.

粒子検出器120としては、光学的な手法を利用して粒子の数をカウントする粒子カウンタを好適に用いることができる。あるいは、いわゆるFID(水素炎イオン化検出器、Flam Ionization Detector)を用いて微粒子に含まれる炭素濃度を検出したり、更には、帯電した微粒子の流れを、いわゆるファラデーカップを用いて電流として直接検出するなど、他の種々の方法を適用することも可能である。   As the particle detector 120, a particle counter that counts the number of particles using an optical technique can be suitably used. Alternatively, the carbon concentration contained in the fine particles is detected using a so-called FID (flame ionization detector), or the flow of charged fine particles is directly detected as a current using a so-called Faraday cup. It is also possible to apply other various methods.

図2は、排気ガスに含まれる微粒子の中から、所定の粒径範囲の微粒子だけが採取口122に採取されるメカニズムを示した説明図である。排気ガス中に含まれている微粒子は、帯電器170を通過する際に電荷を付与されて、計測対象流体導入管140から分級通路110内に流入する。図中に示した黒丸は、排気ガス中に含まれている微粒子を示している。尚、図2では、図示が煩雑となることを避けるため、排気ガスに含まれる微粒子のうち、計測対象とする粒径範囲の中の比較的大きな微粒子DPLと、比較的小さな微粒子DPSのみが表示されている。   FIG. 2 is an explanatory diagram showing a mechanism by which only fine particles having a predetermined particle size range are collected by the collection port 122 from the fine particles contained in the exhaust gas. The fine particles contained in the exhaust gas are given electric charges when passing through the charger 170 and flow into the classification passage 110 from the measurement target fluid introduction pipe 140. The black circles shown in the figure indicate the fine particles contained in the exhaust gas. In FIG. 2, only the relatively large particles DPL and the relatively small particles DPS in the particle size range to be measured are displayed among the particles included in the exhaust gas, in order to avoid complicated illustration. Has been.

計測対象流体導入管140の周囲には、搬送流体供給管150が設けられており、搬送流体供給管150からは、圧送ポンプ30で圧送された搬送ガスが、排気ガスの流入に合わせて供給される。搬送ガスの流入速度は排気ガスの流入速度と同じ速度となるように調整されている。図2では、搬送ガスの流れを白抜きの矢印で表している。分級通路110の寸法および排気ガスの流入速度(従って、搬送ガスの流入速度)は、レイノズル数が所定値以下となるような適切な値に設定されているので、分級通路110内での排気ガスおよび搬送ガスの流れは、いわゆる層流状態に保たれており、このため排気ガスおよび搬送ガスは互いにほとんど混じり合うことなく、層を成した状態を保ったまま分級通路110内を流れていく。この結果、分級通路110の中央に設けられた電極180の周囲には、排気ガスの流れが形成され、そしてその周囲には搬送ガスの流れが層を成した状態で形成される。   A carrier fluid supply pipe 150 is provided around the measurement target fluid introduction pipe 140, and the carrier gas pumped by the pressure pump 30 is supplied from the carrier fluid supply pipe 150 in accordance with the inflow of exhaust gas. The The inflow speed of the carrier gas is adjusted to be the same as the inflow speed of the exhaust gas. In FIG. 2, the flow of the carrier gas is represented by a white arrow. The size of the classification passage 110 and the inflow speed of the exhaust gas (accordingly, the inflow speed of the carrier gas) are set to appropriate values so that the number of lay nozzles is a predetermined value or less. The flow of the carrier gas is maintained in a so-called laminar flow state, so that the exhaust gas and the carrier gas hardly mix with each other, and flow in the classification passage 110 while maintaining a layered state. As a result, an exhaust gas flow is formed around the electrode 180 provided in the center of the classification passage 110, and a carrier gas flow is formed in a layered manner around the exhaust gas flow.

次いで、高圧電源130からの電圧を印加することで、電極180と分級通路110との間に電場を形成する。排気ガスおよび搬送ガスは分級通路110に沿って流れているから、電場はこの流れと交差する方向に形成されることになる。電場の方向は、微粒子に付与した電荷によって決定される。すなわち、微粒子にプラスの電荷を付与した場合は、電極180から分級通路110に向かうような電場を形成する。こうした電場は、例えば電極180に正電圧を加えて分級通路110を接地することで、あるいは電極180を接地して分級通路110に負電圧を加えることで形成することができる。逆に、微粒子にマイナスの電荷を付与した場合は、電極180に負電圧を加えて分級通路110を接地し、あるいは電極180を接地して分級通路110に正電圧を加えればよい。   Next, an electric field is formed between the electrode 180 and the classification passage 110 by applying a voltage from the high-voltage power supply 130. Since the exhaust gas and the carrier gas flow along the classification passage 110, the electric field is formed in a direction crossing this flow. The direction of the electric field is determined by the electric charge applied to the fine particles. That is, when a positive charge is applied to the fine particles, an electric field is formed from the electrode 180 toward the classification passage 110. Such an electric field can be formed, for example, by applying a positive voltage to the electrode 180 and grounding the classification passage 110, or by grounding the electrode 180 and applying a negative voltage to the classification passage 110. Conversely, when a negative charge is applied to the fine particles, a negative voltage may be applied to the electrode 180 to ground the classification passage 110, or the electrode 180 may be grounded to apply a positive voltage to the classification passage 110.

このように、微粒子に付与した電荷に応じて電場を形成しておくと、微粒子は、電極180から離れる方向のクーロン力を受けることになる。この結果、排気ガス中の微粒子は、流れを横切る方向に少しずつ移動し、搬送ガスの層に進入して、やがては分級通路110の内壁まで到達する。電荷を帯びた微粒子が、このように流れを横切る方向に移動する速度Zp は、電場から受けるクーロン力と、流体から受ける抵抗との釣り合いによって決定され、次式によって算出することができる。
Zp =Cm ×np ×e/(3πμ×dp )
ここで、np は微粒子に付与された電荷の数を示しており、eは電気素量、μは気体の粘性係数、dp は微粒子の粒径を示している。また、補正係数Cm はカニンガム補正係数と呼ばれ、微粒子の粒径が小さく、気体を連続流体と見なせないことによる影響を補正するための係数である。
In this way, when an electric field is formed according to the electric charge applied to the fine particles, the fine particles receive a Coulomb force in a direction away from the electrode 180. As a result, the fine particles in the exhaust gas move little by little in the direction across the flow, enter the carrier gas layer, and eventually reach the inner wall of the classification passage 110. The speed Zp at which the charged fine particles move in the direction across the flow in this way is determined by the balance between the Coulomb force received from the electric field and the resistance received from the fluid, and can be calculated by the following equation.
Zp = Cm × np × e / (3πμ × dp)
Here, np represents the number of charges applied to the fine particles, e represents the elementary charge, μ represents the viscosity coefficient of the gas, and dp represents the particle size of the fine particles. Further, the correction coefficient Cm is called a Cunningham correction coefficient, and is a coefficient for correcting the influence caused by the fact that the particle size of the fine particles is small and the gas cannot be regarded as a continuous fluid.

上式から明らかなように、微粒子は粒径が大きくなるほどゆっくりと流れを横切るように移動する。これは、微粒子が大きくなるほど、流体から大きな抵抗を受けるためである。このように、微粒子が大きくなると流れをゆっくりと横切るので、分級通路110の内壁面まで到達するまでに、排気ガスおよび搬送ガスの流れに載って長い距離を流される。これに対して、小さな微粒子は流れを速やかに横切るので、さほど流されることなく、分級通路110の内壁面まで到達する。結局、分級通路110の内壁面に到達する位置は、小さな微粒子ほど上流側となり、大きな微粒子ほど下流側となる。このため、分級通路110の側面に、図2に示すような大きな採取口122を設けて微粒子を採取してやれば、所定粒径範囲の微粒子のみを採取することが可能となるのである。図2に示した例では、粒径が、微粒子DPSよりは大きく、微粒子DPLよりは小さい範囲の微粒子のみが、採取口122から採取される様子が示されている。   As is clear from the above equation, the fine particles move slowly across the flow as the particle size increases. This is because the larger the fine particles, the greater the resistance from the fluid. Thus, since the flow slowly traverses when the fine particles become large, a long distance is caused to flow on the flow of exhaust gas and carrier gas before reaching the inner wall surface of the classification passage 110. On the other hand, since the small particles quickly cross the flow, they reach the inner wall surface of the classification passage 110 without being flowed so much. Eventually, the position that reaches the inner wall surface of the classification passage 110 is on the upstream side with respect to the smaller fine particles, and on the downstream side with respect to the larger fine particles. For this reason, if a large collection port 122 as shown in FIG. 2 is provided on the side surface of the classification passage 110 to collect fine particles, it is possible to collect only fine particles having a predetermined particle size range. In the example shown in FIG. 2, a state in which only fine particles having a particle size larger than the fine particle DPS and smaller than the fine particle DPL is collected from the collection port 122 is shown.

図3は、分級通路110に設けられた採取口122の詳細な構造を概念的に示した拡大断面図である。図示されているように、採取口122の上端および下端は、それぞれエッジ形状に形成されている。上述したように、粒径が小さな微粒子ほど、流れを速やかに横切るから、粒径が微粒子DPSよりも小さな微粒子は、採取口122の上端側のエッジ部122aよりも上流側で分級通路110の内壁面に到達し、壁面に捕捉されるか、あるいは搬送ガスに押し流されて採取口122の横を通って下流側へと流されていく。また、粒径が微粒子DPLよりも大きな微粒子は、採取口122の下端側のエッジ部122bよりも下流側で分級通路110の内壁面に到達するか、若しくは内壁面に到達することなく下流側に流されていく。そして、微粒子DPSよりは大きく、微粒子DPLよりは小さい粒径範囲の微粒子のみが、採取口122から採取されることになる。このことから、図示した微粒子計測装置100では、採取口122の上端側のエッジ部122aは、微粒子SPよりも粒径が小さな微粒子と大きな微粒子とを分離する機能を有しており、また、122の下端部のエッジ部122bは、微粒子LPよりも粒径が小さな微粒子と大きな微粒子とを分離する機能を有していると言うことができる。   FIG. 3 is an enlarged cross-sectional view conceptually showing the detailed structure of the sampling port 122 provided in the classification passage 110. As illustrated, the upper end and the lower end of the sampling port 122 are each formed in an edge shape. As described above, since the finer particle having a smaller particle diameter crosses the flow more quickly, the finer particle having a smaller particle diameter than the fine particle DPS is in the classification passage 110 on the upstream side of the edge part 122a on the upper end side of the sampling port 122. It reaches the wall surface and is captured by the wall surface, or is swept away by the carrier gas and flows to the downstream side next to the sampling port 122. Further, fine particles having a particle size larger than the fine particle DPL reach the inner wall surface of the classification passage 110 on the downstream side of the edge portion 122b on the lower end side of the sampling port 122, or on the downstream side without reaching the inner wall surface. It will be washed away. Only fine particles having a particle size range larger than the fine particle DPS and smaller than the fine particle DPL are collected from the collection port 122. For this reason, in the illustrated fine particle measuring apparatus 100, the edge portion 122a on the upper end side of the sampling port 122 has a function of separating fine particles having a smaller particle diameter and larger fine particles than the fine particles SP. It can be said that the edge part 122b of the lower end part of this has the function to isolate | separate the microparticles | fine-particles smaller than the microparticles LP, and a large microparticle.

図4は、排気ガスに含まれる微粒子の代表的な粒径分布を示した説明図である。横軸には微粒子の粒径が対数表示されている。図示されているように、排気ガス中の微粒子は、10nm〜30nm付近にピークを有する小さな微粒子と、ほぼ80nmを中心として40nm〜120nm付近にピークを有する大きな微粒子の、大きく2種類の微粒子が含まれていることが知られている。このうち、粒径の小さい方の微粒子は、内燃機関10の僅かな運転条件の違いによって排出量が大きくことなり、また、不安定な物質で構成されているため、計測条件によっても得られる値が大きく変動する傾向にある。これに対して、粒径の大きい方の微粒子は、小さい方の微粒子に比べれば安定な物質で構成されており、計測条件によって大きく計測値が変動することがない。このため、粒径の大きな方の微粒子を検出しておけば、計測条件の違いによる影響を受けることなく信頼性の高いデータを得ることが可能である。   FIG. 4 is an explanatory diagram showing a typical particle size distribution of fine particles contained in the exhaust gas. On the horizontal axis, the particle diameter of the fine particles is logarithmically displayed. As shown in the figure, the fine particles in the exhaust gas include two types of fine particles, a small fine particle having a peak in the vicinity of 10 nm to 30 nm, and a large fine particle having a peak in the vicinity of 40 nm to 120 nm with about 80 nm as the center. It is known that Among these, the finer particles having a smaller particle size have a large emission amount due to a slight difference in operating conditions of the internal combustion engine 10 and are composed of unstable substances. Tend to fluctuate greatly. On the other hand, the fine particles having a larger particle diameter are made of a more stable material than the fine particles having a smaller particle diameter, and the measured value does not vary greatly depending on the measurement conditions. For this reason, if fine particles having a larger particle diameter are detected, highly reliable data can be obtained without being affected by the difference in measurement conditions.

こうした微粒子の粒径分布を考慮して、本実施例の微粒子計測装置100では、粒径の大きな方のピークの微粒子だけを検出するように、採取口122の位置および大きさが設定されている。図3を用いて説明したように、採取口122には、微粒子DPSよりは大きく、且つ、微粒子DPLよりは小さい粒径範囲の微粒子のみが取り込まれ、それ以外の微粒子は採取口122には入り込まない構造となっている。そして、採取口122に取り込まれた微粒子は直ちに粒子検出器120に供給されて、全ての微粒子が検出される。結局、本実施例の微粒子計測装置100は、計測対象とする粒径範囲の微粒子に対しては極めて高い検出感度を有し、その一方で、粒径範囲外の微粒子に対してはほとんど検出感度を有さない特性を有しているということができる。参考として、本実施例の微粒子計測装置100が有する感度特性を図5に概念的に示しておく。図示されているように、本実施例の微粒子計測装置100は、検出対象の粒径範囲にのみ感度を有するような、ほぼ矩形の感度特性を有している。   In consideration of such a particle size distribution of the fine particles, the position and size of the sampling port 122 are set in the fine particle measuring apparatus 100 of the present embodiment so as to detect only the fine particles having the larger particle diameter. . As described with reference to FIG. 3, only the fine particles having a particle size range larger than the fine particle DPS and smaller than the fine particle DPL are taken into the sampling port 122, and other fine particles enter the sampling port 122. It has no structure. The fine particles taken into the sampling port 122 are immediately supplied to the particle detector 120, and all the fine particles are detected. As a result, the particle measuring apparatus 100 of the present embodiment has a very high detection sensitivity for the particles in the particle size range to be measured, while almost detecting sensitivity for the particles outside the particle size range. It can be said that it has a characteristic that does not have For reference, the sensitivity characteristics of the particle measuring apparatus 100 of the present embodiment are conceptually shown in FIG. As shown in the figure, the particle measuring apparatus 100 of the present embodiment has a substantially rectangular sensitivity characteristic that has sensitivity only in the particle size range of the detection target.

本実施例の微粒子計測装置100は、このような感度特性を有していることから、内燃機関10の排気ガスに含まれる微粒子を計測する際に、極めて好適に使用することができる。以下、この点について説明する。前述したように、内燃機関10の排気ガス中に含まれる微粒子は、粒径の小さいものと粒径の大きなものの2つのピークを有している。このうち、粒径の小さい方の微粒子は、内燃機関10の僅かな運転条件の違いによって大きく変動し、また、計測側の条件の違いによっても、得られる値は大きく異なる傾向にある。このため、粒径が小さい方の微粒子の排出挙動を特に対象として計測するのでない限り、粒径が小さな方のピーク成分が計測値に混入すると、強いノイズとなって解析の妨げとなる。しかし、本実施例の微粒子計測装置100では、図5に示すように、計測対象の粒径範囲の微粒子に対しては高い検出感度を有するものの、計測対象外の粒径の微粒子に対しては、ほとんど検出感度を有していない。このため、小さな粒径のピーク成分の影響を受けることなく、大きな粒径のピーク成分だけを、ほぼ完全に検出することができ、その結果、信頼性の高いデータを安定して計測することが可能となる。   Since the particle measuring apparatus 100 of the present embodiment has such sensitivity characteristics, it can be used very suitably when measuring particles contained in the exhaust gas of the internal combustion engine 10. Hereinafter, this point will be described. As described above, the fine particles contained in the exhaust gas of the internal combustion engine 10 have two peaks, one having a small particle size and one having a large particle size. Among these, the fine particles having a smaller particle diameter largely fluctuate due to a slight difference in operating conditions of the internal combustion engine 10, and the obtained values tend to vary greatly depending on the difference in conditions on the measurement side. For this reason, unless the discharge behavior of fine particles having a smaller particle size is specifically measured, if a peak component having a smaller particle size is mixed into the measured value, it becomes a strong noise and hinders analysis. However, as shown in FIG. 5, the particle measuring apparatus 100 according to the present embodiment has high detection sensitivity for particles in the particle size range to be measured, but for particles having a particle size outside the object to be measured. , Has little detection sensitivity. For this reason, only the peak component with a large particle size can be detected almost completely without being affected by the peak component with a small particle size, and as a result, highly reliable data can be stably measured. It becomes possible.

もちろん、本実施例の微粒子計測装置100が有するこのような特性は、内燃機関10の排気ガス中に含まれる微粒子を計測する場合に限らず、特定の粒径範囲の微粒子だけを、精度良く、しかも安定して計測する必要がある場合に、極めて適した特性と言うことができる。   Of course, such a characteristic of the particulate measuring device 100 of the present embodiment is not limited to the case of measuring particulates contained in the exhaust gas of the internal combustion engine 10, but only particulates having a specific particle size range are accurately obtained. In addition, when it is necessary to measure stably, it can be said that the characteristics are extremely suitable.

また、本実施例の微粒子計測装置100は、高い時間分解能で時系列的なデータを取得することができる。このため、例えば、排気ガス中の微粒子を計測するために適用すれば、内燃機関10の運転条件が変化したときの過渡的な微粒子の排出挙動などを、好適に計測することが可能である。   Moreover, the particle measuring apparatus 100 of the present embodiment can acquire time-series data with high time resolution. For this reason, for example, when applied to measure the particulates in the exhaust gas, it is possible to suitably measure the transient particulate discharge behavior when the operating condition of the internal combustion engine 10 changes.

また、本実施例の微粒子計測装置100では、計測対象とする粒径範囲の微粒子だけを、単純な機構で採取することができ、フィルタのような目詰まりを起こす要素が存在しない。このため、長い期間に亘って使用を続けても特性が劣化することなく、高い精度で安定した計測を行うことが可能である。   Further, in the particle measuring apparatus 100 of the present embodiment, only particles having a particle size range to be measured can be collected by a simple mechanism, and there is no element that causes clogging like a filter. For this reason, it is possible to perform stable measurement with high accuracy without deterioration of characteristics even if the use is continued for a long period of time.

更に、本実施例の微粒子計測装置100は、構造が簡素であるため、装置全体を極めて小型に構成することができる。しかも、分級通路110内を通過する流量、電極180に印加する電圧、採取口122の位置および大きさに基づいて、検出された微粒子の粒径範囲を決定することができるので、何ら較正の必要がなく、簡便な計測が可能となる。加えて、電極180に印加する電圧や、計測対象流体(上述した例では、排気ガス)あるいは搬送流体(上述した例では、搬送ガス)の流量を調整することで、異なる粒径範囲の微粒子を検出することも可能となる。   Furthermore, since the particle measuring apparatus 100 of the present embodiment has a simple structure, the entire apparatus can be made extremely small. Moreover, since the particle size range of the detected fine particles can be determined based on the flow rate passing through the classification passage 110, the voltage applied to the electrode 180, and the position and size of the sampling port 122, no calibration is necessary. Therefore, simple measurement is possible. In addition, by adjusting the voltage applied to the electrode 180 and the flow rate of the fluid to be measured (exhaust gas in the example described above) or the carrier fluid (carrier gas in the example described above), particles having different particle size ranges can be obtained. It is also possible to detect.

上述した微粒子計測装置100には、種々の変形例が存在している。以下では、これら変形例の微粒子計測装置について説明する。   Various modifications exist in the fine particle measuring apparatus 100 described above. In the following, a description will be given of these modified particle measuring apparatuses.

(1)第1の変形例:
以上に説明した微粒子計測装置100では、電極180に印加する電圧や、排気ガスあるいは搬送ガスの流量を調整することで、異なる粒径範囲の微粒子を検出することも可能であったが、検出する粒径範囲を固定することを前提として、採取口122の形状を最適化することも可能である。
(1) First modification:
In the fine particle measuring apparatus 100 described above, it was possible to detect fine particles having different particle diameter ranges by adjusting the voltage applied to the electrode 180 and the flow rate of the exhaust gas or the carrier gas. It is also possible to optimize the shape of the sampling port 122 on the assumption that the particle size range is fixed.

図6は、こうした第1の変形例の微粒子計測装置100における採取口122の形状を概念的に示した説明図である。図中に細い実線で示した矢印は、分級通路110内を通過する排気ガスおよび搬送ガスの流線を示している。排気ガスや、搬送ガスの流量、および採取口122の位置などを固定すると、分級通路110内での流線は自ずから決定される。従って、この流線を考慮して、採取口122の断面形状を、分級通路110内の流れを乱さないような形状にしておけば、採取口122に到達した微粒子だけを確実に採取することが可能となる。すなわち、流れに乱れが発生すると、微粒子の動きは電場から受けるクーロン力だけではなく、乱れの影響を強く受けるようになる。これに対して、乱れが発生していなければ、流れに沿って微粒子が移動する経路は、電場から受けるクーロン力から決定することができる。そこで、この微粒子の経路に採取口122を設けておくことにより、計測対象の粒径範囲の微粒子だけを、ほぼ完全に採取することが可能となる。   FIG. 6 is an explanatory diagram conceptually showing the shape of the sampling port 122 in the particle measuring apparatus 100 of the first modified example. Arrows indicated by thin solid lines in the figure indicate streamlines of exhaust gas and carrier gas passing through the classification passage 110. When the exhaust gas, the flow rate of the carrier gas, the position of the sampling port 122, and the like are fixed, the streamline in the classification passage 110 is automatically determined. Therefore, in consideration of this streamline, if the cross-sectional shape of the sampling port 122 is set so as not to disturb the flow in the classification passage 110, only the fine particles that have reached the sampling port 122 can be reliably sampled. It becomes possible. That is, when the flow is disturbed, the movement of the fine particles is strongly influenced not only by the Coulomb force received from the electric field but also by the disturbance. On the other hand, if no disturbance has occurred, the path along which the fine particles move along the flow can be determined from the Coulomb force received from the electric field. Therefore, by providing the collection port 122 in the path of the fine particles, it is possible to collect almost completely the fine particles in the particle size range to be measured.

図6に示した例では、採取口122の上端側のエッジ部122aは、計測対象とする粒径よりも小さな微粒子が流れ込むことを防ぐような断面形状に設定されており、また、下端側のエッジ部122bは、計測対象の微粒子のみが流入するような断面形状に設定されている。このようにすることで、粒径に対する感度特性を、より理想的な特性に近づけることが可能となる。   In the example shown in FIG. 6, the edge 122a on the upper end side of the sampling port 122 is set to have a cross-sectional shape that prevents the flow of fine particles smaller than the particle size to be measured, The edge portion 122b is set to have a cross-sectional shape in which only the fine particles to be measured flow. By doing in this way, it becomes possible to make the sensitivity characteristic with respect to a particle size closer to an ideal characteristic.

(2)第2の変形例:
以上に説明した微粒子計測装置100では、採取口122は、分級通路110の側面に設けられているものとして説明したが、必ずしも採取口122を分級通路110の側面に設ける必要はない。
(2) Second modification:
In the fine particle measuring apparatus 100 described above, the collection port 122 is described as being provided on the side surface of the classification passage 110, but the collection port 122 is not necessarily provided on the side surface of the classification passage 110.

図7は、このような第2の変形例の微粒子計測装置100の大まかな構造を例示した説明図である。図示した例では、分級通路110の断面を矩形形状として、一方の側面に電極180が設けられている。そして、分級通路110内に、排気ガスおよび搬送ガスを層状に供給し、流れと交差する方向に電場を形成する。こうすれば、流れの下流側では、粒径の小さな微粒子と大きな微粒子とに分級されるので、何れか一方の微粒子を粒子検出器120に導いて、微粒子を検出することとしても良い。   FIG. 7 is an explanatory diagram illustrating the rough structure of the particle measuring apparatus 100 of the second modification example. In the illustrated example, the classification passage 110 has a rectangular cross section, and an electrode 180 is provided on one side surface. Then, exhaust gas and carrier gas are supplied in a layered manner in the classification passage 110, and an electric field is formed in a direction crossing the flow. In this way, since the particles are classified into small particles and large particles on the downstream side of the flow, one of the particles may be guided to the particle detector 120 to detect the particles.

このような第2の変形例の微粒子計測装置100を用いれば、所定の粒径より大きな微粒子、あるいは小さな微粒子の何れか一方だけを、高い精度で且つ安定して、しかも時系列的に計測することが可能となる。加えて、採取口122を、分級通路110の側面に設ける必要がないので、分級通路110を短くすることができ、延いては装置全体を簡素で小型なものとすることができる。   By using such a particle measuring apparatus 100 of the second modified example, only one of fine particles larger than a predetermined particle size or small particles is measured with high accuracy and stability in a time series. It becomes possible. In addition, since it is not necessary to provide the collection port 122 on the side surface of the classification passage 110, the classification passage 110 can be shortened, and the entire apparatus can be made simple and small.

あるいは、図8に示すように、分級通路110の下流側に設けた採取口122から微粒子を採取することとしてもよい。こうすれば、所定の粒径範囲の微粒子のみを、高い精度で且つ安定して計測することが可能となる。   Alternatively, as shown in FIG. 8, fine particles may be collected from a collection port 122 provided on the downstream side of the classification passage 110. In this way, it is possible to stably measure only fine particles having a predetermined particle size range with high accuracy.

以上、本発明についての各種の実施の形態を説明したが、本発明はこれに限定されるものではなく、各請求項に記載した範囲を逸脱しない限り、各請求項の記載文言に限定されず、当業者がそれらから容易に置き換えられる範囲にも及び、かつ、当業者が通常有する知識に基づく改良を適宜付加することができる。   While various embodiments of the present invention have been described above, the present invention is not limited to this, and is not limited to the wording of each claim unless it departs from the scope described in each claim. It is possible to appropriately add an improvement based on the knowledge that a person skilled in the art normally has, and also to the extent that those skilled in the art can easily replace them.

本実施例の微粒子計測装置を使用して内燃機関の排気ガス中に含まれる微粒子を計測する様子を概念的に示した説明図である。It is explanatory drawing which showed notionally the mode that the microparticles | fine-particles contained in the exhaust gas of an internal combustion engine were measured using the microparticles | fine-particles measuring apparatus of a present Example. 排気ガスに含まれる微粒子の中から所定の粒径範囲の微粒子だけが採取口に採取されるメカニズムを示した説明図である。It is explanatory drawing which showed the mechanism in which only the microparticles | fine-particles of the predetermined particle diameter range are extract | collected by the collection port from the microparticles | fine-particles contained in exhaust gas. 分級通路に設けられた採取口の詳細な構造を概念的に示した拡大断面図である。It is the expanded sectional view which showed notionally the detailed structure of the sampling port provided in the classification passage. 排気ガスに含まれる微粒子の代表的な粒径分布を示した説明図である。It is explanatory drawing which showed the typical particle size distribution of the microparticles | fine-particles contained in exhaust gas. 本実施例の微粒子計測装置が有する粒径に対する感度特性を概念的に示した説明図である。It is explanatory drawing which showed notionally the sensitivity characteristic with respect to the particle size which the fine particle measuring device of a present Example has. 第1の変形例の微粒子計測装置における採取口の断面形状を概念的に示した説明図である。It is explanatory drawing which showed notionally the cross-sectional shape of the collection port in the microparticle measuring device of a 1st modification. 第2の変形例の微粒子計測装置の一例を示した説明図である。It is explanatory drawing which showed an example of the particulate measuring device of the 2nd modification. 第2の変形例の微粒子計測装置の他の一例を示した説明図である。It is explanatory drawing which showed another example of the fine particle measuring apparatus of the 2nd modification.

符号の説明Explanation of symbols

10…内燃機関、 12…排気管、 20…排気ブロア、
30…圧送ポンプ、 100…微粒子計測装置、 110…分級通路、
120…粒子検出器、 122…採取口、 122a…エッジ部、
122b…エッジ部、 130…高圧電源、 140…計測対象流体導入管、
150…搬送流体供給管、 160…放出通路、 170…帯電器、
180…電極
DESCRIPTION OF SYMBOLS 10 ... Internal combustion engine, 12 ... Exhaust pipe, 20 ... Exhaust blower,
30 ... Pressure pump, 100 ... Particle measuring device, 110 ... Classification passage,
120 ... Particle detector 122 ... Sampling port 122a ... Edge part
122b: edge portion, 130: high-voltage power supply, 140: measurement target fluid introduction pipe,
150 ... conveying fluid supply pipe, 160 ... discharge passage, 170 ... charger,
180 ... electrode

Claims (1)

流体中に含まれる微粒子を計測する微粒子計測装置であって、
前記計測対象の微粒子を含んだ流体たる計測対象流体と、該計測対象流体と共に供給される搬送流体とが、層を成して流れる通路部と、
前記通路部の上流側に設けられて、前記微粒子を帯電させる微粒子帯電部と、
前記微粒子帯電部の下流側で、前記搬送流体の流れに交差する方向の電場を形成する電場形成部と、
前記計測対象流体および前記搬送流体が前記電場内を通過する際に、前記帯電した微粒子が該電場の力を受けて該搬送流体の流れを横切る方向に移動する速度が、該微粒子の粒径に応じて異なる性質を利用して、該帯電した微粒子の中から、該移動速度が所定の第1の閾値速度よりも小さな微粒子を、計測対象外の大径の微粒子として除去する第1の微粒子除去部と、
前記帯電した微粒子の中から、前記移動速度が所定の第2の閾値速度(但し、前記第1の閾値速度よりも大きい)よりも大きな微粒子を、計測対象外の小径の微粒子として除去する第2の微粒子除去部と、
前記計測対象外の大径の微粒子および小径の微粒子が除かれた残余の微粒子を検出する微粒子検出部と
を備え、
前記第1の微粒子除去部は、前記通路部の側面から突設されて、先端がエッジ形状に形成されており、
前記第2の微粒子除去部は、前記第1の微粒子除去部よりも上流側の前記通路部の側面から突設されて、先端がエッジ形状に形成されている微粒子計測装置。
A particle measuring device for measuring particles contained in a fluid,
A passage portion in which a measurement target fluid, which is a fluid containing fine particles to be measured, and a carrier fluid supplied together with the measurement target fluid flow in layers;
A fine particle charging portion provided on the upstream side of the passage portion to charge the fine particles;
An electric field forming unit that forms an electric field in a direction crossing the flow of the carrier fluid on the downstream side of the fine particle charging unit;
When the measurement target fluid and the carrier fluid pass through the electric field, the speed at which the charged fine particles move in the direction crossing the flow of the carrier fluid under the force of the electric field depends on the particle size of the fine particles. Correspondingly by utilizing different properties, from among the charged particles, the moving speed is fine particles having a small than a predetermined first threshold speed, the first to be removed as fine particles of a large diameter outside the measurement object A particulate removal section;
A second particle in which the moving speed is larger than a predetermined second threshold speed (however, larger than the first threshold speed) is removed from the charged fine particles as small-sized fine particles that are not to be measured. A fine particle removing portion of
A fine particle detection unit that detects the remaining fine particles from which the large-sized fine particles and the small-sized fine particles that are not measured are removed , and
The first fine particle removing portion is protruded from a side surface of the passage portion, and a tip is formed in an edge shape,
The second particle removing unit is a particle measuring device that protrudes from a side surface of the passage portion upstream of the first particle removing unit and has a tip formed in an edge shape .
JP2005369382A 2005-12-22 2005-12-22 Particle measuring device Active JP4748476B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005369382A JP4748476B2 (en) 2005-12-22 2005-12-22 Particle measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005369382A JP4748476B2 (en) 2005-12-22 2005-12-22 Particle measuring device

Publications (2)

Publication Number Publication Date
JP2007171001A JP2007171001A (en) 2007-07-05
JP4748476B2 true JP4748476B2 (en) 2011-08-17

Family

ID=38297756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005369382A Active JP4748476B2 (en) 2005-12-22 2005-12-22 Particle measuring device

Country Status (1)

Country Link
JP (1) JP4748476B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5547126B2 (en) 2011-05-11 2014-07-09 日本特殊陶業株式会社 Particle detection system
CN106940282A (en) * 2012-06-06 2017-07-11 株式会社岛津制作所 Sample producing device and film of nanoparticles film formation device that particle concentration is evenly distributed

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2535777B2 (en) * 1994-03-18 1996-09-18 工業技術院長 Ultra fine particle classifier
JP3669607B2 (en) * 1997-05-29 2005-07-13 株式会社リコー Powder shape separation device
JP3086873B2 (en) * 1998-08-04 2000-09-11 工業技術院長 Particle size distribution measuring method and device
JP2003337087A (en) * 2002-05-20 2003-11-28 Shimadzu Corp Apparatus for collecting suspended particle
JP3985960B2 (en) * 2003-07-02 2007-10-03 独立行政法人交通安全環境研究所 Fine particle measuring apparatus and measuring method in exhaust gas
JP4286678B2 (en) * 2004-02-02 2009-07-01 ワイコフ科学株式会社 Particle analyzer
US7880109B2 (en) * 2005-12-22 2011-02-01 Shimadzu Corporation Classification apparatus and fine particle measuring apparatus

Also Published As

Publication number Publication date
JP2007171001A (en) 2007-07-05

Similar Documents

Publication Publication Date Title
JP3985960B2 (en) Fine particle measuring apparatus and measuring method in exhaust gas
Yli-Ojanperä et al. Improving the nanoparticle resolution of the ELPI
US9606038B2 (en) Particle count measurement device
CN104487817B (en) For the equipment and process of particle mass concentration measurement and to the use of the equipment measured for particle mass concentration
Johnson et al. A new electrical mobility particle sizer spectrometer for engine exhaust particle measurements
US10488316B2 (en) Fine-particle number measurement device and fine-particle number measurement method
US20160370320A1 (en) A method for obtaining aerosol particle size distributions
US20100001184A1 (en) Miniaturized ultrafine particle sizer and monitor
KR101461873B1 (en) Particulate matters sensor unit
CN108369176A (en) Method and apparatus for the particulate for measuring exhaust gas
US20040025567A1 (en) Device for determining the size distribution of aerosol particles
Dhaniyala et al. Instruments based on electrical detection of aerosols
Arffman et al. High-resolution low-pressure cascade impactor
JP4748476B2 (en) Particle measuring device
JP2008128739A (en) Method and instrument for measuring number of fine particles
Eichler et al. Improvement of the resolution of TSI's 3071 DMA via redesigned sheath air and aerosol inlets
Rostedt et al. A new miniaturized sensor for ultra-fast on-board soot concentration measurements
KR20110091708A (en) Device for characterizing the evolution over time of a size distribution of electrically-charged airborne particles in an airflow
Liu et al. Calibration of condensation particle counters
Michler et al. Comparison of different particle measurement techniques at a heavy-duty diesel engine test Bed
Rostedt et al. Modification of the ELPI to measure mean particle effective density in real-time
RU2645173C1 (en) Method for determining content of soot particles in the gte exhaust jet in flight
CN108369210A (en) Charhing unit and particle monitoring equipment for particle monitoring equipment
Wardoyo et al. A DC low electrostatic filtering system for PM2. 5 motorcycle emission
JP4942175B2 (en) Fine particle measuring apparatus and measuring method for mass classification of fine particles using AC electric field

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081216

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110509

R150 Certificate of patent or registration of utility model

Ref document number: 4748476

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250