JP4745771B2 - Temperature control method for heated object - Google Patents

Temperature control method for heated object Download PDF

Info

Publication number
JP4745771B2
JP4745771B2 JP2005266333A JP2005266333A JP4745771B2 JP 4745771 B2 JP4745771 B2 JP 4745771B2 JP 2005266333 A JP2005266333 A JP 2005266333A JP 2005266333 A JP2005266333 A JP 2005266333A JP 4745771 B2 JP4745771 B2 JP 4745771B2
Authority
JP
Japan
Prior art keywords
temperature
coil
heated
voltage
zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005266333A
Other languages
Japanese (ja)
Other versions
JP2007080647A (en
Inventor
靖夫 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP2005266333A priority Critical patent/JP4745771B2/en
Publication of JP2007080647A publication Critical patent/JP2007080647A/en
Application granted granted Critical
Publication of JP4745771B2 publication Critical patent/JP4745771B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • General Induction Heating (AREA)

Description

本発明は被加熱体の温度制御方法に関する。   The present invention relates to a temperature control method for an object to be heated.

従来より被加熱体中を流れるか乃至は被加熱体中に存在する物質、例えば流体を加熱する装置が知られている。図4はコイルと流体の関係を示す図である。図において、1は被加熱体、2は被加熱体1の内表面、3は該被加熱体1の中を流れる流体である。流体は、気体、液体の何れであってもよい。また、流れない物質であってもよい。4は被加熱体1の外周に巻回された誘導加熱用のコイルである。このように構成された装置において、コイル4に高周波の電流を流すと誘導加熱により被加熱体1が加熱され、被加熱体1内部を流れる流体3は、被加熱体1からの伝熱により温度が上昇する。本発明は、この流体3の被加熱体の温度を温度制御するシステムに関するものである。   2. Description of the Related Art Conventionally, a device that heats a substance that flows in a heated body or exists in the heated body, for example, a fluid is known. FIG. 4 is a diagram showing the relationship between the coil and the fluid. In the figure, 1 is a heated body, 2 is an inner surface of the heated body 1, and 3 is a fluid flowing through the heated body 1. The fluid may be either gas or liquid. Moreover, the substance which does not flow may be sufficient. Reference numeral 4 denotes an induction heating coil wound around the outer periphery of the body 1 to be heated. In the apparatus configured as described above, when a high-frequency current is passed through the coil 4, the heated body 1 is heated by induction heating, and the fluid 3 flowing inside the heated body 1 is heated by heat transfer from the heated body 1. Rises. The present invention relates to a system for controlling the temperature of the heated object of the fluid 3.

従来の温度制御では、被加熱体の温度が上昇または下降した現象が生じて初めて、各加熱手段の制御(例えば電源のオン/オフ動作、PID動作等)を行ない、被加熱体を目標の温度にするという方法が採られていた。この方法は、各加熱手段がお互いに影響を与えることが少ない場合には、非常に優れた手段である(例えば非特許文献1参照)。
理化工業株式会社、“温度制御の手引き”、「online」、「平成17年9月2日検索」、インターネット〈URL:http://www.rkcinst.co.jp/ondo-j.htm〉
In the conventional temperature control, each heating means is controlled (for example, power ON / OFF operation, PID operation, etc.) only after the phenomenon that the temperature of the heated object rises or falls, and the heated object is set to the target temperature. The method of making was adopted. This method is a very excellent means when the heating means hardly affect each other (for example, see Non-Patent Document 1).
Rika Kogyo Co., “Temperature Control Guide”, “online”, “September 2, 2005 search”, Internet <URL: http://www.rkcinst.co.jp/ondo-j.htm>

しかしながら、前記した従来装置の温度制御では、高周波加熱、特に複数のコイルを使用して被加熱体を加熱するに際し、被加熱体の一部の温度を上昇又は下降するため、加熱手段の制御、即ち、被加熱体の温度を変更しようとする部分を主に加熱しているコイルの電圧を変えてしまうと、その前後の被加熱体の部分において温度変化が大きくなるという問題があった。また、特に、流体が被加熱体中で流動する場合には、流体自体の温度が、被加熱体の内表面の温度に影響を与えるため、更に温度変化が大きくなるという問題があった。   However, in the above-described temperature control of the conventional apparatus, when heating the object to be heated using high frequency heating, particularly using a plurality of coils, the temperature of a part of the object to be heated is increased or decreased. That is, if the voltage of the coil that mainly heats the portion to be heated is changed, there is a problem that the temperature change becomes large in the portion of the heated body before and after that. In particular, when the fluid flows in the heated body, the temperature of the fluid itself affects the temperature of the inner surface of the heated body, so that there is a problem that the temperature change is further increased.

本発明者らの検討によると、例えば被加熱体の一部の温度を高めるために、その部分を主に加熱できるコイルの電圧だけ高くすると、そのコイルの電圧が変化することによって、前後のコイルに影響を与えることがわかった。つまり、一つのコイルの電圧を変化させると、前後のコイルとの相互誘導が発生し、それに伴い各コイルに流れる電流が変化し、被加熱体を目標の温度とすることができないということが分かった。   According to the study by the present inventors, for example, in order to increase the temperature of a part of the object to be heated, when the voltage of the coil that can mainly heat the part is increased, the voltage of the coil changes, so It was found to affect the. That is, when the voltage of one coil is changed, mutual induction with the front and rear coils occurs, and the current flowing through each coil changes accordingly, and it is understood that the object to be heated cannot be set to the target temperature. It was.

そのため、複数のコイルにより被加熱体を加熱するに際し、各コイルにおける1V当たりの被加熱体の温度変化率を係数として、係数行列の逆行列と定数項列の積を算出することにより、各コイルにおける変更電圧を求め、この変更電圧に従い、各コイルの電圧を変更することにより、被加熱体の温度制御を精密に行なうことを見いだした。   Therefore, when heating the object to be heated by a plurality of coils, by calculating the product of the inverse matrix of the coefficient matrix and the constant term sequence using the temperature change rate of the object to be heated per 1 V in each coil as a coefficient, It has been found that the temperature of the object to be heated is precisely controlled by obtaining the change voltage in, and changing the voltage of each coil in accordance with the change voltage.

本発明はこのような課題に鑑みてなされたものであって、被加熱体の温度制御を精密に行なうことができる被加熱体の温度制御方法を提供することを目的としている。   This invention is made | formed in view of such a subject, Comprising: It aims at providing the temperature control method of the to-be-heated body which can perform the temperature control of a to-be-heated body precisely.

複数のコイルを使用して誘導加熱により被加熱体を加熱する装置において、被加熱体の内表面の現状温度から温度を変更するに際し、被加熱体の目標温度と現状温度との温度差を決定する工程1と、コイルを巻回している被加熱体を複数のゾーンに分け、各ゾーンに対するコイル毎に電圧を変化させ、各ゾーンにおいて、電圧を変化させる前の内表面の現状温度と電圧を変化させた際の温度とから温度変化値を求め、この温度変化値から各コイルにおける1V当たりの各ゾーンにおける被加熱体の内表面の温度変化率を求める工程2と、この温度変化率を係数とし、この係数と前記工程1で決定した温度差との連立1次方程式から各コイルにおける変更電圧を算出する工程3と算出した各コイルにおける変更電圧を元に、各コイルの現状電圧を増減設定し、被加熱体の温度制御を行なう工程4とからなることを特徴とする。 An apparatus for heating materials by induction heating using a plurality of coils, when changing the current temperature or Atsushi Luo of the inner surface of the object to be heated, the temperature difference between the target temperature and the current temperature of the object to be heated Step 1 is determined, and the object to be heated around which the coil is wound is divided into a plurality of zones, the voltage is changed for each coil for each zone, and the current temperature of the inner surface before the voltage is changed in each zone Step 2 for obtaining a temperature change value from the temperature when the voltage is changed, and obtaining a temperature change rate of the inner surface of the heated object in each zone per 1 V in each coil from the temperature change value , and this temperature change rate It was a factor, and the step 3 of calculating the change voltage in each coil from simultaneous linear equations of temperature difference determined this coefficient in the step 1, based on the change voltage in each coil, which is calculated, current collector of each coil The increased or decreased setting, characterized by comprising the step 4 which control the temperature of the object to be heated.

(1)本発明によれば、複数のコイルにより被加熱体を加熱する場合、温度制御を迅速、かつ高精度に行なうことができる。 (1) According to the present invention, when a heated object is heated by a plurality of coils, temperature control can be performed quickly and with high accuracy.

以下、図面を参照して本発明の実施の形態例を詳細に説明する。
本発明の構成は、図4に示す被加熱体が長い場合、その長さを複数個のゾーンに区切り、それぞれのゾーン毎にコイルを巻回し、このコイルに電圧を印加して所定の高周波電流を流して誘導加熱し、各ゾーンを所定の目標温度になるように制御するものである。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
In the configuration of the present invention, when the object to be heated shown in FIG. 4 is long, the length is divided into a plurality of zones, a coil is wound in each zone, and a voltage is applied to the coil to apply a predetermined high-frequency current. To control each zone to a predetermined target temperature.

図1は各ゾーンの1Vあたりの温度変化率を示す図である。図4に示すような被加熱体の場合、図1に示す通り、あるゾーンの電圧を変化させると、相互誘導や流体自体の温度によって他のゾーンの被加熱体の内表面の温度にも影響を与えることが明らかである。   FIG. 1 is a graph showing the temperature change rate per 1 V in each zone. In the case of an object to be heated as shown in FIG. 4, if the voltage of a certain zone is changed as shown in FIG. 1, the temperature of the inner surface of the object to be heated in the other zone is also affected by the mutual induction or the temperature of the fluid itself. It is clear to give

この実施の形態例では、コイルを巻回している被加熱体を7つのゾーンに分けて、各ゾーン毎に温度制御を行なうようにしたものである。ゾーンをZ1〜Z7で表わす。この時、各ゾーンに対応するコイルをコイル1〜コイル7とする。ここでは、ゾーンを7つに設定しているが、これに限るものではない。図では、ゾーンZ1〜Z7に対応するコイル1〜7にかかる電圧を1%増加した時の各ゾーンの1V当たりの温度変化率(℃/V)を示している。f1はZ1の温度変化率を、f2はZ2の温度変化率を、f3はZ3の温度変化率を、f4はZ4の温度変化率を、f5はZ5の温度変化率を、f6はZ6の温度変化率を、f7はZ7の温度変化率をそれぞれ示す。   In this embodiment, an object to be heated around which a coil is wound is divided into seven zones, and temperature control is performed for each zone. The zones are represented by Z1 to Z7. At this time, the coils corresponding to the respective zones are referred to as coils 1 to 7. Here, seven zones are set, but the present invention is not limited to this. In the drawing, the temperature change rate (° C./V) per 1 V of each zone when the voltage applied to the coils 1 to 7 corresponding to the zones Z 1 to Z 7 is increased by 1% is shown. f1 is the temperature change rate of Z1, f2 is the temperature change rate of Z2, f3 is the temperature change rate of Z3, f4 is the temperature change rate of Z4, f5 is the temperature change rate of Z5, and f6 is the temperature change rate of Z6. The change rate, f7, indicates the temperature change rate of Z7.

この特性図において、Z1に対応するコイル1の電圧を1Vだけ上昇させると、Z1は3.560℃、Z2は3.346℃、Z3は1.573℃、Z4は0.916℃、Z5は0.744℃、Z6は0.661℃、Z7は0.439℃の温度上昇が見られている。Z1の温度を1Vだけ上昇させることにより、Z1に近いゾーンから離れるに従って、温度上昇は漸次、減少していることが分かる。他の特性も同様である。次に、Z4の電圧を1Vだけ上昇させると、Z4では、4.826℃、Z3では1.585℃、Z2では、0.556℃、Z1では0.304℃温度上昇があり、Z5では6.270℃、Z6では3.141℃、Z7では1.744℃の温度上昇があることを示している。この場合には、上昇させたゾーンZ4の後ろのゾーンに当たるZ5を中心として、その前ゾーン及び後ゾーンでは漸次温度上昇が小さくなっていることが分かる。   In this characteristic diagram, when the voltage of the coil 1 corresponding to Z1 is increased by 1 V, Z1 is 3.560 ° C., Z2 is 3.346 ° C., Z3 is 1.573 ° C., Z4 is 0.916 ° C., Z5 is Temperature increases of 0.744 ° C., Z6 of 0.661 ° C., and Z7 of 0.439 ° C. are observed. It can be seen that by increasing the temperature of Z1 by 1 V, the temperature increase gradually decreases as the distance from the zone close to Z1 increases. The same applies to other characteristics. Next, when the voltage of Z4 is increased by 1 V, there is a temperature increase of 4.826 ° C. for Z4, 1.585 ° C. for Z3, 0.556 ° C. for Z2, 0.304 ° C. for Z1, and 6 for Z5. .270 ° C., Z6 has a temperature increase of 3.141 ° C., and Z7 has a temperature increase of 1.744 ° C. In this case, it can be seen that the temperature rise gradually decreases in the front zone and the rear zone centering on Z5 corresponding to the zone behind the raised zone Z4.

その他のゾーンについても同様に、電圧を1Vだけ上昇させた際の各ゾーンの1Vあたりの温度変化率を求めた。その具体的な例を図1に示した。以下、本発明を詳細に説明する。
1)工程1
現状温度から被加熱体の温度を変更するに際し、あるゾーンZi(i=1〜7)を目標温度に変化させる場合に、ゾーンZ1〜Z7を現状温度から何度変化させればよいかを決定する。ここでは、ゾーンZ3のみを10℃変化させるものとする。その他のゾーンは温度を変化させないものとする。
2)工程2
予め各コイル毎に電圧を変化させる。ここでは、ゾーンZ1〜Z7に対応するコイル1〜7にかかる電圧を1%増加させるものとする。なお、各ゾーンに対応するコイルとは、ゾーン毎に巻回したコイルを示すものである。この電圧を1%増加した際の温度変化値より、各コイルにおける1V当たりの被加熱体の温度変化率を求める。温度変化率は、電圧を所定値だけ変化した時に、温度が何度変化するかを求めるものである。これにより、被加熱体の温度変化率(℃/V)を求めることができる。具体的には、図1に示す特性から求めることができる。
3)工程3
前記工程2で求めた温度変化率を係数とし、この係数と工程1で決定した温度差との連立1次方程式から各コイルにおける変更電圧を算出する。連立1次方程式を用いて変更電圧を算出することにより、複雑な計算をすることなく正確に変更電圧を求めることが可能となる。あるゾーンに対応するコイルの電圧を変化させると、他のゾーンには図1に示したように影響が出るから、あるゾーンZiを求めるための連立1次方程式は、図2に示すようなものとなる。ここでZi(i=1〜7)にかかる係数は、温度変化率(℃/V)である。即ち、電圧を1V変化させると、温度が何度変化するかを示す係数である。
Similarly, for other zones, the rate of temperature change per 1 V in each zone when the voltage was increased by 1 V was obtained. A specific example is shown in FIG. Hereinafter, the present invention will be described in detail.
1) Step 1
When changing the temperature of the object to be heated from the current temperature, when changing a zone Zi (i = 1 to 7) to the target temperature, determine how many times the zone Z1 to Z7 should be changed from the current temperature To do. Here, it is assumed that only the zone Z3 is changed by 10 ° C. Other zones shall not change temperature.
2) Step 2
The voltage is changed in advance for each coil. Here, it is assumed that the voltage applied to the coils 1 to 7 corresponding to the zones Z1 to Z7 is increased by 1%. In addition, the coil corresponding to each zone shows the coil wound for every zone. From the temperature change value when this voltage is increased by 1%, the temperature change rate of the heated object per 1 V in each coil is obtained. The temperature change rate is used to determine how many times the temperature changes when the voltage is changed by a predetermined value. Thereby, the temperature change rate (degreeC / V) of a to-be-heated body can be calculated | required. Specifically, it can be obtained from the characteristics shown in FIG.
3) Step 3
The temperature change rate obtained in the step 2 is used as a coefficient, and the change voltage in each coil is calculated from the simultaneous linear equations of the coefficient and the temperature difference determined in the process 1. By calculating the change voltage using simultaneous linear equations, the change voltage can be obtained accurately without performing complicated calculations. When the voltage of the coil corresponding to a certain zone is changed, the other zones are affected as shown in FIG. It becomes. Here, the coefficient concerning Zi (i = 1 to 7) is a temperature change rate (° C./V). That is, the coefficient indicates how many times the temperature changes when the voltage is changed by 1V.

図2に示すような連立1次方程式は、行列式を用いて簡単に解くことができる。具体的には、係数行列(温度変化率)の逆行列と定数項列(工程1で決定した温度差)の積より求められる。図3は連立1次方程式の解を示す図である。ゾーンをZ1〜Z7とし、各ゾーンに対応するコイルをコイル1〜7とする。各ゾーンに対する現状温度が同一であるものとする。ここで、それぞれの目標温度はゾーンZ3のみ10℃高いものとし、その他は現状と同じ温度とする。従って、温度差はゾーンZ3のみ10℃であり、その他は0℃である。温度変化率係数は、図3に示すようなものであるとすると、求めるべきゾーンZ1〜Z7に対応するコイルの変更電圧は、次式に示すようなものとなる。ここでは、コイル1=0V、コイル2=−1V、コイル3=6V、コイル4=−9V、コイル5=14V、コイル6=−19V、コイル7=27Vとなった。
4)工程4
算出した各コイルにおける変更電圧を元に、各コイルの現状電圧を増減設定する。ここで、求めたコイル電圧を図4に示すような装置に適用する。即ち、現状電圧からコイル1の電圧を0V(変更無し)、コイル2の電圧を−1V、コイル3の電圧を+6V、コイル4の電圧を−9V、コイル5の電圧を+14V、コイル6の電圧を−19V、コイル7の電圧を+27Vに増減設定すると、ゾーンZ3のみ温度を10℃変化させることができる。
The simultaneous linear equations as shown in FIG. 2 can be easily solved using determinants. Specifically, it is obtained from the product of an inverse matrix of a coefficient matrix (temperature change rate) and a constant term sequence (temperature difference determined in step 1). FIG. 3 is a diagram showing a solution of simultaneous linear equations. The zones are Z1 to Z7, and the coils corresponding to the zones are coils 1 to 7. Assume that the current temperature for each zone is the same. Here, the respective target temperatures are set to be 10 ° C. higher only in the zone Z3, and the other temperatures are the same as the current temperatures. Accordingly, the temperature difference is 10 ° C. only in the zone Z3, and 0 ° C. in the others. If the temperature change rate coefficient is as shown in FIG. 3, the change voltage of the coil corresponding to the zones Z1 to Z7 to be obtained is as shown in the following equation. Here, coil 1 = 0V, coil 2 = -1V, coil 3 = 6V, coil 4 = -9V, coil 5 = 14V, coil 6 = -19V, and coil 7 = 27V.
4) Step 4
Based on the calculated change voltage in each coil, the current voltage of each coil is set to increase or decrease. Here, the obtained coil voltage is applied to an apparatus as shown in FIG. That is, from the current voltage, the voltage of coil 1 is 0V (no change), the voltage of coil 2 is -1V, the voltage of coil 3 is + 6V, the voltage of coil 4 is -9V, the voltage of coil 5 is + 14V, the voltage of coil 6 Can be increased or decreased to -19V, and the voltage of the coil 7 is set to + 27V, the temperature can be changed by 10 ° C. only in the zone Z3.

本発明によれば、複数のコイルにより被加熱体を加熱する場合、温度制御を迅速、かつ高精度に行なうことができる。
前述の実施の形態例では、1つのゾーンのみの温度を変化させる場合について説明したが、本発明はこれに限るものではない。複数のゾーンの温度変化量を設定して、複数のゾーンが所定の温度だけ変化するようにすることができる。
ADVANTAGE OF THE INVENTION According to this invention, when heating a to-be-heated body with a some coil, temperature control can be performed rapidly and with high precision.
In the above-described embodiment, the case where the temperature of only one zone is changed has been described. However, the present invention is not limited to this. It is possible to set the temperature change amounts of a plurality of zones so that the plurality of zones change by a predetermined temperature.

各ゾーンの1Vあたりの温度変化率を示す図である。It is a figure which shows the temperature change rate per 1V of each zone. 7元連立1次方程式を示す図である。It is a figure which shows a 7-element simultaneous linear equation. 連立1次方程式の解を示す図である。It is a figure which shows the solution of simultaneous linear equations. コイルと流体の関係を示す図である。It is a figure which shows the relationship between a coil and a fluid.

符号の説明Explanation of symbols

1 被加熱体
2 被加熱体の内表面
3 流体
4 コイル
1 Heated object 2 Inner surface of heated object 3 Fluid 4 Coil

Claims (1)

複数のコイルを使用して誘導加熱により被加熱体を加熱する装置において、
被加熱体の内表面の現状温度から温度を変更するに際し、被加熱体の目標温度と現状温度との温度差を決定する工程1と、
コイルを巻回している被加熱体を複数のゾーンに分け、各ゾーンに対するコイル毎に電圧を変化させ、各ゾーンにおいて、電圧を変化させる前の内表面の現状温度と電圧を変化させた際の温度とから温度変化値を求め、この温度変化値から各コイルにおける1V当たりの各ゾーンにおける被加熱体の内表面の温度変化率を求める工程2と、
この温度変化率を係数とし、この係数と前記工程1で決定した温度差との連立1次方程式から各コイルにおける変更電圧を算出する工程3と
算出した各コイルにおける変更電圧を元に、各コイルの現状電圧を増減設定し、被加熱体の温度制御を行なう工程4、
とからなる被加熱体の温度制御方法。
In an apparatus for heating an object to be heated by induction heating using a plurality of coils,
Upon changing the current temperature or Atsushi Luo of the inner surface of the object to be heated, a step 1 for determining the temperature difference between the target temperature and the current temperature of the object to be heated,
Divide the heated object around which the coil is wound into multiple zones, change the voltage for each coil for each zone, and change the current temperature and voltage of the inner surface before changing the voltage in each zone A step 2 of obtaining a temperature change value from the temperature, and obtaining a temperature change rate of the inner surface of the heated object in each zone per 1 V in each coil from the temperature change value ;
And the temperature change rate coefficient, and step 3 of calculating the change voltage in each coil from simultaneous linear equations of temperature difference determined this coefficient in the step 1,
Based on the calculated change voltage in each coil, the current voltage of each coil is set to increase / decrease, and the temperature control of the heated object is performed 4,
The temperature control method of the to-be-heated body consisting of.
JP2005266333A 2005-09-14 2005-09-14 Temperature control method for heated object Expired - Fee Related JP4745771B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005266333A JP4745771B2 (en) 2005-09-14 2005-09-14 Temperature control method for heated object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005266333A JP4745771B2 (en) 2005-09-14 2005-09-14 Temperature control method for heated object

Publications (2)

Publication Number Publication Date
JP2007080647A JP2007080647A (en) 2007-03-29
JP4745771B2 true JP4745771B2 (en) 2011-08-10

Family

ID=37940725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005266333A Expired - Fee Related JP4745771B2 (en) 2005-09-14 2005-09-14 Temperature control method for heated object

Country Status (1)

Country Link
JP (1) JP4745771B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112462820B (en) * 2020-10-29 2022-03-22 广东禅信通科技有限公司 Temperature control system and method for graphene heating material and storage medium
CN114113740A (en) * 2021-09-01 2022-03-01 九阳股份有限公司 Voltage detection method and temperature control method of heating equipment and heating equipment

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002108408A (en) * 2000-09-29 2002-04-10 Hitachi Kokusai Electric Inc Method for controlling temperature of semiconductor manufacturing device
JP2003022978A (en) * 2001-07-10 2003-01-24 Hitachi Kokusai Electric Inc Substrate treatment device
JP2004146283A (en) * 2002-10-28 2004-05-20 Mitsui Eng & Shipbuild Co Ltd Current synchronizing method and device of induction heating device
JP3950068B2 (en) * 2003-02-07 2007-07-25 三井造船株式会社 Temperature control method for semiconductor manufacturing equipment

Also Published As

Publication number Publication date
JP2007080647A (en) 2007-03-29

Similar Documents

Publication Publication Date Title
CN104833106A (en) Control method and device of electric water heater and electric water heater
EP2891566B1 (en) Method for manufacturing stabilizer, and heating device
KR101738282B1 (en) Adjustment device, control method, and control program
JP4745771B2 (en) Temperature control method for heated object
CN107590314A (en) A kind of cable life data assessment method based on matlab
Pavlasek et al. Hysteresis effects and strain-induced homogeneity effects in base metal thermocouples
Kumar et al. Selection of process parameters in a single-pass laser bending process
CN114355998A (en) Compensation parameter acquisition method and device for semiconductor heat treatment equipment
WO2014041431A2 (en) Heater with energy-saving operations and method related thereto
CN113687669A (en) Method and device for adjusting temperature of drying box, drying box and storage medium
JP4745757B2 (en) Setting method of heating device
JP2010087474A (en) Method and apparatus for deciding temperature of substrate
JP2016144431A (en) Thermal cycler for nucleic acid amplification, nucleic acid analysis device, system for controlling temperature change rate in nucleic acid amplification reaction, method for controlling temperature change rate in nucleic acid amplification reaction, nucleic acid analysis method, and program for controlling temperature in nucleic acid amplification reaction
US20150165438A1 (en) Microfluidic device and temperature control method for microfluidic device
JP2015220050A (en) Induction heating apparatus
JP2014222802A (en) Amplification device and method of controlling amplification device
JPH0742515B2 (en) Induction heating control method for ERW pipe welds
JPWO2019226252A5 (en)
EP3591493A1 (en) Temperature control device, temperature control method, computer program, and storage medium
JP6166669B2 (en) Control device
Li et al. A novel hybrid heating method for mechanical testing of miniature specimens at elevated temperature
US20180328631A1 (en) Thermal control apparatus using thermal model and temperature-inference mechanism
JP4144476B2 (en) Forging normalization simulation method
Chávez-Campos et al. An Ohmic heating model based on the thermal circuit method: case of study for parameter determination
Khovalyg et al. Transient pressure drop cross-correlation during flow boiling of R134a in parallel minichannels

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100407

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110204

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110510

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110512

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4745771

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees