JP4745601B2 - Triazine compound and organic electroluminescent device using the same - Google Patents

Triazine compound and organic electroluminescent device using the same Download PDF

Info

Publication number
JP4745601B2
JP4745601B2 JP2003077388A JP2003077388A JP4745601B2 JP 4745601 B2 JP4745601 B2 JP 4745601B2 JP 2003077388 A JP2003077388 A JP 2003077388A JP 2003077388 A JP2003077388 A JP 2003077388A JP 4745601 B2 JP4745601 B2 JP 4745601B2
Authority
JP
Japan
Prior art keywords
compound
organic
triazine
added
triazine compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003077388A
Other languages
Japanese (ja)
Other versions
JP2004284971A (en
Inventor
克浩 岩崎
糸 金辻
浩樹 吉崎
崇人 小山田
千波矢 安達
博之 雀部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koei Chemical Co Ltd
Original Assignee
Koei Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koei Chemical Co Ltd filed Critical Koei Chemical Co Ltd
Priority to JP2003077388A priority Critical patent/JP4745601B2/en
Publication of JP2004284971A publication Critical patent/JP2004284971A/en
Application granted granted Critical
Publication of JP4745601B2 publication Critical patent/JP4745601B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Plural Heterocyclic Compounds (AREA)
  • Electroluminescent Light Sources (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は新規なトリアジン化合物、その製造方法および該化合物を電子注入化合物とする有機発光素子に関する。
【0002】
【従来の技術】
近年、情報機器の多様化に伴って、Cathode Ray Tube(いわゆるCRT)よりも低消費電力で空間占有面積の小さい平面型表示素子に関するニーズが高くなり、特に自発光型で表示が鮮明、かつエネルギー変換効率の高い有機EL素子に対する注目が集まり、様々な材料並びに有機発光素子の提案がなされてきた。
【0003】
有機発光素子、特に有機電界素子(有機EL素子)は、通常、ガラスやプラスチックなどの透明基板上に陽極を設け、その上に正孔輸送、発光、電子輸送(電子注入)のための各種の有機薄膜層が積層され、更にその上に陰極が設けられた構造となっている。
かかる有機電界素子の両電極間に電圧を印加すると、正孔輸送、発光、電子輸送の各層に電流が流れ、発光層において正孔と電子の再結合により発光現象が生じ、発生した光のうち透明電極及び透明基板を厚さ方向に透過した光が外部に照射されて、10V前後の電圧の印加により100〜10000カンデラ/mといった極めて高輝度の発光が得られることから、次世代ディスプレイ素子の有力候補として注目されている。
【0004】
このような有機電界発光素子において、従来型の殆どの有機EL素子においては発生した光の一部のみが透明な陽極側より照射されるが、その割合は、素子内の屈折率nに対し理論的には1/(2n)であり、例えば屈折率nが1.5の場合、外部照射の割合はわずか22%程度であって、残りの78%近くは有機積層内やガラス基板を導波して金属面で吸収されるか、基板の端から放出され、極めて発光効率の悪いものである。
【0005】
かかる発光効率を向上させるために、陽極、陰極ともにIndium−Tin−Oxide(以下「ITO」と略記する。)からなる透明電極を用いた例も報告され、更には、ITO電極を陽極とし、ビス-(α−ナフチルフェニルアミノ)ビフェニル(NPD)を正孔輸送層、トリス(8−キノリノラト)アルミニウム錯体(いわゆるAlq)を電子輸送性発光層とし、その上に陰極としてITO電極を製膜した透明有機電界素子も報告されている。
【0006】
しかし、かかる素子においてはまだ発光効率の改善が十分でなく、更なる発光効率向上のために、上記の素子において、Alqを発光層とし、該Alq発光層とITO電極との間に下記式で示される

Figure 0004745601
2,9−ジメチル−4,7−ジフェニル−1、10−フェナンスロリン(バソクプロイン、以下、BCPと略記する)を電子輸送層とした有機薄膜層を形成させてなる透明有機電界素子も報告されている。(特許文献1参照)
【0007】
【特許文献1】
特開2002-332567号公報
【0008】
しかしながら、陽極および陰極の両電極を光透過度の高い透明ITO電極とし、Alqを電子輸送性発光層とすることにより素子内で発生した光を効率よく素子外部に取り出し、さらにはBCPを電子輸送層として設けた場合には、発光効率をより向上させることはできるが、BCPは結晶化し易いために素子としての透明性が失われたリ、結晶化により電流が流れにくくなるため、結果として素子寿命が短くなるという問題があり、その改善が求められていた。
【0009】
【発明が解決しようとする課題】
このようなことから、本発明者らは、透過率を損なうことなく発光を取り出すことが可能な透明な陽極および陰極、とりわけ両電極を光透過度の高いITO電極として用いた有機EL素子において、上記のAlqを電子輸送性発光層とする場合およびBCPを電子輸送層として使用する場合のそれぞれの問題点を同時に解決し、発光効率としてはAlqを発光層とする場合よりも高くなり、しかも、電子輸送層における電子注入材料として使用してもBCPのように結晶化を生じることもなく、素子寿命に対する影響も少なく、電子輸送層として良好な製膜性を有する化合物を開発するとともに、該化合物を電子輸送層における電子注入化合物として用いた有機電界素子を開発すべく検討を行い、本発明に至った。
【0010】
【課題を解決するための手段】
本発明の第1は、下記一般式(1)
Figure 0004745601
[式中、nは0ないし1であり、RおよびRは同一または異なって、下記式
【化1】
Figure 0004745601
(式中、環Aは、Xが炭素原子または窒素原子、mが4ないし5の整数である5員環または6員環からなる芳香環を示す。R、Rは水素原子または環Aを構成する炭素原子に結合したアルキル基またはアルコキシル基を、wおよびkはそれぞれ0ないし1を示す。また隣接して結合しているRおよびRの末端同士が結合して、環Aを構成する2個の炭素原子を共有する5員環または6員環を形成していてもよい。Rは置換されていてもよいトリアジニル基を示す)を示し、Rは前記RまたはRと同一であるか、n=1である場合には置換されていてもよいトリアジニル基を示す。]
で表されるトリアジン化合物を、本発明の第2はその製造方法を、本発明の第3は該トリアジン化合物を有効成分とする有機発光素子を提供するものである。
【0011】
【発明の実施の形態】
前記一般式(1)で示される本発明のトリアジン化合物において、環Aとしてはフェニル環、ピリジン環、シクロペンタジエン環が、アルキル基としてはメチル、エチル、n−またはiso−プロピル、n−、sec−またはt−ブチルなどが、アルコキシル基としてはメトキシ、エトキシ、n−またはiso−プロポキシ、n−、sec−またはt−ブトキシなどがそれぞれ例示される。
また、隣接して結合しているRおよびRの末端同士が結合して、環Aを構成する2個の炭素原子を共有する5員環または6員環を形成している場合の例としては環Aをあわせた全体としてキノリン環が挙げられる。
このような本発明のトリアジン化合物として、具体的には以下に示す化合物が例示される。
【0012】
(化合物1)
Figure 0004745601
【0013】
(化合物2)
Figure 0004745601
【0014】
(化合物3)
Figure 0004745601
【0015】
(化合物4)
Figure 0004745601
【0016】
(化合物5)
Figure 0004745601
【0017】
(化合物6)
Figure 0004745601
【0018】
(化合物7)
Figure 0004745601
【0019】
(化合物8)
Figure 0004745601
【0020】
(化合物9)
Figure 0004745601
【0021】
(化合物10)
Figure 0004745601
【0022】
本発明の上記一般式(1)で示されるトリアジン化合物は、例えば一般式(4)
Figure 0004745601
で示されるシアノ化合物を塩基の存在下に反応させることにより容易に製造することができ、この方法は前記一般式(4)において、w=0である原料化合物を使用し、前記一般式(1)においてn=0であるトリアジン化合物を製造する方法として特に好適である。
【0023】
ここで、塩基としては水素化ナトリウム、水素化カリウムなどのアルカリ金属水素化物や、ナトリウムメトキシド、ナトリウムエトキシド、ナトリウムブトキシド、カリウムメトキシド、カリウムエトキシド、カリウム−t−ブトキシドなどのアルカリ金属アルコキシド、塩化アンモニウムなどのハロゲン化アンモニウムなどが好適に使用される。
【0024】
塩基の使用量は反応条件によっても異なるが、一般には原料シアノ化合物に対して0.01〜2モル倍の範囲であり、反応温度は原料化合物や溶媒を使用する場合にはその溶媒の種類などによっても異なり、それぞれの条件に応じて最適の温度が設定される。
【0025】
尚、アルカリ金属アルコキシド特に、ナトリウムメトキシド、ナトリウムエトキシドなどを使用する場合には対応するアルコール溶液として使用される。
その他、反応溶媒として反応に不活性な有機溶媒を適宜用いてもよい。
【0026】
尚、前記一般式(1)において、n=1であるトリアジン化合物を製造する場合には、例えば、2−メチル−4−R−6−R−s−トリアジン化合物と、置換基Rに対応するアルデヒド化合物とを、例えば濃硫酸、酢酸などの存在下に脱水反応させることにより製造することができる。
【0027】
かかる一般式(1)で示されるトリアジン化合物は有機発光素子、特に有機電界素子として有用である。
次に、本発明のトリアジン化合物を用いた有機電界素子について説明するが、本発明の有機電界素子の構造それ自体は特に限定されず、本発明のトリアジン化合物を電子注入材料として使用する限りにおいて、従来より公知の各種の有機電界素子に適用される。
【0028】
図1は、本発明の有機電界素子の一実施形態を示す概念図である。
この例で示す有機電界素子は、透明基板(1)上に、透明な陽極(2a)、有機化合物からなる正孔輸送層(3)、有機化合物からなる発光層(4)、有機化合物からなる電子輸送層(5)および透明な陰極(2b)が順次積層された構造からなっている。
【0029】
ここで、透明基板としては通常ガラス、透明プラスチックなどが使用される。
また、この例においては、陽極(2a)としては厚さ110nm程度に積層された導電性材料であるITOが、正孔輸送層(3)として50nm程度の厚さに成膜したα―NPDを含む有機化合物層が、発光層(4)として50nm程度の厚さに成膜したAlqを含む有機化合物層が、電子輸送層(5)として10nm程度の厚さに成膜した本発明の一般式(1)で示されるトリアジン化合物を含む有機化合物層がそれぞれ形成され、陰極(2b)として10nm程度の厚さに成膜したITOが積層されている。
【0030】
尚、正孔輸送層および発光層として使用される化合物は前記例示化合物に限られず、従来から当該分野において使用されている各種の化合物が適宜使用され、また、各層にはそれぞれの目的に照らして当該化合物以外の他の有機化合物が含まれていてもよい。
同様に、上記各層の厚みについても、上記に限定されず、適宜最適の厚みとなるように設定される。
【0031】
【発明の効果】
本願発明に特定する前記一般式(1)で示されるトリアジン化合物を、陽極および陰極の両電極が導電性材料である透明ITO電極からなり、電子輸送層を構成する電子注入材料(電子注入化合物)として用いた有機電界素子は、発光効率としてはAlqを発光層とする場合よりも高くなり、しかも、電子輸送層における電子注入材料として使用してもBCPのように結晶化を生じることもなく、素子寿命に対する影響も少ないなどの優れた効果を奏する。
【0032】
【実施例】
以下、本発明を実施例によりさらに詳細に説明するが、本発明がこれらに限定されるものでないことはいうまでもない。
【0033】
尚、以下の実施例において、発光能の測定にはアジレント・テクノロジー・インク社製のAgilent 4155C semiconductor parameter analyzerおよびニューポート社製のMulti-function optical meterを使用した。
【0034】
実施例1
2,4,6−トリ(5−メチル−3−ピリジル)−s−トリアジン(T5M3PyTZ)(化合物1)の合成
温度計を備えたガラス製フラスコに、3−シアノ−5−メチルピリジン23.7g(0.2mol)と水素化ナトリウム0.48g(0.02mol)を仕込み、窒素気流下に撹拌しながら130℃に昇温した。6時間撹拌した後、80℃に冷却し、撹拌下にメタノール10gを加えた。この懸濁液を40℃に冷却し、撹拌下に水10gを加えて未反応の水素化ナトリウムを分解した。この懸濁液を濾過して得た固体に、水100gとメタノール40gを加え、室温で1時間撹拌した。この懸濁液を濾過し、得られた固体をエバポレーターを用いて乾燥し、T5M3PyTZの淡黄色固体を2.87g(収率12.0%)得た。
H−NMR(400MHz,CDCl,ppm)δ:2.51(s,9H)、8.67(s,3H)、8.67(s,3H),8.68(s,3H)、9.67(s,3H)
13C−NMR(100MHz,CDCl,ppm)δ:18.5、130.6、133.2、136.4、147.9、154.0、170.6
LCMS(ESI)m/z:354[M+]
λmax(CHCl):256nm、289nm
Melting Point:276℃
【0035】
実施例2
2,4,6−トリ(6−メチル−3−ピリジル)−s−トリアジン(T6M3PyTZ)(化合物2)の合成
1lガラス製反応器に、2−メチル−5−シアノピリジン118.14g、メタノール295.4gを仕込み、28%ナトリウムメトキシドメタノール溶液289.46gを4〜12℃の間にて1.25時間かけ滴下したのち、77時間加熱還流させた。反応液の濃縮物に、水1050gを加え、室温で1時間撹拌した。濾過後、濾残にトルエン64gを加え、室温で1時間撹拌した。濾過後、濾残をトルエンで洗浄し減圧乾燥することにより、T6M3PyTZ5.24g(収率4.4%)を得た。
H−NMR(400MHz,CDCl,ppm)δ:2.71(s,9H)、7.38(d,J=7.9Hz,3H)、8.83(d,J=7.8Hz,3H)、9.78(s,3H)
13C−NMR(100MHz,CDCl,ppm)δ:24.8、123.2、128.5、136.5、150.1、163.0、170.5
DIMS(EI)m/z:354[M+]
λmax(CHCl):287nm
Melting Point:281−283℃
【0036】
実施例3
2,4,6−トリ(2−ピリジル)−s−トリアジン(T2PyTZ)(化合物3)の合成
温度計を備えたガラス製フラスコに、2−シアノピリジン26.0g(0.25mol)と塩化アンモニウム1.34g(0.025mol)とエチレングリコール26gを仕込み、155℃から165℃で12時間撹拌した。
この懸濁液を室温に冷却した後、濾過して得た固体に、107gの10%硫酸水溶液と活性炭18gを加えて室温で1時間撹拌した。これを濾過して活性炭を除いた後、アルカリで中和して析出した結晶を濾過してエバポレーターを用いて乾燥し、目的とするT2PyTZの淡黄色固体を17.13g(収率65.4%)得た。
H−NMR(400MHz,CDCl,ppm)δ:7.57(m,3H)、7.99(m,3H)、8.88(d,J=7.9Hz,3H)、8.97(d,J=4.4Hz,3H)
13C−NMR(100MHz,CDCl,ppm)δ:125.2、126.7、137.3、150.4、152.9、172.0
DIMS(EI)m/z:312[M+]
λmax(CHCl):249、282nm
Melting Point:246℃
【0037】
実施例4
2,4,6−トリ(2−メトキシ−4−ピリジル)−s−トリアジン(TMPyTZ)(化合物4)の合成
50mlガラス製反応器に、2−メトキシ−4−シアノピリジン4.02g、メタノール10.1gを仕込み、28%ナトリウムメトキシドメタノール溶液8.87gを室温にて1.5時間かけ滴下したのち、17時間加熱還流させた。濾過後、濾残をメタノールで洗浄した。得られた固体に、水13.0g、メタノール3.4gを加え、室温で1時間撹拌した。濾過後、濾残を水で洗浄し乾燥することで、固体1.02gを得た。この固体に、メタノール12.0gを加え、室温で1時間撹拌した。濾過後、濾残を減圧乾燥することにより、目的とするTMPyTZ0.41g(収率10.2%)を得た。
H−NMR(400MHz,CDCl,ppm)δ:4.06(s,9H)、7.99(s,3H)、8.07(m,3H)、8.41(d,J=5.3Hz,3H)
13C−NMR(100MHz,CDCl,ppm)δ:53.9、110.5、115.2、145.3、148.0、165.2、171.0
DIMS(EI)m/z:402[M+]
元素分析 計算値:C,62.7;H,4.51;N,20.9
測定値:C,62.9;H,4.29;N,21.1
λmax(CHCl):249nm、326nm
Melting Point:259℃
【0038】
実施例5
2,4,6−トリ(2−エトキシ−4−ピリジル)−s−トリアジン(TEPyTZ)(化合物5)の合成
200mlガラス製反応器に、2−クロロ−4−シアノピリジン10.39g、エタノール41.0gを仕込み、20%ナトリウムエトキシドエタノール溶液43.46gを室温にて1時間かけ滴下した。6時間加熱還流したのち、20%ナトリウムエトキシドエタノール溶液15.43gを追加し、4時間加熱還流した。反応液を濾過し、濾残をエタノールで洗浄した。得られた固体に、水50gを加え室温で30分撹拌したのち、濾過を行い、濾残を水で洗浄した。この操作を2度行った。得られた固体をクロロホルム130gに溶かし、水20gを加え撹拌した。分液後下層を濃縮することにより、TEPyTZ1.16g(収率10.4%)を得た。
H−NMR(400MHz,CDCl,ppm)δ:1.48(t,J=7.1Hz,9H)、4.47(q,J=7.1Hz,6H)、7.99(s,3H)、8.06(m,3H)、8.39(d,J=5.3Hz,3H)
13C−NMR(100MHz,CDCl,ppm)δ:14.7、62.2、110.7、115.1、145.3、148.0、165.0、171.0DIMS(EI)m/z:444[M+]
λmax(CHCl):327nm、249nm
Melting Point:182−184℃
【0039】
実施例6
2,4,6−トリ(2−tert−ブトキシ−4−ピリジル)−s−トリアジン(TBPyTZ)(化合物6)の合成
300mlガラス製反応器に、カリウムtert−ブトキシド28.05g、テトラヒドロフラン110.9gを仕込み、撹拌しながら2−クロロ−4−シアノピリジン13.85gを室温にて加え、18時間加熱還流した。反応液の濃縮物に、水263gを加え、室温で2時間撹拌し、濾過後、濾残を水で洗浄した。得られた固体にメタノール178gを加え、室温で2時間撹拌し、濾過後、濾残をメタノールで洗浄した。得られた固体を減圧乾燥することにより、TBPyTZ0.79g(収率4.5%)を得た。
H−NMR(400MHz,CDCl,ppm)δ:1.67(s,27H)、7.92(s,3H)、8.03(m,3H)、8.37(d,J=5.3Hz,3H)
13C−NMR(100MHz,CDCl,ppm)δ:28.7、80.3、112.7、114.6、145.1、147.5、165.0、171.2DIMS(EI)m/z:528[M+]
λmax(CHCl):329nm、250nm
Melting Point:191℃
【0040】
実施例7
2,4,6−トリ(2−キノリル)−s−トリアジン(TQTZ)(化合物7)の合成
30mlガラス製反応器に、2−キノリンカルボニトリル2.00g、メタノール5.0gおよび28%ナトリウムメトキシドメタノール溶液3.76gを仕込み、窒素雰囲気下19時間加熱還流させた。反応液の濃縮物に、ノルマルヘキサン52gを加え、室温で40分間撹拌した。濾過後、濾液にメタノールを加え撹拌したのち分液した。更に、下層にノルマルヘキサン15gを加え、抽出、分液を行った。ノルマルヘキサン層を集め濃縮し、固体0.75gを得た。得られた固体に、メタノール10g、無水酢酸0.5gを加え、室温で2日間撹拌した。反応液の濃縮物に水を加えたのち、48%水酸化ナトリウム水溶液を滴下しpH8.8とした。濾過後、濾残を水で洗浄し、得られた固体をメタノール10gに溶解させた。しばらくして析出した結晶を濾過した。濾液から再度析出した結晶とを合わせ乾燥することにより、目的とするTQTZを0.15g(収率7.5%)得た。
H−NMR(400MHz,CDCl,ppm)δ:7.70(m,3H)、7.86(m,3H)、7.97(d,J=8.0Hz,3H)、8.50(d,J=8.6Hz,3H)、8.53(d,J=8.5Hz,3H)、9.06(d,J=8.5Hz,3H)
13C−NMR(100MHz,CDCl,ppm)δ:121.5、127.6、128.5、129.5、130.2、131.2、137.4、148.4、152.9、172.5
DIMS(EI)m/z:462[M+]
元素分析 計算値:C,77.9;H,3.92;N,18.2
測定値:C,77.1;H,3.8;N,17.9
λmax(CHCl):265nm、319nm
Melting Point:278−281℃
【0041】
実施例8
2,2’−(p−フェニレンジビニレン)ビス(4,6−ジフェニル−s−トリアジン)(PVBDPTZ)(化合物8)の合成
温度計を備えたガラス製フラスコに、2−メチル−4,6−ジフェニル−s−トリアジン6.0g(24.25mmol)、テレフタルアルデヒド1.63g(12.15mmol)および濃硫酸60gを仕込み、60℃で4.5日間撹拌した。その後反応液を水480g中に加え、懸濁液を濾過して得た固体に、180gのメタノールを加え、室温で1時間撹拌した。この懸濁液を濾過して得た固体に、180gのクロロホルムを加え、室温で1時間撹拌した。この懸濁液を濾過し、得られた固体をエバポレーターを用いて乾燥した後、355℃、20〜48MPaで昇華精製し、目的とするPVBDPTZの黄色固体を5.76g(収率80.0%)得た。
H−NMR(400MHz,CFCOOD,CDCl,ppm)δ:7.58(d,J=15.4,2H)、7.75(dd,J=7.7,4H)、7.90(dd,J=7.5,8H)、7.98(s,4H)、8.68(d,J=7.3,8H)、8.93(d,J=15.4,2H)
13C−NMR(100MHz,CFCOOD,CDCl,ppm)δ:111.0、113.8、116.6、118.6、119.5、130.8、131.5、131.7、138.2、152.0、165.3、170.6
DIMS(EI)m/z:592[M+]
元素分析 計算値:C,81.1;H,4.73;N,14.2
測定値:C,80.8;H,4.74;N,14.2
λmax(CHCl):270nm、368nm
Melting Point:300℃以上
【0042】
実施例9
2,2’−(1,2−エチレン)ビス(4,6−ジフェニル−s−トリアジン)(EBDPTZ)(化合物9)の合成
温度計を備えたガラス製フラスコに、4,6−ジフェニル−s−トリアジン 2−アルデヒド3.14g(12.0mmol)、2−メチル−4,6−ジフェニル−s−トリアジン3.56g(14.4mmol)および酢酸14.4gを仕込み、環流下4時間撹拌した。これに水20gを加え、この懸濁液を濾過して得た固体に、50gのメタノールを加え、室温で1時間撹拌した。この懸濁液を濾過して得た固体に30gのクロロホルムを加え、室温で1時間撹拌した。この懸濁液を濾過して得た固体に再び30gのクロロホルムを加え、室温で1時間撹拌した。この懸濁液を濾過し、得られた固体をエバポレーターを用いて乾燥し、目的とするEBDPTZの白色固体を3.36g(収率57.0%)得た。
H−NMR(400MHz,CFCOOD,CDCl,ppm)δ:7.80(dd,J=7.9,8H)、7.97(dd,J=7.5,4H)、8.74(d,J=7.5,8H)、8.94(s,2H)
13C−NMR(100MHz,CFCOOD,CDCl,ppm)δ:123.0、130.7、131.5、136.3、138.7、163.3、171.3
DIMS(EI)m/z:490[M+]
元素分析 計算値:C,78.4;H,4.49;N,17.1
測定値:C,78.3;H,4.75;N,17.1
λmax(CHCl):277nm
Melting Point:300℃以上
【0043】
実施例10
2−[2−(4−キノリル)ビニル]−4,6−ジフェニル−s−トリアジン(4QDPTZ)(化合物10)の合成
温度計を備えたガラス製フラスコに、4,6−ジフェニル−s−トリアジン 2−アルデヒド5.23g(20.0mmol)、4−メチルキノリン3.44g(24.0mmol)および酢酸24.0gを仕込み、135℃で20時間撹拌した。これにメタノール40gを加え、この懸濁液を濾過して得た固体に、60gのメタノールを加え、室温で1時間撹拌した。この懸濁液を濾過し、得られた固体をエバポレーターを用いて乾燥し、目的とする4QDPTZの淡黄色固体を1.18g(収率15.0%)得た。
H−NMR(400MHz,CDCl,ppm)δ:7.42(d,J=15.7Hz,1H)、7.5−7.6(m,6H)、7.65(dd,J=8.1Hz,1H)、7.67(d,J=4.5Hz,1H)、7.77(dd,J=8.1Hz,1H)、8.17(d,J=8.1Hz,1H)、8.31(d,J=8.1Hz,1H)、8.70(d,J=6.8Hz,4H)、8.95(d,J=4.5Hz,1H)、9.05(d,J=15.7Hz,1H)
13C−NMR(100MHz,CDCl,ppm)δ:118.1、123.5、126.2、127.1、128.6、128.9、129.6、130.2、132.6、132.8、135.5、135.8、140.9、148.8、150.2、171.0、171.6
LCMS(ESI)m/z:386[M+]
λmax(CHCl):273nm、326nm
Melting Point:176℃
【0044】
実施例11
ITO薄膜がコートされているガラス基板(三容真空工業株式会社製)の上に、真空蒸着法によりα−NPDを厚さ50nmになるように積層した。さらに、その上に発光層材料として厚さ50nmのAlq層を形成し、その上に電子輸送層として実施例1で得たT5M3PyTZ(化合物1)を10nm蒸着し、最後に陰極としてITO層を100nm蒸着して素子を完成させた。
このデバイスに電圧を印加したところ良好な発光特性が得られ、最大外部量子効率0.4%が観測された。
また、この素子を2週間室内に放置しても、T5M3PyTZ層の結晶化による濁りは見られず、素子の透明性に変化は見られなかった。
【0045】
実施例12
実施例11において、T5M3PyTZ(化合物1)の代わりに、T6M3PyTZ(化合物2)を用いる以外は、実施例11と同様にして素子を得た。
このデバイスに電圧を印加したところ良好な発光特性が得られ、最大外部量子効率0.36%が観測された。
また、この素子を2週間室内に放置しても、T6M3PyTZ層の結晶化による濁りは見られず、素子の透明性に変化は見られなかった。
【0046】
実施例13
実施例11において、T5M3PyTZ(化合物1)の代わりに、TMPyTZ(化合物4)を用いる以外は、実施例11と同様にして素子を得た。
このデバイスに電圧を印加したところ良好な発光特性が得られ、最大外部量子効率0.34%が観測された。
また、この素子を2週間室内に放置しても、TMPyTZ層の結晶化による濁りは見られず、素子の透明性に変化は見られなかった。
【0047】
実施例14
実施例11において、T5M3PyTZ(化合物1)の代わりに、TEPyTZ(化合物5)を用いる以外は、実施例11と同様にして素子を得た。
このデバイスに電圧を印加したところ良好な発光特性が得られ、最大外部量子効率0.25%が観測された。
また、この素子を2週間室内に放置しても、TEPyTZ層の結晶化による濁りは見られず、素子の透明性に変化は見られなかった。
【0048】
実施例15
実施例11において、T5M3PyTZ(化合物1)の代わりに、TBPyTZ(化合物6)を用いる以外は、実施例11と同様にして素子を得た。
このデバイスに電圧を印加したところ良好な発光特性が得られ、最大外部量子効率0.36%が観測された。
また、この素子を2週間室内に放置しても、TBPyTZ層の結晶化による濁りは見られず、素子の透明性に変化は見られなかった。
【0049】
実施例16
実施例11において、T5M3PyTZ(化合物1)の代わりに、PVBDPTZ(化合物8)を用いる以外は、実施例11と同様にして素子を得た。
このデバイスに電圧を印加したところ良好な発光特性が得られ、最大外部量子効率0.06%が観測された。
また、この素子を2週間室内に放置しても、PVBDPTZ層の結晶化による濁りは見られず、素子の透明性に変化は見られなかった。
【0050】
比較例1
T5M3PyTZ層を電子輸送層として使用しない以外は実施例11と同様にして素子を得た。
この素子を2週間室内に放置しても、素子の透明性に変化は見られなかったが、このデバイスに電圧を印加したところ、最大外部量子効率は0.03%であった。
【0051】
比較例2
実施例11において、T5M3PyTZ(化合物1)の代わりに、BCPを用いる以外は、実施例11と同様にして素子を得た。
このデバイスに電圧を印加したところ、最大外部量子効率は0.30%であったが、この素子を室内に放置したところ、2日後にはBCPの結晶化による濁りが見られ、素子の透明性および発光能が損なわれていた。
【図面の簡単な説明】
【図1】本発明の有機電界素子の一実施態様を示す概念図である。
【符号の説明】
1:透明基板
2a:陽極
3:正孔輸送層
4:発光層
5:電子輸送層
2b:陰極[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a novel triazine compound, a method for producing the same, and an organic light-emitting device using the compound as an electron injection compound.
[0002]
[Prior art]
In recent years, with the diversification of information equipment, there has been a growing need for flat display devices with lower power consumption and smaller space occupancy than Cathode Ray Tube (so-called CRT). Attention has been focused on organic EL elements with high conversion efficiency, and various materials and organic light-emitting elements have been proposed.
[0003]
Organic light-emitting elements, particularly organic electric field elements (organic EL elements), are usually provided with an anode on a transparent substrate such as glass or plastic, on which various kinds of materials for hole transport, light emission, and electron transport (electron injection) are provided. An organic thin film layer is laminated, and a cathode is further provided thereon.
When a voltage is applied between both electrodes of such an organic field element, a current flows in each of the hole transport, light emission, and electron transport layers, and a light emission phenomenon occurs due to recombination of holes and electrons in the light emitting layer. Light transmitted through the transparent electrode and the transparent substrate in the thickness direction is irradiated to the outside, and a voltage of about 10 V is applied to apply 100 to 10,000 candela / m 2 Therefore, it has been attracting attention as a promising candidate for next-generation display elements.
[0004]
In such an organic electroluminescent device, only a part of the generated light is irradiated from the transparent anode side in most conventional organic EL devices, but the ratio is theoretically relative to the refractive index n in the device. 1 / (2n 2 For example, when the refractive index n is 1.5, the ratio of external irradiation is only about 22%, and the remaining 78% is absorbed by the metal surface in the organic laminate or through the glass substrate. In other words, it is emitted from the edge of the substrate and has extremely low luminous efficiency.
[0005]
In order to improve the luminous efficiency, an example in which a transparent electrode made of Indium-Tin-Oxide (hereinafter abbreviated as “ITO”) is used for both the anode and the cathode has been reported. -(Α-naphthylphenylamino) biphenyl (NPD) is converted into a hole transport layer, tris (8-quinolinolato) aluminum complex (so-called Alq 3 A transparent organic electric field element having an electron transporting light emitting layer and an ITO electrode formed thereon as a cathode has also been reported.
[0006]
However, in such a device, the luminous efficiency has not been improved sufficiently, and in order to further improve the luminous efficiency, in the above device, Alq 3 As a light emitting layer, and the Alq 3 It is shown by the following formula between the light emitting layer and the ITO electrode.
Figure 0004745601
A transparent organic electric field element formed by forming an organic thin film layer using 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (basocuproin, hereinafter abbreviated as BCP) as an electron transport layer has also been reported. ing. (See Patent Document 1)
[0007]
[Patent Document 1]
JP 2002-332567 A
[0008]
However, both the anode and cathode electrodes are transparent ITO electrodes with high light transmittance, and Alq 3 By using as the electron transporting light emitting layer, the light generated in the device can be efficiently extracted outside the device, and when BCP is provided as the electron transporting layer, the light emission efficiency can be further improved. However, since the transparency of the element is lost because it is easy to crystallize, it becomes difficult for the current to flow due to crystallization, resulting in a problem that the element life is shortened.
[0009]
[Problems to be solved by the invention]
For this reason, the inventors of the present invention have a transparent anode and cathode that can take out light emission without impairing the transmittance, in particular, an organic EL element using both electrodes as ITO electrodes with high light transmittance. Alq above 3 In the case of using an electron transporting light emitting layer and the case of using BCP as an electron transporting layer, the respective problems are solved simultaneously, and the luminous efficiency is Alq. 3 In addition, when used as an electron injecting material in the electron transport layer, it does not cause crystallization like BCP, has little effect on the device life, and is excellent as an electron transport layer. Along with the development of a film-forming compound, studies were conducted to develop an organic electric field device using the compound as an electron injection compound in the electron transport layer, leading to the present invention.
[0010]
[Means for Solving the Problems]
The first of the present invention is the following general formula (1)
Figure 0004745601
Wherein n is 0 to 1 and R 1 And R 2 Are the same or different,
[Chemical 1]
Figure 0004745601
(In the formula, ring A represents an aromatic ring composed of a 5-membered ring or a 6-membered ring, wherein X is a carbon atom or a nitrogen atom, and m is an integer of 4 to 5. R 4 , R 5 Represents a hydrogen atom or an alkyl group or an alkoxyl group bonded to a carbon atom constituting ring A, and w and k each represents 0 to 1. Also adjacent R 4 And R 5 May be bonded to each other to form a 5-membered ring or a 6-membered ring sharing two carbon atoms constituting the ring A. R 6 Represents an optionally substituted triazinyl group), and R 3 Is R 1 Or R 2 Or when n = 1, it represents an optionally substituted triazinyl group. ]
The third of the present invention provides an organic light-emitting device comprising the triazine compound as an active ingredient.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
In the triazine compound of the present invention represented by the general formula (1), the ring A is a phenyl ring, a pyridine ring, or a cyclopentadiene ring, and the alkyl group is methyl, ethyl, n- or iso-propyl, n-, sec. -Or t-butyl and the like, and alkoxyl groups include methoxy, ethoxy, n- or iso-propoxy, n-, sec- or t-butoxy, respectively.
In addition, adjacent R 4 And R 5 Examples of the case in which the ends of each are bonded to form a 5-membered ring or 6-membered ring sharing the two carbon atoms constituting the ring A include the quinoline ring as a whole including the ring A. .
Specific examples of the triazine compound of the present invention include the following compounds.
[0012]
(Compound 1)
Figure 0004745601
[0013]
(Compound 2)
Figure 0004745601
[0014]
(Compound 3)
Figure 0004745601
[0015]
(Compound 4)
Figure 0004745601
[0016]
(Compound 5)
Figure 0004745601
[0017]
(Compound 6)
Figure 0004745601
[0018]
(Compound 7)
Figure 0004745601
[0019]
(Compound 8)
Figure 0004745601
[0020]
(Compound 9)
Figure 0004745601
[0021]
(Compound 10)
Figure 0004745601
[0022]
The triazine compound represented by the general formula (1) of the present invention is, for example, the general formula (4).
Figure 0004745601
Can be easily produced by reacting the cyano compound represented by formula (1) in the presence of a base. This method uses a raw material compound in which w = 0 in the general formula (4), and the general formula (1) ) Is particularly suitable as a method for producing a triazine compound in which n = 0.
[0023]
Here, as the base, alkali metal hydrides such as sodium hydride and potassium hydride, and alkali metal alkoxides such as sodium methoxide, sodium ethoxide, sodium butoxide, potassium methoxide, potassium ethoxide and potassium t-butoxide are used. An ammonium halide such as ammonium chloride is preferably used.
[0024]
Although the amount of the base used varies depending on the reaction conditions, it is generally in the range of 0.01 to 2 mol times the raw material cyano compound, and the reaction temperature is the kind of the solvent when using the raw material compound or solvent. The optimum temperature is set according to each condition.
[0025]
In addition, when using alkali metal alkoxide, especially sodium methoxide, sodium ethoxide, etc., it is used as a corresponding alcohol solution.
In addition, an organic solvent inert to the reaction may be appropriately used as the reaction solvent.
[0026]
In the case of producing a triazine compound in which n = 1 in the general formula (1), for example, 2-methyl-4-R 1 -6-R 2 -S-triazine compound and substituent R 3 Can be produced by a dehydration reaction in the presence of concentrated sulfuric acid, acetic acid or the like.
[0027]
The triazine compound represented by the general formula (1) is useful as an organic light emitting device, particularly an organic electric field device.
Next, the organic electric field element using the triazine compound of the present invention will be described, but the structure itself of the organic electric field element of the present invention is not particularly limited, as long as the triazine compound of the present invention is used as an electron injection material. The present invention is applied to various conventionally known organic electric field elements.
[0028]
FIG. 1 is a conceptual diagram showing one embodiment of the organic electric field element of the present invention.
The organic electric field element shown in this example comprises a transparent anode (2a), a hole transport layer (3) made of an organic compound, a light emitting layer (4) made of an organic compound, and an organic compound on a transparent substrate (1). The electron transport layer (5) and the transparent cathode (2b) are sequentially laminated.
[0029]
Here, glass, transparent plastic, etc. are usually used as the transparent substrate.
In this example, the anode (2a) is made of ITO, which is a conductive material laminated to a thickness of about 110 nm, and the hole transport layer (3) is an α-NPD formed to a thickness of about 50 nm. Alq containing organic compound layer formed as a light emitting layer (4) with a thickness of about 50 nm 3 An organic compound layer containing a triazine compound represented by the general formula (1) of the present invention, in which an organic compound layer containing a film having a thickness of about 10 nm is formed as an electron transport layer (5), and a cathode (2b) As a result, ITO having a thickness of about 10 nm is laminated.
[0030]
The compounds used as the hole transport layer and the light emitting layer are not limited to the above exemplary compounds, and various compounds conventionally used in the field are used as appropriate, and each layer is in light of its purpose. Other organic compounds other than the compound may be contained.
Similarly, the thickness of each of the layers is not limited to the above, and is appropriately set to an optimum thickness.
[0031]
【The invention's effect】
The triazine compound represented by the general formula (1) specified in the present invention is an electron injection material (electron injection compound) that is composed of a transparent ITO electrode in which both an anode and a cathode are conductive materials and constitutes an electron transport layer. The organic electric field element used as the light emitting efficiency is Alq 3 In addition, when used as an electron injecting material in the electron transporting layer, it does not cause crystallization like BCP, and has excellent effects such as little influence on the device lifetime. .
[0032]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, it cannot be overemphasized that this invention is not what is limited to these.
[0033]
In the following examples, an Agilent 4155C semiconductor parameter analyzer manufactured by Agilent Technologies Inc. and a Multi-function optical meter manufactured by Newport were used for the measurement of luminous ability.
[0034]
Example 1
Synthesis of 2,4,6-tri (5-methyl-3-pyridyl) -s-triazine (T5M3PyTZ) (Compound 1)
A glass flask equipped with a thermometer was charged with 23.7 g (0.2 mol) of 3-cyano-5-methylpyridine and 0.48 g (0.02 mol) of sodium hydride and stirred at 130 ° C. under a nitrogen stream. The temperature was raised to. After stirring for 6 hours, the mixture was cooled to 80 ° C., and 10 g of methanol was added with stirring. This suspension was cooled to 40 ° C., and 10 g of water was added with stirring to decompose unreacted sodium hydride. 100 g of water and 40 g of methanol were added to the solid obtained by filtering this suspension, and the mixture was stirred at room temperature for 1 hour. This suspension was filtered, and the obtained solid was dried using an evaporator to obtain 2.87 g (yield 12.0%) of a pale yellow solid of T5M3PyTZ.
1 H-NMR (400 MHz, CDCl 3 , Ppm) δ: 2.51 (s, 9H), 8.67 (s, 3H), 8.67 (s, 3H), 8.68 (s, 3H), 9.67 (s, 3H)
13 C-NMR (100 MHz, CDCl 3 , Ppm) δ: 18.5, 130.6, 133.2, 136.4, 147.9, 154.0, 170.6
LCMS (ESI) m / z: 354 [M +]
λ max (CHCl 3 ): 256 nm, 289 nm
Melting Point: 276 ° C
[0035]
Example 2
Synthesis of 2,4,6-tri (6-methyl-3-pyridyl) -s-triazine (T6M3PyTZ) (compound 2)
A 1 l glass reactor was charged with 118.14 g of 2-methyl-5-cyanopyridine and 295.4 g of methanol, and 289.46 g of 28% sodium methoxide methanol solution was added at 4-12 ° C. over 1.25 hours. After dropwise addition, the mixture was heated to reflux for 77 hours. To the concentrate of the reaction solution, 1050 g of water was added and stirred at room temperature for 1 hour. After filtration, 64 g of toluene was added to the filter residue and stirred at room temperature for 1 hour. After filtration, the residue was washed with toluene and dried under reduced pressure to obtain 5.24 g (yield 4.4%) of T6M3PyTZ.
1 H-NMR (400 MHz, CDCl 3 , Ppm) δ: 2.71 (s, 9H), 7.38 (d, J = 7.9 Hz, 3H), 8.83 (d, J = 7.8 Hz, 3H), 9.78 (s, 3H)
13 C-NMR (100 MHz, CDCl 3 , Ppm) δ: 24.8, 123.2, 128.5, 136.5, 150.1, 163.0, 170.5
DIMS (EI) m / z: 354 [M +]
λ max (CHCl 3 ): 287 nm
Melting Point: 281-283 ° C
[0036]
Example 3
Synthesis of 2,4,6-tri (2-pyridyl) -s-triazine (T2PyTZ) (compound 3)
A glass flask equipped with a thermometer was charged with 26.0 g (0.25 mol) of 2-cyanopyridine, 1.34 g (0.025 mol) of ammonium chloride and 26 g of ethylene glycol, and stirred at 155 ° C. to 165 ° C. for 12 hours. .
After cooling this suspension to room temperature, 107 g of a 10% aqueous sulfuric acid solution and 18 g of activated carbon were added to the solid obtained by filtration and stirred at room temperature for 1 hour. This was filtered to remove the activated carbon, and then the crystals precipitated after neutralization with alkali were filtered and dried using an evaporator to give 17.13 g (yield: 65.4%) of the desired light yellow solid of T2PyTZ. )Obtained.
1 H-NMR (400 MHz, CDCl 3 , Ppm) δ: 7.57 (m, 3H), 7.9 (m, 3H), 8.88 (d, J = 7.9 Hz, 3H), 8.97 (d, J = 4.4 Hz, 3H)
13 C-NMR (100 MHz, CDCl 3 , Ppm) δ: 125.2, 126.7, 137.3, 150.4, 152.9, 172.0
DIMS (EI) m / z: 312 [M +]
λ max (CHCl 3 ): 249, 282 nm
Melting Point: 246 ° C
[0037]
Example 4
Synthesis of 2,4,6-tri (2-methoxy-4-pyridyl) -s-triazine (TMPyTZ) (compound 4)
A 50 ml glass reactor was charged with 4.02 g of 2-methoxy-4-cyanopyridine and 10.1 g of methanol, and 8.87 g of 28% sodium methoxide methanol solution was added dropwise at room temperature over 1.5 hours. Heated to reflux for hours. After filtration, the filter residue was washed with methanol. To the obtained solid, 13.0 g of water and 3.4 g of methanol were added and stirred at room temperature for 1 hour. After filtration, the residue was washed with water and dried to obtain 1.02 g of a solid. To this solid, 12.0 g of methanol was added and stirred at room temperature for 1 hour. After filtration, the filter residue was dried under reduced pressure to obtain 0.41 g of target TMPyTZ (yield 10.2%).
1 H-NMR (400 MHz, CDCl 3 , Ppm) δ: 4.06 (s, 9H), 7.99 (s, 3H), 8.07 (m, 3H), 8.41 (d, J = 5.3 Hz, 3H)
13 C-NMR (100 MHz, CDCl 3 , Ppm) δ: 53.9, 110.5, 115.2, 145.3, 148.0, 165.2, 171.0
DIMS (EI) m / z: 402 [M +]
Elemental analysis Calculated values: C, 62.7; H, 4.51; N, 20.9
Measurement: C, 62.9; H, 4.29; N, 21.1
λ max (CHCl 3 ): 249 nm, 326 nm
Melting Point: 259 ° C
[0038]
Example 5
Synthesis of 2,4,6-tri (2-ethoxy-4-pyridyl) -s-triazine (TEPyTZ) (compound 5)
A 200 ml glass reactor was charged with 10.39 g of 2-chloro-4-cyanopyridine and 41.0 g of ethanol, and 43.46 g of a 20% sodium ethoxide ethanol solution was added dropwise at room temperature over 1 hour. After heating at reflux for 6 hours, 15.43 g of a 20% sodium ethoxide ethanol solution was added, and the mixture was heated to reflux for 4 hours. The reaction solution was filtered, and the residue was washed with ethanol. 50 g of water was added to the obtained solid and stirred at room temperature for 30 minutes, followed by filtration. The residue was washed with water. This operation was performed twice. The obtained solid was dissolved in 130 g of chloroform, and 20 g of water was added and stirred. After separation, the lower layer was concentrated to obtain 1.16 g of TEPyTZ (yield 10.4%).
1 H-NMR (400 MHz, CDCl 3 , Ppm) δ: 1.48 (t, J = 7.1 Hz, 9H), 4.47 (q, J = 7.1 Hz, 6H), 7.99 (s, 3H), 8.06 (m, 3H), 8.39 (d, J = 5.3 Hz, 3H)
13 C-NMR (100 MHz, CDCl 3 , Ppm) δ: 14.7, 62.2, 110.7, 115.1, 145.3, 148.0, 165.0, 171.0 DIMS (EI) m / z: 444 [M +]
λ max (CHCl 3 ): 327 nm, 249 nm
Melting Point: 182-184 ° C
[0039]
Example 6
Synthesis of 2,4,6-tri (2-tert-butoxy-4-pyridyl) -s-triazine (TBPyTZ) (Compound 6)
A 300 ml glass reactor was charged with 28.05 g of potassium tert-butoxide and 110.9 g of tetrahydrofuran, 13.85 g of 2-chloro-4-cyanopyridine was added at room temperature with stirring, and the mixture was heated to reflux for 18 hours. To the concentrate of the reaction solution, 263 g of water was added, stirred at room temperature for 2 hours, filtered, and the residue was washed with water. 178 g of methanol was added to the obtained solid, stirred at room temperature for 2 hours, filtered, and the residue was washed with methanol. The obtained solid was dried under reduced pressure to obtain 0.79 g (yield 4.5%) of TBPyTZ.
1 H-NMR (400 MHz, CDCl 3 , Ppm) δ: 1.67 (s, 27H), 7.92 (s, 3H), 8.03 (m, 3H), 8.37 (d, J = 5.3 Hz, 3H)
13 C-NMR (100 MHz, CDCl 3 , Ppm) δ: 28.7, 80.3, 112.7, 114.6, 145.1, 147.5, 165.0, 171.2 DIMS (EI) m / z: 528 [M +]
λ max (CHCl 3 ): 329 nm, 250 nm
Melting Point: 191 ° C
[0040]
Example 7
Synthesis of 2,4,6-tri (2-quinolyl) -s-triazine (TQTZ) (compound 7)
A 30 ml glass reactor was charged with 2.00 g of 2-quinolinecarbonitrile, 5.0 g of methanol, and 3.76 g of a 28% sodium methoxide methanol solution and heated to reflux for 19 hours under a nitrogen atmosphere. To the concentrate of the reaction solution, 52 g of normal hexane was added and stirred at room temperature for 40 minutes. After filtration, methanol was added to the filtrate and the mixture was stirred and separated. Further, 15 g of normal hexane was added to the lower layer, followed by extraction and liquid separation. The normal hexane layer was collected and concentrated to obtain 0.75 g of a solid. To the obtained solid, 10 g of methanol and 0.5 g of acetic anhydride were added, and the mixture was stirred at room temperature for 2 days. After adding water to the concentrate of the reaction solution, a 48% aqueous sodium hydroxide solution was added dropwise to adjust the pH to 8.8. After filtration, the filter residue was washed with water, and the resulting solid was dissolved in 10 g of methanol. After a while, the precipitated crystals were filtered. The crystals precipitated again from the filtrate were combined and dried to obtain 0.15 g (yield 7.5%) of the target TQTZ.
1 H-NMR (400 MHz, CDCl 3 , Ppm) δ: 7.70 (m, 3H), 7.86 (m, 3H), 7.97 (d, J = 8.0 Hz, 3H), 8.50 (d, J = 8.6 Hz, 3H), 8.53 (d, J = 8.5 Hz, 3H), 9.06 (d, J = 8.5 Hz, 3H)
13 C-NMR (100 MHz, CDCl 3 , Ppm) δ: 121.5, 127.6, 128.5, 129.5, 130.2, 131.2, 137.4, 148.4, 152.9, 172.5
DIMS (EI) m / z: 462 [M +]
Elemental analysis Calculated values: C, 77.9; H, 3.92; N, 18.2
Measurement: C, 77.1; H, 3.8; N, 17.9
λ max (CHCl 3 ): 265 nm, 319 nm
Melting Point: 278-281 ° C
[0041]
Example 8
Synthesis of 2,2 ′-(p-phenylenedivinylene) bis (4,6-diphenyl-s-triazine) (PVBDPTZ) (Compound 8)
A glass flask equipped with a thermometer was charged with 6.0 g (24.25 mmol) of 2-methyl-4,6-diphenyl-s-triazine, 1.63 g (12.15 mmol) of terephthalaldehyde and 60 g of concentrated sulfuric acid. Stir at 4.5 ° C. for 4.5 days. Thereafter, the reaction solution was added to 480 g of water, and 180 g of methanol was added to the solid obtained by filtering the suspension, followed by stirring at room temperature for 1 hour. 180 g of chloroform was added to the solid obtained by filtering this suspension, and the mixture was stirred at room temperature for 1 hour. The suspension was filtered, and the resulting solid was dried using an evaporator and purified by sublimation at 355 ° C. and 20 to 48 MPa to obtain 5.76 g (yield: 80.0%) of the target PVBDPTZ yellow solid. )Obtained.
1 H-NMR (400 MHz, CF 3 COOD, CDCl 3 , Ppm) δ: 7.58 (d, J = 15.4, 2H), 7.75 (dd, J = 7.7, 4H), 7.90 (dd, J = 7.5, 8H), 7.98 (s, 4H), 8.68 (d, J = 7.3, 8H), 8.93 (d, J = 15.4, 2H)
13 C-NMR (100 MHz, CF 3 COOD, CDCl 3 , Ppm) δ: 111.0, 113.8, 116.6, 118.6, 119.5, 130.8, 131.5, 131.7, 138.2, 152.0, 165.3, 170 .6
DIMS (EI) m / z: 592 [M +]
Elemental analysis Calculated values: C, 81.1; H, 4.73; N, 14.2
Measurement: C, 80.8; H, 4.74; N, 14.2
λ max (CHCl 3 ): 270 nm, 368 nm
Melting Point: 300 ° C or higher
[0042]
Example 9
Synthesis of 2,2 ′-(1,2-ethylene) bis (4,6-diphenyl-s-triazine) (EBDPTZ) (Compound 9)
In a glass flask equipped with a thermometer, 3.14 g (12.0 mmol) of 4,6-diphenyl-s-triazine 2-aldehyde and 3.56 g of 2-methyl-4,6-diphenyl-s-triazine (14. 4 mmol) and 14.4 g of acetic acid were added and stirred under reflux for 4 hours. 20 g of water was added thereto, and 50 g of methanol was added to the solid obtained by filtering the suspension, followed by stirring at room temperature for 1 hour. 30 g of chloroform was added to the solid obtained by filtering this suspension, and the mixture was stirred at room temperature for 1 hour. 30 g of chloroform was again added to the solid obtained by filtering this suspension, and the mixture was stirred at room temperature for 1 hour. This suspension was filtered, and the resulting solid was dried using an evaporator to obtain 3.36 g (yield 57.0%) of the target white solid of EBDDPTZ.
1 H-NMR (400 MHz, CF 3 COOD, CDCl 3 , Ppm) δ: 7.80 (dd, J = 7.9, 8H), 7.97 (dd, J = 7.5, 4H), 8.74 (d, J = 7.5, 8H), 8.94 (s, 2H)
13 C-NMR (100 MHz, CF 3 COOD, CDCl 3 , Ppm) δ: 123.0, 130.7, 131.5, 136.3, 138.7, 163.3, 171.3
DIMS (EI) m / z: 490 [M +]
Elemental analysis Calculated values: C, 78.4; H, 4.49; N, 17.1
Measurement: C, 78.3; H, 4.75; N, 17.1
λ max (CHCl 3 ): 277 nm
Melting Point: 300 ° C or higher
[0043]
Example 10
Synthesis of 2- [2- (4-quinolyl) vinyl] -4,6-diphenyl-s-triazine (4QDPTZ) (Compound 10)
A glass flask equipped with a thermometer was charged with 5.23 g (20.0 mmol) of 4,6-diphenyl-s-triazine 2-aldehyde, 3.44 g (24.0 mmol) of 4-methylquinoline and 24.0 g of acetic acid. , And stirred at 135 ° C. for 20 hours. 40 g of methanol was added thereto, 60 g of methanol was added to the solid obtained by filtering the suspension, and the mixture was stirred at room temperature for 1 hour. This suspension was filtered, and the obtained solid was dried using an evaporator to obtain 1.18 g (yield: 15.0%) of the intended light yellow solid of 4QDPTZ.
1 H-NMR (400 MHz, CDCl 3 , Ppm) δ: 7.42 (d, J = 15.7 Hz, 1H), 7.5-7.6 (m, 6H), 7.65 (dd, J = 8.1 Hz, 1H), 7. 67 (d, J = 4.5 Hz, 1H), 7.77 (dd, J = 8.1 Hz, 1H), 8.17 (d, J = 8.1 Hz, 1H), 8.31 (d, J = 8.1 Hz, 1H), 8.70 (d, J = 6.8 Hz, 4H), 8.95 (d, J = 4.5 Hz, 1H), 9.05 (d, J = 15.7 Hz, 1H)
13 C-NMR (100 MHz, CDCl 3 , Ppm) δ: 118.1, 123.5, 126.2, 127.1, 128.6, 128.9, 129.6, 130.2, 132.6, 132.8, 135.5, 135 .8, 140.9, 148.8, 150.2, 171.0, 171.6
LCMS (ESI) m / z: 386 [M +]
λ max (CHCl 3 ): 273 nm, 326 nm
Melting Point: 176 ° C
[0044]
Example 11
Α-NPD was laminated to a thickness of 50 nm on a glass substrate (manufactured by Sanyo Vacuum Industries Co., Ltd.) coated with an ITO thin film by a vacuum deposition method. Further, an Alq having a thickness of 50 nm is formed thereon as a light emitting layer material. 3 A layer was formed, and T5M3PyTZ (Compound 1) obtained in Example 1 as an electron transport layer was deposited thereon by 10 nm, and finally, an ITO layer was deposited by 100 nm as a cathode to complete the device.
When a voltage was applied to this device, good light emission characteristics were obtained, and a maximum external quantum efficiency of 0.4% was observed.
Further, even when this element was left indoors for 2 weeks, no turbidity due to crystallization of the T5M3PyTZ layer was observed, and no change was observed in the transparency of the element.
[0045]
Example 12
In Example 11, a device was obtained in the same manner as in Example 11 except that T6M3PyTZ (Compound 2) was used instead of T5M3PyTZ (Compound 1).
When a voltage was applied to this device, good light emission characteristics were obtained, and a maximum external quantum efficiency of 0.36% was observed.
Further, even when this element was left indoors for 2 weeks, no turbidity due to crystallization of the T6M3PyTZ layer was observed, and no change was observed in the transparency of the element.
[0046]
Example 13
In Example 11, a device was obtained in the same manner as in Example 11 except that TMPyTZ (Compound 4) was used instead of T5M3PyTZ (Compound 1).
When a voltage was applied to this device, good light emission characteristics were obtained, and a maximum external quantum efficiency of 0.34% was observed.
Further, even when this device was left indoors for 2 weeks, no turbidity due to crystallization of the TMPyTZ layer was observed, and no change in the transparency of the device was observed.
[0047]
Example 14
In Example 11, a device was obtained in the same manner as in Example 11 except that TEPyTZ (Compound 5) was used instead of T5M3PyTZ (Compound 1).
When a voltage was applied to this device, good light emission characteristics were obtained, and a maximum external quantum efficiency of 0.25% was observed.
Further, even when this element was left indoors for 2 weeks, no turbidity due to crystallization of the TEPyTZ layer was observed, and no change in the transparency of the element was observed.
[0048]
Example 15
In Example 11, a device was obtained in the same manner as in Example 11 except that TBPyTZ (Compound 6) was used instead of T5M3PyTZ (Compound 1).
When a voltage was applied to this device, good light emission characteristics were obtained, and a maximum external quantum efficiency of 0.36% was observed.
Further, even when this element was left indoors for 2 weeks, no turbidity due to crystallization of the TBPyTZ layer was observed, and no change was observed in the transparency of the element.
[0049]
Example 16
In Example 11, a device was obtained in the same manner as in Example 11 except that PVBDPTZ (Compound 8) was used instead of T5M3PyTZ (Compound 1).
When a voltage was applied to this device, good light emission characteristics were obtained, and a maximum external quantum efficiency of 0.06% was observed.
Further, even when this element was left indoors for 2 weeks, no turbidity due to crystallization of the PVBDPTZ layer was observed, and no change in the transparency of the element was observed.
[0050]
Comparative Example 1
A device was obtained in the same manner as in Example 11 except that the T5M3PyTZ layer was not used as the electron transport layer.
Even if this device was left indoors for 2 weeks, no change was observed in the transparency of the device, but when a voltage was applied to this device, the maximum external quantum efficiency was 0.03%.
[0051]
Comparative Example 2
In Example 11, a device was obtained in the same manner as in Example 11 except that BCP was used instead of T5M3PyTZ (Compound 1).
When voltage was applied to this device, the maximum external quantum efficiency was 0.30%. However, when this device was left indoors, turbidity due to crystallization of BCP was observed after 2 days, and the transparency of the device was observed. And the luminous ability was impaired.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram showing one embodiment of an organic electric field element of the present invention.
[Explanation of symbols]
1: Transparent substrate
2a: Anode
3: Hole transport layer
4: Light emitting layer
5: Electron transport layer
2b: Cathode

Claims (6)

記一般式
Figure 0004745601
(式中、R は水素原子、アルキル基またはアルコキシ基を示し、アルキル基またはアルコキシ基を示す。)
で示されるトリアジン化合物。
Under following general formula
Figure 0004745601
(In the formula, R 4 represents a hydrogen atom, an alkyl group or an alkoxy group, and R 5 represents an alkyl group or an alkoxy group .)
A triazine compound represented by:
記一般式
Figure 0004745601
(式中、R は水素原子、アルキル基またはアルコキシ基を示し、アルキル基またはアルコキシ基を示す。)
で示されるシアノ化合物を塩基の存在下に反応させることを特徴とする請求項1記載のトリアジン化合物の製造方法。
Under following general formula
Figure 0004745601
(In the formula, R 4 represents a hydrogen atom, an alkyl group or an alkoxy group, and R 5 represents an alkyl group or an alkoxy group .)
The method for producing a triazine compound according to claim 1, wherein the cyano compound represented by the above is reacted in the presence of a base.
電子注入化合物として、請求項1に記載のトリアジン化合物を有効成分とする有機発光素子。An organic light emitting device comprising the triazine compound according to claim 1 as an active ingredient as an electron injection compound. 有機発光素子が有機電界発光素子である請求項記載の有機発光素子。The organic light emitting device according to claim 3 , wherein the organic light emitting device is an organic electroluminescent device. 透明な陽極および陰極よりなる一対の透明電極間に有機化合物からなる電子輸送層が挟持されてなる有機電界発光素子において、該電子輸送層における電子注入化合物が請求項記載のトリアジン化合物であることを特徴とする有機電界発光素子。In the organic electroluminescence device in which an electron transport layer made of an organic compound is sandwiched between a pair of transparent electrodes composed of a transparent anode and a cathode, the electron injection compound in the electron transport layer is the triazine compound according to claim 1. An organic electroluminescent element characterized by the above. 透明な陽極および陰極が酸化インジウム錫からなる請求項記載の有機電界発光素子。6. The organic electroluminescent device according to claim 5, wherein the transparent anode and cathode are made of indium tin oxide.
JP2003077388A 2003-03-20 2003-03-20 Triazine compound and organic electroluminescent device using the same Expired - Lifetime JP4745601B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003077388A JP4745601B2 (en) 2003-03-20 2003-03-20 Triazine compound and organic electroluminescent device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003077388A JP4745601B2 (en) 2003-03-20 2003-03-20 Triazine compound and organic electroluminescent device using the same

Publications (2)

Publication Number Publication Date
JP2004284971A JP2004284971A (en) 2004-10-14
JP4745601B2 true JP4745601B2 (en) 2011-08-10

Family

ID=33292151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003077388A Expired - Lifetime JP4745601B2 (en) 2003-03-20 2003-03-20 Triazine compound and organic electroluminescent device using the same

Country Status (1)

Country Link
JP (1) JP4745601B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2236506A1 (en) * 2006-08-21 2010-10-06 Hodogaya Chemical Co., Ltd. Compound having triazine ring structure substituted with group and organic electroluminescent device
KR100796988B1 (en) 2006-09-13 2008-01-22 연세대학교 산학협력단 Fluorescent polymer comprising triazine group and preparation method thereof
KR20100116690A (en) 2008-02-26 2010-11-01 호도가야 가가쿠 고교 가부시키가이샤 Substituted bipyridyl compound and organic electroluminescent element
JPWO2011105373A1 (en) 2010-02-25 2013-06-20 保土谷化学工業株式会社 Substituted pyridyl compounds and organic electroluminescent devices
EP3766875A1 (en) * 2019-07-15 2021-01-20 Novaled GmbH Compound and an organic semiconducting layer, an organic electronic device, a display device and a lighting device comprising the same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3294798A (en) * 1964-12-14 1966-12-27 American Cyanamid Co Process for the preparation of s-triazines
JPH0794807A (en) * 1993-07-27 1995-04-07 Toshiba Corp Amorphous organic thin film element, amorphous organic polymer compound and amorphous inorganic compound
JP3796787B2 (en) * 1996-01-09 2006-07-12 東レ株式会社 Light emitting element
GB2336839A (en) * 1998-04-30 1999-11-03 Sharp Kk Triazine Compounds And Their Use In Electrolumiescent, Electronic and Liquid Crystal Devices
JP4712232B2 (en) * 2000-07-17 2011-06-29 富士フイルム株式会社 Light emitting device and azole compound
JP4040249B2 (en) * 2000-11-16 2008-01-30 富士フイルム株式会社 Light emitting element
JP2002212170A (en) * 2001-01-17 2002-07-31 Mitsubishi Chemicals Corp Triazine-type tristyryl compound and triazine-type trialdehyde compound
JP3955744B2 (en) * 2001-05-14 2007-08-08 淳二 城戸 Manufacturing method of organic thin film element
JP2004221063A (en) * 2002-12-27 2004-08-05 Fuji Photo Film Co Ltd Organic electroluminescent element

Also Published As

Publication number Publication date
JP2004284971A (en) 2004-10-14

Similar Documents

Publication Publication Date Title
JP5432147B2 (en) Organometallic complex derivative and organic light emitting device using the same
JP5165671B2 (en) NOVEL DIAMINE DERIVATIVE, PROCESS FOR PRODUCING THE SAME AND ORGANIC ELECTRIC ELEMENT
KR101412437B1 (en) New compounds and organic electronic device using the same
KR100642995B1 (en) New compound and organic light emitting device using the same8
KR101355562B1 (en) Compound for organic electronic element, organic electronic element using the same, and an electronic device thereof
WO2018016898A1 (en) Novel heterocyclic compound and organic light-emitting device using same
US7888863B2 (en) Organic electroluminescent compounds and organic electroluminescent device using the same
KR20170038748A (en) Compound having spiro structure and organic light emitting device comprising the same
KR102192691B1 (en) An electroluminescent compound and an electroluminescent device comprising the same
JP2018521968A (en) SPIRO COMPOUND AND ORGANIC LIGHT-EMITTING DEVICE COMPRISING THE SAME {SPIRO COMPOUND AND ORGANIC LIGHT-EMITTING ELEMENT COMPRISING SAME}
WO2018084423A2 (en) Novel heterocyclic compound and organic light emitting element using same
KR20170057850A (en) Compound and organic electronic device comprising the same
US20130009136A1 (en) Triphenylene-based compounds and organic electroluminescent device comprising same
KR101137197B1 (en) New chrysene derivatives and organic electronic diode using the same
KR20190089763A (en) Multicyclic compound and organic light emitting device comprising the same
KR101625284B1 (en) Aromatic compounds and organic electronic device using the same
KR101153095B1 (en) New cycloalkene derivatives and organic electronic diode using the same
KR20190027343A (en) Organic light emitting device
JP4745601B2 (en) Triazine compound and organic electroluminescent device using the same
WO2018225943A1 (en) Novel compound and organic light-emitting element using same
KR20150082156A (en) New compounds and organic light emitting device comprising the same
KR101434726B1 (en) Anthracene derivative and organic electroluminescence device using the same
WO2019212325A1 (en) Novel compound and organic light emitting diode using same
KR20100111982A (en) Cyclic aromatic compound and organic electronic element using the same, terminal thererof
KR20200062066A (en) Organic light emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060301

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080122

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100520

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110311

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110419

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110512

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4745601

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term