JP4740445B2 - In-situ purification of soil contaminated with volatile organic compounds - Google Patents

In-situ purification of soil contaminated with volatile organic compounds Download PDF

Info

Publication number
JP4740445B2
JP4740445B2 JP2000311992A JP2000311992A JP4740445B2 JP 4740445 B2 JP4740445 B2 JP 4740445B2 JP 2000311992 A JP2000311992 A JP 2000311992A JP 2000311992 A JP2000311992 A JP 2000311992A JP 4740445 B2 JP4740445 B2 JP 4740445B2
Authority
JP
Japan
Prior art keywords
soil
volatile organic
contaminated
organic compounds
quick lime
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000311992A
Other languages
Japanese (ja)
Other versions
JP2002119952A (en
Inventor
泰之 古賀
経 西尾
文彦 木村
朝光 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Onoda Chemico Co Ltd
Original Assignee
Onoda Chemico Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Onoda Chemico Co Ltd filed Critical Onoda Chemico Co Ltd
Priority to JP2000311992A priority Critical patent/JP4740445B2/en
Publication of JP2002119952A publication Critical patent/JP2002119952A/en
Application granted granted Critical
Publication of JP4740445B2 publication Critical patent/JP4740445B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Processing Of Solid Wastes (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は人工化学物質による汚染土壌、すなわち、重油・ガソリン・灯油等の有機化合物燃料、ダイオキシン・PCB等の合成有機塩素化合物、トリクロロエチレン・テトラクロロエチレン等の揮発性有機塩素化合物等による土壌汚染の環境問題において、特に、トリクロロエチレンなどの揮発性有機化合物で汚染された土壌を原位置で安全に浄化する方法に関する。
【0002】
【従来の技術】
近来、人工化学物質による汚染は産業活動の活発化と生活水準の高度化で増加している。特に、半導体の製造やドライクリーニングなどの洗浄剤としてトリクロロエチレン、その他の揮発性有機化合物など使用されている。
その揮発性有機化合物が含まれた洗浄廃水などが、何らかの原因で漏れ出てた場合、トリクロロエチレンは地盤への浸透がし易いため、広域的な地下水汚染を引き起こすことになる。
【0003】
また、トリクロロエチレンなどは、高揮発性物質であるため、これらの物質が地下に存在すると土中の空気に揮散し、地表面にまで拡散上昇し環境汚染問題となっている。
このため、この揮発性有機化合物で汚染された土壌を浄化する方法として、特許第2589002号が提案されている。この発明は無機化合物(生石灰等)を揮発性有機化合物で汚染された土壌に散布混合し、土中水と発熱反応させ土壌中の揮発性有機化合物の有害ガスを揮発させ除去する方法である。
【0004】
しかしながら、この浄化方法は土壌の処理量が増加すると土壌と生石灰などの撹拌混合を十分に行なわせることは困難であり、また、土壌全体を十分に昇温させることができない。そのため土壌中の揮発性有機化合物の揮発効率が低い問題がある。
さらに、この方法では、汚染された土壌深度が浅い(地表から1〜2m程度まで)場合のみ有効であるが、汚染された深度が前記深度より深い場合処理不能となる。
【0005】
また、地表で揮発性化合物で汚染された土壌を撹拌混合すると、揮発した有害ガスが空気中に飛散し大気汚染のおそれがある。
なお、上記の方法では、汚染地下水も同時に処理することができない問題もある。
【0006】
また、上記の方法以外の揮発性有機化合物で汚染された土壌を浄化する方法には、以下の方法がある。
1) 土壌中の汚染ガスを吸引する方法
2) 汚染した地下水を汲み上げて気化させる方法
現在、上記の方法が中心的であるが、これらの方法は有害ガスの浄化に時間がかかることと、完全な浄化ができるか問題がある。
【0007】
次に、原位置での浄化方法には、次の方法がある。
3)ガラス固化
4)過マンガン酸カリウム等の酸化剤を注入する原位置酸化分解法
5)粉体噴射撹拌工法により生石灰と汚染土壌とを撹拌混合し、吸水発熱さ
せ浄化させる方法
上記のうち、3)、4)の浄化方法は、費用が経済的でなく高価であり、また、5)の方法は生石灰を空気で土中に圧送するため汚染ガスが大気中に飛散したり、圧送空気で汚染ガスが土中に拡散するおそれがある。
【0008】
【発明が解決しようとする課題】
このような従来の浄化技術では、主として以下のような問題点があった。
1)経済的でなく非常に高価である。
2)汚染浄化に時間がかかる。
3)汚染ガスが大気中に飛散するおそれがある。
【0009】
【課題を解決するための手段】
この発明は、揮発性有機化合物で汚染された土壌に、生石灰を杭状にした生石灰杭を0.8〜2.0mの間隔で打設し、生石灰の化学反応による吸水作用で前記生石灰杭周辺の中間地盤の土中水を吸水し、また、生石灰の化学反応による発熱および、熱伝導によって派生する中間地盤の温度上昇により揮発された揮発性有機化合物の有害ガスと、汚染された地下水を吸引し、揮発性有機化合物で汚染された土壌と地下水とを同時に浄化することを特徴とする
【0010】
また、 揮発性有機化合物で汚染された土壌を生石灰と撹拌混合することなく生石灰の化学反応により揮発性有機化合物を揮発させ、揮発された有害ガスを飛散させることなく、該揮発性有機化合物で汚染された土壌の浄化とともに軟弱地盤を改良する揮発性有機化合物で汚染された土壌を原位置で浄化する方法としたことである。
【0011】
さらに、 揮発性有機化合物で汚染された土壌中に打設した生石灰杭の反応熱で、汚染された土壌の土中温度を上昇させ、土壌ガス吸引工法と併用して浄化速度を増加させ、揮発性有機化合物で汚染された土壌を原位置で浄化する方法としたことである。
【0012】
さらにまた、生石灰杭の反応熱により半揮発性有機化合物で汚染された土壌の土中温度を上昇させ、半揮発性有機化合物の有害ガスを揮発させ吸収浄化することを特徴とする汚染された土壌を原位置で浄化する方法としたことである。
【0013】
この発明は上記のとおりの従来技術の問題点に着目して、軟弱地盤の改良に多くの実績のある生石灰杭工法を使用し、反応熱で土中温度を上昇させ、揮発性有機化合物を揮発させることで、汚染ガスが吸引しやすくなり、浄化速度を速めることができる。
また、この方法は汚染土壌を撹拌混合しないことから、汚染ガスを大気中に飛散させず安全に浄化できる。
【0014】
【発明の実施の形態】
この発明の実施の形態を、生石灰杭を打設した場合の土中における熱的挙動を計算値、および実測値に基づいて述べる。
地中に打設した生石灰杭は、土中水の吸水反応時点で発熱し、生石灰杭体部分で最大約400℃となり、土中温度も地盤条件によるが、50℃〜70℃が5〜10週間と継続することが判った。
【0015】
熱計算は、生石灰杭の分担する土塊からの透水が加熱されるが、1気圧下の沸騰温度100℃の熱水状態で生石灰杭中に保持され、やがて杭温度が低下して100℃以下となった場合、土との熱交換によって土を加熱するのに用いられるものとする条件で、生石灰杭の温度が漸次低下して、表面温度が100℃になるまで杭内部に保持された熱が、生石灰杭の中心部と外郭部との温度勾配によって土中に伝達されものとして計算し、生石灰杭温度が100℃になってからは、生石灰杭を含む土塊の保有熱が、系内で移動することによって、温度が一定値に収斂するまで緩除な冷却と加熱とが平衡的に継続するという考え方で熱移動を推計すると、この熱移動の過程の概念図を図1に示すと生石灰杭温度は理論最高温度である320℃まで上がり、土中に打設され生石灰杭および土塊温度が約70℃に収斂され平衡状態となる。
【0016】
次に生石灰杭を打設した場合の土中における熱的挙動を計算値、および実側値について述べる。
生石灰杭を1.2mピッチの正方形配置で生石灰杭の分担する影響範囲を等値円とし求め、円柱状の土中に生石灰杭1本が存在し、該杭内が均一温度の軸対象モデルとして有限要素法解析で解析した計算値と、実測値を比較したとものを図2に示すとおり、計算結果と測定値(図3)は非常に良く似ている。
以上のことから生石灰杭を汚染土壌に打設することは、土壌加熱の熱源として土塊温度を50℃〜70℃程度に長期にわたって保持されることがわかった。
【0017】
また、土壌ガス吸引工法において、土壌加熱を併用することは非常に効果的であり、以下のその有効性については広く知られている。
1) 浄化速度を早めることができる。
2) 常温では比較的気化しにくい半揮発性物質をも除去させるのに有効である。
次に有効性の定量的な証明については、公知(大林組技術研究所No.60,2000)であり、試験概要は以下のとおりである。
【0018】
小型カラム実験装置においてカラム内に汚染土(灯油)突き固め充填し、真空ポンプで吸引を行い、カラム内を一定速度で温めた空気を通過させる実験において、土壌温度50℃、35℃.20℃の3種で行い除去速度と除去率の確認を行った。
【0019】
そのときの試験結果は、土壌温度50℃と20℃との浄化速度を比較すると、4倍程度速く浄化させ、除去率は100%という結果であった。
また、揮発性有機化合物の代表であるトリクロロエチレンの汚染土と半揮発性の灯油の汚染土の除去速度の比較試験で土壌温度50℃で除去率100%での条件で、除去速度はトリクロロエチレンの方が100倍程度速いという結果であった。
【0020】
以上のことから、揮発性有機化合物で汚染された土壌を加熱させることは、浄化速度の増加、および揮発しにくい半揮発性有機化合物まで除去でき非常に有効であることがわかった。
【0021】
次にこの発明の一実施例を図4および図5に基づいて説明すると図4は揮発性有機化合物で汚染された土壌の浄化方法の模式図であり、図5は生石灰杭打設の平面図である。
生石灰パイル工法で、揮発性有機化合物で汚染された土壌1に、生石灰杭5を0.8m〜2.0mの間隔で打設し、また、該地中に吸引井4を立て込むとともに、該吸引井4に真空ポンプ2、汚染ガスおよび地下水浄化装置3を取り付ける。
【0022】
揮発性有機化合物、例えばトリクロロエチレンで汚染されら土壌1中に打設した生石灰杭5は、生石灰杭5の化学反応による吸水作用で中間地盤6の土中水を吸引し、また、化学反応により生石灰杭体は最大400℃まで発熱し、その後地盤条件にもよるが、土中に打設された生石灰杭および土塊温度が約70℃に収斂され平衡状態を保ち、温度上昇により揮発性有機化合物は揮発され有害ガスを発生する。
揮発された有害ガスと汚染された地下水は吸引井4によって吸引され、汚染ガスおよび汚染地下水は、浄化装置3により浄化処理されるとともに、地盤中に生石灰杭を構築するので軟弱地盤の改良も併せおこなうことができる。
【0023】
【発明の効果】
この発明は汚染ガスを大気中に飛散させることなく浄化させ、併せて汚染された地下水を同時に浄化させることができ、さらに、二次効果として軟弱地盤も改良することができる。
【0024】
この発明は汚染された土壌に生石灰杭を0.8m〜2.0mの間隔で地中に打設することで土中水を吸収し化学反応による発熱により汚染土壌と撹拌混合せず揮発性有機化合物を揮発させ、汚染ガスを吸引しやすくさせ、浄化速度を速めることにができ、汚染ガスを大気中に飛散させることなく浄化させ、併せて汚染された地下水を同時に浄化させる。また、二次的効果として軟弱地盤も改良することができる。
【0025】
また、揮発性有機化合物で汚染された土壌を加熱させる熱源としての、生石灰杭の打設であるから、経済的で非常に有効で確実であり、併せて地盤の改良もできる。
【図面の簡単な説明】
【図1】生石灰杭の熱移動過程の概念図である。
【図2】生石灰杭の地中温度の経時変化についての計算値と実測値との比較図である。
【図3】生石灰杭の地中温度の測定結果を示す図である。
【図4】揮発性有機化合物で汚染された土壌の浄化方法の模式図である、
【図5】生石灰杭打設の平面図である。
【符号の説明】
1 揮発性有機化合物で汚染された土壌
2 真空ポンプ
3 汚染ガスおよび地下水浄化装置
4 吸引井
5 生石灰杭
6 中間地盤(揮発性有機化合物で汚染された土壌)
[0001]
BACKGROUND OF THE INVENTION
The present invention is an environmental problem of soil contamination due to soil contaminated with artificial chemical substances, that is, organic compound fuels such as heavy oil, gasoline and kerosene, synthetic organic chlorine compounds such as dioxin and PCB, volatile organic chlorine compounds such as trichlorethylene and tetrachloroethylene, etc. In particular, the present invention relates to a method for safely purifying soil contaminated with volatile organic compounds such as trichlorethylene in situ.
[0002]
[Prior art]
Recently, pollution by artificial chemical substances has been increasing due to increased industrial activities and higher living standards. In particular, trichlorethylene and other volatile organic compounds are used as cleaning agents for semiconductor manufacturing and dry cleaning.
When washing wastewater containing the volatile organic compound leaks out for some reason, trichlorethylene easily penetrates into the ground, causing wide-area groundwater contamination.
[0003]
Moreover, since trichlorethylene etc. are highly volatile substances, if these substances exist underground, they will volatilize in the air in the soil, and will diffuse and rise to the ground surface, causing environmental pollution problems.
For this reason, Japanese Patent No. 2589002 has been proposed as a method for purifying soil contaminated with this volatile organic compound. The present invention is a method of spraying and mixing an inorganic compound (such as quicklime) on soil contaminated with a volatile organic compound, and causing an exothermic reaction with water in the soil to volatilize and remove harmful gases of the volatile organic compound in the soil.
[0004]
However, in this purification method, it is difficult to sufficiently stir and mix soil and quicklime when the amount of treated soil increases, and the temperature of the entire soil cannot be sufficiently raised. Therefore, there is a problem that the volatilization efficiency of volatile organic compounds in the soil is low.
Furthermore, this method is effective only when the contaminated soil depth is shallow (up to about 1 to 2 m from the ground surface), but the processing becomes impossible when the contaminated depth is deeper than the above depth.
[0005]
In addition, when the soil contaminated with volatile compounds on the surface is stirred and mixed, volatile harmful gases are scattered in the air, which may cause air pollution.
In addition, in said method, there also exists a problem which cannot process a contaminated groundwater simultaneously.
[0006]
In addition to the above methods, methods for purifying soil contaminated with volatile organic compounds include the following methods.
1) Method of sucking polluted gas in soil 2) Method of pumping up contaminated groundwater and vaporizing it Currently, the above method is the main method. There is a problem whether it can be purified.
[0007]
Next, in-situ purification methods include the following methods.
3) Vitrification 4) In-situ oxidative decomposition method injecting an oxidizer such as potassium permanganate 5) A method in which quick lime and contaminated soil are stirred and mixed by a powder jet stirring method, and water absorption is generated and purified. 3) The purification method of 4) is not economical and expensive, and the method of 5) pumps quick lime into the soil with air, so that polluted gas is scattered in the atmosphere, or the compressed air is used. Contaminated gas may diffuse into the soil.
[0008]
[Problems to be solved by the invention]
Such conventional purification techniques have the following main problems.
1) Not economical and very expensive.
2) It takes time to clean up the contamination.
3) There is a risk that polluted gas will be scattered in the atmosphere.
[0009]
[Means for Solving the Problems]
In the present invention, quick lime piles made of quick lime in a pile shape are placed in a soil contaminated with a volatile organic compound at intervals of 0.8 to 2.0 m, and the vicinity of the quick lime piles by a water absorption action by a chemical reaction of quick lime. Inhalation of soil water from the intermediate ground of the limestone, as well as heat generated by the chemical reaction of quicklime and the harmful gas of volatile organic compounds volatilized by the temperature rise of the intermediate ground derived from heat conduction, and contaminated groundwater and, wherein the purifying contaminated with volatile organic compounds soil and the ground water at the same time.
[0010]
In addition, the volatile organic compound is volatilized by the chemical reaction of quicklime without mixing the soil contaminated with the volatile organic compound with quicklime, and contaminated with the volatile organic compound without scattering the volatilized harmful gas. It is a method of purifying soil contaminated with volatile organic compounds that improve the soft ground together with the purification of soil in place.
[0011]
Furthermore, the reaction heat of quicklime piles placed in soil contaminated with volatile organic compounds raises the soil temperature of the contaminated soil and, in combination with the soil gas suction method, increases the purification rate, The soil was contaminated with organic organic compounds.
[0012]
Furthermore, the contaminated soil is characterized by raising the soil temperature of soil contaminated with semi-volatile organic compounds by the reaction heat of quicklime piles, volatilizing harmful gases of semi-volatile organic compounds and absorbing and purifying them. This is a method of purifying in situ.
[0013]
This invention pays attention to the problems of the prior art as described above, uses a quick lime pile method with a proven track record for improving soft ground, raises the soil temperature with reaction heat, and volatilizes volatile organic compounds. By doing so, the pollutant gas can be easily sucked and the purification rate can be increased.
In addition, this method does not stir and mix the contaminated soil, so that the contaminated gas can be safely purified without being scattered into the atmosphere.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
In the embodiment of the present invention, thermal behavior in soil when quicklime stakes are placed will be described based on calculated values and actually measured values.
The quicklime pile placed in the ground generates heat at the time of water-absorbing reaction of soil water, reaches a maximum of about 400 ° C at the quicklime pile body part, and the soil temperature also depends on the ground conditions, but 50 ° C-70 ° C is 5-10 It turns out to continue for a week.
[0015]
In the heat calculation, the water permeability from the soil block shared by the quicklime pile is heated, but it is held in the quicklime pile in a hot water state at a boiling temperature of 100 ° C under 1 atm. If the temperature of the lime pile is gradually decreased under the condition that it is used to heat the soil by heat exchange with the soil, the heat retained inside the pile until the surface temperature reaches 100 ° C. Calculated as being transferred to the soil by the temperature gradient between the center and outer part of the quicklime pile, and after the quicklime pile temperature reaches 100 ° C, the retained heat of the soil mass including the quicklime pile moves within the system Thus, when heat transfer is estimated based on the idea that moderate cooling and heating continue in equilibrium until the temperature converges to a constant value, a conceptual diagram of this heat transfer process is shown in FIG. The temperature rises up to the theoretical maximum temperature of 320 ° C. , Lime piles and soil mass temperature is Da設 the soil is converged to about 70 ° C. in equilibrium.
[0016]
Next, thermal behavior in the soil when quicklime stakes are placed will be described in terms of calculated values and actual values.
The range of influence of quicklime piles in a square layout with a pitch of 1.2 m is determined as an equivalent circle, and there is one quicklime pile in the columnar soil, and the inside of the pile is an axial target model with uniform temperature. As shown in FIG. 2, the calculation result analyzed by the finite element method analysis is compared with the actual measurement value, and the calculation result and the measurement value (FIG. 3) are very similar.
From the above, it has been found that placing quicklime stakes on contaminated soil maintains the soil mass temperature as a heat source for soil heating at a temperature of about 50 ° C to 70 ° C over a long period of time.
[0017]
In addition, in the soil gas suction method, it is very effective to use soil heating together, and the following effectiveness is widely known.
1) The purification speed can be increased.
2) Effective for removing semi-volatile substances that are relatively difficult to vaporize at room temperature.
Next, the quantitative proof of effectiveness is publicly known (Obayashi Institute of Technology No. 60, 2000), and the outline of the test is as follows.
[0018]
In a small column experimental apparatus, the soil is filled with contaminated soil (kerosene) and sucked with a vacuum pump, and in an experiment in which air heated at a constant speed is passed through the column, the soil temperature is 50 ° C, 35 ° C. The removal rate and removal rate were confirmed at three types of 20 ° C.
[0019]
The test result at that time was that the soil temperature was 50 ° C. and 20 ° C. were compared, and the removal rate was 100%.
In addition, in a comparative test of the removal rate of contaminated soil of trichlorethylene, which is a representative of volatile organic compounds, and contaminated soil of semivolatile kerosene, at a soil temperature of 50 ° C, the removal rate is 100%. Was about 100 times faster.
[0020]
From the above, it was found that heating soil contaminated with volatile organic compounds is very effective in increasing the purification rate and removing semi-volatile organic compounds that are difficult to volatilize.
[0021]
Next, one embodiment of the present invention will be described with reference to FIGS. 4 and 5. FIG. 4 is a schematic view of a method for purifying soil contaminated with volatile organic compounds, and FIG. 5 is a plan view of lime pile driving. It is.
In the quick lime pile construction method, quick lime piles 5 are placed in the soil 1 contaminated with volatile organic compounds at intervals of 0.8 m to 2.0 m, and the suction well 4 is set up in the ground. A vacuum pump 2, a contaminated gas and groundwater purification device 3 are attached to the suction well 4.
[0022]
The quick lime pile 5 which is contaminated with a volatile organic compound such as trichlorethylene and placed in the soil 1 sucks the soil water of the intermediate ground 6 by the water absorption action by the chemical reaction of the quick lime pile 5, and the quick lime by the chemical reaction. The pile body generates heat up to a maximum of 400 ° C. After that, depending on the ground conditions, the quicklime pile placed in the soil and the mass of the lump are converged to about 70 ° C and maintain an equilibrium state. Volatilizes and generates harmful gases.
Volatilized harmful gas and contaminated groundwater are sucked by the suction well 4, and the contaminated gas and the contaminated groundwater are purified by the purification device 3, and quick lime piles are built in the ground, so soft ground is improved. Can be done.
[0023]
【The invention's effect】
According to the present invention, polluted gas can be purified without being scattered in the atmosphere, and the contaminated groundwater can be purified at the same time, and the soft ground can be improved as a secondary effect.
[0024]
In this invention, quick lime stakes are placed in the soil at a distance of 0.8m to 2.0m in the contaminated soil to absorb the water in the soil. It can volatilize, make it easy to suck pollutant gas, increase the purification rate, purify polluted gas without scattering into the atmosphere, and purify contaminated groundwater at the same time. Moreover, soft ground can be improved as a secondary effect.
[0025]
Moreover, since it is the placement of quicklime piles as a heat source for heating soil contaminated with volatile organic compounds, it is economical, extremely effective and reliable, and can also improve the ground.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram of a heat transfer process of quicklime piles.
FIG. 2 is a comparison diagram between a calculated value and an actual measurement value of a temporal change in underground temperature of quicklime piles.
FIG. 3 is a diagram showing measurement results of underground temperature of quicklime piles.
FIG. 4 is a schematic diagram of a method for purifying soil contaminated with volatile organic compounds.
FIG. 5 is a plan view of quicklime pile driving.
[Explanation of symbols]
1 Soil contaminated with volatile organic compounds 2 Vacuum pump 3 Contaminated gas and groundwater purification device 4 Suction well 5 Quicklime pile 6 Intermediate ground (soil contaminated with volatile organic compounds)

Claims (4)

揮発性有機化合物で汚染された土壌に、生石灰を杭状にした生石灰杭を0.8〜2.0mの間隔で打設し、生石灰の化学反応による吸水作用で前記生石灰杭周辺の中間地盤の土中水を吸水し、また、生石灰の化学反応による発熱および、熱伝導によって派生する中間地盤の温度上昇により揮発された揮発性有機化合物の有害ガスと、汚染された地下水を吸引し、揮発性有機化合物で汚染された土壌と地下水とを同時に浄化することを特徴とする揮発性有機化合物で汚染された土壌を原位置で浄化する方法。 Quick lime piles made of quick lime in a pile shape are placed in the soil contaminated with volatile organic compounds at intervals of 0.8 to 2.0 m, and the intermediate ground around the quick lime piles is absorbed by the water absorption by the chemical reaction of quick lime. Volatile by absorbing soil water and sucking harmful gas of volatile organic compounds volatilized due to heat generated by quick lime chemical reaction and temperature rise of intermediate ground derived from heat conduction and contaminated groundwater A method for purifying soil contaminated with a volatile organic compound in situ, comprising purifying soil contaminated with an organic compound and groundwater at the same time. 揮発性有機化合物で汚染された土壌を生石灰と撹拌混合することなく生石灰の化学反応により揮発性有機化合物を揮発させ、揮発された有害ガスを飛散させることなく、該揮発性有機化合物で汚染された土壌の浄化をすることを特徴とする請求項1記載の揮発性有機化合物で汚染された土壌を原位置で浄化する方法。Volatile organic compounds were volatilized by the chemical reaction of quicklime without stirring and mixing the soil contaminated with volatile organic compounds with quicklime, and contaminated with the volatile organic compounds without causing volatilization of harmful gases. The method for purifying soil contaminated with a volatile organic compound according to claim 1, wherein the soil is purified. 揮発性有機化合物で汚染された土壌中に打設した生石灰杭の反応熱で、汚染された土壌の土中温度を上昇させ、土壌ガス吸引工法と併用吸引して浄化速度を増加させることを特徴とする請求項1、又は、2記載の揮発性有機化合物で汚染された土壌を原位置で浄化する方法。The reaction heat of quick lime piles placed in soil contaminated with volatile organic compounds raises the soil temperature of contaminated soil and increases the purification rate by suctioning with the soil gas suction method. A method for purifying soil contaminated with the volatile organic compound according to claim 1 or 2 in situ. 生石灰杭の反応熱により半揮発性有機化合物で汚染された土壌の土中温度を上昇させ、半揮発性有機化合物の有害ガスを揮発させ吸収浄化することを特徴とする請求項1、2、3のいずれかに記載の揮発性有機化合物で汚染された土壌を原位置で浄化する方法。 Claim raising the soil temperature of the soil contaminated with semi-volatile organic compounds by the reaction heat of quick lime pile, characterized in that it absorbs purifying evaporate the harmful gases semi-volatile organic compounds 1, 2, 3 A method for purifying soil contaminated with the volatile organic compound according to any one of the above .
JP2000311992A 2000-10-12 2000-10-12 In-situ purification of soil contaminated with volatile organic compounds Expired - Fee Related JP4740445B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000311992A JP4740445B2 (en) 2000-10-12 2000-10-12 In-situ purification of soil contaminated with volatile organic compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000311992A JP4740445B2 (en) 2000-10-12 2000-10-12 In-situ purification of soil contaminated with volatile organic compounds

Publications (2)

Publication Number Publication Date
JP2002119952A JP2002119952A (en) 2002-04-23
JP4740445B2 true JP4740445B2 (en) 2011-08-03

Family

ID=18791665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000311992A Expired - Fee Related JP4740445B2 (en) 2000-10-12 2000-10-12 In-situ purification of soil contaminated with volatile organic compounds

Country Status (1)

Country Link
JP (1) JP4740445B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8492476B2 (en) 2009-02-09 2013-07-23 Mitsubishi Engineering-Plastics Corporation Polycarbonate resin composition and formed product thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8492476B2 (en) 2009-02-09 2013-07-23 Mitsubishi Engineering-Plastics Corporation Polycarbonate resin composition and formed product thereof
US8710129B2 (en) 2009-02-09 2014-04-29 Mitsubishi Engineering-Plastics Corporation Polycarbonate resin composition and formed product thereof
US8785528B2 (en) 2009-02-09 2014-07-22 Mitsubishi Engineering-Plastics Corporation Polycarbonate resin composition and formed product thereof
US8802758B2 (en) 2009-02-09 2014-08-12 Mitsubishi Engineering-Plastics Corporation Polycarbonate resin composition and formed product thereof

Also Published As

Publication number Publication date
JP2002119952A (en) 2002-04-23

Similar Documents

Publication Publication Date Title
TW564192B (en) Thermally enhanced soil decontamination method and soil remediation device
US5836718A (en) Method and apparatus for ex situ cleaning of contaminated soil
JP2618579B2 (en) Method and apparatus for removing contaminants
US5209604A (en) Soil decontamination
CA2569621A1 (en) Method and system for cleaning a soil containing contaminants
KR100451780B1 (en) Method for remediation of contaminated soil
US10875062B2 (en) Sintered wave porous media treatment, apparatus and process for removal of organic compounds and nondestructive removal and condensation of per and polyfluoroalkyl substances and related fluorinated compounds
JP2012161768A (en) Apparatus for cleaning contaminated soil and method for cleaning soil
JP4740445B2 (en) In-situ purification of soil contaminated with volatile organic compounds
JP3665601B2 (en) Soil improvement equipment
CN105750321A (en) Device and method using bidirectional ferry type combined technology to remedy soil polluted by PCBs (polychlorinated biphenyls)
JP2000218261A (en) Method for removing heavy metal
CN209697706U (en) For removing the contaminated soil microwave thermal desorption purification device of mercury
JP2002292361A (en) Method for cleaning polluted soil
LaChance et al. Application of ‘thermal conductive heating/in-situ thermal desorption (ISTD)’to the remediation of chlorinated volatile organic compounds in saturated and unsaturated settings
JP2002119953A (en) Method for removing contaminant
JP2004243195A (en) Polluted soil purifying method
JP2002205047A (en) Method for removing contaminant
JP2001104933A (en) Treatment plant for heat-drying polluted soil and treatment method for heat drying
JP7514666B2 (en) VOC in-situ purification system and VOC in-situ purification method
US5931600A (en) Thermal desorption and destruction of dense non-aqueous phase liquid in fractured bedrock
JP2019042623A (en) Method for preventing diffusion of contaminant
JP2014145723A (en) Radioactive contaminant treatment method
JP6975506B2 (en) Wastewater treatment mechanism
JP2003088848A (en) Structure and method for cleaning soil containing contaminant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100712

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110419

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110502

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees