JP4740793B2 - Polarization separator and optical receiver - Google Patents

Polarization separator and optical receiver Download PDF

Info

Publication number
JP4740793B2
JP4740793B2 JP2006131840A JP2006131840A JP4740793B2 JP 4740793 B2 JP4740793 B2 JP 4740793B2 JP 2006131840 A JP2006131840 A JP 2006131840A JP 2006131840 A JP2006131840 A JP 2006131840A JP 4740793 B2 JP4740793 B2 JP 4740793B2
Authority
JP
Japan
Prior art keywords
polarization
optical
signal
output
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006131840A
Other languages
Japanese (ja)
Other versions
JP2007306248A (en
Inventor
和行 石田
克宏 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2006131840A priority Critical patent/JP4740793B2/en
Publication of JP2007306248A publication Critical patent/JP2007306248A/en
Application granted granted Critical
Publication of JP4740793B2 publication Critical patent/JP4740793B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Communication System (AREA)

Description

本発明は、例えば超高速・長距離伝送システムなどに適用される光受信装置に関するものであり、特に、伝送信号として用いられる偏波多重光信号の高精度な偏波分離を可能とする偏波分離装置および当該偏波分離装置を備えた光受信装置に関するものである。   The present invention relates to an optical receiver applied to, for example, an ultra-high-speed / long-distance transmission system, and more particularly to a polarization that enables highly accurate polarization separation of a polarization multiplexed optical signal used as a transmission signal. The present invention relates to a separation device and an optical reception device including the polarization separation device.

従来から、40Gbps以上の情報を、単一波長を用いて伝送する場合に、偏波直交多重方式が有効であることが知られている。例えば、異なる40Gbpsの信号で変調された同一波長の2つの光信号を互いに直交する偏波で多重するようにすれば、80Gbpsの信号を1波長で伝送することができる。なお、一般的に、偏波直交多重信号を分離する際には偏波ビームコンバイナや偏波ビームスプリッタなどを用いて実現することができるが、伝送後の偏波状態は時間とともに変化するため、受信信号の偏波状態に基づいて偏波を分離する部が必要となる。   Conventionally, it is known that the polarization orthogonal multiplexing method is effective when information of 40 Gbps or more is transmitted using a single wavelength. For example, if two optical signals of the same wavelength modulated by different 40 Gbps signals are multiplexed with orthogonal polarizations, an 80 Gbps signal can be transmitted at one wavelength. In general, when the polarization orthogonal multiplexed signal is separated, it can be realized by using a polarization beam combiner, a polarization beam splitter, or the like, but since the polarization state after transmission changes with time, A part for separating the polarization based on the polarization state of the received signal is required.

従来の光受信器では、第1の信号を含む光波と第2の信号を含む光波とが同一波長で偏波多重された偏波多重信号を伝送する際に、これらの2つの光波のうちの一方の光波に対して第3の信号を用いて変調するとともに、受信器側において光電気変換した第3の信号を制御信号として使用し、偏波分離前の偏波状態を制御するようにしている(例えば、特許文献1)。   In a conventional optical receiver, when transmitting a polarization multiplexed signal in which a light wave including a first signal and a light wave including a second signal are polarization multiplexed at the same wavelength, one of these two light waves is transmitted. One light wave is modulated using a third signal, and the third signal photoelectrically converted at the receiver side is used as a control signal to control the polarization state before polarization separation. (For example, Patent Document 1).

特開2002−344426号公報(第1図など)JP 2002-344426 A (FIG. 1 etc.)

しかしながら、上記特許文献1に代表される従来技術では、以下に示すような問題点があった。   However, the conventional technique represented by Patent Document 1 has the following problems.

まず、超高速信号を用いた長距離伝送では、伝送路である光ファイバ中に生ずる偏波モード分散(Polarization Mode Dispersion:以下「PMD」と略す)の影響により、光スペクトル上の各々の周波数成分では偏波多重信号間の直交性は保持されるものの、同一偏波成分における各周波数間の偏波関係が保持されずに受信されるので、偏波分離のための制御信号を得ることが困難であるといった問題点があった。   First, in long-distance transmission using an ultra-high-speed signal, each frequency component on the optical spectrum is affected by polarization mode dispersion (hereinafter referred to as “PMD”) generated in an optical fiber as a transmission path. However, it is difficult to obtain a control signal for polarization separation because the orthogonality between polarization multiplexed signals is maintained, but the polarization relationship between frequencies in the same polarization component is received without being maintained. There was a problem such as.

また、上記PMDとは異なる原理で発生する偏波依存性損失(Polarozation Dependent Loss:以下「PDL」と略す)の影響を受ける場合には、偏波多重信号間の直交性が保持されずに受信されるので、分離後のクロストーク光が増大してしまうといった問題点があった。   In addition, in the case of being affected by polarization dependent loss (hereinafter referred to as “PDL”) that occurs on a principle different from that of the PMD, reception is performed without maintaining orthogonality between polarization multiplexed signals. Therefore, there is a problem that the crosstalk light after separation increases.

本発明は、上記に鑑みてなされたものであって、PMDの影響により各周波数間の偏波関係が崩れた場合であっても、偏波分離に必要な制御信号を効率良く得ることができる偏波分離装置および光受信装置を提供し、あるいは偏波分離に必要な制御信号を効率良く得るための偏波分離装置および光受信装置を提供することを目的とする。   The present invention has been made in view of the above, and it is possible to efficiently obtain a control signal necessary for polarization separation even when the polarization relationship between frequencies is broken due to the influence of PMD. It is an object of the present invention to provide a polarization separation device and an optical reception device, or to provide a polarization separation device and an optical reception device for efficiently obtaining a control signal necessary for polarization separation.

また、本発明は、PDLの影響により偏波直交関係が崩れた信号間の偏波を直交状態に戻すことを可能とする偏波分離装置および光受信装置を提供することを目的とする。   Another object of the present invention is to provide a polarization separation device and an optical reception device that can return the polarization between signals whose polarization orthogonal relationship is broken due to the influence of PDL to an orthogonal state.

上述した課題を解決し、目的を達成するため、本発明にかかる偏波分離装置は、入力される偏波多重光信号の偏波状態を制御する偏波制御部と、前記偏波制御部から出力された偏波多重光信号を2つの光信号に偏波分離する偏波分離部と、を備えた偏波分離装置において、前記偏波分離部にて分離された2つの光信号のいずれか一方の分岐出力を用いて光キャリア付近の周波数帯に含まれる光出力を抽出する狭帯域光フィルタと、前記抽出された光信号の偏波状態に基づいて偏波分離のための誤差信号を生成する直交関係モニタ部と、前記直交関係モニタ部から出力される誤差信号を用いて前記偏波制御部を制御するための制御信号を生成する駆動回路と、を備えたことを特徴とする。   In order to solve the above-described problems and achieve the object, a polarization separation device according to the present invention includes a polarization controller that controls a polarization state of an input polarization multiplexed optical signal, and the polarization controller. A polarization separation device comprising: a polarization separation unit that separates the output polarization multiplexed optical signal into two optical signals; and one of the two optical signals separated by the polarization separation unit A narrowband optical filter that extracts the optical output included in the frequency band near the optical carrier using one of the branch outputs, and an error signal for polarization separation based on the polarization state of the extracted optical signal And a drive circuit that generates a control signal for controlling the polarization control unit using an error signal output from the orthogonal relationship monitor unit.

本発明にかかる偏波分離装置によれば、偏波分離された2つの光信号のいずれか一方の分岐出力を用いて光キャリア付近の周波数帯に含まれる光出力を狭帯域光フィルタにて抽出するとともに、抽出された光出力の偏波状態に基づいて偏波多重光信号の偏波状態を制御するための制御信号を生成するようにしているので、PMDの影響により各周波数間の偏波関係が崩れた場合であっても、偏波分離に必要な制御信号を効率良く得ることができるという効果を奏する。   According to the polarization separation device of the present invention, the optical output included in the frequency band near the optical carrier is extracted by the narrow-band optical filter using the branch output of one of the two optical signals subjected to polarization separation. In addition, since the control signal for controlling the polarization state of the polarization multiplexed optical signal is generated based on the polarization state of the extracted optical output, the polarization between the frequencies is affected by the influence of PMD. Even when the relationship is broken, the control signal necessary for polarization separation can be obtained efficiently.

また、本発明にかかる偏波分離装置によれば、偏波分離された2つの光信号のいずれか一方の分岐出力の偏波状態に基づいて偏波分離のための誤差信号を生成するとともに、生成された誤差信号を用いて入力される偏波多重光信号の偏波直交関係を補償するようにしているので、PDLの影響により偏波直交関係が崩れた信号間の偏波を元の直交状態に戻すことが可能となるという効果を奏する。   In addition, according to the polarization separation device of the present invention, while generating an error signal for polarization separation based on the polarization state of one of the two branched optical outputs of the polarization separation, Since the polarization orthogonal relationship of the polarization multiplexed optical signal input using the generated error signal is compensated, the polarization between the signals whose polarization orthogonal relationship is broken due to the influence of PDL is restored to the original orthogonality. There exists an effect that it becomes possible to return to a state.

以下に、本発明にかかる偏波分離装置および光受信装置の好適な実施の形態を図面に基づいて詳細に説明する。なお、以下に示す各実施の形態により本発明が限定されるものではない。   Preferred embodiments of a polarization beam splitter and an optical receiver according to the present invention will be described below in detail with reference to the drawings. In addition, this invention is not limited by each embodiment shown below.

実施の形態1.
図1は、本発明の実施の形態1にかかる光受信装置の構成を示す図である。同図に示す光受信装置は、伝送路1に接続される偏波制御部2と、偏波制御部2の出力を入力信号とする偏波分離部3と、偏波分離部3によって分離された一方の光信号を受信する光受信器(RX1)6と、分離された他方の光信号を受信する光受信器(RX2)7と、偏波分離部3からのいずれかの出力(図1の例では、光受信器6への出力を使用)の分岐出力を入力信号とする狭帯域光フィルタ8と、狭帯域光フィルタ8の出力を入力信号とする直交関係モニタ部5と、直交関係モニタ部5の出力を入力信号とする駆動回路4と、を備えるように構成されている。
Embodiment 1 FIG.
FIG. 1 is a diagram of a configuration of the optical receiving apparatus according to the first embodiment of the present invention. The optical receiver shown in FIG. 1 is separated by a polarization control unit 2 connected to the transmission line 1, a polarization separation unit 3 using the output of the polarization control unit 2 as an input signal, and the polarization separation unit 3. The optical receiver (RX1) 6 that receives the other optical signal, the optical receiver (RX2) 7 that receives the separated optical signal, and any output from the polarization separation unit 3 (FIG. 1). In this example, the output to the optical receiver 6 is used), the narrowband optical filter 8 using the branch output as the input signal, the orthogonal relationship monitor unit 5 using the output of the narrowband optical filter 8 as the input signal, and the orthogonal relationship And a drive circuit 4 using the output of the monitor unit 5 as an input signal.

なお、図1の構成において、偏波制御部2、偏波分離部3、狭帯域光フィルタ8、直交関係モニタ部5および駆動回路4の各構成部は、伝送路1から入力される偏波多重光信号の偏波を分離するための偏波分離装置として機能する。また、これらの構成部のうち、狭帯域光フィルタ8、直交関係モニタ部5および駆動回路4は、偏波制御部2を制御するための帰還ループを構成している。   In the configuration of FIG. 1, each component of the polarization control unit 2, the polarization separation unit 3, the narrowband optical filter 8, the orthogonal relationship monitor unit 5, and the drive circuit 4 is a polarization input from the transmission line 1. It functions as a polarization separation device for separating the polarization of the multiplexed optical signal. Among these components, the narrow-band optical filter 8, the orthogonal relationship monitor unit 5, and the drive circuit 4 constitute a feedback loop for controlling the polarization controller 2.

つぎに、図1に示した光受信装置の動作について説明する。偏波制御部2は、伝送路1から入力される偏波多重光信号に対して、偏波分離部3の光出力が受信されるべき光受信器6,7にそれぞれ所望の偏波成分が分離出力されるように、その偏波状態を制御する。狭帯域光フィルタ8は、偏波分離部3のいずれか一方の光信号(同図の例では光受信器6への出力)に対して、光キャリア付近の周波数帯に含まれる光出力を抽出して直交関係モニタ部5に出力する。直交関係モニタ部5は、狭帯域光フィルタ8によって抽出された光信号成分の検証を行い、偏波制御部2を制御するための誤差信号を生成して駆動回路4に出力する。駆動回路4は、直交関係モニタ部5から出力された誤差信号を用いて偏波制御部2を制御するための制御信号を生成出力する。   Next, the operation of the optical receiver shown in FIG. 1 will be described. The polarization controller 2 receives a polarization multiplexed optical signal input from the transmission line 1 so that each of the optical receivers 6 and 7 to receive the optical output of the polarization separator 3 has a desired polarization component. The polarization state is controlled so as to be output separately. The narrowband optical filter 8 extracts the optical output included in the frequency band near the optical carrier with respect to any one of the optical signals of the polarization separation unit 3 (output to the optical receiver 6 in the example of the figure). And output to the orthogonal relationship monitor unit 5. The orthogonal relationship monitor unit 5 verifies the optical signal component extracted by the narrowband optical filter 8, generates an error signal for controlling the polarization control unit 2, and outputs the error signal to the drive circuit 4. The drive circuit 4 generates and outputs a control signal for controlling the polarization control unit 2 using the error signal output from the orthogonal relationship monitor unit 5.

つぎに、偏波モード分散(PMD)の影響を受けた光信号を高精度に分離することを特徴とする本実施の形態の原理について、図2−1および図2−2の各図面を参照して説明する。ここで、図2−1は、TEモードに偏光した光信号1とTMモードに偏光した光信号2を偏波多重した状態の光スペクトルの概念を示す図であり、図2−2は、PMDの影響を受けた後の光スペクトルの概念を示す図である。   Next, with respect to the principle of this embodiment, which is characterized in that an optical signal affected by polarization mode dispersion (PMD) is separated with high accuracy, see FIGS. 2-1 and 2-2. To explain. Here, FIG. 2-1 is a diagram showing a concept of an optical spectrum in a state where the optical signal 1 polarized in the TE mode and the optical signal 2 polarized in the TM mode are polarization multiplexed, and FIG. It is a figure which shows the concept of the optical spectrum after being influenced by.

なお、伝送路1から入力される光信号は、図2−1に示すように、全ての周波数成分が同一偏波面(TE面)上にあるような光スペクトル(K1)を有する光信号1と、全ての周波数成分がTE面に直交する偏波面(TM面)上にあるような光スペクトル(K2)を有する光信号2と、を含む偏波直交多重された光信号(偏波直交多重光信号)であるものとして説明する。また、伝送後の偏波状態を一意に決定することはできないが、便宜上、図2−1および図2−2に示す各TEモードの軸および各TMモードの軸は、伝送の前後で同一としている。なお、このように仮定しても、本実施の形態の原理を説明する上での一般性が失われることはない。   As shown in FIG. 2A, the optical signal input from the transmission line 1 is an optical signal 1 having an optical spectrum (K1) such that all frequency components are on the same polarization plane (TE plane). And an optical signal 2 having an optical spectrum (K2) such that all frequency components are on a polarization plane (TM plane) orthogonal to the TE plane, and a polarization orthogonal multiplexed optical signal (polarization orthogonal multiplexed light) Signal). In addition, although the polarization state after transmission cannot be uniquely determined, for convenience, the axis of each TE mode and the axis of each TM mode shown in FIGS. 2-1 and 2-2 are the same before and after transmission. Yes. Even in this assumption, generality in explaining the principle of the present embodiment is not lost.

PMDの影響を受ける場合、図2−2に示すように、光信号1の光スペクトル成分(K1’)と光信号2の光スペクトル成分(K2’)との間では、各周波数成分における個々の直交関係は保持されるものの、周波数成分によって偏波回転に対する影響が異なるため、同一光信号内に存在する光信号1および光信号2の各周波数成分は同一偏波面上からずれた位置に存在する。   When affected by PMD, as shown in FIG. 2B, between the optical spectrum component (K1 ′) of the optical signal 1 and the optical spectrum component (K2 ′) of the optical signal 2, individual frequency components are individually detected. Although the orthogonal relationship is maintained, since the influence on the polarization rotation differs depending on the frequency component, each frequency component of the optical signal 1 and the optical signal 2 existing in the same optical signal exists at a position shifted from the same polarization plane. .

したがって、上記のような同一偏波面上からずれた周波数成分を有する偏波多重光を偏波分離する場合には、分離後に他信号光が漏れこむため、信号劣化が生じるとともに、偏波分離を行うための制御用の誤差信号においても信号劣化が生じることになる。   Therefore, when polarization-multiplexed light having frequency components deviated from the same polarization plane as described above is subjected to polarization separation, other signal light leaks after separation, resulting in signal degradation and polarization separation. Signal degradation also occurs in the error signal for control to be performed.

一方、図1のように構成された光受信装置(偏波分離装置)では、光受信装置の狭帯域光フィルタ8が、図2−2の破線部で示すような光信号のキャリア付近を抽出するフィルタ特性を有するとともに、光受信装置の直交関係モニタ部5が、抽出された光信号の偏波状態に基づいて偏波分離のための誤差信号を生成するので、生成された誤差信号には偏波軸(面)が多少ずれて受信される可能性のある他の周波数成分の影響を抑制することができ、偏波多重光信号に対する偏波分離を高精度に行うことができる。   On the other hand, in the optical receiver (polarization demultiplexer) configured as shown in FIG. 1, the narrowband optical filter 8 of the optical receiver extracts the vicinity of the optical signal carrier as shown by the broken line in FIG. Since the orthogonal relationship monitor unit 5 of the optical receiver generates an error signal for polarization separation based on the polarization state of the extracted optical signal, the generated error signal includes The influence of other frequency components that may be received with the polarization axis (plane) being slightly shifted can be suppressed, and polarization separation for the polarization multiplexed optical signal can be performed with high accuracy.

なお、直交関係モニタ部5から駆動回路4に出力される誤差信号は、光信号のパワーや偏光度(Degree of Polarization:DOP)等に基づいて生成することができる。また、低速のディザー信号が予め重畳された光信号からディザー信号成分を検出するような手法を用いるようにしてもよい。   The error signal output from the orthogonal relationship monitor unit 5 to the drive circuit 4 can be generated based on the power of the optical signal, the degree of polarization (DOP), and the like. Further, a method of detecting a dither signal component from an optical signal on which a low-speed dither signal is superimposed in advance may be used.

以上説明したように、この実施の形態によれば、偏波分離された2つの光信号のいずれか一方の分岐出力を用いて光キャリア付近の周波数帯に含まれる光出力を狭帯域光フィルタにて抽出するとともに、抽出された光出力の偏波状態に基づいて偏波多重光信号の偏波状態を制御するための制御信号を生成するようにしているので、PMDの影響により各周波数間の偏波関係が崩れた場合であっても、偏波分離に必要な制御信号を効率良く得ることができる。   As described above, according to this embodiment, the optical output included in the frequency band near the optical carrier is converted into the narrow-band optical filter by using the branch output of one of the two optical signals subjected to polarization separation. And a control signal for controlling the polarization state of the polarization multiplexed optical signal is generated based on the polarization state of the extracted optical output. Even when the polarization relationship is broken, a control signal necessary for polarization separation can be obtained efficiently.

実施の形態2.
図3は、本発明の実施の形態2にかかる光受信装置の構成を示すブロック図である。同図に示す光受信装置は、図1に示した実施の形態1の構成において、直交関係モニタ部5で得られた誤差信号に基づいて、崩れた偏波直交関係を補償するためのPDL補償部9を偏波制御部2の入力側に備えるように構成したことを特徴とする。このPDL補償部9は、偏波多重光信号が入力される偏波制御部10と、偏波制御部10の出力信号を入力とするPDL可変制御部11と、直交関係モニタ部5で得られた誤差信号に基づいて偏波制御部10およびPDL可変制御部11をそれぞれ制御するための制御信号を生成する駆動回路12と、を備えて構成される。このようなPDL補償部9が具備された結果、図1に示した光キャリア近傍の周波数成分に存在する信号成分を抽出する狭帯域光フィルタ8を省略することが可能となる。なお、その他の構成については、図1の構成と同一または同等であり、それらの構成部には同一符号を付して示している。
Embodiment 2. FIG.
FIG. 3 is a block diagram showing a configuration of the optical receiving apparatus according to the second embodiment of the present invention. The optical receiver shown in the figure has the PDL compensation for compensating the broken polarization orthogonal relationship based on the error signal obtained by the orthogonal relationship monitor unit 5 in the configuration of the first embodiment shown in FIG. It is characterized in that the unit 9 is provided on the input side of the polarization control unit 2. The PDL compensation unit 9 is obtained by a polarization control unit 10 to which a polarization multiplexed optical signal is input, a PDL variable control unit 11 to which an output signal of the polarization control unit 10 is input, and an orthogonal relationship monitor unit 5. And a drive circuit 12 that generates a control signal for controlling the polarization controller 10 and the PDL variable controller 11 based on the error signal. As a result of providing such a PDL compensation unit 9, it is possible to omit the narrowband optical filter 8 for extracting signal components present in frequency components in the vicinity of the optical carrier shown in FIG. In addition, about another structure, it is the same as that of the structure of FIG. 1, or those components are shown with the same code | symbol.

つぎに、偏波依存性損失(PDL)の影響により偏波直交関係が崩れた信号間の偏波を直交状態に戻すことを特徴とする本実施の形態の原理について、図4−1〜図4−3の各図面を参照して説明する。ここで、図4−1は、伝送路中で直交関係にある光信号1と光信号2の光スペクトルの関係を示す図であり、図4−2は、PDLの影響により偏波の直交関係が崩れてしまった光信号1と光信号2の光スペクトルの関係を示す図であり、図4−3は、PDL補償部で発生させる損失成分によって補償された光信号1と光信号2の光スペクトルの関係を示す図である。   Next, with respect to the principle of this embodiment, which is characterized by returning the polarization between signals whose polarization orthogonality relationship has been lost due to the influence of polarization dependent loss (PDL) to the orthogonal state, FIG. This will be described with reference to the drawings 4-3. Here, FIG. 4A is a diagram illustrating a relationship between the optical spectrums of the optical signal 1 and the optical signal 2 that are orthogonal to each other in the transmission path, and FIG. 4B is an orthogonal relationship of polarization due to the influence of PDL. FIG. 4C is a diagram illustrating the relationship between the optical spectrums of the optical signal 1 and the optical signal 2 in which the optical signals 1 and 2 are corrupted, and FIG. It is a figure which shows the relationship of a spectrum.

例えば、図4−1に示すように、伝送路中の損失がTM軸の方向に生起する(あるいは支配的な)場合、直交関係にあった光信号1と光信号2の光スペクトル(M1,M2)は、図4−2に示す光スペクトル(M1',M2')ように直交関係が崩れてくる。   For example, as shown in FIG. 4A, when a loss in the transmission path occurs (or is dominant) in the direction of the TM axis, the optical spectrums (M1, M1) of the optical signal 1 and the optical signal 2 that are orthogonal to each other In M2), the orthogonal relationship is broken as in the optical spectrum (M1 ′, M2 ′) shown in FIG.

一方、この実施の形態の光受信装置では、上述のようなPDL補償部9を備えており、PDL補償部9は、図4−3に示すように、光スペクトルのTE軸方向の成分に損失を与えるような補償制御を行う。このような補償制御を行うことで、図4−3に示す光スペクトル(M1'',M2'')ように、光信号1と光信号2の偏波関係を補償することができる。   On the other hand, the optical receiver of this embodiment includes the PDL compensation unit 9 as described above, and the PDL compensation unit 9 has a loss in the TE-axis direction component of the optical spectrum as shown in FIG. Compensation control that gives By performing such compensation control, the polarization relationship between the optical signal 1 and the optical signal 2 can be compensated as in the optical spectrum (M1 ″, M2 ″) shown in FIG. 4-3.

なお、図4−1において、PDL補償部9は、PDLによる伝送損失がTE軸の方向に発生する場合に、このTE軸に直交するTM軸方向の成分のみに損失を与えるような補償制御を行うようにしているが、より高精度な偏波直交関係を得るために、TM軸方向だけでなく、TE軸方向に対する損失制御を併用するようにしてもよい。   In FIG. 4A, when the transmission loss due to PDL occurs in the direction of the TE axis, the PDL compensation unit 9 performs compensation control that gives a loss only to the component in the TM axis direction orthogonal to the TE axis. However, in order to obtain a more accurate polarization orthogonal relationship, loss control not only in the TM axis direction but also in the TE axis direction may be used in combination.

また、図4−1とは異なり、PDLによる伝送損失がTE軸の方向に発生する(あるいは支配的な)場合には、PDL補償部9は、光スペクトルのTM軸方向の成分のみ、あるいはTM軸およびTE軸の両方向に対する損失補償制御を行えばよい。   Also, unlike FIG. 4-1, when a transmission loss due to PDL occurs (or is dominant) in the direction of the TE axis, the PDL compensator 9 only has a component in the TM axis direction of the optical spectrum, or TM. Loss compensation control in both directions of the axis and the TE axis may be performed.

また、直交関係モニタ部5によって生成され、駆動回路4およびPDL補償部9の駆動回路12に出力される誤差信号は、実施の形態1と同様に、光信号パワーや偏光度、あるいは光信号に予め重畳された低速のディザー信号に基づいて生成することが可能である。   Further, the error signal generated by the orthogonal relationship monitor unit 5 and output to the drive circuit 4 and the drive circuit 12 of the PDL compensation unit 9 is converted into an optical signal power, a degree of polarization, or an optical signal as in the first embodiment. It is possible to generate based on a low-speed dither signal superimposed in advance.

以上説明したように、この実施の形態によれば、偏波分離された2つの光信号のいずれか一方の分岐出力の偏波状態に基づいて偏波分離のための誤差信号を生成するとともに、生成された誤差信号を用いて入力される偏波多重光信号の偏波直交関係を補償するようにしているので、PDLの影響により偏波直交関係が崩れた信号間の偏波を元の直交状態に戻すことが可能となる。   As described above, according to this embodiment, an error signal for polarization separation is generated based on the polarization state of one of the two branched optical signals. Since the polarization orthogonal relationship of the polarization multiplexed optical signal input using the generated error signal is compensated, the polarization between the signals whose polarization orthogonal relationship is broken due to the influence of PDL is restored to the original orthogonality. It becomes possible to return to the state.

実施の形態3.
図5は、本発明の実施の形態3にかかる光受信装置の構成を示すブロック図である。同図に示す光受信装置は、図3に示した実施の形態2の構成において、偏波分離部3の出力端と直交関係モニタ部5との間に、実施の形態1にかかる図1の構成において示した狭帯域光フィルタ8を配するように構成したことを特徴とする。なお、実施の形態2の構成と同一あるいは同等である構成部には同一符号を付してその説明を省略するとともに、ここでは、実施の形態2と異なる動作についてのみ説明する。
Embodiment 3 FIG.
FIG. 5 is a block diagram showing a configuration of the optical receiving apparatus according to the third embodiment of the present invention. The optical receiver shown in FIG. 3 is the same as that shown in FIG. 1 according to the first embodiment between the output end of the polarization separation unit 3 and the orthogonal relationship monitor unit 5 in the configuration of the second embodiment shown in FIG. The narrow band optical filter 8 shown in the configuration is arranged. Note that components that are the same as or equivalent to those of the second embodiment are denoted by the same reference numerals, and description thereof is omitted. Here, only operations different from those of the second embodiment are described.

図5において、伝送路中の偏波モード分散(PMD)の影響が無視できない場合には、前述のように、光信号中の光スペクトル成分の偏波状態は周波数成分によって異なるため、偏波分離を行うための誤差信号は、偏波面(軸)が多少ずれて受信される可能性のある他の周波数成分の影響を受けることになる。   In FIG. 5, when the influence of polarization mode dispersion (PMD) in the transmission path cannot be ignored, as described above, the polarization state of the optical spectrum component in the optical signal varies depending on the frequency component. The error signal for performing is affected by other frequency components that may be received with the plane of polarization (axis) slightly deviated.

一方、図5のように構成された光受信装置(偏波分離装置)では、実施の形態1と同様に、狭帯域光フィルタ8が、光キャリア近傍の光信号を抽出し、直交関係モニタ部5は、抽出された光信号の偏波状態に基づいて偏波分離のための誤差信号を生成するので、偏波多重光信号に対する偏波分離を高精度に行うことができる。   On the other hand, in the optical receiver (polarization demultiplexer) configured as shown in FIG. 5, as in the first embodiment, the narrowband optical filter 8 extracts the optical signal in the vicinity of the optical carrier, and the orthogonal relationship monitor unit 5 generates an error signal for polarization separation based on the polarization state of the extracted optical signal, so that polarization separation for the polarization multiplexed optical signal can be performed with high accuracy.

なお、直交関係モニタ部5によって生成され、駆動回路4およびPDL補償部9の駆動回路12に出力される誤差信号は、実施の形態1,2と同様に、光信号パワーや偏光度、あるいは光信号に予め重畳された低速のディザー信号に基づいて生成することが可能である。   Note that the error signal generated by the orthogonal relationship monitor unit 5 and output to the drive circuit 4 and the drive circuit 12 of the PDL compensation unit 9 is the same as in the first and second embodiments, such as optical signal power, degree of polarization, or optical signal. It can be generated based on a low-speed dither signal preliminarily superimposed on the signal.

以上説明したように、この実施の形態によれば、上述の実施の形態2の構成において、偏波分離された2つの光信号のいずれか一方の分岐出力を用いて光キャリア付近の周波数帯に含まれる光出力を抽出する狭帯域光フィルタを備えることとしたので、実施の形態2の効果に加え、偏波多重光信号に対する偏波分離を高精度に行うことができるという効果が得られる。   As described above, according to this embodiment, in the configuration of the above-described second embodiment, one of the two branch outputs of the polarization-separated optical signal is used to set the frequency band near the optical carrier. Since the narrow-band optical filter for extracting the included optical output is provided, in addition to the effect of the second embodiment, the effect that the polarization separation for the polarization multiplexed optical signal can be performed with high accuracy is obtained.

以上のように、本発明にかかる偏波分離装置および光受信装置は、超高速・長距離伝送システムなどに適用され、偏波多重光信号を伝送信号とする偏波分離装置および光受信装置に有用である。   As described above, the polarization separation device and the optical reception device according to the present invention are applied to an ultrahigh-speed / long-distance transmission system or the like, and are applied to a polarization separation device and an optical reception device that use a polarization multiplexed optical signal as a transmission signal. Useful.

本発明の実施の形態1にかかる光受信装置の構成を示す図である。It is a figure which shows the structure of the optical receiver concerning Embodiment 1 of this invention. TEモードに偏光した光信号1とTMモードに偏光した光信号2を偏波多重した状態の光スペクトルの概念を示す図である。It is a figure which shows the concept of the optical spectrum of the state which carried out the polarization multiplexing of the optical signal 1 polarized in TE mode, and the optical signal 2 polarized in TM mode. PMDの影響を受けた後の光スペクトルの概念を示す図である。It is a figure which shows the concept of the optical spectrum after receiving the influence of PMD. 本発明の実施の形態2にかかる光受信装置の構成を示す図である。It is a figure which shows the structure of the optical receiver concerning Embodiment 2 of this invention. 伝送路中で直交関係にある光信号1と光信号2の光スペクトルの関係を示す図である。It is a figure which shows the relationship of the optical spectrum of the optical signal 1 and the optical signal 2 which are orthogonally related in a transmission line. PDLの影響により偏波の直交関係が崩れてしまった光信号1と光信号2の光スペクトルの関係を示す図である。It is a figure which shows the relationship of the optical spectrum of the optical signal 1 and the optical signal 2 which the orthogonal relationship of the polarization has broken by the influence of PDL. PDL補償部で発生させる損失成分によって補償された光信号1と光信号2の光スペクトルの関係を示す図である。It is a figure which shows the relationship between the optical spectrum of the optical signal 1 and the optical signal 2 which were compensated with the loss component which a PDL compensation part generate | occur | produces. 本発明の実施の形態3にかかる光受信装置の構成を示す図である。It is a figure which shows the structure of the optical receiver concerning Embodiment 3 of this invention.

符号の説明Explanation of symbols

1 伝送路
2,10 偏波制御部
3 偏波分離部
4 駆動回路
5 直交関係モニタ部
6,7 光受信器(RX1,RX2)
8 狭帯域光フィルタ
9 PDL補償部
10 偏波制御部
11 PDL可変制御部
12 駆動回路
DESCRIPTION OF SYMBOLS 1 Transmission path 2,10 Polarization control part 3 Polarization separation part 4 Drive circuit 5 Orthogonal relationship monitor part 6,7 Optical receiver (RX1, RX2)
8 Narrowband Optical Filter 9 PDL Compensator 10 Polarization Controller 11 PDL Variable Controller 12 Drive Circuit

Claims (5)

入力される偏波多重光信号の偏波状態を制御する第1の偏波制御部と、前記第1の偏波制御部から出力された偏波多重光信号を2つの光信号に偏波分離する偏波分離部と、を備えた偏波分離装置において、
前記偏波分離部にて分離された2つの光信号のいずれか一方の分岐出力の偏波状態に基づいて偏波分離のための誤差信号を生成する直交関係モニタ部と、
前記誤差信号を用いて前記第1の偏波制御部を制御するための制御信号を生成する第1の駆動回路と、
前記第1の偏波制御部の入力側に挿入され、前記誤差信号を用いて入力される偏波多重光信号の偏波直交関係を補償するPDL(Polarozation Dependent Loss)補償部と、
を備えたことを特徴とする偏波分離装置。
A first polarization controller that controls the polarization state of the input polarization multiplexed optical signal, and the polarization multiplexed optical signal output from the first polarization controller is split into two optical signals. A polarization separation device comprising:
An orthogonal relationship monitoring unit that generates an error signal for polarization separation based on the polarization state of one of the branch outputs of the two optical signals separated by the polarization separation unit;
A first drive circuit that generates a control signal for controlling the first polarization controller using the error signal;
A PDL (Polarization Dependent Loss) compensation unit that is inserted on the input side of the first polarization control unit and compensates the polarization orthogonal relationship of the polarization multiplexed optical signal input using the error signal;
A polarization separation device comprising:
前記PDL補償部は、
入力される偏波多重光信号の偏波状態を制御する第2の偏波制御部と、
前記第2の偏波制御部の出力に基づいてPDLによる伝送損失が支配的な偏波軸に直交する軸方向あるいはそれらの両軸方向に対する損失量を可変するPDL可変制御部と、
前記直交関係モニタ部から出力される誤差信号を用いて前記第2の偏波制御部および前記PDL可変制御部を制御するための制御信号を生成する第2の駆動回路と、
を備えたことを特徴とする請求項に記載の偏波分離装置。
The PDL compensation unit
A second polarization controller for controlling the polarization state of the input polarization multiplexed optical signal;
A PDL variable control unit that varies the amount of loss in the axial direction orthogonal to the polarization axis in which transmission loss due to PDL is dominant based on the output of the second polarization control unit or in both axial directions;
A second drive circuit that generates a control signal for controlling the second polarization control unit and the PDL variable control unit using an error signal output from the orthogonal relationship monitor unit;
The polarization separation device according to claim 1 , further comprising:
前記偏波分離部の出力端と前記直交関係モニタ部との間に、前記偏波分離された光信号の一部を分岐した分岐出力を用いて光キャリア付近の周波数帯に含まれる光出力を抽出する狭帯域光フィルタをさらに備えたことを特徴とする請求項に記載の偏波分離装置。 An optical output included in a frequency band near the optical carrier is obtained using a branch output obtained by branching a part of the optical signal subjected to the polarization separation between the output end of the polarization separation unit and the orthogonal relationship monitoring unit. The polarization separation device according to claim 2 , further comprising a narrowband optical filter for extraction. 前記偏波多重光信号として低速のディザー信号が予め重畳された光信号が入力される場合に、前記直交関係モニタ部は、該低速のディザー信号を検出する手段を備えていることを特徴とする請求項1〜のいずれか一つに記載の偏波分離装置。 When an optical signal on which a low-speed dither signal is superimposed in advance is input as the polarization multiplexed optical signal, the orthogonal relationship monitor unit includes means for detecting the low-speed dither signal. The polarization beam splitting device according to any one of claims 1 to 3 . 請求項1〜のいずれか一つに記載の偏波分離装置と、
前記偏波分離装置から出力される2つの光信号をそれぞれ受信する受信器と、
を備えたことを特徴とする光受信装置。
The polarization separation device according to any one of claims 1 to 4 ,
A receiver for receiving each of the two optical signals output from the polarization beam splitter;
An optical receiver characterized by comprising:
JP2006131840A 2006-05-10 2006-05-10 Polarization separator and optical receiver Expired - Fee Related JP4740793B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006131840A JP4740793B2 (en) 2006-05-10 2006-05-10 Polarization separator and optical receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006131840A JP4740793B2 (en) 2006-05-10 2006-05-10 Polarization separator and optical receiver

Publications (2)

Publication Number Publication Date
JP2007306248A JP2007306248A (en) 2007-11-22
JP4740793B2 true JP4740793B2 (en) 2011-08-03

Family

ID=38839824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006131840A Expired - Fee Related JP4740793B2 (en) 2006-05-10 2006-05-10 Polarization separator and optical receiver

Country Status (1)

Country Link
JP (1) JP4740793B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5168468B2 (en) * 2007-12-27 2013-03-21 日本電気株式会社 Polarization dispersion monitoring method and apparatus
JP4940207B2 (en) * 2008-09-10 2012-05-30 ソフトバンクテレコム株式会社 Wavelength converter
JP5223703B2 (en) * 2009-01-29 2013-06-26 富士通株式会社 Polarization multiplexed optical receiver, polarization multiplexed optical receiver circuit, and polarization multiplexed optical transmission system
JP2012004691A (en) * 2010-06-14 2012-01-05 Nippon Telegr & Teleph Corp <Ntt> Polarized multiplex optical transmission system
JP6197590B2 (en) * 2013-11-11 2017-09-20 富士通株式会社 Optical receiver, optical signal processing method, and optical transmission system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000356760A (en) * 1999-06-15 2000-12-26 Kdd Corp Polarized wave mode dispersion compensating device
JP2002033701A (en) * 2000-07-13 2002-01-31 Fujitsu Ltd Polarized wave mode dispersion compensating method and polarized wave mode dispersion compensating device
JP2003198477A (en) * 2001-12-28 2003-07-11 Fujitsu Ltd Control method and controller for optical filter and optical node device
JP2003279909A (en) * 2002-03-22 2003-10-02 Fujitsu Ltd Method and controller for controlling wavelength variable optical filter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000356760A (en) * 1999-06-15 2000-12-26 Kdd Corp Polarized wave mode dispersion compensating device
JP2002033701A (en) * 2000-07-13 2002-01-31 Fujitsu Ltd Polarized wave mode dispersion compensating method and polarized wave mode dispersion compensating device
JP2003198477A (en) * 2001-12-28 2003-07-11 Fujitsu Ltd Control method and controller for optical filter and optical node device
JP2003279909A (en) * 2002-03-22 2003-10-02 Fujitsu Ltd Method and controller for controlling wavelength variable optical filter

Also Published As

Publication number Publication date
JP2007306248A (en) 2007-11-22

Similar Documents

Publication Publication Date Title
US8073326B2 (en) Optical polarization division multiplexing in optical communication
US7343100B2 (en) Optical communications based on optical polarization multiplexing and demultiplexing
US6130766A (en) Polarization mode dispersion compensation via an automatic tracking of a principal state of polarization
US8249466B2 (en) Polarization multiplexing optical receiver and polarization multiplexing optical transmission system
JP5585190B2 (en) Optical transmission system, optical transmitter, optical receiver, and optical transmission method
JP5900065B2 (en) Polarization multiplexing signal interference reduction system and method
JP4740793B2 (en) Polarization separator and optical receiver
JP6885408B2 (en) Digital coherent receiver and its skew adjustment method
JP2012004691A (en) Polarized multiplex optical transmission system
US11757558B2 (en) Systems, devices, and methods for dual polarization recovery
EP2806587A2 (en) Optical transmission apparatus and optical transmission method
EP2025076A2 (en) Optical communication system and method using optical channels with pair-wise orthogonal relationship
US9735916B2 (en) Optical receiver, optical signal processing method, and optical transmission system
JP2002344426A (en) Transmission/reception method and transmission/reception apparatus for polarization state control signal
US20060013592A1 (en) Polarization mode dispersion compensation apparatus and method thereof in light wavelength division multiplexing transmission system
JP4048368B2 (en) Noise suppression method and apparatus
US9722697B2 (en) Polarization division multiplexing optical communication reception device, polarization division multiplexing optical communication system, and polarization division multiplexing optical communication method
JP2013162182A (en) Optical signal quality measurement method, optical signal quality measurement circuit, optical receiver and optical transmission system
EP1681786A1 (en) Fiber optical system for PMD mitigation by polarization scrambling
JP4498953B2 (en) Coherent optical communication device and coherent optical communication system
CN111279632B (en) Optical transmission device and optical transmission method
JP5827379B2 (en) Polarization multiplexed optical transmission system
JP2007135138A (en) System and method for polarization independent two-way optical communication employing coherent optical communication scheme
EP3280073A1 (en) Optical transmission device and wavelength division multiplexing optical transmission device
JP2005020151A (en) Method of upgrading optical transmission system, optical transmitting equipment and optical receiving equipment for upgrading

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110426

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110502

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees