JP4739067B2 - Electric double layer capacitor - Google Patents
Electric double layer capacitor Download PDFInfo
- Publication number
- JP4739067B2 JP4739067B2 JP2006061257A JP2006061257A JP4739067B2 JP 4739067 B2 JP4739067 B2 JP 4739067B2 JP 2006061257 A JP2006061257 A JP 2006061257A JP 2006061257 A JP2006061257 A JP 2006061257A JP 4739067 B2 JP4739067 B2 JP 4739067B2
- Authority
- JP
- Japan
- Prior art keywords
- double layer
- electric double
- layer capacitor
- electrode
- carbon material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000003990 capacitor Substances 0.000 title claims description 61
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 45
- 229920000642 polymer Polymers 0.000 claims description 32
- 239000008151 electrolyte solution Substances 0.000 claims description 21
- 239000003575 carbonaceous material Substances 0.000 claims description 19
- 150000003839 salts Chemical class 0.000 claims description 12
- -1 polytetrafluoroethylene Polymers 0.000 claims description 11
- 239000011230 binding agent Substances 0.000 claims description 10
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 6
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 6
- 239000002033 PVDF binder Substances 0.000 claims description 5
- 229920002981 polyvinylidene fluoride Polymers 0.000 claims description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 5
- 229920001577 copolymer Polymers 0.000 claims description 4
- 230000005611 electricity Effects 0.000 claims description 3
- 239000000126 substance Substances 0.000 claims description 3
- 150000001298 alcohols Chemical class 0.000 claims description 2
- 150000001875 compounds Chemical class 0.000 description 31
- 239000002585 base Substances 0.000 description 15
- 239000003792 electrolyte Substances 0.000 description 11
- 239000000463 material Substances 0.000 description 10
- 239000007864 aqueous solution Substances 0.000 description 9
- 229910052739 hydrogen Inorganic materials 0.000 description 9
- 239000001257 hydrogen Substances 0.000 description 8
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 6
- 238000007599 discharging Methods 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 229910019142 PO4 Inorganic materials 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 229930014626 natural product Natural products 0.000 description 5
- 239000010452 phosphate Substances 0.000 description 5
- ISAKRJDGNUQOIC-UHFFFAOYSA-N Uracil Chemical compound O=C1C=CNC(=O)N1 ISAKRJDGNUQOIC-UHFFFAOYSA-N 0.000 description 4
- 230000001070 adhesive effect Effects 0.000 description 4
- OPTASPLRGRRNAP-UHFFFAOYSA-N cytosine Chemical compound NC=1C=CNC(=O)N=1 OPTASPLRGRRNAP-UHFFFAOYSA-N 0.000 description 4
- UYTPUPDQBNUYGX-UHFFFAOYSA-N guanine Chemical compound O=C1NC(N)=NC2=C1N=CN2 UYTPUPDQBNUYGX-UHFFFAOYSA-N 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 239000011148 porous material Substances 0.000 description 4
- JHJLBTNAGRQEKS-UHFFFAOYSA-M sodium bromide Chemical compound [Na+].[Br-] JHJLBTNAGRQEKS-UHFFFAOYSA-M 0.000 description 4
- RWQNBRDOKXIBIV-UHFFFAOYSA-N thymine Chemical compound CC1=CNC(=O)NC1=O RWQNBRDOKXIBIV-UHFFFAOYSA-N 0.000 description 4
- 240000001548 Camellia japonica Species 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 238000009825 accumulation Methods 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 235000018597 common camellia Nutrition 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 3
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 3
- 239000011734 sodium Substances 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 238000001179 sorption measurement Methods 0.000 description 3
- 125000001424 substituent group Chemical group 0.000 description 3
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- 229930024421 Adenine Natural products 0.000 description 2
- GFFGJBXGBJISGV-UHFFFAOYSA-N Adenine Chemical compound NC1=NC=NC2=C1N=CN2 GFFGJBXGBJISGV-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 229960000643 adenine Drugs 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 229940104302 cytosine Drugs 0.000 description 2
- 238000003795 desorption Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000003365 glass fiber Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000004745 nonwoven fabric Substances 0.000 description 2
- 150000007523 nucleic acids Chemical class 0.000 description 2
- 102000039446 nucleic acids Human genes 0.000 description 2
- 108020004707 nucleic acids Proteins 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 229940113082 thymine Drugs 0.000 description 2
- 229940035893 uracil Drugs 0.000 description 2
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 229910020366 ClO 4 Inorganic materials 0.000 description 1
- 244000060011 Cocos nucifera Species 0.000 description 1
- 235000013162 Cocos nucifera Nutrition 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 229910001854 alkali hydroxide Inorganic materials 0.000 description 1
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 150000003851 azoles Chemical class 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 239000010903 husk Substances 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 229920001477 hydrophilic polymer Polymers 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 150000007529 inorganic bases Chemical class 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical class C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 1
- 239000011356 non-aqueous organic solvent Substances 0.000 description 1
- 239000005486 organic electrolyte Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- ACVYVLVWPXVTIT-UHFFFAOYSA-N phosphinic acid Chemical group O[PH2]=O ACVYVLVWPXVTIT-UHFFFAOYSA-N 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229920006112 polar polymer Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 125000001453 quaternary ammonium group Chemical group 0.000 description 1
- 230000027756 respiratory electron transport chain Effects 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 125000000542 sulfonic acid group Chemical group 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 239000011592 zinc chloride Substances 0.000 description 1
- 235000005074 zinc chloride Nutrition 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
- H01G11/32—Carbon-based
- H01G11/34—Carbon-based characterised by carbonisation or activation of carbon
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
Description
本発明は、分極性電極と電解液の界面に形成される電気二重層に基づいて充電と放電を行なう電気二重層キャパシタに関するものであり、更に詳しくは、キャパシタ容量を増大させるための新規な電極に関する。 The present invention relates to an electric double layer capacitor that performs charging and discharging based on an electric double layer formed at the interface between a polarizable electrode and an electrolyte, and more specifically, a novel electrode for increasing the capacity of a capacitor. About.
電気二重層キャパシタは、分極性電極と電解液から構成され、対向した正負の電極の間に電解液が存在する。これらの電極と電解液との場面にはそれぞれ電気二重層が形成され、この電気二重層に電荷が蓄積されるキャパシタの一種である。この電気二重層キャパシタは、充放電サイクルの寿命が長く、主として電子機器のバックアップ電源などに用いられてきた。 The electric double layer capacitor is composed of a polarizable electrode and an electrolytic solution, and the electrolytic solution exists between the positive and negative electrodes facing each other. An electric double layer is formed in each of the electrodes and the electrolyte solution, and is a kind of capacitor in which electric charges are accumulated in the electric double layer. This electric double layer capacitor has a long charge / discharge cycle life and has been mainly used for a backup power source of electronic equipment.
該電気二重層キャパシタは、一般に下記に説明するような材料を用いて製造されている。即ち、正極及び負極として用いられる分極性電極は活性化炭素を主構成材としている。該活性化炭素としては、やし殻、鋸屑、フェノール樹脂、ポリアクリル樹脂、石油や石炭のコーク類など各種の炭素を含む材料を炭化後、ガス、水蒸気、炭酸ガス、水酸化アルカリ或いは塩化亜鉛などの存在下で賦活することにより製造されたものが用いられている。炭素を含む繊維を上記同様の処理を施して製造した活性化炭素繊維が好適に用いられることも知られている。通常これらの活性化炭素は、粒化されて粉末粒子とされたものが分極性電極の材料として用いられている。 The electric double layer capacitor is generally manufactured using materials as described below. That is, polarizable electrodes used as the positive electrode and the negative electrode have activated carbon as a main constituent material. Examples of the activated carbon include gas, water vapor, carbon dioxide gas, alkali hydroxide or zinc chloride after carbonization of various carbon-containing materials such as coconut husk, sawdust, phenol resin, polyacrylic resin, and coke of petroleum and coal. What was manufactured by activating in the presence of etc. is used. It is also known that activated carbon fibers produced by subjecting carbon-containing fibers to the same treatment as described above are preferably used. Usually, these activated carbons are granulated into powder particles and used as a material for the polarizable electrode.
このような活性化炭素粉末に少量のアセチレンブラック、ポリテトラフルオロエチレンやポリフッ化ビニリデン或いはその共重合体などの結着剤を添加した混合物を、集電体に圧着した後、加熱、加圧などを行い、コイン状或いはシート状にして正極及び負極として用いられる。(監修 西野敦、直井勝彦、大容量キャパシタ技術と材料II−電気二重層キャパシタとスーパーキャパシタの最新動向−、第4章第3節 西野敦 述、シーエムシー出版、2003年1月10日発行)
A mixture of such activated carbon powder to which a small amount of acetylene black, a binder such as polytetrafluoroethylene, polyvinylidene fluoride, or a copolymer thereof is added is pressure-bonded to a current collector, and then heated, pressurized, etc. And used as a positive electrode and a negative electrode in a coin shape or a sheet shape. (Supervised by Atsushi Nishino, Katsuhiko Naoi, Large Capacitor Technology and Materials II-Latest Trends in Electric Double Layer Capacitors and Supercapacitors-
正極と負極の間に介在させる電解液としては、硫酸、水酸化カリウム或いは水酸化ナトリウム、中性塩など、水溶液が用いられることが、例えば特開2001−230163、特開2001−250742及び特開2003−229335などに開示されている。また、プロピレンカーボネート若しくはγ−ブチロラクトンなどの非プロトン性有機溶媒に、テトラエチルアンモニウムテトラフルオロボレート、トリエチルメチルアンモニウムテトラフルオロボレート或いは、テトラフエチルホスホニウムテトラフルオロボレートなどを溶解させた非水系有機溶媒が用いられることが特開2004−048005、特開2002−313686などに開示されている。 As the electrolytic solution interposed between the positive electrode and the negative electrode, an aqueous solution such as sulfuric acid, potassium hydroxide or sodium hydroxide, or a neutral salt is used. For example, JP 2001-230163 A, JP 2001-250742 A, and JP 2003-229335 and the like. Further, a non-aqueous organic solvent in which tetraethylammonium tetrafluoroborate, triethylmethylammonium tetrafluoroborate, tetraphethylphosphonium tetrafluoroborate, or the like is dissolved in an aprotic organic solvent such as propylene carbonate or γ-butyrolactone is used. JP 2004-048005 A, JP 2002-313686 A, and the like.
電解液の中に位置するセパレーターには、ポリプロピレン不織布、ガラス繊維不織布などが用いられることが知られている。
これらの技術によって製造されている電気二重層キャパシタは、前述のように電子機器のバックアップ電源などとして用いられているが、最近では二次電池や太陽電池とハイブリッド化して用いられたり、風力発電で得た電気の貯蔵用などに用いようとされるようになってきた。これらの用途或いは更に広い用途に用いるためには、現状の容量では十分に満足されるものではなく、一層の高出力化、高容量化、高エネルギー密度化、低価格化などが求められている。 Electric double layer capacitors manufactured by these technologies are used as backup power sources for electronic devices as described above. Recently, they are used in a hybrid form with secondary batteries and solar cells, or in wind power generation. It has come to be used for storage of the obtained electricity. In order to use in these applications or wider applications, the current capacity is not fully satisfied, and further higher output, higher capacity, higher energy density, lower price, etc. are required. .
本願発明者は、分極性電極を作製するにあたって、例えばDNA分子に見られるように極性部分を有する高分子化合物を活性化炭素材料に添加することによって、高出力、高容量の電気二重層キャパシタを作成できることを見出し、本発明を完成し、前述の課題を解決するに至った。 The inventor of the present application, when producing a polarizable electrode, for example, by adding a high molecular compound having a polar part to an activated carbon material as seen in DNA molecules, an electric double layer capacitor having a high output and a high capacity is obtained. As a result, the present invention has been completed and the above-described problems have been solved.
即ち、本発明は、少なくとも、イオン性物質を水に溶解した電解液と主成分として炭素材料を用いた分極性電極とを備えた電気二重層キャパシタであって、該分極性電極が、水素結合又は配位結合し得る極性部分を有した高分子を該炭素材料に添加して作成された電極である電気二重層キャパシタである。 That is, the present invention is an electric double layer capacitor comprising at least an electrolytic solution in which an ionic substance is dissolved in water and a polarizable electrode using a carbon material as a main component, and the polarizable electrode has a hydrogen bond Alternatively, it is an electric double layer capacitor which is an electrode formed by adding a polymer having a polar part capable of coordinate bonding to the carbon material.
本発明の好ましい態様では、前記高分子化合物が、少なくとも平均して分子量400あたりに1箇所以上の極性部分を有した高分子化合物である電気二重層キャパシタである。 In a preferred aspect of the present invention, the polymer compound is an electric double layer capacitor, wherein the polymer compound is a polymer compound having at least one polar portion per molecular weight of 400 on average.
更に好ましい態様では、本発明は、前記高分子化合物が、極性部分として水素結合し得る塩基を有した高分子である電気二重層キャパシタである。 In a more preferred embodiment, the present invention is an electric double layer capacitor in which the polymer compound is a polymer having a base capable of hydrogen bonding as a polar moiety.
更に詳しくいえば、本発明は、前記水素結合し得る塩基が窒素復素環式塩基である電気二重層キャパシタである。 More specifically, the present invention is an electric double layer capacitor in which the base capable of hydrogen bonding is a nitrogen fluorinated base.
更に特定すれば、本発明は、前記窒素復素環式塩基が、アデニン、グアニン、シトシン、ウラシル又はチミンから選ばれる塩基である電気二重層キャパシタである。 More specifically, the present invention is an electric double layer capacitor in which the nitrogen fluorinated cyclic base is a base selected from adenine, guanine, cytosine, uracil or thymine.
更に特定すれば、本発明は、前記高分子化合物が、天然物由来の又は合成されたDNA、RNA又はそれらの塩である電気二重層キャパシタである。 More specifically, the present invention is an electric double layer capacitor in which the polymer compound is a natural product-derived or synthesized DNA, RNA or a salt thereof.
他の観点から、本発明は、前記高分子化合物の添加量が、炭素材料に対して0.5〜10wt%の範囲である電気二重層キャパシタである。 From another viewpoint, the present invention is an electric double layer capacitor in which the amount of the polymer compound added is in the range of 0.5 to 10 wt% with respect to the carbon material.
好ましい態様では、本発明は、前記炭素材料が活性化炭素である電気二重層キャパシタである。 In a preferred embodiment, the present invention is an electric double layer capacitor in which the carbon material is activated carbon.
また、本発明は、前記主成分として炭素材料を用いた分極性電極が、結着剤としてポリ四フッ化エチレン又はポリフッ化ビニリデン或いはそれらの共重合体を含有する電極である電気二重層キャパシタである。 Further, the present invention provides an electric double layer capacitor, wherein the polarizable electrode using a carbon material as the main component is an electrode containing polytetrafluoroethylene, polyvinylidene fluoride or a copolymer thereof as a binder. is there.
更に特定すれば、本発明は、前記結着剤の含有量が、前記炭素材料及び前記高分子化合物の総量の0.5〜10wt%の範囲である電気二重層キャパシタである。 More specifically, the present invention is an electric double layer capacitor in which the content of the binder is in the range of 0.5 to 10 wt% of the total amount of the carbon material and the polymer compound.
更に、本発明は、前記電解液が更にアルコール類を含有する電気二重層キャパシタである。 Furthermore, the present invention is an electric double layer capacitor in which the electrolytic solution further contains an alcohol.
また、本発明は、前記電解液のpHが1〜12の範囲である電気二重層キャパシタである。 Moreover, this invention is an electric double layer capacitor whose pH of the said electrolyte solution is the range of 1-12.
本発明による極性部分を有した高分子化合物を活性化炭素粒子に添加して作製した分極性電極においては、この種の高分子化合物の極性部分が親水性であるために電解液が電極内の細孔や粒界に容易に進入し、活性化炭素と電解液との界面に形成される電気二重層界面の面積が増大するものと考えられる。その結果として、電荷蓄積に対応する活性化炭素表面への電解液内からの吸着と脱離するイオンの量が増加するとともに、その吸着脱離の速度も早くなり、高い出力と高い静電容量が得られるものと考えられる。このような電極を用いて構成された電気二重層キャパシタは二次電池や太陽電池とハイブリッド化して用いたり、風力発電で得た電気の貯蔵用などに用いるのに適しており、或いはこれら以外の用途に好適に用いられるものである。 In a polarizable electrode prepared by adding a polymer compound having a polar part according to the present invention to activated carbon particles, the electrolyte is contained in the electrode because the polar part of this type of polymer compound is hydrophilic. It is thought that the area of the electric double layer interface formed at the interface between the activated carbon and the electrolytic solution increases easily by entering the pores and grain boundaries. As a result, the amount of adsorbed and desorbed ions from the electrolyte on the activated carbon surface corresponding to charge accumulation increases, and the rate of adsorption and desorption increases, resulting in high output and high capacitance. Is considered to be obtained. An electric double layer capacitor configured using such an electrode is suitable for use in a hybrid form with a secondary battery or a solar battery, for storing electricity obtained by wind power generation, or the like. It is used suitably for a use.
以下、本発明に従う水素結合又は配位結合し得る極性部分を有した高分子化合物を該炭素材料に添加して作成された電極を有する電気二重層キャパシタについて詳しく説明する。 Hereinafter, an electric double layer capacitor having an electrode prepared by adding a polymer compound having a polar part capable of hydrogen bonding or coordination bonding according to the present invention to the carbon material will be described in detail.
本発明は、少なくとも、イオン性物質を水に溶解した電解液と主成分として炭素材料を用いた分極性電極とを備えた電気二重層キャパシタに関するものであって、該分極性電極が、水素結合又は配位結合し得る極性部分を有した高分子化合物を該炭素材料に添加して作成された電極である電気二重層キャパシタである。直前に述べたように、この種の高分子化合物の極性部分の親水性が電解液の電極内の細孔や粒界への進入を容易にし、もって電荷蓄積に対応する活性化炭素表面への電解液内からの吸着と脱離するイオンの量が増加するとともに、その吸着脱離の速度も早くなり、高出力、高静電容量が達成できるものと考えられる。 The present invention relates to an electric double layer capacitor comprising at least an electrolytic solution in which an ionic substance is dissolved in water and a polarizable electrode using a carbon material as a main component, and the polarizable electrode has a hydrogen bond Alternatively, it is an electric double layer capacitor which is an electrode formed by adding a polymer compound having a polar part capable of coordination bonding to the carbon material. As mentioned immediately above, the hydrophilicity of the polar part of this type of polymer compound facilitates the entry of the electrolyte into the pores and grain boundaries within the electrode, and thus the activated carbon surface corresponding to charge accumulation. It is considered that the amount of ions adsorbed and desorbed from within the electrolyte increases, and the rate of adsorption and desorption increases, and high output and high capacitance can be achieved.
前記極性部分を有した高分子化合物としては、少なくとも平均して分子量400あたりに1箇所以上の極性部分を有した高分子化合物が好適に用いられる。極性部分が少ないと充分な親水性が得られず、当初の目的が達成されないため、極性部分の存在割合は記載した値が必要となるのである。
そして、極性部分としては窒素、酸素、硫黄、燐などの原子が好適に利用され、水酸基、ニトロ基、スルホン酸基、カルボキシル基、ホスフィン酸基などの置換基、エーテル結合、チオエーテル結合、ジスルフィド結合、ケトンなどの結合構造などが利用できるが、例えば、アゾール類のような窒素複素環式構造を高分子化合物鎖内或いは側鎖として存在させることも極性部分として有効に利用できる。このような極性部分は、水素結合又は配位結合し得る構造形態が好適であり、特に水素結合し得る形の極性部分が一層好適である。中でも、極性部分として水素結合し得る塩基を側鎖として有した高分子化合物が一層好適に用いられる。
As the polymer compound having a polar part, a polymer compound having at least one polar part per molecular weight of 400 on average is suitably used. If the polar portion is small, sufficient hydrophilicity cannot be obtained, and the original purpose cannot be achieved. Therefore, the described ratio is required for the existence ratio of the polar portion.
As the polar moiety, atoms such as nitrogen, oxygen, sulfur, and phosphorus are preferably used, and substituents such as a hydroxyl group, a nitro group, a sulfonic acid group, a carboxyl group, and a phosphinic acid group, an ether bond, a thioether bond, and a disulfide bond. Bond structures such as ketones can be used. For example, the presence of a nitrogen heterocyclic structure such as an azole in a polymer compound chain or as a side chain can also be effectively used as a polar moiety. Such a polar part preferably has a structural form capable of hydrogen bonding or coordination bond, and more preferably a polar part capable of hydrogen bonding. Among them, a polymer compound having a base capable of hydrogen bonding as a polar moiety as a side chain is more preferably used.
本発明で使用できる上記した極性部分を有する高分子として典型的な化合物としては、DNA、RNA及びそれらの塩が挙げられるが、種々の形で修飾した核酸などを用いることもできる。塩基部分に天然のDNAとは異なる構造の塩基(例えばアゾール類など)を導入した高分子化合物、側鎖に核酸塩基を有するが高分子主鎖骨格が糖−リン酸ではない高分子化合物、通常の塩基に置換基を導入した高分子化合物など、が好適に用いられる。また、DNA主鎖のリン酸部分を長鎖の4級アンモニウム塩化した高分子化合物なども好適に用いられる。 Typical examples of the polymer having a polar moiety described above that can be used in the present invention include DNA, RNA, and salts thereof. Nucleic acids modified in various forms can also be used. A polymer compound in which a base having a structure different from that of natural DNA (for example, azoles) is introduced into the base part, a polymer compound having a nucleobase in the side chain, but the polymer backbone is not sugar-phosphate A polymer compound in which a substituent is introduced into this base is preferably used. In addition, a polymer compound in which the phosphate portion of the DNA main chain is converted to a long-chain quaternary ammonium salt is also preferably used.
上記のような種々の形で修飾した核酸は公知の方法で得ることができる。
側鎖に核酸塩基を有するが高分子主鎖骨格が糖−リン酸ではない高分子化合物を作成するためには、例えば特開2000−4881のような方法を利用して、下記の式(I)の化合物を得て本願発明の電気二重層キャバシターの電極に添加することができる。
In order to prepare a polymer compound having a nucleobase in the side chain but the polymer main chain skeleton is not sugar-phosphate, the following formula (I ) Can be obtained and added to the electrode of the electric double layer capacitor of the present invention.
また、天然物由来のDNA、RNAに存在するようにアデニン、グアニン、シトシン、ウラシル又はチミンから選ばれる塩基も好適に用いられる。DNA、RNA又はそれらの塩は天然物由来又は合成によるものいずれもが好適に用いられる。天然物由来のDNA、RNA又はそれらの塩としては、特にその由来の生物は限定されないけれども、鮭や鰊の白子から抽出したものが安価で好適に用いられる。 In addition, a base selected from adenine, guanine, cytosine, uracil or thymine so as to be present in DNA or RNA derived from natural products is also preferably used. Any of DNA, RNA, or salts thereof derived from natural products or synthesized is preferably used. As a natural product-derived DNA, RNA or a salt thereof, the organism derived from the natural product is not particularly limited, but those extracted from camellia or camellia are preferably used at low cost.
親水性の前記高分子化合物、DNA又はその塩の添加量が0.5重量パーセント以下であるとこれら添加物の親水性の効果が不十分となり、電気二重層キャパシタの高出力化と高静電容量化が抑えられる。また、10.0重量パーセント以上であると分極性電極中の活性化炭素の重量が減少し、活性化炭素粒子が使用される分極性電極では、活性化炭素粒子間の直接接触に基づく電子移動が抑制されることとなり、電気二重層キャパシタの高出力化と高静電容量化が妨げられる。このようなことから、該高分子化合物の添加量は、炭素材料に対して0.5〜10wt%の範囲が好適に用いられる。 If the amount of the hydrophilic polymer compound, DNA or salt thereof added is 0.5 weight percent or less, the hydrophilic effect of these additives will be insufficient, resulting in high output and high electrostatic capacity of the electric double layer capacitor. Capacitance can be suppressed. In addition, when the weight is 10.0 weight percent or more, the weight of the activated carbon in the polarizable electrode decreases, and in the polarizable electrode in which activated carbon particles are used, electron transfer based on direct contact between the activated carbon particles As a result, the high output and high capacitance of the electric double layer capacitor are hindered. For this reason, the addition amount of the polymer compound is preferably in the range of 0.5 to 10 wt% with respect to the carbon material.
本発明において正極及び負極として用いられる分極性電極の主材料として用いられる炭素材料としては、公知の活性化炭素が用いられる。また、活性化炭素として活性化炭素繊維を粉砕して粒子化されたものも好適に用いられる。 As the carbon material used as the main material of the polarizable electrode used as the positive electrode and the negative electrode in the present invention, known activated carbon is used. Moreover, the thing which grind | pulverized the activated carbon fiber as activated carbon and was made into the particle | grains is used suitably.
本発明においては、分極性電極を作成するにおいて、炭素材料を結着させるために結着剤を用いることができる。該結着剤としては各種の天然或いは合成された公知のものを用いることができるが、中でもポリ四フッ化エチレン又はポリフッ化ビニリデン或いはそれらの共重合体が接着効果、取扱いの容易さから極めて好適に用いられる。
これら結着剤は、主構成材料である活性化炭素を電極として結着させるために必要不可欠のものであるが、一方でこれら化合物は疎水性のため、添加量が多過ぎると電極中の活性化炭素と電解液が接触して電気二重層を形成する界面の面積が十分に得られず、そのために電荷蓄積に必要な電解液中のイオンの活性化炭素への吸着量が十分でなく、分極性電極の電気抵抗が増加し、電低損の為に高静電容量化、高出力化が達成できなくなる。一方で、結着剤の添加量が少量過ぎると接着が不十分となり、電極の機械的性質が不良となり、形状保持が困難となるので、これら接着剤は活性化炭素、極性部分を有する該高分子化合物の総重量の0.5〜10.0重量パーセントの添加量が好適に用いられる。
In the present invention, a binder can be used to bind the carbon material in preparing the polarizable electrode. Various kinds of natural or synthetic known binders can be used as the binder. Among them, polytetrafluoroethylene, polyvinylidene fluoride, or a copolymer thereof is extremely suitable because of its adhesive effect and ease of handling. Used for.
These binders are indispensable for binding activated carbon, which is the main constituent material, as an electrode. On the other hand, these compounds are hydrophobic, so if the amount added is too large, the activity in the electrode will be increased. The area of the interface where the carbonized carbon and the electrolytic solution are in contact with each other to form the electric double layer is not sufficiently obtained, and therefore, the amount of adsorption of ions in the electrolytic solution necessary for charge accumulation to the activated carbon is not sufficient, The electric resistance of the polarizable electrode increases, and high electrostatic capacity and high output cannot be achieved due to electric loss. On the other hand, if the addition amount of the binder is too small, the adhesion becomes insufficient, the mechanical properties of the electrode become poor, and it becomes difficult to maintain the shape. An addition amount of 0.5 to 10.0 weight percent of the total weight of the molecular compound is preferably used.
本発明の電気二重層キャパシタには、既述のとおり電解質として水溶液を用いる。水溶性電解質としては、陽イオンと陰イオンが含有されていれば有効であり、公知の有機、無機の酸、塩基、塩の溶液がいずれも用いられるが、本発明の電気二重層キャパシタにおいては、pHが0以下或いは14.0以上の場合には、炭素材料に添加する極性を有する高分子化合物が加水分解などの副反応により分解する場合があるため、pHが1〜12の範囲が一層好適に用いられる。このため、酸、塩基、塩のうち塩が一層好適に用いられる。塩は、強酸、強塩基、弱酸、弱塩基の塩がいずれも用いられるが、中でもNaCl、NaBr、NH4Cl、NH4ClO4、Na2SO3、Na2SO4、NaHCO3或いはこれらの混合物が好適に用いられる。
水溶液系のpHが1〜12の範囲のものは、腐食性が低く、人体に対する危険性も低く、引火性や着火性が無く、有機系電解液と比較しても安価で取扱いが容易であるので実用性も高い。
The electric double layer capacitor of the present invention uses an aqueous solution as an electrolyte as described above. As the water-soluble electrolyte, it is effective if it contains a cation and an anion, and any known organic, inorganic acid, base, or salt solution can be used. In the electric double layer capacitor of the present invention, In the case where the pH is 0 or less or 14.0 or more, the polar polymer compound added to the carbon material may be decomposed by a side reaction such as hydrolysis. Preferably used. For this reason, a salt is used more suitably among an acid, a base, and a salt. As the salt, any of strong acid, strong base, weak acid, and weak base salts can be used. Among them, NaCl, NaBr, NH 4 Cl, NH 4 ClO 4 , Na 2 SO 3 , Na 2 SO 4 , NaHCO 3, or these Mixtures are preferably used.
An aqueous solution having a pH in the range of 1 to 12 has low corrosivity, low danger to the human body, no flammability or ignitability, and is cheaper and easier to handle than an organic electrolyte. So practicality is high.
更に、このような電解液には、低温での凍結防止など付随的特性の向上のため、引火性や着火性が生じない範囲で、水と相溶性がある有機溶媒を含有させることができる。有機溶媒としては、更にエチレングリコールやグリコールエーテルなどのアルコール類が特に好適に用いられる。 Furthermore, in order to improve incidental characteristics such as freezing prevention at a low temperature, such an electrolytic solution can contain an organic solvent compatible with water as long as flammability and ignitability do not occur. As the organic solvent, alcohols such as ethylene glycol and glycol ether are particularly preferably used.
本発明の電気二重層キャパシタの好ましい一具体例の断面図を図1に示す。正極1及び負極2の間に電解液が含浸されているろ紙3(セパレーター)が位置している。正極1と負極2は、それぞれ不溶性金属から成る集電体4及び5に接触し、電気的に繋がっている。電解液を密閉するために絶縁性室枠ガスケット6が配置されている。これら全体が絶縁性エンドプレート7によって、ボルト8及び9を用いて押圧されている。
A cross-sectional view of a preferred embodiment of the electric double layer capacitor of the present invention is shown in FIG. A filter paper 3 (separator) impregnated with an electrolytic solution is located between the positive electrode 1 and the
以下、実施例に基づき本発明を詳細に説明するが、本発明はこれらの実施例に限定されるものではなく、本発明の技術的思想の範囲内で任意の変形をなし得るものである。 EXAMPLES Hereinafter, although this invention is demonstrated in detail based on an Example, this invention is not limited to these Examples, Arbitrary deformation | transformation can be made within the range of the technical idea of this invention.
実施例1
活性化炭素粉末(平均粒子径:約5μm、BET表面積:800m2/g、細孔容量:0.36ml/g、平均細孔径:1.8nm、酸性基量:2.2meq/g)に接着剤のポリ四フッ化エチレン及び粉末状の鮭の白子から抽出して製造したDNA−Na塩を質量比95:2:3になるように混合し、プレスしてフィルム状にして直径1.2cmの円形に切り抜いた。この混合物の使用量は1.2cm直径の円盤当たり30mgであった。このフィルムを不溶性金属箔からなる直径1.2cmの円形の集電体に接着して電極を作製し、この電極2枚の間にセパレーターとして電解液を含浸させたグラスファイバー製ろ紙(東洋ろ紙GB−100R)を挟み、絶縁性エンドプレートで押圧し、図1に示される構造の電気二重層キャパシタを組立てた。電解液には3.5mol/l NaBr水溶液(pH:5.2)を用いた。25℃の下で0.9〜0.0Vの電圧範囲で2.5mA/cm2の電流密度で200回の予備充放電を行った後、0.9〜0.0Vの電圧範囲で20mA/cm2の電流密度で充放電をした場合の1000サイクル目の放電過程での静電容量は3.8Fであった。
Example 1
Adhesion to activated carbon powder (average particle size: about 5 μm, BET surface area: 800 m 2 / g, pore volume: 0.36 ml / g, average pore size: 1.8 nm, acidic group content: 2.2 meq / g) DNA-Na salt prepared by extraction from polytetrafluoroethylene and powdery camellia white powder were mixed at a mass ratio of 95: 2: 3, pressed into a film, and a diameter of 1.2 cm Cut out into a circle. The amount of this mixture used was 30 mg per 1.2 cm diameter disk. This film was bonded to a 1.2 cm diameter circular current collector made of an insoluble metal foil to produce an electrode, and a glass fiber filter paper (Toyo Filter Paper GB) impregnated with an electrolyte as a separator between the two electrodes. −100R) and pressed with an insulating end plate, an electric double layer capacitor having the structure shown in FIG. 1 was assembled. A 3.5 mol / l NaBr aqueous solution (pH: 5.2) was used as the electrolytic solution. After performing pre-charging / discharging 200 times at a current density of 2.5 mA / cm 2 in a voltage range of 0.9 to 0.0 V at 25 ° C., 20 mA / in a voltage range of 0.9 to 0.0 V. The electrostatic capacity in the discharging process at the 1000th cycle when charging / discharging at a current density of cm 2 was 3.8F.
実施例2
電気二重層キャパシタの充放電の際の電流密度を5mA/cm2にした以外は、実施例1と同じ条件で実験した結果、電気二重層キャパシタの静電容量は6.4Fであった。
Example 2
As a result of experimenting under the same conditions as in Example 1 except that the current density during charging / discharging of the electric double layer capacitor was set to 5 mA / cm 2 , the capacitance of the electric double layer capacitor was 6.4F.
比較例1
電気二重層キャパシタの分極性電極を作製する際に、活性化炭素粉末にポリ四フッ化エチレンの質量比95:5とし、鮭DNA−Na塩を添加せずに電極を作製した以外は実施例1と同じ条件で実験した結果、電気二重層キャパシタの静電容量は0.51Fであった。
Comparative Example 1
Example of manufacturing a polarizable electrode of an electric double layer capacitor, except that the mass was 95: 5 of polytetrafluoroethylene in activated carbon powder and the electrode was prepared without adding a DNA-Na salt. As a result of experimenting under the same condition as 1, the capacitance of the electric double layer capacitor was 0.51F.
実施例3
電気二重層キャパシタ作製時に、電解液に4.0mol/l NaCl水溶液(pH:5.9)を用いた以外は実施例1と同じ条件で実験した結果、電気二重層キャパシタの静電容量は2.8Fであった。
Example 3
As a result of experimenting under the same conditions as in Example 1 except that a 4.0 mol / l NaCl aqueous solution (pH: 5.9) was used as the electrolyte when producing the electric double layer capacitor, the capacitance of the electric double layer capacitor was 2 .8F.
比較例2
電気二重層キャパシタの充放電の際の電解液に、4.0mol/l NaCl水溶液(pH:5.9)を用いた以外は比較例1と同じ条件で実験した結果、電気二重層キャパシタの静電容量は1.3Fであった。
Comparative Example 2
As a result of experiments under the same conditions as in Comparative Example 1 except that a 4.0 mol / l NaCl aqueous solution (pH: 5.9) was used as the electrolytic solution for charging and discharging the electric double layer capacitor, The electric capacity was 1.3F.
実施例4
電気二重層キャパシタ作製時に、電解液に2.0mol/l NH4BF4水溶液(pH:2.0)を用いた以外は実施例1と同じ条件で実験した結果、電気二重層キャパシタの静電容量は2.8Fであった。
Example 4
As a result of experiments under the same conditions as in Example 1 except that a 2.0 mol / l NH 4 BF 4 aqueous solution (pH: 2.0) was used as the electrolytic solution during the production of the electric double layer capacitor, the electrostatic capacitance of the electric double layer capacitor was The capacity was 2.8F.
比較例3
電気二重層キャパシタ作製時に、電解液に2.0mol/l NH4BF4水溶液(pH:2.0)を用いた以外は比較例1と同じ条件で実験した結果、電気二重層キャパシタの静電容量は1.1Fであった。
Comparative Example 3
As a result of experiments under the same conditions as in Comparative Example 1 except that a 2.0 mol / l NH 4 BF 4 aqueous solution (pH: 2.0) was used as the electrolytic solution during the production of the electric double layer capacitor, the electrostatic capacitance of the electric double layer capacitor was The capacity was 1.1F.
実施例5
電気二重層キャパシタ作製時に、電解液に1.8mol/l Na2SO3水溶液(pH:10.8)を用いた以外は実施例1と同じ条件で実験した結果、電気二重層キャパシタの静電容量は4.9Fであった。
Example 5
As a result of experiments under the same conditions as in Example 1 except that a 1.8 mol / l Na 2 SO 3 aqueous solution (pH: 10.8) was used as the electrolyte during the production of the electric double layer capacitor, the electrostatic capacitance of the electric double layer capacitor was The capacity was 4.9F.
実施例6
実施例分極性電極を作製する際に接着剤にポリフッ化ビニリデンを用い、活性化炭素粉末に接着剤と鮭のDNA−Na塩を添加し混練した後、シート状にして乾燥したシートを分極性電極として用いた以外は実施例1と同じ条件で実験した結果、電気二重層キャパシタの静電容量は3.2Fであった。
Example 6
EXAMPLE Polyvinylidene fluoride was used as an adhesive when preparing a polarizable electrode, and after adding and kneading an adhesive and a DNA-Na salt of activated carbon to activated carbon powder, the sheet dried in a sheet form was polarizable. As a result of experimenting under the same conditions as in Example 1 except that they were used as electrodes, the capacitance of the electric double layer capacitor was 3.2F.
実施例7
分極性電極を作製する際に、活性化炭素粉末、接着剤及び鮭DNA−Na塩の配合比90:5:5とした以外は実施例1と同じ条件で実験した結果、電気二重層キャパシタの静電容量は2.8Fであった。
Example 7
As a result of experiments under the same conditions as in Example 1 except that the blending ratio of activated carbon powder, adhesive, and DNA-Na salt was 90: 5: 5 when producing a polarizable electrode, The capacitance was 2.8F.
実施例8
分極性電極を作製する際に、鮭DNA−Na塩に代えて繊維状のDNA−Na塩を用いて電極を作製した以外は実施例1と同じ条件で実験した結果、電気二重層キャパシタの静電容量は2.9Fであった。
Example 8
As a result of experiments under the same conditions as in Example 1 except that the electrode was prepared using a fibrous DNA-Na salt in place of the DNA-Na salt when producing a polarizable electrode, The electric capacity was 2.9F.
実施例9
分極性電極を作成する際に、鮭DNA−Na塩に代えて、鮭DNAのリン酸部分を前記の式(IV)によって4級アンモニウム塩化した高分子化合物を用いて電極を作成した以外は実施例1と同じ条件で実験した結果、電気二重層キャバシターの静電容量は3.9Fであった。
Example 9
When preparing a polarizable electrode, it was carried out except that the electrode was prepared using a polymer compound in which the phosphoric acid portion of the DNA was quaternary ammonium salted by the above formula (IV) instead of the DNA-Na salt. As a result of experimenting under the same conditions as in Example 1, the capacitance of the electric double layer capacitor was 3.9F.
1 正極
2 負極
3 セパレーター
4 集電体
5 集電体
6 ガスケット
7 エンドプレート
8 締付けボルト
9 ナット
DESCRIPTION OF SYMBOLS 1
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006061257A JP4739067B2 (en) | 2006-03-07 | 2006-03-07 | Electric double layer capacitor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006061257A JP4739067B2 (en) | 2006-03-07 | 2006-03-07 | Electric double layer capacitor |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007242796A JP2007242796A (en) | 2007-09-20 |
JP4739067B2 true JP4739067B2 (en) | 2011-08-03 |
Family
ID=38588062
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006061257A Expired - Fee Related JP4739067B2 (en) | 2006-03-07 | 2006-03-07 | Electric double layer capacitor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4739067B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9224542B2 (en) | 2012-07-26 | 2015-12-29 | Samsung Electronics Co., Ltd. | Conductive layered structure, electrode and supercapacitor comprising the conductive layered structure, and method for preparing the conductive layered structure |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4911294B2 (en) * | 2006-09-29 | 2012-04-04 | 大日本印刷株式会社 | Slurry for electrode of electric double layer capacitor enclosing non-aqueous electrolyte and electric double layer capacitor using the slurry |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000156329A (en) * | 1994-06-09 | 2000-06-06 | Sanyo Chem Ind Ltd | Electrolyte and electrochemical element using the same |
JP2002083748A (en) * | 2000-06-27 | 2002-03-22 | Asahi Glass Co Ltd | Activated carbon, manufacturing method therefor and electric double-layer capacitor |
JP2004228148A (en) * | 2003-01-20 | 2004-08-12 | Catalysts & Chem Ind Co Ltd | Paint for forming electrode and electrode using the same |
-
2006
- 2006-03-07 JP JP2006061257A patent/JP4739067B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000156329A (en) * | 1994-06-09 | 2000-06-06 | Sanyo Chem Ind Ltd | Electrolyte and electrochemical element using the same |
JP2002083748A (en) * | 2000-06-27 | 2002-03-22 | Asahi Glass Co Ltd | Activated carbon, manufacturing method therefor and electric double-layer capacitor |
JP2004228148A (en) * | 2003-01-20 | 2004-08-12 | Catalysts & Chem Ind Co Ltd | Paint for forming electrode and electrode using the same |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9224542B2 (en) | 2012-07-26 | 2015-12-29 | Samsung Electronics Co., Ltd. | Conductive layered structure, electrode and supercapacitor comprising the conductive layered structure, and method for preparing the conductive layered structure |
Also Published As
Publication number | Publication date |
---|---|
JP2007242796A (en) | 2007-09-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Volfkovich | Electrochemical supercapacitors (a review) | |
Gómez-Urbano et al. | Graphene-coffee waste derived carbon composites as electrodes for optimized lithium ion capacitors | |
Wang et al. | A simple and universal method for preparing N, S co-doped biomass derived carbon with superior performance in supercapacitors | |
JP4597727B2 (en) | Electric double layer capacitor | |
Thota et al. | Plant biomass derived multidimensional nanostructured materials: a green alternative for energy storage | |
JP5578532B2 (en) | Power storage device | |
JP2014517507A (en) | Polyimide capacitor battery and manufacturing method thereof | |
KR20070094721A (en) | Active material having high capacitance for an electrode, manufacturing method thereof, electrode and energy storage apparatus comprising the same | |
WO2005076299A1 (en) | Electric double layer capacitor | |
Song et al. | Asymmetric energy storage devices based on surface-driven sodium-ion storage | |
Chiang et al. | Coffee-ground-derived nanoporous carbon anodes for sodium-ion batteries with high rate performance and cyclic stability | |
CN103745833A (en) | Super capacitor battery and preparation method thereof | |
Jagadale et al. | Materials development in hybrid zinc‐ion capacitors | |
CN100557741C (en) | The high-ratio surface flaky graphite is as the electrochemical capacitor of electrode material | |
Muduli et al. | Nitrogen phosphorous derived carbons from Peltophorum pterocarpum leaves as anodes for lead–carbon hybrid ultracapacitors | |
US20170256795A1 (en) | Cathode material preparation method, cathode material and lithium-ion battery | |
CN102856081A (en) | Phosphorus compound composite active carbon as well as preparation method and application thereof | |
CN111312526A (en) | Battery-super capacitor hybrid energy storage device and preparation method thereof | |
Tran et al. | Review on the application of green and environmentally benign biowaste and natural substances in the synthesis of lithium‐ion batteries | |
JP4739067B2 (en) | Electric double layer capacitor | |
Chakhtouna et al. | Bio-inspired polymers as organic electrodes for batteries | |
TWI570989B (en) | Electrolyte composition, and sodium secondary battery | |
US12110456B2 (en) | Biomass-based method and composition | |
CN105702957A (en) | Method for changing potential of carbon-based material electrode | |
CN108183205A (en) | A kind of sodium-ion battery flexible self-supporting electrode material and its application and preparation method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090122 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20090128 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20090122 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20090128 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20101130 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110104 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110128 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110405 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110427 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140513 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |