JP4737925B2 - Titanium oxide-organic polymer composite suitable for artificial bone - Google Patents

Titanium oxide-organic polymer composite suitable for artificial bone Download PDF

Info

Publication number
JP4737925B2
JP4737925B2 JP2003293611A JP2003293611A JP4737925B2 JP 4737925 B2 JP4737925 B2 JP 4737925B2 JP 2003293611 A JP2003293611 A JP 2003293611A JP 2003293611 A JP2003293611 A JP 2003293611A JP 4737925 B2 JP4737925 B2 JP 4737925B2
Authority
JP
Japan
Prior art keywords
solution
apatite
titania
titanium oxide
alcohol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003293611A
Other languages
Japanese (ja)
Other versions
JP2005028081A (en
Inventor
正 小久保
将一 川下
孝志 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2003293611A priority Critical patent/JP4737925B2/en
Priority to PCT/JP2004/004406 priority patent/WO2005004940A1/en
Publication of JP2005028081A publication Critical patent/JP2005028081A/en
Priority to US12/796,636 priority patent/US8475826B2/en
Application granted granted Critical
Publication of JP4737925B2 publication Critical patent/JP4737925B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/40Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L27/44Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
    • A61L27/446Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix with other specific inorganic fillers other than those covered by A61L27/443 or A61L27/46

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Dermatology (AREA)
  • Medicinal Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Materials For Medical Uses (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、支持体材料としてポリオレフィン、ポリエステルまたはポリアミドを用い、前記支持体表面に直接チタニア溶液処理およびこれに続けて温水または酸を加えた室温〜95℃溶液に浸漬する処理して、アパタイトに対して過飽和な水溶液あるいは哺乳動物の体液から哺乳動物の骨のアパタイトと同じCa/P原子比のアパタイトを形成する酸化チタン膜を形成した人工骨用酸化チタン−有機ポリマー複合材料に関する。 The present invention is a polyolefin, polyester or polyamide used as the supporting bearing member material is treated immersed in room temperature to 95 ° C. The solution was added to hot water or acid followed directly titania solution treatment and to the support surface, apatite The present invention relates to a titanium oxide-organic polymer composite material for artificial bone formed with a titanium oxide film that forms apatite having the same Ca / P atomic ratio as apatite of mammalian bone from a supersaturated aqueous solution or mammalian body fluid.

骨としての強度を有し、擬似体液(SBF)中でのアパタイトの形成能の高い、換言すれば、生体活性の高い層の形成になじみがあるエステル基および/または水酸基を含有する有機ポリマー、例えばエチレン−ビニルアルコール共重合体(以下、EVOH)を基材形成材料として用いて、該ポリマーからなる基材の表面に、SBFからアパタイト層を形成できる無機材料の層を形成した人工骨用の複合材料の研究が盛んに行われている。
この様な中で、基体材料の表面に生体活性の高い層が形成され易くするための研究もされてきた。特に前記生体活性の層の形成に有利な官能性の基を持たない有機ポリマーを使用する場合にはこのような中間層の形成は必須のものと考えられていた。また前記中間層の形成に3−イソシアナートプロピルトリエトキシシラン〔OCN(CHSi(OC〕(以下、IPTS)およびシリカ溶液を反応させて変性した基板材料が提案され、更に、前記表面に珪酸カルシウム(calcium silicate)溶液で処理することが提案されていた。
An organic polymer containing an ester group and / or a hydroxyl group having strength as a bone and having a high ability to form apatite in a simulated body fluid (SBF), in other words, familiar to the formation of a highly bioactive layer; For example, for an artificial bone in which an ethylene-vinyl alcohol copolymer (hereinafter referred to as EVOH) is used as a base material, and an inorganic material layer capable of forming an apatite layer from SBF is formed on the surface of the base material made of the polymer. Research on composite materials is actively conducted.
Under such circumstances, research has been conducted to facilitate the formation of a highly bioactive layer on the surface of the substrate material. In particular, when an organic polymer having no functional group advantageous for the formation of the bioactive layer is used, the formation of such an intermediate layer has been considered essential. In addition, a substrate material modified by reacting 3-isocyanatopropyltriethoxysilane [OCN (CH 2 ) 3 Si (OC 2 H 5 ) 3 ] (hereinafter IPTS) and a silica solution for the formation of the intermediate layer has been proposed. Furthermore, it has been proposed to treat the surface with a calcium silicate solution.

M.Uchida,H.−M.Kim,T.Kokubo,S.Fujibayashi,T.Nakamura J.Biomed.Mater.Res.,64A(2003)164−170.M.M. Uchida, H .; -M. Kim, T .; Kokubo, S .; Fujibayashi, T .; Nakamura J. et al. Biomed. Mater. Res. 64A (2003) 164-170. 特開2002−325834、特許請求の範囲、〔0012〕、〔0013〕JP-A-2002-325834, claims, [0012], [0013]

前記技術に対し、非特許文献1には、アナターゼのような特定の構造を持つチタニアゲル中のTi−OH基がSBF中において短期間内にアパタイト核の形成を引き起こすことを報告している。前記基材表面をIPTS処理した上に、更に珪酸カルシウ厶(calciumsilicate)溶液で処理した試料はSBF中で2日以内でもその表面にアパタイトを形成するが、前記珪酸カルシウムゲル層は急速にSBF中に溶解すので試料の表面でのアパタイトの形成を制御するのが困難であったのに対し、チタニアゲルのSBFへの溶解度は前記珪酸カルシウムゲル層に比べて格段に小さいから、Ti−OH基を持つチタニアゲル層は生体活性層として優れている。 In contrast to the above technique, Non-Patent Document 1 reports that Ti—OH groups in a titania gel having a specific structure such as anatase cause the formation of apatite nuclei in SBF within a short period of time. The sample treated with IPTS on the surface of the base material and further treated with a calcium silicate solution forms apatite on the surface even within 2 days in SBF, but the calcium silicate gel layer rapidly in SBF. Since it was difficult to control the formation of apatite on the surface of the sample because it dissolves in Ti, the solubility of titania gel in SBF is much smaller than that of the calcium silicate gel layer. The titania gel layer possessed is excellent as a bioactive layer.

前記特許文献1には、有機ポリマーから実質的になる基材表面にチタニアゲルを形成後、該チタニアグルを温水あるいは酸水溶液処理することにより、哺乳動物の体液から哺乳動物の骨のアパタイトと同じCa/P原子比のアパタイトを形成できる酸化チタン膜に変性して得られた人工骨用酸化チタン−有機ポリマー複合材料の発明が報告されているが、アパタイトを形成する酸化チタン膜を、中間層の形成を要することなく、形成できる基材を構成するポリマーとしては、水酸基および/またはその誘導体、チオール基、アルデヒド基、アミノ基を含有するものを使用することが必須であることを報告している〔0013〕。
従って、前記人工骨の複合材料は、基材を構成するポリマーとして活性な基を持つものを使用するか、生体活性層の形成を可能にする中間処理を必要とするものであった。
In Patent Document 1, a titania gel is formed on the surface of a substrate substantially composed of an organic polymer, and then the titania glu is treated with warm water or an aqueous acid solution, so that the same Ca / An invention of a titanium oxide-organic polymer composite material for artificial bone obtained by modifying to a titanium oxide film capable of forming an apatite having a P atomic ratio has been reported, but a titanium oxide film forming apatite is formed as an intermediate layer. It is reported that it is essential to use a polymer containing a hydroxyl group and / or a derivative thereof, a thiol group, an aldehyde group, or an amino group as a polymer constituting a base material that can be formed [ 0013].
Therefore, the composite material of the artificial bone uses a material having an active group as a polymer constituting the base material, or requires an intermediate treatment that enables formation of a bioactive layer.

本発明の課題は、基材を構成する材料として、人工骨の基材として前記活性基を有さないポリマーを用い、かつ、前記中間層の形成を必要としないで人工骨用の酸化チタン−有機高分子複合体を提供することである。
前記課題を解決すべく、基材ポリマーとして汎用され、または有利な材料である、ポリオレフィン、特にポリエチレン、特に低密度ポリエチレン、ポリエステル、特にポリエチレンテレフタレート、またはナイロン、特に6−ナイロンを用いて、前記中間層の形成を要することなく人工骨用酸化チタン−有機ポリマー複合材料を得ることができないか、前記基材構成材料から得た試料、生理活性酸化チタン層形成用材料および酸化チタン−有機ポリマー複合材料形成条件などの組み合わせを、多くの試行錯誤により検討した。後の実施例とEVOHを用いる比較例から理解されるように、驚くベき結果得られた。すなわち、前記基材構成材料を前記本発明者らが報告した特許文献1に記載の「チタンテトラアルコキシドのアルコール溶液に酸性のアルコールと水からなる溶液を加えて得られた温度0℃〜50℃溶液に数秒間〜1週間浸漬するチタニア溶液処理を施し前記基材表面にチタニアゲルを形成し、該チタニアゲルを形成した基材を50℃〜95℃の温水または酸を加えた室温〜95℃溶液に浸漬処理して」基材表面に形成した酸化チタン層が高い生体活性を持ち、かつその上に形成されたアパタイトが接着テープを用いた剥離試験において、高い耐剥離性を持っていることを確認し、前記課題を解决することができた。
An object of the present invention is to use a polymer having no active group as a base material of an artificial bone as a material constituting the base material, and titanium oxide for artificial bone without requiring the formation of the intermediate layer. An organic polymer composite is provided.
In order to solve the above-mentioned problems, the intermediate is used by using a polyolefin, particularly polyethylene, particularly low-density polyethylene, polyester, particularly polyethylene terephthalate, or nylon, particularly 6-nylon, which is a widely used or advantageous material as a base polymer. A titanium oxide-organic polymer composite material for artificial bone cannot be obtained without forming a layer, or a sample obtained from the base material constituting material, a bioactive titanium oxide layer forming material, and a titanium oxide-organic polymer composite material The combination of formation conditions was examined by many trials and errors. As can be seen from the later examples and comparative examples using EVOH, surprising results were obtained. That is, the temperature of 0 to 50 ° C. obtained by adding a solution composed of an acidic alcohol and water to an alcohol solution of titanium tetraalkoxide described in Patent Document 1 reported by the inventors of the present invention. A titania solution treatment is performed by immersing the solution in a solution for several seconds to one week to form a titania gel on the surface of the substrate, and the substrate on which the titania gel is formed is added to a room temperature to 95 ° C solution to which 50 ° C to 95 ° C warm water or acid is added. It is confirmed that the titanium oxide layer formed on the surface of the substrate after immersion treatment has high bioactivity and that the apatite formed thereon has high peel resistance in the peel test using adhesive tape. And the above-mentioned problem could be solved.

本発明第1は、(1)ポリオレフィン、ポリエステルおよびナイロンからなる群から選択される低密度ポリエチレン、ポリエチレンテレフタレート及び6−ナイロンからなる基材に、直接チタンテトラアルコキシドのアルコール溶液に酸性のアルコールと水からなる溶液を加えて得られた温度0℃〜50℃の溶液に数秒間〜1週間浸漬するチタニア溶液処理を施し前記基材表面にチタニアゲルを形成し、該チタニアゲルを形成した基材を50℃〜95℃の温水または酸を加えた室温〜95℃の溶液に浸漬処理して、アパタイトに対して過飽和な水溶液中あるいは哺乳動物の体液から哺乳動物の骨のアパタイトと同じCa/P原子比のアパタイトを形成する酸化チタン膜に変性することにより得られる人工骨用酸化チタン−有機ポリマー複合材料の製造方法である。好ましくは、(2)チタンテトラアルコキシドがチタン酸テトライソプロピルであり、アルコールがエタノールであり、酸が無機酸である前記(1)に記載の人工骨用酸化チタン−有機ポリマー複合材料であり、より好ましくは、(3)ポリオレフィンが低密度ポリエチレンであり、ポリエステルがポリエチレンテレフタレートであり、そしてナイロンが6−ナイロンである前記(1)または(2)に記載の人工骨用酸化チタン−有機ポリマー複合材料であり、一層好ましくは、(4)チタニア処理溶液がチタンアルコキシとアルコールの溶液を温度0℃〜10℃に保持しながら、特に氷冷水により前記温度に保持しながら酸性のアルコールと水からなる溶液滴下して調製したものであること前記(1)、(2)または(3)に記載の人工骨用酸化チタン−有機ポリマー複合材料の製造方法である。 The first aspect of the present invention is (1) a base material consisting of low density polyethylene, polyethylene terephthalate and 6-nylon selected from the group consisting of polyolefin, polyester and nylon, and an acidic alcohol and water directly in an alcohol solution of titanium tetraalkoxide. A titania solution treatment is performed by immersing in a solution at a temperature of 0 ° C. to 50 ° C. obtained by adding a solution comprising a titania solution treatment for several seconds to 1 week to form a titania gel on the surface of the substrate, and the substrate on which the titania gel is formed is treated at 50 ° C. It is immersed in a solution at room temperature to 95 ° C. to which warm water or acid at ˜95 ° C. is added, and the same Ca / P atomic ratio as that of apatite of mammalian bone is obtained from an aqueous solution supersaturated with apatite or from a mammalian body fluid. Titanium oxide-organic polymer composite for artificial bone obtained by modification to titanium oxide film forming apatite It is a method of manufacture. Preferably, (2) the titanium tetraalkoxide is tetraisopropyl titanate, the alcohol is ethanol, and the acid is an inorganic acid, the titanium oxide-organic polymer composite material for artificial bones according to (1) above, Preferably, (3) the titanium oxide-organic polymer composite material for artificial bone according to (1) or (2) above, wherein the polyolefin is low density polyethylene, the polyester is polyethylene terephthalate, and the nylon is 6-nylon. More preferably, (4) the titania-treated solution is a solution comprising an acidic alcohol and water while maintaining a solution of titanium alkoxy and alcohol at a temperature of 0 ° C. to 10 ° C., particularly while maintaining the temperature with ice-cold water. The artificial bone according to (1), (2) or (3), which is prepared by dripping Titanium oxide - a method for producing an organic polymer composites.

本発明の第2は、(5)ポリオレフィン、ポリエステルおよびナイロンからなる群から選択される低密度ポリエチレン、ポリエチレンテレフタレート及び6−ナイロンからなる基材に、直接チタンテトラアルコキシドのアルコール溶液に酸性のアルコールと水からなる溶液を加えて得られた温度0℃〜50℃の溶液に数秒〜1週間浸漬するチタニア溶液処理を施し前記基材表面にチタニアゲルを形成し、該チタニアゲルを形成した基材を50℃〜95℃の温水または酸を加えた室温〜95℃の溶液に浸漬処理して、アパタイトに対して過飽和な水溶液中あるいは哺乳動物の体液から哺乳動物の骨のアパタイトと同じCa/P原子比のアパタイトを形成する酸化チタン膜に変性し人工骨用酸化チタン−有機ポリマー複合材料を得、前記複合材料をアパタイトに対して過飽和な水溶液に浸漬してアパタイトを形成した人工骨用複合体の製造方法であり、好ましくは、(6)人工骨用酸化チタン−有機ポリマー複合材料がチタンテトラアルコキシドとしてチタン酸テトライソプロピルを、アルコールとしてエタノールをそして酸として無機酸を用いて得られたものである前記(5)に記載のアパタイトを形成した人工骨用複合体の製造方法であり、より好ましくは、(7)人工骨用酸化チタン−有機ポリマー複合材料がポリオレフィンとして低密度ポリエチレンを、ポリエステルとしてポリエチレンテレフタレートをそしてナイロンとして6−ナイロン用いて得られたものである前記(5)または(6)に記載のアパタイトを形成した人工骨用複合体の製造方法であり、一層好ましくは、(8)人工骨用酸化チタン−有機ポリマー複合材料がチタンテトラアルコキシドとアルコールの溶液を温度0℃〜10℃に保持しながら酸性のアルコールと水からなる溶液を滴下して調製したチタニア処理溶液を用いて得られたものである前記(5)、(6)または(7)に記載のアパタイトを形成した人工骨用複合体の製造方法である。
The second of the present invention is (5) a base material consisting of low density polyethylene, polyethylene terephthalate and 6-nylon selected from the group consisting of polyolefin, polyester and nylon, and an acidic alcohol directly in an alcohol solution of titanium tetraalkoxide. A titania solution treatment is performed by immersing in a solution at a temperature of 0 ° C. to 50 ° C. obtained by adding a solution made of water for several seconds to 1 week to form a titania gel on the surface of the substrate, and the substrate on which the titania gel is formed is heated to 50 ° C. It is immersed in a solution at room temperature to 95 ° C. to which warm water or acid at ˜95 ° C. is added, and the same Ca / P atomic ratio as that of apatite of mammalian bone is obtained from an aqueous solution supersaturated with apatite or from a mammalian body fluid. Modified with titanium oxide film forming apatite to obtain titanium oxide-organic polymer composite material for artificial bone, the composite material A method for producing supersaturated dipping to form apatite in aqueous artificial bone for complex relative apatite, preferably, (6) artificial bone titanium oxide - titanate organic polymer composite as a titanium tetraalkoxide tetra The method for producing a composite for artificial bone according to the above (5), which is obtained using isopropyl, ethanol as alcohol, and inorganic acid as acid, more preferably (7) The apatite according to (5) or (6) above, wherein the titanium oxide-organic polymer composite material for artificial bone is obtained by using low density polyethylene as the polyolefin, polyethylene terephthalate as the polyester, and 6-nylon as the nylon. a form the process for producing an artificial bone for the complex, more preferably, 8) Using a titania-treated solution prepared by dropping a solution composed of acidic alcohol and water while maintaining a solution of titanium tetraalkoxide and alcohol at a temperature of 0 ° C to 10 ° C. This is a method for producing a composite for artificial bone formed with the apatite according to the above (5), (6) or (7).

発明の効果として、形成されるアパタイト層と酸化チタン−有機ポリマー複合材料とが強固に結合する人工骨用酸化チタン−有機ポリマー複合材料を提供することができた。 As an effect of the invention, it was possible to provide a titanium oxide-organic polymer composite material for artificial bone in which the formed apatite layer and the titanium oxide-organic polymer composite material are firmly bonded.

本発明をより詳細に説明する。
A.基板材料としては、ポリオレフィン、ポリエステルおよびナイロンからなる群から選択される高分子化合物を用いることができる。特に密度ポリエチレン(住友化学社製)、ポリエチレンテレフタレート(PET、東洋化成社製)および6−ナイロン(Scientific Polymer Products,Co.Ltd.)を好ましいものとして挙げることができる。人工骨としての有用性を確認するための試料(S)としては、10×10×1mmの基板を製造して用いた。
基材はブロック、シート、ファイバー、テープ、フィラメント、糸など色々な構造の物で良く、更に、前記材料を素材として二次加工品、例えば、織物(三次元織物などを含む)、不織布、スライーバーなどとして、補強用人工骨としての特性を改善した形状とすることができる。
The present invention will be described in more detail.
A. As the substrate material, a polymer compound selected from the group consisting of polyolefin, polyester and nylon can be used. Particularly preferred are low density polyethylene (Sumitomo Chemical Co., Ltd.), polyethylene terephthalate (PET, Toyo Kasei Co., Ltd.) and 6-nylon (Scientific Polymer Products, Co. Ltd.). As a sample (S) for confirming the usefulness as an artificial bone, a 10 × 10 × 1 mm 3 substrate was manufactured and used.
The substrate may be of various structures such as blocks, sheets, fibers, tapes, filaments, threads, and the like, and further processed from the above materials, such as woven fabrics (including three-dimensional woven fabrics), non-woven fabrics, and slivers. as such, characteristics of the reinforcing artificial bone can improve shape and to Rukoto a.

B.チタニア膜を形成するためのチタニア処理
チタニア処理の工程を図1に示す。
前記A.で調製した試料基板(S)の一つの角に白金線(Pt)を融着させた。
チタニア溶液(T.S)は、Ti(OiC(=TiPT)と半量のCOHを含む0〜10℃に保持した溶液に、例えば氷冷により0〜10℃に保持する条件下で、残り半量のCOHとHNOとHOを含む溶液をゆっくりと滴下することにより調製した。原料比は、Ti(OiC:HO:COH:HNO=1.0:0.1〜10:1〜100:0.01〜10(モル比)である。
調製されたチタニア溶液中に、0〜50℃、例えば25℃で数秒間〜1週間、例えば24時間、前記試料を浸漬した。その後、試料を0.1〜10cm、例えば2cm/分の速度で引き上げ(P.U)チタニア溶液処理試料(T.S.S)を得た。定温乾燥器(空気中、ヤマト社製、DK−600)、加熱温度30〜150℃で、24時間かけて乾燥した。
B. FIG. 1 shows a process of titania treatment titania treatment for forming a titania film.
A. A platinum wire (Pt) was fused to one corner of the sample substrate (S) prepared in (1).
The titania solution (TS) is a solution kept at 0 to 10 ° C. containing Ti (OiC 3 H 7 ) 4 (= TiPT) and a half amount of C 2 H 5 OH. It was prepared by slowly dropping a solution containing the remaining half amount of C 2 H 5 OH, HNO 3 and H 2 O under the condition of holding. The raw material ratio is Ti (OiC 3 H 7 ) 4 : H 2 O: C 2 H 5 OH: HNO 3 = 1.0: 0.1 to 10: 1 to 100: 0.01 to 10 (molar ratio) is there.
The sample was immersed in the prepared titania solution at 0 to 50 ° C., for example, 25 ° C. for several seconds to 1 week, for example, 24 hours. Thereafter, the sample was pulled up at a speed of 0.1 to 10 cm, for example, 2 cm / min (PU), and a titania solution treated sample (TS) was obtained. It was dried for 24 hours at a constant temperature dryer (in the air, manufactured by Yamato, DK-600) at a heating temperature of 30 to 150 ° C.

C.B.で調製したチタニアゲル層にアパタイト形成能を付与する処理。
この処理は、チタニアゲルの温水あるいは酸水溶液(W.W.T)処理によりアナターゼ微結晶中にTi−OH基を有するチタニア膜を形成させるもので、酸濃度pH7以下および/または期間1時間〜1ヶ月および/または温度30℃〜120℃、特に50℃〜95℃の温水または酸を加えた室温〜95℃溶液に浸漬処理の条件を好ましいものとして採用し得るものである。
ここでは無機酸溶液としてHCl水溶液を用いて処理した場合を示した(図2)。例えば、前記B.の処理をした試料を0.1M塩酸水溶液で80℃で8日間浸漬する温水処理をした。
C. B. Treatment for imparting apatite-forming ability to the titania gel layer prepared in (1).
This treatment is to form a titania film having a Ti-OH group in anatase microcrystals by warm water or acid aqueous solution (WWT) treatment of titania gel, and has an acid concentration of pH 7 or less and / or a period of 1 hour to 1 The conditions of immersion treatment can be preferably employed in a room temperature to 95 ° C solution to which warm water or acid at a temperature of 30 ° C to 120 ° C, particularly 50 ° C to 95 ° C, and particularly an acid is added.
Here, the case where it processed using HCl aqueous solution as an inorganic acid solution was shown (FIG. 2). For example, the B.I. The treated sample was subjected to warm water treatment in which the sample was immersed in a 0.1 M aqueous hydrochloric acid solution at 80 ° C. for 8 days.

D.チタニア溶液処理、更に温水処理した種々の高分子の表面構造変化を下記の測定機器類を使用して分析した。
1,電界放出型走査型電子顕微鏡(FE−SEM);日立製作所社製、製品名S−4700。
2,エネルギー分散型X線分光分析(EDX);堀場製作所社製、製品名EMAX−7000。
3,X線光電子分光器(XPS:MT−5500、ULVAC−PHI Co.Ltd.製)
4,薄膜X線回折計(TF−XRD:RINT2500、(株)Rigaku製)
5,チタニア薄膜の剥離強度測定;住友3M社製、製品名スコッチテープ(登録商標)による基板表面に形成されたアパタイトの接着強度の測定
D. Changes in the surface structure of various polymers treated with titania solution and further with hot water were analyzed using the following measuring instruments.
1, field emission scanning electron microscope (FE-SEM); manufactured by Hitachi, Ltd., product name S-4700.
2, energy dispersive X-ray spectroscopic analysis (EDX); manufactured by Horiba Ltd., product name EMAX-7000.
3, X-ray photoelectron spectrometer (XPS: MT-5500, manufactured by ULVAC-PHI Co. Ltd.)
4, Thin film X-ray diffractometer (TF-XRD: RINT2500, manufactured by Rigaku Corporation)
5, Measurement of peel strength of titania thin film; Measurement of adhesive strength of apatite formed on the substrate surface by the product name Scotch Tape (registered trademark) manufactured by Sumitomo 3M

E.擬似体液(SBF)中への浸漬によるアパタイト形成能の試験
試料を、pH7.40および温度36.5℃に調整された30mLのSBFに、最長7間までの種々の期間浸漬する。試料は該溶液から取り出し、超純水により静かに洗浄後、室温にて乾燥する。
アパタイトに対して過飽和な水溶液の一例(擬似体液:SBF、ヒトの血漿とほぼ等しい無機イオン濃度を有する。〔T.Kokubo,H.Kusitani,S.Sakka,T.Kitsugi and T.Yamamuro,“Solutions able to reproduce in vivo surface−structure changes in bioactive glass−ceramic A−W”,J.Biomed,Mater.Res.24,721.734(1996)〕を表1に示す。
E. A test sample of apatite-forming ability by immersion in simulated body fluid (SBF) is immersed in 30 mL of SBF adjusted to pH 7.40 and temperature 36.5 ° C. for various periods up to a maximum of 7. The sample is taken out from the solution, gently washed with ultrapure water, and dried at room temperature.
An example of an aqueous solution supersaturated with apatite (simulated body fluid: SBF, having an inorganic ion concentration almost equal to that of human plasma. Table 1 shows ble to reproduct in vivo surface-structural changes in bioactive glass-ceramic A-W ”, J. Biomed, Mater. Res. 24, 721.734 (1996)].

Figure 0004737925
Figure 0004737925

本発明の実施例1を示す。
試料の作成。
圧力90kgf/Cm、時間10分で、それぞれの樹脂の温度、ポリエチレン(PE)では180℃、ポリエチレンテレフタレート(PT)では270℃、ナイロン 6(N−6)では230℃、比較例のエチレン−ビニルアルコール共重合体(EVOH)では210℃の条件において加圧プレスして有機高分子基板を作製した。
Example 1 of the present invention will be described.
Sample preparation.
Pressure 90 kgf / Cm 2 , time 10 minutes, temperature of each resin, polyethylene (PE) 180 ° C., polyethylene terephthalate (PT) 270 ° C., nylon 6 (N-6) 230 ° C., comparative ethylene- A vinyl alcohol copolymer (EVOH) was pressed under pressure at 210 ° C. to prepare an organic polymer substrate.

下記の表2の原料をチタニア溶液の調製に用いた。TiPT(3.8687g)と半量のCOH(2.9g)を含む溶液を調製し、該溶液を0〜10℃に氷冷しながら、該溶液に残りの半量のエタノール(2.9g)、水(0.2450g)および硝酸(0.0858g)からなる溶液を加えて加水分解しチタニアゲル溶液を調製した。
25℃に保持した前記のチタニアゲル溶液10中に前記プレス成形した各試料を24時間浸漬し、チタニア溶液処理をした。前記浸漬後、試料を2cm/分の速度で引き上げ、乾燥器中、80℃で1日間乾燥させに前記プレス成形しチタニア溶液処理試料(S)を作成した。
The raw materials shown in Table 2 below were used for preparing the titania solution. A solution containing TiPT (3.8687 g) and half amount of C 2 H 5 OH (2.9 g) was prepared, and the solution was ice-cooled to 0 to 10 ° C. while the remaining half amount of ethanol (2. 9 g), water (0.2450 g) and nitric acid (0.0858 g) were added and hydrolyzed to prepare a titania gel solution.
Each press-molded sample was immersed in 10 g of the titania gel solution held at 25 ° C. for 24 hours, and treated with a titania solution. After the immersion, the sample was pulled up at a rate of 2 cm / min, and press-molded in a drier at 80 ° C. for 1 day to prepare a titania solution treated sample (S).

Figure 0004737925
Figure 0004737925

前記チタニア溶液処理試料(S)のチタニアゲル層にアパタイト形成能を付与するために、前記チタニア溶液処理試料(S)を0.1M塩酸水溶液10mLに80℃で8日間浸漬し、アパタイトに対して過飽和な水溶液との接触によりアパタイト層形成能を有する酸化チタン層に変性した。 In order to provide the titania gel layer of the titania solution-treated sample (S) with an apatite forming ability, the titania solution-treated sample (S) was immersed in 10 mL of 0.1 M hydrochloric acid aqueous solution at 80 ° C. for 8 days, and was supersaturated with respect to the apatite. Was modified to a titanium oxide layer having the ability to form an apatite layer by contact with an aqueous solution.

図3に、シランカップリング剤(SC)処理することなく、前記チタニアゲル溶液処理及びそれに続く温水処理を施した試料を前記SBFに7日間浸漬したPE、PET、ナイロン−6及びEVOHの薄膜X線回折パターンを示す。PEの場合には、チタニア−温水処理によりアナタース及び/又はブルッカイトに帰属されるピークが観察された。SBF浸漬7日後には、いずれの試料においてもアパタイトに帰属されるピークが観察された。 FIG. 3 shows a thin film X-ray of PE, PET, nylon-6 and EVOH in which a sample subjected to the titania gel solution treatment and subsequent hot water treatment without silane coupling agent (SC) treatment was immersed in the SBF for 7 days. The diffraction pattern is shown. In the case of PE, a peak attributed to anatase and / or brookite was observed by titania-warm water treatment. After 7 days of SBF immersion, a peak attributed to apatite was observed in any sample.

図4に、SC処理することなく、チタニア溶液及びそれに続く温水処理を施した後、SBFに2日または7日間浸漬されたPE、PET、Nylon6およびEVOHのFE−SEM写真を示す。チタニア−温水溶液処理により、薄層が形成されていた。EDX測定によれば、この層はチタンを含んでいた。これより、SC処理を施さなくとも、直接チタニア−温水処理することにより、試料表面にチタニア層を形成させることができることが分かる。SBF浸漬2日後には、PE、PET及びNylon6の表面には、ほぼ均一なアパタイト層が形成されていたが、EVOHの表面には、アパタイトは形成されていないことが分かった。SBF浸漬7日後には、EVOH表面にもアパタイトが形成したが、その量はきわめて少なかった。 FIG. 4 shows FE-SEM photographs of PE, PET, Nylon 6 and EVOH immersed in SBF for 2 days or 7 days after performing titania solution and subsequent hot water treatment without SC treatment. A thin layer was formed by the titania-warm aqueous solution treatment. According to EDX measurements, this layer contained titanium. From this, it can be seen that a titania layer can be formed on the surface of the sample by direct titania-warm water treatment without SC treatment. After 2 days of SBF immersion, it was found that a substantially uniform apatite layer was formed on the surfaces of PE, PET and Nylon 6, but no apatite was formed on the surface of EVOH. After 7 days of SBF immersion, apatite was also formed on the EVOH surface, but the amount was very small.

図5に、スコッチテープ(登録商標)による引き剥がし試験後の試料表面のFE−SEM写真を示す。PE、PET及びNylon6の場合には、引き剥がし試験によってもアパタイトは剥離していなかったが、EVOHの場合には、アパタイトは基板から剥離した。 In FIG. 5, the FE-SEM photograph of the sample surface after the peeling test by a Scotch tape (trademark) is shown. In the case of PE, PET, and Nylon 6, the apatite was not peeled by the peeling test, but in the case of EVOH, the apatite was peeled from the substrate.

以上のことから、基材材料として特定のものを用いることにより、SC処理のような前処理をすることなく、本発明者らが開発した、基材表面にチタニアゲルを形成するチタニア溶液と該チタニアゲルを50℃〜95℃の温水または酸を加えた室温〜95℃溶液に浸漬処理して、アパタイトに対して過飽和な水溶液中あるいは哺乳動物の体液から哺乳動物の骨のアパタイトと同じCa/P原子比のアパタイトを形成する酸化チタン膜に変性する処理とを組み合わせることにより、酸化チタン膜との結合強度が優れたアパタイトが形成され、かつ、生体活性が優れた人工骨用酸化チタン−有機ポリマー複合材料を提供できた。 From the above, a titania solution that forms a titania gel on the surface of a base material developed by the present inventors without using a pretreatment such as SC treatment by using a specific base material, and the titania gel Is immersed in warm water of 50 ° C. to 95 ° C. or a solution of room temperature to 95 ° C. to which an acid is added, and the same Ca / P atom as apatite of mammalian bone is obtained from an aqueous solution supersaturated with apatite or from a body fluid of a mammal. Titanium oxide-organic polymer composite for artificial bones, which has apatite with excellent bond strength with titanium oxide film and is bioactive by combining with treatment to modify titanium oxide film to form a specific ratio of apatite Could provide material.

試料のチタニア溶液処理の工程の説明Explanation of process of titania solution treatment of sample 試料の温水処理の工程の説明Explanation of hot water treatment process of sample 実施例1のチタニア溶液処理−温水処理した試料、およびSBF浸漬後TF−XRD(薄膜X線回折)パターンExample 1 titania solution treated-warm water treated sample and TF-XRD (thin film X-ray diffraction) pattern after SBF immersion 実施例1のチタニア溶液処理−温水処理した試料、およびSBF浸漬後のアパタイト形成特性を示すFE−SEM(電界放出型走査型電子顕微鏡)写真Example 1 titania solution treated-warm water treated sample, and FE-SEM (field emission scanning electron microscope) photograph showing apatite formation characteristics after immersion in SBF 実施例1で得られたアパタイト形成試料のスコッチテープ(登録商標)による剥離試験後のFE−SEM(電界放出型走査型電子顕微鏡)写真FE-SEM (Field Emission Scanning Electron Microscope) photograph after the peel test of the apatite-formed sample obtained in Example 1 with Scotch tape (registered trademark)

Claims (7)

低密度ポリエチレン、ポリエチレンテレフタレート及び6−ナイロンからなる群から選択される高分子化合物からなる基材中間層を形成することなく、チタンテトラアルコキシドのアルコール溶液に酸性のアルコールと水からなる溶液を加えて得られた溶液に温度0℃〜50℃、数秒〜1週間浸漬するチタニア溶液処理を施し、前記基材表面に直接チタニアゲルを形成し、該チタニアゲルを形成した基材を50℃〜95℃の温水または酸を加えた室温〜95℃溶液に浸漬処理して、アパタイトに対して過飽和な水溶液中あるいは哺乳動物の体液から哺乳動物の骨のアパタイトと同じCa/P原子比のアパタイトを形成する酸化チタン膜に変性することを特徴とする人工骨用酸化チタン−有機ポリマー複合材料の製造方法 A base material made of a polymer compound selected from the group consisting of low-density polyethylene, polyethylene terephthalate and 6-nylon , without forming an intermediate layer, an alcohol solution of titanium tetraalkoxide with an acid alcohol and water solution. In addition, a titania solution treatment was performed by immersing the obtained solution in a temperature of 0 ° C. to 50 ° C. for several seconds to 1 week to form a titania gel directly on the surface of the substrate, and the base material on which the titania gel was formed was 50 ° C. to 95 ° C. Apatite with the same Ca / P atomic ratio as that of mammalian bone apatite in aqueous solution supersaturated with apatite or from bodily fluids of mammals by immersion in a solution of room temperature to 95 ° C. with the addition of warm water or acid A method for producing a titanium oxide-organic polymer composite material for artificial bone, characterized by being modified into a titanium oxide film. チタンテトラアルコキシドがチタン酸テトライソプロピルであり、アルコールがエタノールであり、酸が無機酸である請求項1に記載の人工骨用酸化チタン−有機ポリマー複合材料の製造方法The method for producing a titanium oxide-organic polymer composite material for artificial bone according to claim 1, wherein the titanium tetraalkoxide is tetraisopropyl titanate, the alcohol is ethanol, and the acid is an inorganic acid. チタニア処理溶液がチタンテトラアルコキシドとアルコールの溶液を温度0℃〜10℃に保持しながら酸性のアルコールと水からなる溶液を滴下して調製したものである請求項1または2に記載の人工骨用酸化チタン−有機ポリマー複合材料の製造方法。
Artificial according to Der Ru請 Motomeko 1 or 2 as titania treatment solution was prepared by dropping a solution composed of alcohol and acid water while maintaining the solution of titanium tetraalkoxide and an alcohol at a temperature 0 ° C. to 10 ° C. A method for producing a titanium oxide-organic polymer composite material for bone.
低密度ポリエチレン、ポリエチレンテレフタレート及び6−ナイロンからなる群から選択される高分子化合物からなる基材に、中間層を設けることなくチタンテトラアルコキシドのアルコール溶液に酸性のアルコールと水からなる溶液を加えて得られた温度0℃〜50℃の溶液に数秒〜1週間浸漬するチタニア溶液処理を施し、前記基材表面に直接チタニアゲルを形成し、該チタニアゲルを形成した基材を50℃〜95℃の温水または酸を加えた室温〜95℃の溶液に浸漬処理して、アパタイトに対して過飽和な水溶液中あるいは哺乳動物の体液から哺乳動物の骨のアパタイトと同じCa/P原子比のアパタイトを形成する酸化チタン膜に変性し人工骨用酸化チタン−有機ポリマー複合材料を得、前記複合材料をアパタイトに対して過飽和な水溶液に浸漬してアパタイトを形成した人工骨用複合体の製造方法 To a base material made of a polymer compound selected from the group consisting of low-density polyethylene, polyethylene terephthalate and 6-nylon , an acid alcohol and water solution is added to an alcohol solution of titanium tetraalkoxide without providing an intermediate layer. The obtained solution having a temperature of 0 ° C. to 50 ° C. is treated with a titania solution soaked for several seconds to one week to form a titania gel directly on the surface of the substrate, and the substrate on which the titania gel is formed is heated to 50 ° C. to 95 ° C. Alternatively, it is immersed in a solution at room temperature to 95 ° C. to which an acid is added to form an apatite having the same Ca / P atomic ratio as that of mammalian bone apatite in an aqueous solution supersaturated with apatite or from a body fluid of a mammal. Titanium membrane is modified to obtain titanium oxide-organic polymer composite material for artificial bone, and the composite material is supersaturated with apatite. Process for producing an artificial bone for the complex formed apatite by dipping into the solution. 人工骨用酸化チタン−有機ポリマー複合材料がチタンテトラアルコキシドとしてチタン酸テトライソプロピルを、アルコールとしてエタノールをそして酸として無機酸を用いて得られたものである請求項に記載のアパタイトを形成した人工骨用複合体の製造方法The artificial bone-formed artificial apatite according to claim 4 , wherein the titanium oxide-organic polymer composite material for artificial bone is obtained by using tetraisopropyl titanate as titanium tetraalkoxide, ethanol as alcohol and inorganic acid as acid. A method for producing a bone composite. 人工骨用酸化チタン−有機ポリマー複合材料が低密度ポリエチレン、ポリエチレンテレフタレート及び6−ナイロンからなる群から選択される高分子化合物を用いて得られたものである請求項4または5に記載のアパタイトを形成した人工骨用複合体の製造方法The apatite according to claim 4 or 5, wherein the titanium oxide-organic polymer composite material for artificial bone is obtained using a polymer compound selected from the group consisting of low density polyethylene, polyethylene terephthalate and 6-nylon. A method for producing the formed composite for artificial bone. 人工骨用酸化チタン−有機ポリマー複合材料がチタンテトラアルコキシドとアルコールの溶液を温度0℃〜10℃に保持しながら酸性のアルコールと水からなる溶液を滴下して調製したチタニア処理溶液を用いて得られたものである請求項4,5または6に記載のアパタイトを形成した人工骨用複合体の製造方法A titanium oxide-organic polymer composite material for artificial bone is obtained by using a titania-treated solution prepared by dropping a solution comprising an acidic alcohol and water while maintaining a solution of titanium tetraalkoxide and alcohol at a temperature of 0 ° C to 10 ° C. A method for producing a composite for artificial bone having apatite formed thereon according to claim 4, 5 or 6.
JP2003293611A 2003-07-11 2003-07-11 Titanium oxide-organic polymer composite suitable for artificial bone Expired - Fee Related JP4737925B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003293611A JP4737925B2 (en) 2003-07-11 2003-07-11 Titanium oxide-organic polymer composite suitable for artificial bone
PCT/JP2004/004406 WO2005004940A1 (en) 2003-07-11 2004-03-29 Titanium oxide-organic polymer conjunction suitable for artificial bone
US12/796,636 US8475826B2 (en) 2003-07-11 2010-06-08 Titanium oxide-organic polymer conjunction suitable for artificial bone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003293611A JP4737925B2 (en) 2003-07-11 2003-07-11 Titanium oxide-organic polymer composite suitable for artificial bone

Publications (2)

Publication Number Publication Date
JP2005028081A JP2005028081A (en) 2005-02-03
JP4737925B2 true JP4737925B2 (en) 2011-08-03

Family

ID=34056206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003293611A Expired - Fee Related JP4737925B2 (en) 2003-07-11 2003-07-11 Titanium oxide-organic polymer composite suitable for artificial bone

Country Status (2)

Country Link
JP (1) JP4737925B2 (en)
WO (1) WO2005004940A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01291859A (en) * 1988-05-17 1989-11-24 Asahi Optical Co Ltd Implanting material and its manufacture
JPH09173435A (en) * 1995-12-27 1997-07-08 Takiron Co Ltd Implant material and its manufacture
JPH10108905A (en) * 1996-10-07 1998-04-28 Akiyoshi Ozaka Surface treatment method for medical implant material and implant with affinity to organism
JPH11323570A (en) * 1998-05-15 1999-11-26 Mitsubishi Materials Corp Method of forming hydroxyapatite film
JP2002248163A (en) * 2001-02-26 2002-09-03 Japan Science & Technology Corp Bioactive titanium oxide coating material formed with titanium oxide layer directly on surface by aqueous solution synthesis
JP2002272835A (en) * 2001-03-16 2002-09-24 Hisashi Ozawa Blood compatible titanium oxide coated material directly formed with titanium oxide layer on surface by aqueous solution synthesis
JP2002325834A (en) * 2001-05-02 2002-11-12 Japan Science & Technology Corp Polymer material suitable for artificial bone

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01291859A (en) * 1988-05-17 1989-11-24 Asahi Optical Co Ltd Implanting material and its manufacture
JPH09173435A (en) * 1995-12-27 1997-07-08 Takiron Co Ltd Implant material and its manufacture
JPH10108905A (en) * 1996-10-07 1998-04-28 Akiyoshi Ozaka Surface treatment method for medical implant material and implant with affinity to organism
JPH11323570A (en) * 1998-05-15 1999-11-26 Mitsubishi Materials Corp Method of forming hydroxyapatite film
JP2002248163A (en) * 2001-02-26 2002-09-03 Japan Science & Technology Corp Bioactive titanium oxide coating material formed with titanium oxide layer directly on surface by aqueous solution synthesis
JP2002272835A (en) * 2001-03-16 2002-09-24 Hisashi Ozawa Blood compatible titanium oxide coated material directly formed with titanium oxide layer on surface by aqueous solution synthesis
JP2002325834A (en) * 2001-05-02 2002-11-12 Japan Science & Technology Corp Polymer material suitable for artificial bone

Also Published As

Publication number Publication date
WO2005004940A1 (en) 2005-01-20
JP2005028081A (en) 2005-02-03

Similar Documents

Publication Publication Date Title
JP2011500216A (en) Functionalized substrate and manufacturing method thereof
Yabuta et al. Synthesis of PDMS-based porous materials for biomedical applications
Pisarek et al. Effect of two-step functionalization of Ti by chemical processes on protein adsorption
Francis Biological evaluation of preceramic organosilicon polymers for various healthcare and biomedical engineering applications: A review
KR101933701B1 (en) Biocompatible ceramics coating layer, titanium substrate comprising coating layer and manufacturing method thereof
WO2005023326A1 (en) Implantation material compatible with organism and method for preparation thereof
Balas et al. Formation of bone-like apatite on organic polymers treated with a silane-coupling agent and a titania solution
TW201720472A (en) Surface-modified dental material having properties of anti-bacteria and stimulating cell growth and manufacturing method thereof
US8475826B2 (en) Titanium oxide-organic polymer conjunction suitable for artificial bone
JP4737925B2 (en) Titanium oxide-organic polymer composite suitable for artificial bone
JP2002248163A (en) Bioactive titanium oxide coating material formed with titanium oxide layer directly on surface by aqueous solution synthesis
US7780975B2 (en) Biomaterial having apatite forming ability
Onoki et al. Effects of titanium surface modifications on bonding behavior of hydroxyapatite ceramics and titanium by hydrothermal hot-pressing
JP3853881B2 (en) Surface treatment method for medical implant material and biocompatible implant
Zhao et al. Biological behavior of osteoblast cell and apatite forming ability of the surface modified Ti alloys
Whangdee et al. Effect of fluoride and hydroxyl group on bioactivity of the anodized films prepared by two‐step anodization at low current density
JP4493290B2 (en) Artificial biomaterial and method for producing the same
JP5514455B2 (en) Treatment method for coating calcium phosphate compound on structure having three-dimensional void shape and method for producing the structure
Lee et al. A new approach for hydroxyapatite coating on polymeric materials using laser-induced precursor formation and subsequent aging
JP2775523B2 (en) Bone substitute material and its manufacturing method
JP5699546B2 (en) Composite base material and method for producing the composite base material
WO2013011827A1 (en) Implant material for living body and method for producing same
Prichodko et al. Sol-Gel Derived Two-Dimensional Nanostructures of Calcium Phosphates
CN109276753B (en) Medical titanium alloy stent modified by mesoporous bioactive glass loaded with potassium ferrate and preparation method thereof
JP4625943B2 (en) Bone substitute material and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090414

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100601

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110426

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110426

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees