JP4738490B2 - Rotating body balance adjustment method - Google Patents

Rotating body balance adjustment method Download PDF

Info

Publication number
JP4738490B2
JP4738490B2 JP2009010177A JP2009010177A JP4738490B2 JP 4738490 B2 JP4738490 B2 JP 4738490B2 JP 2009010177 A JP2009010177 A JP 2009010177A JP 2009010177 A JP2009010177 A JP 2009010177A JP 4738490 B2 JP4738490 B2 JP 4738490B2
Authority
JP
Japan
Prior art keywords
assembled
balance
adjustment
rotating shaft
impellers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009010177A
Other languages
Japanese (ja)
Other versions
JP2010169124A (en
Inventor
直之 長井
孝昌 平井
和仁 東條
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2009010177A priority Critical patent/JP4738490B2/en
Publication of JP2010169124A publication Critical patent/JP2010169124A/en
Application granted granted Critical
Publication of JP4738490B2 publication Critical patent/JP4738490B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/027Arrangements for balancing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/284Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • F04D29/662Balancing of rotors

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

本発明は、回転機械等に使用され、回転軸と該回転軸に組み付けられる複数の被組立部材とで構成される回転体のバランス調整方法に関する。   The present invention relates to a balance adjusting method for a rotating body that is used in a rotating machine or the like and includes a rotating shaft and a plurality of members to be assembled to the rotating shaft.

従来から、回転体を高速回転させて所望の出力を発生させる回転機械においては、回転体に不釣合いが生じていると振動の発生などの原因となってしまうので、組付け時にバランス調整が行われている。具体的には、ターボファンエンジンにおいて、回転体を構成する回転軸であるインナーシャフトに組み付けられた被組付部材であるファンの前後にバランスウェイトを予め設置して、これらを切削することでバランス調整を行っている(例えば、特許文献1参照)。   Conventionally, in a rotating machine that rotates a rotating body at a high speed and generates a desired output, if the rotating body is unbalanced, it may cause vibrations and so on. It has been broken. Specifically, in a turbofan engine, a balance weight is installed in front of and behind a fan that is an assembled member that is assembled to an inner shaft that is a rotating shaft constituting a rotating body, and the balance is obtained by cutting them. Adjustment is performed (for example, refer to Patent Document 1).

特開2001−342993号公報JP 2001-342993 A

しかしながら、特許文献1のバンス調整方法によれば、回転体において、回転軸に設けられた一つの被組立部材でバランスを調整しているのみであり、複数の被組立部材が組み付けられて構成されている場合には、結局、その他の被組立部材のそれぞれ、また、回転体としてのバランスを調整することはできなかった。   However, according to the Vance adjustment method of Patent Document 1, in the rotating body, the balance is only adjusted by a single member to be assembled provided on the rotating shaft, and a plurality of members to be assembled are assembled. As a result, the balance of each of the other members to be assembled and the rotating body could not be adjusted after all.

この発明は、上述した事情に鑑みてなされたものであって、複数の被組立部材が回転軸に組み付けられて構成された回転体の不釣合いを確実に解消し、回転時の振動発生を防止することが可能な回転体のバランス調整方法を提供するものである。   The present invention has been made in view of the above-described circumstances, and reliably eliminates the unbalance of a rotating body configured by assembling a plurality of members to be assembled to a rotating shaft, thereby preventing vibration during rotation. The present invention provides a balance adjustment method for a rotating body that can be performed.

上記課題を解決するために、この発明は以下の手段を提案している。
本発明は、回転軸に、略円盤状の被組立部材を複数組み立てて回転体を構成する際の回転体のバランス調整方法であって、一の被組立部材を回転軸に組み立てる部材組立工程と、前記回転軸に組み立てられた前記一の被組立部材の周方向に沿った軸方向の変位分布を計測する変位計測工程と、計測した前記一の被組立部材の前記変位分布に基づいて、該一の被組立部材の不釣合い量を算出し、前記一の被組立部材の前記回転軸に直交する異なる二面で重量の調整を行う第一の調整工程と、前記部材組立工程、前記変位計測工程、及び、前記第一の調整工程を、複数の内の二つで組をなす被組立部材のそれぞれで行った後に、組み立てた回転軸及び被組立部材全体の不釣合い量を求めて、該組をなす被組立部材の重心位置をそれぞれ含む前記回転軸に直交する二面で重量の調整を行う第二の調整工程とを備え、前記部材組立工程、前記変位計測工程、前記第一の調整工程、及び、前記第二の調整工程を、複数の被組立部材を二つずつで組をなして、各組で実施することを特徴としている。
In order to solve the above problems, the present invention proposes the following means.
The present invention relates to a method for adjusting the balance of a rotating body when a rotating body is constituted by assembling a plurality of substantially disk-shaped assembled members on a rotating shaft, and a member assembling step for assembling one assembled member on the rotating shaft; A displacement measuring step of measuring an axial displacement distribution along a circumferential direction of the one assembled member assembled on the rotating shaft, and based on the measured displacement distribution of the one assembled member, A first adjustment step of calculating an unbalance amount of one member to be assembled and adjusting the weight on two different surfaces orthogonal to the rotation axis of the one member to be assembled; the member assembly step; and the displacement measurement. And performing the first adjustment step on each of the assembled members formed of two of the plurality, and determining the unbalanced amount of the assembled rotating shaft and the entire assembled member, The rotation including the position of the center of gravity of each member to be assembled. A second adjustment step for adjusting the weight on two surfaces orthogonal to the axis, the member assembly step, the displacement measurement step, the first adjustment step, and the second adjustment step. It is characterized in that the members to be assembled are grouped in two and each group is implemented.

この方法によれば、部材組立工程で複数の内の一の被組立部材を回転軸に組み付けた後に、変位計測工程で当該一の被組立部材の周方向に沿った軸方向の変位分布を計測することで、回転軸に組み付けられた状態の一の被組立部材のバランス状態を把握することができる。このため、第一の調整工程では、当該変位分布に基づいて不釣合い量を算出することができ、また、この結果により二面で重量を調整することで組み付けた一の被組立部材のバランスを調整することができる。同様に、上記一の被組立部材と組をなす他の被組立部材についても、部材組立工程、変位計測工程及び第一の調整工程を実施することで、他の被組立部材についても回転軸に組み付けた状態でバランスを調整することができる。次に、第二の調整工程として、組み立てた回転軸及び被組立部材全体の不釣合い量を求めて、上記組をなす被組立部材に設定した二面で重量の調整を行うことで、組み立てた回転軸及び被組立部材全体のバランスを調整することができる。ここで、上記二面を各被組立部材の重心位置を含む回転軸に直交する面に設定していることで、各第一の調整工程で行った各被組立部材の釣合いが崩れてしまうことなく、全体のバランス調整を行うことができる。そして、上記の一連の工程を複数の被組立部材の各組で実施することにより、全ての被組立部材を組み付けた状態では、被組立部材のそれぞれとしてのバランス、また、回転体全体としてのバランスを調整することができる。   According to this method, after assembling one of the plurality of members to be assembled in the member assembling process to the rotating shaft, the displacement measurement process measures the axial displacement distribution along the circumferential direction of the one assembling member. By doing so, it is possible to grasp the balance state of one member to be assembled in the state assembled to the rotating shaft. For this reason, in the first adjustment step, the unbalance amount can be calculated based on the displacement distribution, and the balance of one assembled member that is assembled by adjusting the weight on two sides based on this result can be calculated. Can be adjusted. Similarly, with respect to the other members to be assembled that form a pair with the one member to be assembled, the member assembly process, the displacement measurement process, and the first adjustment process are performed, so that the other members to be assembled can also be rotated. The balance can be adjusted in the assembled state. Next, as a second adjustment step, the unbalanced amount of the assembled rotating shaft and the entire assembly target member was obtained, and the weight was adjusted on the two surfaces set on the assembly target member forming the above-described set, thereby assembling. The balance of the rotating shaft and the entire assembly target member can be adjusted. Here, by setting the two surfaces as surfaces orthogonal to the rotation axis including the position of the center of gravity of each member to be assembled, the balance of each member to be assembled performed in each first adjustment step is lost. The overall balance can be adjusted. Then, by performing the above-described series of processes for each set of a plurality of members to be assembled, in a state where all the members to be assembled are assembled, the balance of each member to be assembled and the balance of the entire rotating body Can be adjusted.

また、上記の回転体のバランス調整方法において、前記第一の調整工程では、前記不釣合い量として、偶不釣合い量を算出して重量の調整を行っていることがより好ましい。
この方法によれば、各被組立部材を組み付けた状態で、偶不釣合いを順次解消しつつ、全体のバランスを調整することができる。
In the balance adjustment method of the rotating body, in the first adjustment step, it is more preferable to adjust the weight by calculating an even unbalance amount as the unbalance amount.
According to this method, it is possible to adjust the overall balance while sequentially eliminating even-numbered imbalances in a state where the members to be assembled are assembled.

また、上記の回転体のバランス調整方法において、前記第一の調整工程では、前記不釣合い量として、動不釣合い量を算出して重量の調整を行っていることがより好ましい。
この方法によれば、各被組立部材を組み付けた状態で、動不釣合い、すなわち偶不釣合い及び静不釣合いのそれぞれを順次解消しつつ、全体のバランスを調整することができる。
In the balance adjustment method for a rotating body, in the first adjustment step, it is more preferable to adjust the weight by calculating a dynamic unbalance amount as the unbalance amount.
According to this method, it is possible to adjust the overall balance while sequentially eliminating each of the dynamic imbalance, that is, the even imbalance and the static imbalance in a state in which each member to be assembled is assembled.

本発明の回転体のバランス調整方法では、複数の被組立部材が回転軸に組み付けられて構成された回転体の不釣合いを確実に解消し、回転時の振動発生を防止することができる。   In the rotating body balance adjusting method of the present invention, it is possible to reliably eliminate the unbalance of the rotating body configured by assembling a plurality of members to be assembled to the rotating shaft, and to prevent generation of vibration during rotation.

本発明の実施形態のバランス調整方法で調整された回転体を備えた圧縮機を示す断面図である。It is sectional drawing which shows the compressor provided with the rotary body adjusted with the balance adjustment method of embodiment of this invention. 本発明の第1の実施形態の回転体のバランス調整方法を示すフロー図である。It is a flowchart which shows the balance adjustment method of the rotary body of the 1st Embodiment of this invention. 本発明の第1の実施形態の回転体のバランス調整方法において、部材組立工程、並びに、一方の変位計測工程及び第一の調整工程を説明する説明図である。It is explanatory drawing explaining the member assembly process, one displacement measurement process, and the 1st adjustment process in the balance adjustment method of the rotary body of the 1st Embodiment of this invention. 本発明の第1の実施形態の回転体のバランス調整方法において、他方の変位計測工程及び第一の調整工程を説明する説明図である。It is explanatory drawing explaining the other displacement measurement process and the 1st adjustment process in the balance adjustment method of the rotary body of the 1st Embodiment of this invention. 本発明の第1の実施形態の回転体のバランス調整方法において、第二の調整工程を説明する説明図である。It is explanatory drawing explaining the 2nd adjustment process in the balance adjustment method of the rotary body of the 1st Embodiment of this invention. 本発明の第2の実施形態の回転体のバランス調整方法を示すフロー図である。It is a flowchart which shows the balance adjustment method of the rotary body of the 2nd Embodiment of this invention. 本発明の第3の実施形態の回転体のバランス調整方法を示すフロー図である。It is a flowchart which shows the balance adjustment method of the rotary body of the 3rd Embodiment of this invention.

(第1の実施形態)
本発明の第1の実施形態を図1から図5に基づいて説明する。図1は、本実施形態のバランス調整方法によって調整される回転体を有する回転機械の一例として、圧縮機を示している。図1に示すように、圧縮機1は、外郭をなす筐体2と、筐体2に対して軸回りに回転可能に支持された回転軸11及び回転軸11に組み立てられた被組立部材である複数のインペラ12で構成される回転体10と、回転軸11及びインペラ12の周囲に各インペラ12との間に連続した複数の作動室3を形成するように配置されたダイヤフラム4とを備える。筐体2には、流体が流入する吸込口5と流出する吐出口6とが設けられ、また、流体が回転軸11に沿って筐体2外部へ流出するのを防止するシール7が設けられている。インペラ12は、それぞれ、略円盤状の本体12aと、本体12aの吸込口5側の一面に放射状に立設された複数の羽12bと、羽12bの先端に形成されたシュラウド12cとで構成され、本体12aと羽12bとシュラウド12cとで形成される流路12dによって軸方向に沿って流入する気体を径方向外側へ排出可能となっている。また、吸込口5と最も吸込口5に近接したインペラ12E、12Fとの間には入口案内羽根8が設けられている。
(First embodiment)
A first embodiment of the present invention will be described with reference to FIGS. FIG. 1 shows a compressor as an example of a rotating machine having a rotating body adjusted by the balance adjusting method of the present embodiment. As shown in FIG. 1, the compressor 1 includes a casing 2 that forms an outer shell, a rotating shaft 11 that is supported so as to be rotatable about an axis with respect to the casing 2, and a member to be assembled to the rotating shaft 11. A rotating body 10 including a plurality of impellers 12, and a diaphragm 4 disposed around the rotating shaft 11 and the impeller 12 so as to form a plurality of continuous working chambers 3 between the impellers 12. . The housing 2 is provided with a suction port 5 through which a fluid flows in and a discharge port 6 through which it flows out, and a seal 7 that prevents the fluid from flowing out of the housing 2 along the rotating shaft 11. ing. Each of the impellers 12 includes a substantially disk-shaped main body 12a, a plurality of wings 12b erected on one surface of the main body 12a on the suction port 5 side, and a shroud 12c formed at the tip of the wing 12b. The gas flowing along the axial direction can be discharged radially outward by a flow path 12d formed by the main body 12a, the wing 12b, and the shroud 12c. An inlet guide vane 8 is provided between the suction port 5 and the impellers 12E and 12F closest to the suction port 5.

このような圧縮機1では、外部から回転力が回転軸11に伝達され、インペラ12が回転する。流体は吸込口5から流入し、入口案内羽根8によってインペラ12への流入方向を整えられ、作動室3内で回転するインペラ12により圧縮され、吐出口6より流出される。流入する流体流量が変化すると、吐出口6の流体圧力を一定に保つように、回転軸11の回転数は変更される。ここで、回転軸11及びインペラ12で構成される回転体10は高速で回転し、不釣合いが生じているとその不釣合い量により振動が発生しまうことから、組み立てる際にバランス調整が行われている。以下に、本実施形態のバランス調整方法を説明する。   In such a compressor 1, a rotational force is transmitted from the outside to the rotating shaft 11, and the impeller 12 rotates. The fluid flows in from the suction port 5, the flow direction into the impeller 12 is adjusted by the inlet guide vanes 8, is compressed by the impeller 12 rotating in the working chamber 3, and flows out from the discharge port 6. When the flow rate of the fluid flowing in changes, the rotational speed of the rotary shaft 11 is changed so as to keep the fluid pressure at the discharge port 6 constant. Here, the rotating body 10 composed of the rotating shaft 11 and the impeller 12 rotates at a high speed, and if an unbalance occurs, vibration is generated due to the unbalance, so that balance adjustment is performed during assembly. Yes. Below, the balance adjustment method of this embodiment is demonstrated.

図2は、本実施形態のバランス調整方法のフロー図を示している。ここで、本実施形態では、複数のインペラ12(12A、12B、12C、12D、12E、12F)を、軸方向中心から順に左右一対として、すなわちインペラ12A、12Bを第一の組、インペラ12C、12Dを第二の組、インペラ12E、12Fを第三の組とするように二つずつで組をなすようにして、各組ごとに以下の工程を行っていく。まず、図2及び図3に示すように、まず部材組立工程S1として、軸方向中心位置に最も近い第一の組であるインペラ12A、12Bを回転軸11に対して組み付ける。   FIG. 2 shows a flowchart of the balance adjustment method of the present embodiment. Here, in the present embodiment, the plurality of impellers 12 (12A, 12B, 12C, 12D, 12E, 12F) are paired in order from the center in the axial direction, that is, the impellers 12A, 12B are the first set, the impeller 12C, The following steps are performed for each group, with two groups formed so that 12D is the second group and impellers 12E and 12F are the third group. First, as shown in FIGS. 2 and 3, first, as a member assembly step S <b> 1, the impellers 12 </ b> A and 12 </ b> B that are the first set closest to the axial center position are assembled to the rotating shaft 11.

次に、変位計測工程S2Aとして、一方のインペラ12Aについて、面振れ計測を行う。すなわち、羽12bが設けられておらず、平面を形成する本体12aの他面12eにおいて、径方向外周側の所定の位置にダイヤルゲージDを配置させる。そして、回転軸11を軸回りに回転させることで、周方向に沿って軸方向の変位分布を計測する。   Next, as the displacement measurement step S2A, surface runout measurement is performed on one impeller 12A. That is, the wing 12b is not provided, and the dial gauge D is arranged at a predetermined position on the outer peripheral side in the radial direction on the other surface 12e of the main body 12a forming a plane. Then, by rotating the rotating shaft 11 around the axis, the axial displacement distribution is measured along the circumferential direction.

次に、第一の調整工程S3Aとして、一方のインペラ12Aについてバランス調整を行う。まず、インペラ12Aの不釣合い量として、偶不釣合い量を、計測した変位分布に基づいて算出する(ステップS3Aa)。なお、不釣合い量の算出に必要な情報として、インペラ12Aの形状、寸法、重量などは予め取得している。そして、重心位置G12aを挟んで軸方向両側に、回転軸11に直交するように予め設定された二面La1、La2の位置で、求めた偶不釣合いを解消するのに調整することが必要な重量Ma1、Ma2、及び、当該重量を調整する周方向の位置を算出する。そして、実際に、二面La1、La2のそれぞれ算出した周方向の位置で、重量Ma1、Ma2の調整、すなわち重りの設置、あるいは、インペラ12A自体の切削を行う(ステップS3Ab)。これにより、組み付けた一方のインペラ12Aの面振れによる偶不釣合いについて、バランスを調整することができる。   Next, balance adjustment is performed about one impeller 12A as 1st adjustment process S3A. First, as an unbalance amount of the impeller 12A, an even unbalance amount is calculated based on the measured displacement distribution (step S3Aa). Note that the shape, dimensions, weight, and the like of the impeller 12A are acquired in advance as information necessary for calculating the unbalance amount. And it is necessary to adjust to eliminate the even disparity obtained at the positions of the two surfaces La1 and La2 set in advance so as to be orthogonal to the rotating shaft 11 on both sides in the axial direction across the gravity center position G12a. The weights Ma1, Ma2 and the circumferential position for adjusting the weight are calculated. Actually, the weights Ma1 and Ma2 are adjusted at the calculated circumferential positions of the two surfaces La1 and La2, that is, the weights are installed, or the impeller 12A itself is cut (step S3Ab). Thereby, a balance can be adjusted about the even disparity by the surface runout of one assembled impeller 12A.

次に、同様の工程を第一の組の他方のインペラ12Bについても実施する。すなわち、まず、図2及び図4に示すように、変位計測工程S2Bとして、他方のインペラ12BについてダイヤルゲージDを用いて同様に変位分布を計測する。次に、第一の調整工程S3Bとして、当該変位分布から偶不釣合い量を算出し(ステップS3Ba)、これを解消するような重量Mb1、Mb2による調整を、重心位置G12bを挟んで軸方向両側に、回転軸11に直交するように予め設定した二面Lb1、Lb2のそれぞれで行う(ステップS3Bb)。これにより、組み付けた他方のインペラ12Bの面振れによる偶不釣合いについても、バランスを調整することができる。以上のように、組をなす両インペラ12A、12Bのそれぞれについて、変位計測工程及び第一の調整工程を実施したら、次に、第二の調整工程S4に移行する。   Next, the same process is performed on the other impeller 12B of the first set. That is, first, as shown in FIGS. 2 and 4, as the displacement measuring step S <b> 2 </ b> B, the displacement distribution is similarly measured using the dial gauge D for the other impeller 12 </ b> B. Next, as the first adjustment step S3B, an even unbalance amount is calculated from the displacement distribution (step S3Ba), and adjustments based on the weights Mb1 and Mb2 to eliminate this are performed on both sides in the axial direction across the gravity center position G12b. The two surfaces Lb1 and Lb2 set in advance so as to be orthogonal to the rotating shaft 11 are performed (step S3Bb). Thereby, a balance can be adjusted also about the even disparity by the surface runout of the other assembled impeller 12B. As described above, after the displacement measurement process and the first adjustment process are performed for each of the impellers 12A and 12B forming a pair, the process proceeds to the second adjustment process S4.

図2及び図5に示すように、第二の調整工程S4では、まず、回転軸11に一対のインペラ12A、12Bが組み付けられた状態で、これらを一体として回転させ、動不釣合い量の計測を行う(ステップS4a)。なお、動不釣合い量の計測は、公知のバランスマシンによって行われる。そして、各インペラ12A、12Bの各重心位置G12a、G12bを含んで回転軸11に直交するように予め設定された二面Lga、Lgaの位置で、求めた動不釣合いを解消するのに調整することが必要な重量Na、Nb、及び、当該重量を調整する周方向の位置を算出する。そして、実際に、二面Lga、Lgbのそれぞれ算出した周方向の位置で、重量Na、Nbの調整を行う(ステップS4b)ことで、組み立てた回転軸11及びインペラ12A、12B全体のバランスを調整することができる。ここで、上記二面Lga、Lgbを各インペラ12A、12Bの重心位置G12a、G12bを含む回転軸11に直交する面に設定していることで、各第一の調整工程S3A、S3Bで行った各インペラ12A、12Bの偶釣合いが崩れてしまうことなく、全体のバランス調整を行うことができる。   As shown in FIGS. 2 and 5, in the second adjustment step S <b> 4, first, in a state where the pair of impellers 12 </ b> A and 12 </ b> B are assembled to the rotating shaft 11, these are rotated together to measure the amount of dynamic imbalance. (Step S4a). Note that the measurement of the amount of dynamic imbalance is performed by a known balance machine. Then, adjustment is made to eliminate the obtained dynamic imbalance at the positions of the two surfaces Lga and Lga that are set in advance so as to be orthogonal to the rotation shaft 11 including the gravity center positions G12a and G12b of the impellers 12A and 12B. Necessary weights Na and Nb, and a circumferential position for adjusting the weight are calculated. Actually, the weights Na and Nb are adjusted at the calculated circumferential positions of the two surfaces Lga and Lgb (step S4b), thereby adjusting the balance of the assembled rotary shaft 11 and the impellers 12A and 12B as a whole. can do. Here, the two surfaces Lga and Lgb are set in a plane orthogonal to the rotary shaft 11 including the gravity center positions G12a and G12b of the impellers 12A and 12B, so that the first adjustment steps S3A and S3B are performed. The overall balance can be adjusted without losing the even balance between the impellers 12A and 12B.

そして、第二の調整工程S4を終えて、全てのインペラ12が組み立てられている場合には、回転体10の組立及びバランス調整が終了する(ステップS5)。上記においては、まだ、第一の組である二つのインペラ12A、12Bのみが組み付けられただけであるので、次に、第二の組のインペラ12C、12Dについて、部材組立工程S1〜第二の調整工程S4までの一連の工程を同様に実施する。このようにして、全ての組のインペラ12において、部材組立工程S1〜第二の調整工程S4までの一連の工程を実施することで、全てのインペラ12がそれぞれとしてバランスが調整された状態で回転軸11に組み付けられるとともに、回転体10全体としてもバランスを調整することができ、回転体10の不釣合いを確実に解消し、圧縮機1として組み立てられて回転する時の振動発生を防止することができる。   When all the impellers 12 are assembled after finishing the second adjustment step S4, the assembly and balance adjustment of the rotating body 10 are completed (step S5). In the above, since only the two impellers 12A and 12B, which are the first group, are still assembled, the member assembly steps S1 to S2 of the second group of impellers 12C and 12D are next performed. A series of steps up to the adjustment step S4 are similarly performed. In this way, by performing a series of steps from the member assembly step S1 to the second adjustment step S4 in all sets of impellers 12, all the impellers 12 are rotated in a state where the balance is adjusted respectively. As well as being assembled to the shaft 11, the balance of the rotator 10 as a whole can be adjusted, the unbalance of the rotator 10 can be reliably eliminated, and the occurrence of vibrations when the compressor 1 is assembled and rotated is prevented. Can do.

参考例
参考例を図6に基づいて説明する。なお、工程図については、基本的に第1の実施形態と同様であるので、図3、図4を参照して説明する。また、この実施形態において、前述した実施形態で用いた部材または工程と共通の部材または工程には同一の符号を付して、その説明を省略する。
( Reference example )
A reference example will be described with reference to FIG. Since the process diagram is basically the same as that of the first embodiment, it will be described with reference to FIGS. Moreover, in this embodiment, the same code | symbol is attached | subjected to the member or process common to the member or process used in embodiment mentioned above, and the description is abbreviate | omitted.

図6及び図3に示すように、本実施形態においても、第一の実施形態同様に、まず、部材組立工程S1として、第一の組のインペラ12A、12Bを組み付ける。次に、変位計測工程S2Aとして、一方のインペラ12Aについて面振れ計測を行う。次に、第一の調整工程S10Aとして、一方のインペラ12Aについてバランス調整を行う。まず、インペラ12Aの不釣合い量として、動不釣合い量を、計測した変位分布に基づいて算出する(ステップS10Aa)。そして、重心位置G12aを挟んで軸方向両側に予め設定された二面La1、La2の位置で、求めた動不釣合いを解消するのに調整することが必要な重量Ma1、Ma2、及び、当該重量を調整する周方向の位置を算出する。そして、実際に、二面La1、La2のそれぞれ算出した周方向の位置で、重量Ma1、Ma2の調整、すなわち重りの設置、あるいは、インペラ12A自体の切削を行う(ステップS10Ab)。これにより、組み付けた一方のインペラ12Aの面振れによる動不釣合いについて、バランスを調整することができる。   As shown in FIGS. 6 and 3, also in the present embodiment, as in the first embodiment, first, the first set of impellers 12A and 12B is assembled as the member assembling step S1. Next, as the displacement measurement step S2A, the surface runout measurement is performed on one impeller 12A. Next, balance adjustment is performed about one impeller 12A as 1st adjustment process S10A. First, as the unbalance amount of the impeller 12A, the dynamic unbalance amount is calculated based on the measured displacement distribution (step S10Aa). The weights Ma1, Ma2, and the weights that need to be adjusted to eliminate the obtained dynamic imbalance at the positions of the two surfaces La1 and La2 that are set in advance in the axial direction on both sides of the gravity center position G12a. The position in the circumferential direction for adjusting is calculated. Actually, the weights Ma1 and Ma2 are adjusted, that is, the weights are installed, or the impeller 12A itself is cut at the calculated circumferential positions of the two surfaces La1 and La2 (step S10Ab). Thereby, a balance can be adjusted about the dynamic imbalance by the surface runout of one assembled impeller 12A.

次に、同様の工程を第一の組の他方のインペラ12Bについても実施する。すなわち、まず、図6及び図4に示すように、変位計測工程S2Bとして、他方のインペラ12BについてダイヤルゲージDを用いて同様に変位分布を計測する。次に、第一の調整工程S10Bとして、当該変位分布から動不釣合い量を算出し(ステップS10Ba)、これを解消するような重量Mb1、Mb2による調整を、重心位置G12bを挟んで軸方向両側に、予め設定した二面Lb1、Lb2のそれぞれで行う(ステップS10Bb)。これにより、組み付けた他方のインペラ12Bの面振れによる動不釣合いについても、バランスを調整することができる。ここで、本実施形態では、各インペラ12A、12Bについて動不釣合いを解消するようにバランス調整が行われているので、両インペラ12A、12Bの第一の調整工程が完了した時点で、全体としてのバランス調整も完了している。このため、第1の実施形態の第二の調整工程S4を実施せずとも、組み立てられた回転軸11と、インペラ12A、12B全体の動釣合いがとれた状態とすることができる。   Next, the same process is performed on the other impeller 12B of the first set. That is, first, as shown in FIGS. 6 and 4, as a displacement measurement step S2B, the displacement distribution is similarly measured using the dial gauge D for the other impeller 12B. Next, as the first adjustment step S10B, the amount of dynamic imbalance is calculated from the displacement distribution (step S10Ba), and the adjustment by the weights Mb1 and Mb2 to eliminate this is performed on both sides in the axial direction with the gravity center position G12b interposed therebetween. Further, it is performed for each of the two surfaces Lb1 and Lb2 set in advance (step S10Bb). Thereby, a balance can be adjusted also about the dynamic imbalance by the surface runout of the other impeller 12B assembled. Here, in this embodiment, since balance adjustment is performed so as to eliminate dynamic imbalance for each of the impellers 12A and 12B, when the first adjustment process of both the impellers 12A and 12B is completed, as a whole The balance adjustment has also been completed. For this reason, even if it does not implement 2nd adjustment process S4 of 1st Embodiment, it can be set as the state in which the rotational axis 11 assembled and the impeller 12A, 12B whole dynamic balance were taken.

以上のように、組をなす両インペラ12A、12Bのそれぞれについて、変位計測工程及び第一の調整工程を実施したら、ステップS5に以降し、全ての組のインペラ12について完了していない場合には、部材組立工程S1に移行して次の組のインペラ12について同様に部材組立工程S1から第一の調整工程S10Bまでを実施する。そして、全ての組のインペラ12について完了している場合には、回転体10の組立及びバランス調整が終了する。このようにして、全ての組のインペラ12において、部材組立工程S1〜第一の調整工程S10Bまでの一連の工程を実施することで、全てのインペラ12がそれぞれとしてバランスが調整された状態で回転軸11に組み付けられるとともに、回転体10全体としてもバランスを調整することができ、回転体10の不釣合いを確実に解消し、圧縮機1として組み立てられて回転する時の振動発生を防止することができる。また、本実施形態では、第一の調整工程S10A、S10Bにおいて、各インペラ12の動不釣合いを解消するように重量調整が行われることで、第二の調整工程を省略することができ、工数の削減を図ることができる。   As described above, when the displacement measurement process and the first adjustment process are performed for each of the impellers 12A and 12B forming the set, after step S5, not all the impellers 12 are completed. Then, the process proceeds to the member assembling process S1, and the same process from the member assembling process S1 to the first adjusting process S10B is performed for the next set of impellers 12. And when it completes about all the sets of impellers 12, the assembly and balance adjustment of the rotary body 10 are complete | finished. In this way, by performing a series of steps from the member assembly step S1 to the first adjustment step S10B in all sets of impellers 12, all the impellers 12 rotate in a state in which the balance is adjusted respectively. As well as being assembled to the shaft 11, the balance of the rotator 10 as a whole can be adjusted, the unbalance of the rotator 10 can be reliably eliminated, and the occurrence of vibrations when the compressor 1 is assembled and rotated is prevented. Can do. In the present embodiment, in the first adjustment steps S10A and S10B, the weight adjustment is performed so as to eliminate the dynamic imbalance of each impeller 12, so that the second adjustment step can be omitted. Can be reduced.

(第の実施形態)
本発明の第の実施形態を図7に基づいて説明する。なお、工程図については、基本的に第1の実施形態と同様であるので、図3〜図5を参照して説明する。また、この実施形態において、前述した実施形態で用いた部材または工程と共通の部材または工程には同一の符号を付して、その説明を省略する。
(Second Embodiment)
The second embodiment of the present invention will be described with reference to FIG. The process diagram is basically the same as that of the first embodiment, and will be described with reference to FIGS. Moreover, in this embodiment, the same code | symbol is attached | subjected to the member or process common to the member or process used in embodiment mentioned above, and the description is abbreviate | omitted.

図7に示すように、本実施形態は、基本的に参考例と同様の工程を実施するものであり、参考例と異なるのは、各組のインペラ12について部材組立工程S1から第一の調整工程S10Bまで実施した後に、第二の調整工程S11を実施する点である。図7及び図5に示すように、第二の調整工程S11では、第一の調整工程を完了した組をなすインペラ12に対して、第1の実施形態の第二の調整工程S4と同様の調整を実施する。すなわち、図5に示すようにインペラ12A、12Bを例とすれば、まず、回転軸11に一対のインペラ12A、12Bが組み付けられた状態で、これらを一体として回転させ、動不釣合い量の計測を行う(ステップS11a)。そして、各インペラ12A、12Bの予め設定された二面Lga、Lgaの位置で、求めた動不釣合いを解消するのに調整することが必要な重量Na、Ng、及び、当該重量を調整する周方向の位置を算出する。そして、実際に、二面Lga、Lgbのそれぞれ算出した周方向の位置で、重量Na、Ngによる調整を行う(ステップS11b)ことで、組み立てた回転軸11及びインペラ12A、12B全体のバランスを調整することができる。ここで、上記二面Lga、Lgbを各インペラ12A、12Bの重心位置G12a、G12bを含む回転軸11に直交する面に設定していることで、第1の実施形態同様に、各第一の調整工程S10A、S10Bで行った各インペラ12A、12Bの動釣合いが崩れてしまうことなく、全体のバランス調整を行うことができる。 As shown in FIG. 7, this embodiment is intended to implement the basic reference example and the same process, different from the reference example, the adjustment for each set of impeller 12 from the member assembling process S1 first The second adjustment step S11 is performed after the step S10B. As shown in FIG.7 and FIG.5, in 2nd adjustment process S11, it is the same as 2nd adjustment process S4 of 1st Embodiment with respect to the impeller 12 which makes the group which completed the 1st adjustment process. Make adjustments. That is, taking the impellers 12A and 12B as an example as shown in FIG. 5, first, in a state where the pair of impellers 12A and 12B are assembled to the rotating shaft 11, they are rotated together to measure the amount of dynamic imbalance. (Step S11a). The weights Na and Ng that need to be adjusted to eliminate the found dynamic imbalance at the positions of the two preset surfaces Lga and Lga of the impellers 12A and 12B, and the circumference for adjusting the weight. Calculate the position of the direction. And actually, the balance of the assembled rotating shaft 11 and the impellers 12A and 12B is adjusted by adjusting the weight Na and Ng at the calculated circumferential positions of the two surfaces Lga and Lgb (step S11b). can do. Here, the two surfaces Lga and Lgb are set to surfaces orthogonal to the rotation shaft 11 including the gravity centers G12a and G12b of the impellers 12A and 12B, respectively. Overall balance adjustment can be performed without the dynamic balance of the impellers 12A and 12B performed in the adjustment steps S10A and S10B being lost.

そして、これら部材組立工程S1から第二の調整工程S11までの一連の工程を各組のインペラ12で実施することで、全てのインペラ12がそれぞれとしてバランスが調整された状態で回転軸11に組み付けられるとともに、回転体10全体としてもバランスを調整することができ、回転体10の不釣合いを確実に解消し、圧縮機1として組み立てられて回転する時の振動発生を防止することができる。また、本実施形態では、第2の実施形態で行われるバランス調整に、さらに第二の調整工程S11を実施するようにしたことで、回転体10全体の動不釣合いをより確実に解消させるようにバランスを調整することができる。   Then, a series of steps from the member assembly step S1 to the second adjustment step S11 is performed by each set of impellers 12, so that all the impellers 12 are assembled to the rotating shaft 11 in a state where the balance is adjusted as each. In addition, the balance of the rotator 10 as a whole can be adjusted, the unbalance of the rotator 10 can be reliably eliminated, and the occurrence of vibrations when the compressor 1 is assembled and rotated can be prevented. In the present embodiment, the second adjustment step S11 is further performed in addition to the balance adjustment performed in the second embodiment, so that the dynamic imbalance of the entire rotating body 10 is more reliably eliminated. The balance can be adjusted.

以上、本発明の実施形態について図面を参照して詳述したが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更等も含まれる。   As mentioned above, although embodiment of this invention was explained in full detail with reference to drawings, the concrete structure is not restricted to this embodiment, The design change etc. of the range which does not deviate from the summary of this invention are included.

なお、上記各実施形態においては、各組をなす二つのインペラ12の組立は、それぞれの変位計測工程S2A、S2B、及び、第一の調整工程S3A、S3Bに先立って、部材組立工程S1として同時に実施されるものとしたが、これに限るものではなく、各変位計測工程S2A、S2Bのそれぞれ直前に、対応する一方のインペラ12のみについて部材組立工程として回転軸11に組み立てるものとしても良い。また、第2の実施形態においては、第二の調整工程を実施しないことから、複数のインペラ12を組み分けせずに、一つずつ順次、部材組立工程から第一の調整工程を行っていくようにしても良い。また、上記各実施形態では、複数のインペラ12の組み分けを軸方向中央から左右一対となるようにしたが、これに限ることはない。しかしながら、上記のとおりとすることで、組立及びバランス調整を軸方向に略対称に実施することができ、より好ましい。   In each of the above-described embodiments, the assembly of the two impellers 12 forming each group is simultaneously performed as a member assembly step S1 prior to the respective displacement measurement steps S2A and S2B and the first adjustment steps S3A and S3B. However, the present invention is not limited to this, and only the corresponding one of the impellers 12 may be assembled to the rotating shaft 11 as a member assembling process immediately before each of the displacement measuring steps S2A and S2B. In the second embodiment, since the second adjustment process is not performed, the first adjustment process is sequentially performed from the member assembly process one by one without separating the plurality of impellers 12. You may do it. In each of the above embodiments, the grouping of the plurality of impellers 12 is a pair of left and right from the center in the axial direction, but is not limited thereto. However, with the above configuration, the assembly and balance adjustment can be performed substantially symmetrically in the axial direction, which is more preferable.

また、本実施形態では、圧縮機1の回転体10のバランス調整を一例として説明したが、これに限るものではなく、回転軸に対して複数の被組立部材を組み付けて構成される回転体に対しては同様に適用可能である。   Moreover, in this embodiment, although the balance adjustment of the rotary body 10 of the compressor 1 was demonstrated as an example, it is not restricted to this, The rotary body comprised by assembling several to-be-assembled members with respect to a rotating shaft. The same applies to the same.

10 回転体
11 回転軸
12、12A、12B、12C、12D、12E、12F インペラ(被組立部材)
S1 部材組立工程
S2A、S2B 変位計測工程
S3A、S3B、S10A、S10B 第一の調整工程
S4、S11 第二の調整工程
10 Rotating body 11 Rotating shaft 12, 12A, 12B, 12C, 12D, 12E, 12F Impeller (member to be assembled)
S1 Member assembly process S2A, S2B Displacement measurement process S3A, S3B, S10A, S10B First adjustment process S4, S11 Second adjustment process

Claims (3)

回転軸に、略円盤状の被組立部材を複数組み立てて回転体を構成する際の回転体のバランス調整方法であって、
一の被組立部材を回転軸に組み立てる部材組立工程と、
前記回転軸に組み立てられた前記一の被組立部材の周方向に沿った軸方向の変位分布を計測する変位計測工程と、
計測した前記一の被組立部材の前記変位分布に基づいて、該一の被組立部材の不釣合い量を算出し、前記一の被組立部材の前記回転軸に直交する異なる二面で重量の調整を行う第一の調整工程と、
前記部材組立工程、前記変位計測工程、及び、前記第一の調整工程を、複数の内の二つで組をなす被組立部材のそれぞれで行った後に、組み立てた回転軸及び被組立部材全体の不釣合い量を求めて、該組をなす被組立部材の重心位置をそれぞれ含む前記回転軸に直交する二面で重量の調整を行う第二の調整工程とを備え、
前記部材組立工程、前記変位計測工程、前記第一の調整工程、及び、前記第二の調整工程を、複数の被組立部材を二つずつで組をなして、各組で実施することを特徴とする回転体のバランス調整方法。
A rotating body balance adjustment method for assembling a plurality of substantially disc-shaped members to be assembled on a rotating shaft,
A member assembling step for assembling one to-be-assembled member on the rotating shaft;
A displacement measuring step of measuring a displacement distribution in an axial direction along a circumferential direction of the one member to be assembled assembled to the rotating shaft;
Based on the measured displacement distribution of the one member to be assembled, the unbalance amount of the one member to be assembled is calculated, and the weight is adjusted on two different surfaces orthogonal to the rotation axis of the one member to be assembled. A first adjustment step for performing
After the member assembling step, the displacement measuring step, and the first adjusting step are performed on each of the members to be assembled that are formed of two of a plurality of members, the assembled rotating shaft and the entire member to be assembled A second adjustment step of obtaining an unbalance amount and adjusting the weight on two surfaces orthogonal to the rotation axis, each including the position of the center of gravity of the assembly target member forming the set,
The member assembling step, the displacement measuring step, the first adjusting step, and the second adjusting step are performed in each set by forming a set of two to-be-assembled members. Rotating body balance adjustment method.
請求項1に記載の回転体のバランス調整方法であって、
前記第一の調整工程では、前記不釣合い量として、偶不釣合い量を算出して重量の調整を行っていることを特徴とする回転体のバランス調整方法。
It is the balance adjustment method of the rotary body of Claim 1, Comprising:
In the first adjustment step, the balance adjustment method for a rotating body is characterized in that an even unbalance amount is calculated as the unbalance amount to adjust the weight.
請求項1に記載の回転体のバランス調整方法であって、
前記第一の調整工程では、前記不釣合い量として、動不釣合い量を算出して重量の調整を行っていることを特徴とする回転体のバランス調整方法。
It is the balance adjustment method of the rotary body of Claim 1, Comprising:
In the first adjustment step, the balance adjustment method for a rotating body is characterized in that a dynamic unbalance amount is calculated as the unbalance amount to adjust the weight.
JP2009010177A 2009-01-20 2009-01-20 Rotating body balance adjustment method Active JP4738490B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009010177A JP4738490B2 (en) 2009-01-20 2009-01-20 Rotating body balance adjustment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009010177A JP4738490B2 (en) 2009-01-20 2009-01-20 Rotating body balance adjustment method

Publications (2)

Publication Number Publication Date
JP2010169124A JP2010169124A (en) 2010-08-05
JP4738490B2 true JP4738490B2 (en) 2011-08-03

Family

ID=42701471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009010177A Active JP4738490B2 (en) 2009-01-20 2009-01-20 Rotating body balance adjustment method

Country Status (1)

Country Link
JP (1) JP4738490B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6097532B2 (en) * 2012-11-21 2017-03-15 三菱重工業株式会社 Rotating body balance adjustment method
CN104088961B (en) * 2014-06-27 2016-06-22 长城汽车股份有限公司 The balance shaft apparatus of a kind of variable installation phase place and installation method
US10428836B2 (en) 2015-12-03 2019-10-01 Mitsubishi Heavy Industries Compressor Corporation Rotor balance adjustment method
CN108108571B (en) * 2018-01-11 2021-06-15 中国航空规划设计研究总院有限公司 Adjustable locking device and unlocking design method of shock isolation device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000046121A (en) * 1998-07-31 2000-02-18 Matsushita Electric Ind Co Ltd Dynamic balance correction method
JP2002221003A (en) * 2001-01-25 2002-08-09 Toyota Motor Corp Balancing method for rotor, device therefor and rotor
JP4772594B2 (en) * 2006-06-06 2011-09-14 株式会社東芝 Low-speed balance method and low-speed balance enforcement device for rotating equipment

Also Published As

Publication number Publication date
JP2010169124A (en) 2010-08-05

Similar Documents

Publication Publication Date Title
CA2708950C (en) Methods and system for balancing turbine rotor assemblies
JP5147001B2 (en) Method for balancing the modules of a turbomachine rotor by module
EP1862698B1 (en) Rotor unbalance correction
JP4738490B2 (en) Rotating body balance adjustment method
CA2888008C (en) Method of balancing a spool of a gas turbine engine
CN106837426B (en) Method for optimizing eccentricity of mass center of rotor of engine core machine
US10436224B2 (en) Method and apparatus for balancing a rotor
JP2012088058A (en) Influence coefficient acquisition method
RU2756710C1 (en) Method and apparatus for balancing the rotor
US10274393B2 (en) Mass stimulator and uses thereof
US11499428B2 (en) Rotor balancing method and apparatus
JP6097532B2 (en) Rotating body balance adjustment method
EP3346138B1 (en) Rotor balance adjustment method
CN115541116A (en) Control method for reducing rotation inertia excitation of turbine rotor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110426

R151 Written notification of patent or utility model registration

Ref document number: 4738490

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250