JP4737345B2 - Thermosetting epoxy resin composition - Google Patents

Thermosetting epoxy resin composition Download PDF

Info

Publication number
JP4737345B2
JP4737345B2 JP2010516707A JP2010516707A JP4737345B2 JP 4737345 B2 JP4737345 B2 JP 4737345B2 JP 2010516707 A JP2010516707 A JP 2010516707A JP 2010516707 A JP2010516707 A JP 2010516707A JP 4737345 B2 JP4737345 B2 JP 4737345B2
Authority
JP
Japan
Prior art keywords
formula
epoxy resin
group
compound
compound represented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010516707A
Other languages
Japanese (ja)
Other versions
JPWO2010026777A1 (en
Inventor
つばさ 奥野
奈央 佐藤
和憲 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP2010516707A priority Critical patent/JP4737345B2/en
Application granted granted Critical
Publication of JP4737345B2 publication Critical patent/JP4737345B2/en
Publication of JPWO2010026777A1 publication Critical patent/JPWO2010026777A1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/5033Amines aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • C08K5/18Amines; Quaternary ammonium compounds with aromatically bound amino groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Epoxy Resins (AREA)

Description

本発明は、熱硬化性エポキシ樹脂組成物に関する。   The present invention relates to a thermosetting epoxy resin composition.

エポキシ樹脂の硬化剤として芳香族ジアミン化合物を用いた組成物はガラス転移温度が高い硬化物が得られる。
本願出願人は以前にエポキシ樹脂を含む第1液の貯蔵安定性に優れ、室温以下での硬化速度が速い2液型の硬化性樹脂組成物として特許文献1を提案している。
また、硬化性エポキシ樹脂と、エポキシ樹脂用硬化剤と、トリス(4−メチルフェニル)ホスフィントリフェニルボランとを含有するエポキシ樹脂組成物が提案されている(特許文献2参照)。
また、トリフェニルホスフィンをエポキシ樹脂の硬化剤としてのフェノール系樹脂に対して使用する場合、組成物の硬化時間が短くなることが知られている。
A composition using an aromatic diamine compound as a curing agent for an epoxy resin provides a cured product having a high glass transition temperature.
The present applicant has previously proposed Patent Document 1 as a two-component curable resin composition that is excellent in storage stability of the first liquid containing an epoxy resin and has a high curing rate at room temperature or lower.
In addition, an epoxy resin composition containing a curable epoxy resin, a curing agent for epoxy resin, and tris (4-methylphenyl) phosphine triphenylborane has been proposed (see Patent Document 2).
Moreover, when using triphenylphosphine with respect to the phenol-type resin as a hardening | curing agent of an epoxy resin, it is known that the hardening time of a composition will become short.

特開2007−326906号公報JP 2007-326906 A 特開2006−290946号公報JP 2006-290946 A

しかしながら、エポキシ樹脂に硬化剤として芳香族ジアミン化合物を用いる場合、硬化温度80〜250℃の条件下における硬化時間が長いという欠点があった。
また、エポキシ樹脂の硬化剤としてのフェノール系樹脂に対してトリフェニルホスフィンを硬化促進剤として使用する場合、硬化時間を短くすることができないことを本願発明者は見出した。
さらに、エポキシ樹脂の硬化剤としてのフェノール系樹脂に対して、トリスフェニルホスフィントリフェニルボランまたはトリス(4−メチルフェニル)ホスフィントリフェニルボランを硬化促進剤として使用するエポキシ樹脂組成物は、トリフェニルホスフィンをエポキシ樹脂の硬化剤としてのフェノール系樹脂に対して使用する場合と同様に硬化時間(ゲル化時間)が長いということを本願発明者は見出した。
そこで、本発明は、硬化性に優れるエポキシ樹脂組成物を提供することを目的とする。
However, when an aromatic diamine compound is used as a curing agent for the epoxy resin, there is a drawback that the curing time is long under conditions of a curing temperature of 80 to 250 ° C.
Further, the present inventors have found that when triphenylphosphine is used as a curing accelerator with respect to a phenolic resin as a curing agent for an epoxy resin, the curing time cannot be shortened.
Furthermore, an epoxy resin composition using trisphenylphosphine triphenylborane or tris (4-methylphenyl) phosphine triphenylborane as a curing accelerator with respect to a phenolic resin as a curing agent for epoxy resin is triphenylphosphine. The inventor of the present application has found that the curing time (gelation time) is long as in the case where is used for phenolic resin as a curing agent for epoxy resin.
Then, an object of this invention is to provide the epoxy resin composition excellent in sclerosis | hardenability.

本発明者は、上記課題を解決すべく鋭意研究した結果、エポキシ樹脂の硬化剤としての芳香族ジアミン化合物に対して、下記式(I)で表される化合物を硬化促進剤として使用する場合に、特に、硬化時間を短く硬化性に優れる組成物となることができることを見出し、本発明を完成させた。
[式(I)中、R1、R2はそれぞれ水素原子、アルキル基を示す。]
As a result of diligent research to solve the above-mentioned problems, the present inventor uses a compound represented by the following formula (I) as a curing accelerator for an aromatic diamine compound as a curing agent for an epoxy resin. In particular, the inventors have found that a composition having a short curing time and excellent curability can be obtained, and the present invention has been completed.
[In formula (I), R < 1 >, R < 2 > shows a hydrogen atom and an alkyl group, respectively. ]

すなわち、本発明は、エポキシ樹脂(A)と、芳香族ポリアミン化合物(B)と、下記式(I)で表される化合物とを含有する熱硬化性エポキシ樹脂組成物においてゲル化時間が150℃で3分以内であり、前記芳香族ポリアミン化合物(B)が、4,4’−ジアミノジフェニルメタン、メチレンビス(2−エチル6−メチル)アニリン又はビス(アミノフェニル)フルオレンであることを特徴とする熱硬化性エポキシ樹脂組成物を提供する。

[式(I)中、R1、R2はそれぞれ水素原子、アルキル基を示す。]
That is, the present invention relates to a thermosetting epoxy resin composition containing an epoxy resin (A), an aromatic polyamine compound (B), and a compound represented by the following formula (I). And the aromatic polyamine compound (B) is 4,4′-diaminodiphenylmethane, methylenebis (2-ethyl6-methyl) aniline or bis (aminophenyl) fluorene. A curable epoxy resin composition is provided.

[In formula (I), R < 1 >, R < 2 > shows a hydrogen atom and an alkyl group, respectively. ]

本発明の熱硬化性エポキシ樹脂組成物は、硬化性に優れる。   The thermosetting epoxy resin composition of the present invention is excellent in curability.

本発明について以下詳細に説明する。
本発明は、
エポキシ樹脂(A)と、芳香族ポリアミン化合物(B)と、下記式(I)で表される化合物とを含有する熱硬化性エポキシ樹脂組成物においてゲル化時間が150℃で3分以内であり、前記芳香族ポリアミン化合物(B)が、4,4’−ジアミノジフェニルメタン、メチレンビス(2−エチル6−メチル)アニリン又はビス(アミノフェニル)フルオレンであることを特徴とする熱硬化性エポキシ樹脂組成物である。

[式(I)中、R1、R2はそれぞれ水素原子、アルキル基を示す。
下、本発明の熱硬化性エポキシ樹脂組成物を「本発明の組成物」ということがある。
The present invention will be described in detail below.
The present invention
In a thermosetting epoxy resin composition containing an epoxy resin (A), an aromatic polyamine compound (B), and a compound represented by the following formula (I), the gelation time is within 3 minutes at 150 ° C. The thermosetting epoxy resin composition, wherein the aromatic polyamine compound (B) is 4,4′-diaminodiphenylmethane, methylenebis (2-ethyl6-methyl) aniline or bis (aminophenyl) fluorene . It is.

[In formula (I), R < 1 >, R < 2 > shows a hydrogen atom and an alkyl group, respectively. ]
Below, the thermosetting epoxy resin composition of the present invention may be referred to as "composition of the present invention".

エポキシ樹脂(A)について以下に説明する。
本発明の組成物に含有されるエポキシ樹脂(A)はエポキシ基を2個以上有する化合物であれば特に制限されない。例えば、従来公知のものが挙げられる。具体的には、例えば、ビスフェノールA型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ジアミノジフェニルメタン型エポキシ樹脂、アミノフェノール型エポキシ樹脂、ナフタレン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、水添ビフェノール型エポキシ樹脂が挙げられる。
エポキシ樹脂(A)はそれぞれ単独でまたは2種以上を組み合わせて使用することができる。
The epoxy resin (A) will be described below.
The epoxy resin (A) contained in the composition of the present invention is not particularly limited as long as it is a compound having two or more epoxy groups. For example, a conventionally well-known thing is mentioned. Specifically, for example, bisphenol A type epoxy resin, dicyclopentadiene type epoxy resin, diaminodiphenylmethane type epoxy resin, aminophenol type epoxy resin, naphthalene type epoxy resin, phenol novolac type epoxy resin, biphenyl type epoxy resin, hydrogenated A biphenol type epoxy resin is mentioned.
An epoxy resin (A) can be used individually or in combination of 2 types or more, respectively.

芳香族ポリアミン化合物(B)について以下に説明する。
本発明の組成物に含有される芳香族ポリアミン化合物(B)は、芳香族炭化水素基に2個以上のアミノ基が結合している化合物である。
本発明において芳香族ポリアミン化合物(B)は硬化剤として使用される。芳香族ポリアミン化合物(B)はエポキシ樹脂(A)と反応することができる。
本発明の組成物が芳香族チイラン化合物(C)を含有する場合、芳香族ポリアミン化合物(B)は、エポキシ樹脂(A)および芳香族チイラン化合物(C)と反応することができる。
本発明の組成物が芳香族チイラン化合物(C)を含有する場合、芳香族ポリアミン化合物(B)は本発明の組成物中において芳香族チイラン化合物(C)と優先的に反応し、NH基を生成する。生成したNH基はエポキシ樹脂(A)と反応することができる。芳香族ポリアミン化合物(B)が有するアミノ基が直接エポキシ樹脂(A)と反応する場合もある。
The aromatic polyamine compound (B) will be described below.
The aromatic polyamine compound (B) contained in the composition of the present invention is a compound in which two or more amino groups are bonded to an aromatic hydrocarbon group.
In the present invention, the aromatic polyamine compound (B) is used as a curing agent. The aromatic polyamine compound (B) can react with the epoxy resin (A).
When the composition of the present invention contains an aromatic thiirane compound (C), the aromatic polyamine compound (B) can react with the epoxy resin (A) and the aromatic thiirane compound (C).
When the composition of the present invention contains an aromatic thiirane compound (C), the aromatic polyamine compound (B) reacts preferentially with the aromatic thiirane compound (C) in the composition of the present invention, and the NH group is removed. Generate. The produced NH group can react with the epoxy resin (A). The amino group which an aromatic polyamine compound (B) has may react with an epoxy resin (A) directly.

芳香族炭化水素基は、特に制限されない。芳香族炭化水素基は、置換基を有することができる。置換基としては、例えば、アルキル基、アルコキシ基が挙げられる。芳香族炭化水素基は、例えば、酸素原子、窒素原子、硫黄原子のようなヘテロ原子を有することができる。
芳香族炭化水素基としては、例えば、下記式で表されるものが挙げられる。
式中、R2は、アルキレン基、芳香族炭化水素基、フルオレン基、エーテル基およびスルフィド基からなる群から選ばれる少なくとも1種である。
アルキレン基としては、例えば、メチレン基、エチレン基が挙げられる。
2は、アルキレン基、芳香族炭化水素基、フルオレン基、エーテル基およびスルフィド基からなる群から選ばれる少なくとも2種とすることができる。
The aromatic hydrocarbon group is not particularly limited. The aromatic hydrocarbon group can have a substituent. Examples of the substituent include an alkyl group and an alkoxy group. The aromatic hydrocarbon group can have a hetero atom such as an oxygen atom, a nitrogen atom, or a sulfur atom.
As an aromatic hydrocarbon group, what is represented by a following formula is mentioned, for example.
Wherein, R 2 is at least one alkylene group, an aromatic hydrocarbon group, full fluorene group is selected from the group consisting of d ether groups and sulfide groups.
Examples of the alkylene group include a methylene group and an ethylene group.
R 2 may be the alkylene group, an aromatic hydrocarbon group, full fluorene group, and at least two selected from the group consisting of d ether groups and sulfide groups.

芳香族ポリアミン化合物(B)は、硬化性により優れるという観点から、芳香族ジアミン化合物であるのが好ましい。芳香族ジアミン化合物は、芳香族炭化水素基に2個のアミノ基が結合している化合物である。   The aromatic polyamine compound (B) is preferably an aromatic diamine compound from the viewpoint of superior curability. An aromatic diamine compound is a compound in which two amino groups are bonded to an aromatic hydrocarbon group.

芳香族ポリアミン化合物(B)としては、例えば、式(II)で表されるものが挙げられる。式(II)において2個のアミノ基がベンゼン環に結合している。
[式(II)中、R3、R4はそれぞれアルキル基であり、R5は、アルキレン基、芳香族炭化水素基、フルオレン基、エーテル基およびスルフィド基からなる群から選ばれる少なくとも1種であり、m、nはそれぞれ0〜4の整数である。]
Examples of the aromatic polyamine compound (B) include those represented by the formula (II). In the formula (II), two amino groups are bonded to the benzene ring.
Wherein (II), R 3, R 4 are each an alkyl group, R 5 is at least 1 selected from the group consisting of an alkylene group, an aromatic hydrocarbon group, full fluorene group, e ether groups and sulfide groups Seeds, and m and n are each an integer of 0 to 4. ]

式(II)で表される芳香族ポリアミン化合物は置換基として、R3、R4を有することができる。
アルキル基は炭素原子数1〜6のものが挙げられる。例えば、メチル基、エチル基、プロピル基が挙げられる。アルキル基は貯蔵安定性、速硬化性により優れるという観点から、メチル基、エチル基が好ましい。
アルキレン基は炭素原子数1〜6のものが挙げられる。例えば、メチレン基、エチレン基が挙げられる。アルキレン基は貯蔵安定性、速硬化性により優れるという観点から、メチレン基が好ましい。
m、nは貯蔵安定性、速硬化性により優れるという観点から、それぞれ0〜2の整数であるのが好ましい。
アミノ基の配置は貯蔵安定性、速硬化性により優れるという観点から、R5に対してパラ位であるのが好ましい。
芳香族炭化水素基は、2価であれば特に制限されない。芳香族炭化水素基は例えばメチル基のような置換基を有することができる。
芳香族炭化水素基とアルキレン基とが組み合わされた場合、芳香族炭化水素とアルキレン基との組み合わせは特に制限されない。例えば、芳香族炭化水素基を有するアルキレン基が挙げられる。具体的には例えば、2つのアルキレン基が芳香族炭化水素を介して結合する場合、アルキレン基の側鎖として芳香族炭化水素が結合している場合、芳香族炭化水素基とアルキレン基とが結合し芳香族炭化水素基およびアルキレン基が式(II)に示される2つのベンゼン環とそれぞれ結合する場合が挙げられる。芳香族炭化水素としては、例えば、ベンゼン環、ナフタレンが挙げられる。芳香族炭化水素はメチル基のような置換
基を有することができる。
The aromatic polyamine compound represented by the formula (II) can have R 3 and R 4 as substituents.
Examples of the alkyl group include those having 1 to 6 carbon atoms. For example, a methyl group, an ethyl group, and a propyl group are mentioned. The alkyl group is preferably a methyl group or an ethyl group from the viewpoint of excellent storage stability and fast curability.
Examples of the alkylene group include those having 1 to 6 carbon atoms. Examples include a methylene group and an ethylene group. The alkylene group is preferably a methylene group from the viewpoint of excellent storage stability and fast curability.
m and n are each preferably an integer of 0 to 2 from the viewpoint of excellent storage stability and fast curability.
The amino group is preferably para-positioned to R 5 from the viewpoint of excellent storage stability and fast curability.
The aromatic hydrocarbon group is not particularly limited as long as it is divalent. The aromatic hydrocarbon group can have a substituent such as a methyl group.
When the aromatic hydrocarbon group and the alkylene group are combined, the combination of the aromatic hydrocarbon and the alkylene group is not particularly limited. For example, the alkylene group which has an aromatic hydrocarbon group is mentioned. Specifically, for example, when two alkylene groups are bonded via an aromatic hydrocarbon, when an aromatic hydrocarbon is bonded as a side chain of the alkylene group, the aromatic hydrocarbon group and the alkylene group are bonded. And the case where an aromatic hydrocarbon group and an alkylene group are respectively bonded to two benzene rings represented by the formula (II). Examples of the aromatic hydrocarbon include a benzene ring and naphthalene. The aromatic hydrocarbon can have a substituent such as a methyl group.

芳香族ポリアミン化合物(B)としては、例えば、下記式(4)で表される化合物、メチレンビス(2−エチル6−メチルアニリン)が挙げられる。

式中、R2は、アルキレン基、芳香族炭化水素基、フルオレン基、エーテル基およびスルフィド基からなる群から選ばれる少なくとも1種である。
芳香族ポリアミン化合物(B)は、硬化性により優れ、貯蔵安定性に優れるという観点から、式(4)で表される化合物、メチレンビス(2−エチル6−メチルアニリン)であるのが好ましい。
なかでも、R2は、硬化性により優れるという観点から、アルキレン基、フルオレン基であるのが好ましく、メチレン基、フルオレン基であるのがより好ましい。
また、R2は、本発明の組成物が芳香族チイラン化合物(C)を含有する場合、硬化性により優れるという観点から、アルキレン基、フルオレン基であるのが好ましく、メチレン基であるのがより好ましい。
芳香族ポリアミン化合物(B)は、それぞれ単独でまたは2種以上を組み合わせて使用することができる。
芳香族ポリアミン化合物(B)はその製造について特に制限されない。芳香族ポリアミン化合物(B)として市販品を使用することができる。
Examples of the aromatic polyamine compound (B) include a compound represented by the following formula (4) and methylene bis (2-ethyl 6-methylaniline).

Wherein, R 2 is at least one alkylene group, an aromatic hydrocarbon group, full fluorene group is selected from the group consisting of d ether groups and sulfide groups.
The aromatic polyamine compound (B) is preferably a compound represented by the formula (4), methylene bis (2-ethyl 6-methylaniline), from the viewpoint of being excellent in curability and excellent in storage stability.
Among them, R 2, from the viewpoint of obtaining superior curability, an alkylene group is preferably from off fluorene group, a methylene group, and more preferably off fluorene group.
Further, R 2, when the composition of the present invention contains an aromatic thiirane compound (C), from the viewpoint of obtaining superior curability, an alkylene group is preferably from off fluorene group, and even a methylene group More preferred.
An aromatic polyamine compound (B) can be used individually or in combination of 2 types or more, respectively.
The aromatic polyamine compound (B) is not particularly limited for its production. A commercial item can be used as an aromatic polyamine compound (B).

芳香族ポリアミン化合物(B)の量は、硬化性により優れ、硬化物のガラス転移温度(ガラス転移点)が高いという観点から、芳香族ポリアミン化合物(B)が有する活性水素の当量数が、エポキシ樹脂(A)が有するエポキシ基に対して、0.5〜2.5当量であるのが好ましく、0.7〜2.0当量であるのがより好ましい。
なお、芳香族ポリアミン化合物(B)は、活性水素を含有する基としてアミノ基を有する。アミノ基は1つの窒素原子当たり2個の活性水素を有する。
The amount of the aromatic polyamine compound (B) is excellent in curability, and from the viewpoint that the glass transition temperature (glass transition point) of the cured product is high, the equivalent number of active hydrogens that the aromatic polyamine compound (B) has is epoxy. It is preferable that it is 0.5-2.5 equivalent with respect to the epoxy group which resin (A) has, and it is more preferable that it is 0.7-2.0 equivalent.
The aromatic polyamine compound (B) has an amino group as a group containing active hydrogen. The amino group has two active hydrogens per nitrogen atom.

式(I)で表される化合物について以下に説明する。
本発明の組成物において、式(I)で表される化合物は硬化促進剤または硬化促進助剤(本発明の組成物がさらに芳香族チイラン化合物(C)を含有する場合には硬化促進助剤)として使用される。
本発明の組成物に含有される式(I)で表される化合物は以下の構造を有する。
式(I)中、R1、R2はそれぞれ水素原子、アルキル基を示す。
1は水素原子、アルキル基を示す。R2は水素原子、アルキル基を示す。
1、R2は同じでも異なっていてもよい。複数のR1は同じでも異なっていてもよい。複数のR2は同じでも異なっていてもよい。
The compound represented by formula (I) will be described below.
In the composition of the present invention, the compound represented by the formula (I) is a curing accelerator or a curing accelerator (if the composition of the present invention further contains an aromatic thiirane compound (C), ) Is used.
The compound represented by the formula (I) contained in the composition of the present invention has the following structure.
In formula (I), R 1 and R 2 represent a hydrogen atom and an alkyl group, respectively.
R 1 represents a hydrogen atom or an alkyl group. R 2 represents a hydrogen atom or an alkyl group.
R 1 and R 2 may be the same or different. A plurality of R 1 may be the same or different. A plurality of R 2 may be the same or different.

アルキル基は、硬化性により優れ、ガラス転移温度が高くなるという観点から、その炭素原子数が、1〜6個であるのが好ましく、1〜3個であるのがより好ましい。アルキル基としては、具体的には、例えば、メチル基、エチル基、プロピル基が挙げられる。
式(I)で表される化合物としては、例えば、式(1)で表される化合物、式(2)で表される化合物が挙げられる。
式中、Phはフェニル基またはフェニレン基を示す。なお、式(2)中のMe−Ph−におけるPhはフェニレン基である。
本発明の組成物は、硬化性により優れ、ガラス転移温度が高くなるという観点から、式(I)で表される化合物として式(1)で表される化合物および/または式(2)で表される化合物を含有するのが好ましい。
The alkyl group is preferably 1 to 6 carbon atoms and more preferably 1 to 3 carbon atoms from the viewpoint of excellent curability and a high glass transition temperature. Specific examples of the alkyl group include a methyl group, an ethyl group, and a propyl group.
Examples of the compound represented by the formula (I) include a compound represented by the formula (1) and a compound represented by the formula (2).
In the formula, Ph represents a phenyl group or a phenylene group. In the formula (2), Ph in Me—Ph— is a phenylene group.
The composition of the present invention is excellent in curability and has a high glass transition temperature. From the viewpoint of increasing the glass transition temperature, the compound represented by the formula (I) and / or the formula (2) is used. It is preferable to contain the compound.

式(1)で表される化合物、式(2)で表される化合物について以下に説明する。
本発明の組成物において、式(1)で表される化合物または式(2)で表される化合物は、硬化促進剤または硬化促進助剤(本発明の組成物がさらに芳香族チイラン化合物(C)を含有する場合には硬化促進助剤)として使用される。
The compound represented by the formula (1) and the compound represented by the formula (2) will be described below.
In the composition of the present invention, the compound represented by the formula (1) or the compound represented by the formula (2) is a curing accelerator or a curing acceleration assistant (the composition of the present invention further comprises an aromatic thiirane compound (C ) Is used as a curing acceleration aid).

式(1)で表される化合物の化合物名はトリフェニルホスフィントリフェニルボレートであり、本願明細書においてこれを「TPP−S」ということがある。
式(2)で表される化合物の化合物名はトリスパラメチルフェニルホスフィントリフェニルボレートであり、本願明細書においてこれを「TPTP−S」ということがある。式(2)においてメチル基はそれぞれオルト位、メタ位、パラ位のいずれにも結合することができる。
式(I)で表される化合物はその製造について特に制限されない。
式(1)で表される化合物はその製造について特に制限されない。式(1)で表される化合物として市販品を使用することができる。式(2)で表される化合物についても同様である。
式(I)で表される化合物はそれぞれ単独でまたは2種以上を組み合わせて使用することができる。
The compound name of the compound represented by the formula (1) is triphenylphosphine triphenylborate, which is sometimes referred to as “TPP-S” in the present specification.
The compound name of the compound represented by the formula (2) is trisparamethylphenylphosphine triphenylborate, which is sometimes referred to as “TPTP-S” in the present specification. In the formula (2), the methyl group can be bonded to any of the ortho, meta and para positions.
The compound represented by the formula (I) is not particularly limited for its production.
The compound represented by the formula (1) is not particularly limited for its production. A commercial item can be used as a compound represented by Formula (1). The same applies to the compound represented by the formula (2).
The compounds represented by formula (I) can be used alone or in combination of two or more.

式(I)で表される化合物の量は、硬化性により優れ、硬化物のガラス転移温度が高いという観点から、エポキシ樹脂(A)100質量部に対して、1〜30質量部であるのが好ましく、3〜10質量部であるのがより好ましい。   The amount of the compound represented by the formula (I) is 1 to 30 parts by mass with respect to 100 parts by mass of the epoxy resin (A) from the viewpoint that the curability is excellent and the glass transition temperature of the cured product is high. Is preferable, and it is more preferable that it is 3-10 mass parts.

本発明においては、硬化性により優れ、硬化物のガラス転移温度が高いという観点から、芳香族ポリアミン化合物(B)が有する活性水素の当量数が、エポキシ樹脂(A)が有するエポキシ基に対して、0.5〜2.5当量であり、式(I)で表される化合物の量が、エポキシ樹脂(A)100質量部に対して、1〜30質量部であるのが好ましい。   In the present invention, from the viewpoint of excellent curability and a high glass transition temperature of the cured product, the number of active hydrogen equivalents of the aromatic polyamine compound (B) is based on the epoxy group of the epoxy resin (A). The amount of the compound represented by the formula (I) is preferably 1 to 30 parts by mass with respect to 100 parts by mass of the epoxy resin (A).

マイクロカプセルについて以下に説明する。
本発明の組成物には、前記式(I)で表される化合物および前記芳香族ポリアミン化合物のうちのいずれか一方または両方が、熱可塑性樹脂によって内包されるマイクロカプセルとして含有されることによって、速硬化性を維持したまま貯蔵安定性により優れる1液型の組成物とすることができる。
本発明において、マイクロカプセルは、前記式(I)で表される化合物および前記芳香族ポリアミン化合物のうちのいずれか一方または両方をコアとして有し、熱可塑性樹脂をシェルとして有する。
式(I)で表される化合物または芳香族ポリアミン化合物は、マイクロカプセルを製造する際にマイクロカプセル化しやすいという観点から、25〜70℃において固体(または融点が70℃を超える)であるのが好ましい。マイクロカプセルのコアはマイクロカプセル化しやすいという観点から、式(I)で表される化合物、芳香族ジアミンであるのが好ましい。
式(I)で表される化合物および芳香族ポリアミン化合物の両方が、熱可塑性樹脂によって内包されるマイクロカプセルとして含有される場合、本発明の組成物は、式(I)で表される化合物が熱可塑性樹脂によって内包されるマイクロカプセルと、芳香族ポリアミン化合物が熱可塑性樹脂によって内包されるマイクロカプセルとを含有することができる。また1つのマイクロカプセルの中に式(I)で表される化合物および芳香族ポリアミン化合物が内包されていてもよい。
The microcapsule will be described below.
In the composition of the present invention, either or both of the compound represented by the formula (I) and the aromatic polyamine compound are contained as microcapsules encapsulated by a thermoplastic resin. A one-component composition that is superior in storage stability while maintaining rapid curability can be obtained.
In the present invention, the microcapsule has one or both of the compound represented by the formula (I) and the aromatic polyamine compound as a core, and has a thermoplastic resin as a shell.
The compound represented by the formula (I) or the aromatic polyamine compound is solid (or has a melting point of more than 70 ° C.) at 25 to 70 ° C. from the viewpoint of easy microencapsulation when producing microcapsules. preferable. The core of the microcapsule is preferably a compound represented by the formula (I) or an aromatic diamine from the viewpoint of easy microencapsulation.
When both the compound represented by the formula (I) and the aromatic polyamine compound are contained as microcapsules encapsulated by a thermoplastic resin, the composition of the present invention contains the compound represented by the formula (I) A microcapsule encapsulated with a thermoplastic resin and a microcapsule encapsulated with a thermoplastic resin of an aromatic polyamine compound can be contained. Further, the compound represented by the formula (I) and the aromatic polyamine compound may be encapsulated in one microcapsule.

シェルとして使用される熱可塑性樹脂は特に制限されない。例えば、ウレタン樹脂;スチレンブタジエンエラストマー;ポリビニルアセタール樹脂;フェノキシ樹脂;ポリメタクリル酸メチル樹脂;ポリビニルアルコール;(メタ)アクリル系単量体、例えばアクリル酸エステル、イタコン酸エステル、クロトン酸エステル等の炭素数1〜8のアルキルエルテルやこのアルキルエステルのアルキル基の水素原子の一部又は全部がアリル基等で置換されたもの、スチレン、α−メチルスチレン、アクリロニトリル、メタクリロニトリル、酢酸ビニル等の単官能性単量体、エチレングリコール(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ジビニルベンゼン、ビスフェノールAジ(メタ)アクリレート、メチレンビス(メタ)アクリルアミド等の多官能単量体から得られるポリマーが挙げられる。
熱可塑性樹脂はそれぞれ単独でまたは2種以上を組み合わせて使用することができる。
The thermoplastic resin used as the shell is not particularly limited. For example, urethane resin; styrene butadiene elastomer; polyvinyl acetal resin; phenoxy resin; polymethyl methacrylate resin; polyvinyl alcohol; (meth) acrylic monomers such as acrylic acid ester, itaconic acid ester, crotonic acid ester, etc. Monofunctional compounds such as 1 to 8 alkyl ethers and those in which part or all of the hydrogen atoms of the alkyl group of this alkyl ester are substituted with allyl groups, styrene, α-methylstyrene, acrylonitrile, methacrylonitrile, vinyl acetate, etc. Monomer obtained from polyfunctional monomers such as ethylene glycol (meth) acrylate, polyethylene glycol di (meth) acrylate, divinylbenzene, bisphenol A di (meth) acrylate, and methylenebis (meth) acrylamide Chromatography, and the like.
The thermoplastic resins can be used alone or in combination of two or more.

なかでも、貯蔵安定性、速硬化性により優れ、造膜性、機械的強度に優れ、得られた硬化物のガラス転移温度を維持することができるという観点から、ウレタン樹脂、スチレンブタジエンエラストマー、ポリビニルアセタール樹脂、ポリビニルアルコールおよびフェノキシ樹脂からなる群から選ばれる少なくとも1種であるのが好ましい。   Among these, urethane resins, styrene butadiene elastomers, polyvinyls are preferred from the viewpoints of excellent storage stability and fast curability, excellent film-forming properties and mechanical strength, and can maintain the glass transition temperature of the obtained cured product. It is preferably at least one selected from the group consisting of an acetal resin, polyvinyl alcohol and phenoxy resin.

ウレタン樹脂はウレタン結合を有する化合物であれば特に制限されない。例えば、多価イソシアネート類と多価アミン類との反応によって得られるもの、多価イソシアネート類と水との反応によって得られるもの、多価イソシアネートと多価アルコールとの反応によって得られるもの、多価イソシアネート類と多価アミン類と多価アルコールとの反応によって得られるものが挙げられる。   The urethane resin is not particularly limited as long as it is a compound having a urethane bond. For example, those obtained by reaction of polyisocyanates and polyamines, those obtained by reaction of polyisocyanates and water, those obtained by reaction of polyisocyanates and polyhydric alcohols, Examples thereof include those obtained by reaction of isocyanates, polyvalent amines and polyhydric alcohols.

ウレタン樹脂を製造する際に使用される多価イソシアネート類は、分子内に2個以上のイソシアネート基を有する化合物であればよい。具体的には、例えば、m−フェニレンジイソシアネート、p−フェニレンジイソシアネート、2,4−トリレンジイソシアネート、2,6−トリレンジイソシアネート、ナフタレン−1,4−ジイソシアネート、ジフェニルメタン−4,4′−ジイソシアネート、3,3′−ジメトキシ−4,4′−ビフェニルジイソシアネート、3,3′−ジメチルジフェニルメタン−4,4′−ジイソシアネート、4,4′−ジメチルジフェニルメタン−2,2′,5,5′−テトライソシアネートのような芳香族ポリイソシアネート;キシリレン−1,4−ジイソシアネートのような芳香族炭化水素基を有するアルキレン基にイソシアネート基が結合しているポリイソシアネート;トリメチレンジイソシアネート、ヘキサメチレンジイソシアネート、プロピレン−1,2−ジイソシアネート、ブチレン−1,2−ジイソシアネート、リジンイソシアネートのような脂肪族ポリイソシアネート;シクロヘキシレン−1,2−ジイソシアネート、シクロヘキシレン−1,4−ジイソシアネートのような脂環式ポリイソシアネート;ヘキサメチレンジイソシアネートとヘキサントリオールとの付加物、2,4−トリレンジイソシアネートとプレンツカテコールとの付加物、トリレンジイソシアネートとヘキサントリオールとの付加物、トリレンジイソシアネートとトリメチロールプロパンの付加物、キシリレンジイソシアネートとトリメチロールプロパンの付加物、ヘキサメチレンジイソシアネートとトリメチロールプロパンの付加物が挙げられる。   The polyvalent isocyanate used in producing the urethane resin may be a compound having two or more isocyanate groups in the molecule. Specifically, for example, m-phenylene diisocyanate, p-phenylene diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, naphthalene-1,4-diisocyanate, diphenylmethane-4,4′-diisocyanate, 3,3'-dimethoxy-4,4'-biphenyl diisocyanate, 3,3'-dimethyldiphenylmethane-4,4'-diisocyanate, 4,4'-dimethyldiphenylmethane-2,2 ', 5,5'-tetraisocyanate A polyisocyanate having an isocyanate group bonded to an alkylene group having an aromatic hydrocarbon group such as xylylene-1,4-diisocyanate; trimethylene diisocyanate, hexamethylene diisocyanate, Aliphatic polyisocyanates such as pyrene-1,2-diisocyanate, butylene-1,2-diisocyanate, lysine isocyanate; alicyclic polyisocyanates such as cyclohexylene-1,2-diisocyanate, cyclohexylene-1,4-diisocyanate Isocyanate; adduct of hexamethylene diisocyanate and hexanetriol, adduct of 2,4-tolylene diisocyanate and prenzcatechol, adduct of tolylene diisocyanate and hexanetriol, adduct of tolylene diisocyanate and trimethylolpropane , Xylylene diisocyanate and trimethylolpropane adduct, and hexamethylene diisocyanate and trimethylolpropane adduct.

なかでも、貯蔵安定性、速硬化性により優れ、造膜性、機械的強度に優れるという観点から、トリレンジイソシアネート、4,4−ジフェニルメタンジイソシアネート、p-フェニレンジイソシアネート、キシリレンジイソシアネートなどの芳香族ポリイソシアネートが好ましい。
多価イソシアネート類はそれぞれ単独でまたは2種以上を組み合わせて使用することができる。
Above all, from the viewpoint of excellent storage stability and fast curability, excellent film forming properties and mechanical strength, aromatic poly- ylene such as tolylene diisocyanate, 4,4-diphenylmethane diisocyanate, p-phenylene diisocyanate, and xylylene diisocyanate. Isocyanates are preferred.
Polyvalent isocyanates can be used alone or in combination of two or more.

ウレタン樹脂を製造する際に使用される多価アミン類は、分子内に2個以上のアミノ基を有する化合物であればよい。具体的には例えば、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、1,6−ヘキサメチレンジアミン、1,8−オクタメチレンジアミン、1,12−ドデカメチレンジアミンのような脂肪族ポリアミン;o−フェニレンジアミン、m−フェニレンジアミン、p−フェニレンジアミンのような芳香族ポリアミン;o−キシリレンジアミン、m−キシリレンジアミン、p−キシリレンジアミンのような芳香族炭化水素基を有するアルキレン基にアミノ基が結合しているポリアミン;メンタンジアミン、ビス(4−アミノ−3−メチルシクロヘキシル)メタン、イソホロンジアミン、1,3−ジアミノシクロヘキサンのような脂環式ポリアミン;スピロアセタール系ジアミンが挙げられる。
多価アミン類はそれぞれ単独でまたは2種以上を組み合わせて使用することができる。
The polyvalent amine used when producing the urethane resin may be a compound having two or more amino groups in the molecule. Specifically, aliphatic polyamines such as diethylenetriamine, triethylenetetramine, tetraethylenepentamine, 1,6-hexamethylenediamine, 1,8-octamethylenediamine, 1,12-dodecamethylenediamine; o-phenylene Aromatic polyamines such as diamine, m-phenylenediamine and p-phenylenediamine; amino groups on alkylene groups having aromatic hydrocarbon groups such as o-xylylenediamine, m-xylylenediamine and p-xylylenediamine And alicyclic polyamines such as menthanediamine, bis (4-amino-3-methylcyclohexyl) methane, isophoronediamine, and 1,3-diaminocyclohexane; spiroacetal diamines.
Polyvalent amines can be used alone or in combination of two or more.

ウレタン樹脂を使用する際に使用される多価アルコールは、脂肪族、芳香族または脂環族のいずれであってもよい。例えば、カテコール、レゾルシノール、1,2−ジヒドロキシ−4−メチルベンゼン、1,3−ジヒドロキシ−5−メチルベンゼン、3,4−ジヒドロキシ−1−メチルベンゼン、3,5−ジヒドロキシ−1−メチルベンゼン、2,4−ジヒドロキシエチルベンゼン、1,3−ナフタレンジオール、1,5−ナフタレンジオール、2,7−ナフタレンジオール、2,3−ナフタレンジオール、o,o′−ビフェノール、p,p′−ビフェノール、ビスフェノールA、ビス−(2−ヒドロキシフェニル)メタン、キシリレンジオール、エチレングリコール、1,3−プロピレングリコール、1,4−ブチレングリコール、1,5−ペンタンジオール、1,6−ヘキサンジオール、1,7−ヘプタンジオール、1,8−オクタンジオール、1,1,1−トリメチロールプロパン、ヘキサントリオール、ペンタエリスリトール、グリセリン、ソルビトール等が挙げられる。
多価アルコールはそれぞれ単独でまたは2種以上を組み合わせて使用することができる。
The polyhydric alcohol used when using the urethane resin may be aliphatic, aromatic or alicyclic. For example, catechol, resorcinol, 1,2-dihydroxy-4-methylbenzene, 1,3-dihydroxy-5-methylbenzene, 3,4-dihydroxy-1-methylbenzene, 3,5-dihydroxy-1-methylbenzene, 2,4-dihydroxyethylbenzene, 1,3-naphthalenediol, 1,5-naphthalenediol, 2,7-naphthalenediol, 2,3-naphthalenediol, o, o'-biphenol, p, p'-biphenol, bisphenol A, bis- (2-hydroxyphenyl) methane, xylylenediol, ethylene glycol, 1,3-propylene glycol, 1,4-butylene glycol, 1,5-pentanediol, 1,6-hexanediol, 1,7 -Heptanediol, 1,8-octanediol, 1,1 1-trimethylolpropane, hexanetriol, pentaerythritol, glycerin, and sorbitol.
Polyhydric alcohols can be used alone or in combination of two or more.

スチレンブタジエンエラストマーは特に制限されない。例えば、従来公知のものが挙げられる。
スチレンブタジエンエラストマーの重量平均分子量は貯蔵安定性、速硬化性により優れるという観点から、12000〜50000であるのが好ましい。
なお、本発明において、重量平均分子量は、テトラヒドロフランを溶媒とするゲル・パーミエーション・クロマトグラフィー(GPC)によるポリスチレン換算の重量平均分子量であるものとする。
The styrene butadiene elastomer is not particularly limited. For example, a conventionally well-known thing is mentioned.
The weight average molecular weight of the styrene butadiene elastomer is preferably 12000 to 50000 from the viewpoint of excellent storage stability and fast curability.
In the present invention, the weight average molecular weight is a polystyrene-reduced weight average molecular weight determined by gel permeation chromatography (GPC) using tetrahydrofuran as a solvent.

ポリビニルアセタール樹脂は特に制限されない。例えば、ポリビニルホルマール樹脂、ポリビニルブチラール樹脂が挙げられる。
ポリビニルアセタール樹脂の重量平均分子量は貯蔵安定性、速硬化性により優れるという観点から、10000〜60000であるのが好ましい。
The polyvinyl acetal resin is not particularly limited. Examples thereof include polyvinyl formal resin and polyvinyl butyral resin.
The weight average molecular weight of the polyvinyl acetal resin is preferably 10,000 to 60,000 from the viewpoint of excellent storage stability and fast curability.

ポリビニルアルコールは特に制限されない。例えば、従来公知のものが挙げられる。ポリビニルアルコールの重量平均分子量は貯蔵安定性、速硬化性により優れるという観点から、10,000〜150,000であるのが好ましい。   Polyvinyl alcohol is not particularly limited. For example, a conventionally well-known thing is mentioned. The weight average molecular weight of polyvinyl alcohol is preferably 10,000 to 150,000 from the viewpoint of excellent storage stability and fast curability.

フェノキシ樹脂は特に制限されない。例えば、ビスフェノールAおよび/またはビスフェノールFから選ばれる分子量10000以上の高分子量エポキシ樹脂である。   The phenoxy resin is not particularly limited. For example, it is a high molecular weight epoxy resin having a molecular weight of 10,000 or more selected from bisphenol A and / or bisphenol F.

マイクロカプセルはその製造について特に制限されない。例えば、従来公知のものが挙げられる。
マイクロカプセルはそれぞれ単独でまたは2種以上を組み合わせて使用することができる。
なかでも、貯蔵安定性、速硬化性により優れるという観点から、式(I)で表される化合物を内包するマイクロカプセルが好ましい。
また、貯蔵安定性、速硬化性により優れ、造膜性、機械的強度に優れるという観点から、シェルの材料としてウレタン樹脂、スチレンブタジエンエラストマー、ポリビニルアセタール樹脂、ポリビニルアルコールおよびフェノキシ樹脂からなる群から選ばれる少なくとも1種を含むマイクロカプセルが好ましい。
The microcapsule is not particularly limited for its production. For example, a conventionally well-known thing is mentioned.
Each of the microcapsules can be used alone or in combination of two or more.
Among these, a microcapsule that encapsulates the compound represented by the formula (I) is preferable from the viewpoint of excellent storage stability and fast curability.
Also, from the viewpoint of excellent storage stability and fast curability, excellent film forming properties and mechanical strength, the shell material is selected from the group consisting of urethane resin, styrene butadiene elastomer, polyvinyl acetal resin, polyvinyl alcohol and phenoxy resin. A microcapsule containing at least one selected from the above is preferred.

本発明において、コアとして式(I)で表される化合物を有するマイクロカプセルを含有する場合、芳香族ポリアミン化合物はマイクロカプセル化されていてもよく、またはマイクロカプセル化されていなくてもよい。
また、コアとして芳香族ポリアミン化合物を有するマイクロカプセルを含有する場合、式(I)で表される化合物はマイクロカプセル化されていてもよく、またはマイクロカプセル化されていなくてもよい。
In the present invention, when the microcapsule having the compound represented by the formula (I) is contained as a core, the aromatic polyamine compound may be microencapsulated or may not be microencapsulated.
Moreover, when the microcapsule which has an aromatic polyamine compound as a core is contained, the compound represented by Formula (I) may be microencapsulated or may not be microencapsulated.

マイクロカプセルにおける熱可塑性樹脂はエポキシ樹脂、得られる硬化物のガラス転移温度を維持することができ、貯蔵安定性、速硬化性により優れ、造膜性、機械的強度に優れるという観点から、組成物全体の1〜20質量%であるのが好ましい。   The thermoplastic resin in the microcapsule is an epoxy resin, which can maintain the glass transition temperature of the resulting cured product, is superior in storage stability and fast curability, and is excellent in film forming properties and mechanical strength. It is preferable that it is 1-20 mass% of the whole.

マイクロカプセルの平均粒径(直径)は、貯蔵安定性、速硬化性により優れるという観点から、0.1〜50(単位:ミクロン)であるのが好ましい。本発明において平均粒径は粒度分布測定装置SALD-7100((株)島津製作所製)を用いて測定したものである。
マイクロカプセルにおけるシェルの厚さは、貯蔵安定性、速硬化性により優れ、造膜性、機械的強度に優れるという観点から、0.01〜10(単位:ミクロン)であるのが好ましい。本発明においてシェルの厚さは粒度分布測定装置SALD-7100((株)島津製作所製)を用いて測定されたものである。
The average particle diameter (diameter) of the microcapsules is preferably 0.1 to 50 (unit: micron) from the viewpoint of excellent storage stability and fast curability. In the present invention, the average particle size is measured using a particle size distribution analyzer SALD-7100 (manufactured by Shimadzu Corporation).
The thickness of the shell in the microcapsule is preferably 0.01 to 10 (unit: micron) from the viewpoints of excellent storage stability and fast curability, and excellent film forming properties and mechanical strength. In the present invention, the thickness of the shell is measured using a particle size distribution analyzer SALD-7100 (manufactured by Shimadzu Corporation).

本発明の組成物は、さらに、芳香族チイラン化合物(C)を含有することができる。
本発明の組成物に含有することができる芳香族チイラン化合物(C)は、チイラン基と芳香族炭化水素基とを有する芳香族炭化水素化合物である。
本発明において、芳香族チイラン化合物(C)は、硬化促進剤として使用される。また、本発明において芳香族チイラン化合物(C)は芳香族ポリアミン化合物(B)の一部分に代えて使用することができる。
芳香族チイラン化合物(C)は、芳香族ポリアミン化合物(B)と反応し、SH基を生成する。生成したSH基はエポキシ樹脂(A)と反応することができる。
The composition of the present invention can further contain an aromatic thiirane compound (C).
The aromatic thiirane compound (C) that can be contained in the composition of the present invention is an aromatic hydrocarbon compound having a thiirane group and an aromatic hydrocarbon group.
In the present invention, the aromatic thiirane compound (C) is used as a curing accelerator. In the present invention, the aromatic thiirane compound (C) can be used in place of a part of the aromatic polyamine compound (B).
The aromatic thiirane compound (C) reacts with the aromatic polyamine compound (B) to generate an SH group. The generated SH group can react with the epoxy resin (A).

芳香族チイラン化合物(C)が有する芳香族炭化水素基は、特に制限されない。例えば、フェニル基、ナフチル基が挙げられる。芳香族炭化水素基は、置換基を有することができる。置換基としては、例えば、アルキル基、アルコキシ基、シクロアルキル基、アリール基が挙げられる。芳香族炭化水素基は、例えば、酸素原子、窒素原子、硫黄原子のようなヘテロ原子を有することができる。
芳香族チイラン化合物(C)において、チイラン基と芳香族炭化水素基とは、有機基を介して結合することができる。
有機基は、例えば、酸素原子、窒素原子、硫黄原子のようなヘテロ原子を有することができる炭化水素基である。炭化水素基は特に制限されない。
有機基としては、例えば、−O−CH2−、−O−CH−CH=CH−、−O−CO−CH−が挙げられる。
The aromatic hydrocarbon group that the aromatic thiirane compound (C) has is not particularly limited. For example, a phenyl group and a naphthyl group are mentioned. The aromatic hydrocarbon group can have a substituent. Examples of the substituent include an alkyl group, an alkoxy group, a cycloalkyl group, and an aryl group. The aromatic hydrocarbon group can have a hetero atom such as an oxygen atom, a nitrogen atom, or a sulfur atom.
In the aromatic thiirane compound (C), the thiirane group and the aromatic hydrocarbon group can be bonded via an organic group.
The organic group is a hydrocarbon group that can have a hetero atom such as an oxygen atom, a nitrogen atom, or a sulfur atom. The hydrocarbon group is not particularly limited.
Examples of the organic group include —O—CH 2 —, —O—CH 2 —CH═CH—, and —O—CO—CH 2 —.

芳香族チイラン化合物(C)の量は、硬化性により優れるという観点から、芳香族チイラン化合物(C)から生成するSH基の当量数が、前記エポキシ樹脂(A)が有するエポキシ基に対して、0.3〜1.0であるのが好ましく、0.4〜0.7であるのがより好ましい。   From the viewpoint that the amount of the aromatic thiirane compound (C) is more excellent in curability, the equivalent number of SH groups generated from the aromatic thiirane compound (C) is based on the epoxy group of the epoxy resin (A). It is preferable that it is 0.3-1.0, and it is more preferable that it is 0.4-0.7.

本発明の組成物は、エポキシ樹脂(A)、芳香族ポリアミン化合物(B)、式(I)で表される化合物、必要に応じて使用することができる芳香族チイラン化合物(C)以外に、必要に応じて、さらに添加剤を含有することができる。
本発明の組成物は、エポキシ樹脂(A)、芳香族ポリアミン化合物(B)、芳香族チイラン化合物(C)、ならびに式(1)で表される化合物および/または式(2)で表される化合物以外に、必要に応じて、さらに添加剤を含有することができる。
添加剤としては、例えば、芳香族ポリアミン化合物(B)以外の硬化剤、充填剤(フィラー)、反応性希釈剤、可塑剤、チクソトロピー性付与剤、顔料、染料、老化防止剤、酸化防止剤、帯電防止剤、難燃剤、接着性付与剤、分散剤、溶剤が挙げられる。
The composition of the present invention includes an epoxy resin (A), an aromatic polyamine compound (B), a compound represented by the formula (I), and an aromatic thiirane compound (C) that can be used as necessary. If necessary, an additive can be further contained.
The composition of the present invention is represented by the epoxy resin (A), the aromatic polyamine compound (B), the aromatic thiirane compound (C), and the compound represented by the formula (1) and / or the formula (2). In addition to the compound, an additive can be further contained as necessary.
Examples of the additive include a curing agent other than the aromatic polyamine compound (B), a filler (filler), a reactive diluent, a plasticizer, a thixotropic agent, a pigment, a dye, an anti-aging agent, an antioxidant, Examples thereof include an antistatic agent, a flame retardant, an adhesiveness imparting agent, a dispersant, and a solvent.

本発明の熱硬化性エポキシ樹脂組成物としては、例えば、1液型熱硬化性エポキシ樹脂組成物、2液型熱硬化性エポキシ樹脂組成物が挙げられる。本発明において、「1液型熱硬化性エポキシ樹脂組成物」を「1液型」と記載し、「2液型熱硬化性エポキシ樹脂組成物」を「2液型」と記載することがある。
本発明の組成物は、その製造について特に制限されない。例えば、エポキシ樹脂(A)、芳香族ポリアミン化合物(B)、式(I)で表される化合物、添加剤を減圧下または窒素雰囲気下において、混合ミキサー等の撹拌装置を用いて充分混練し、均一に分散させることによって、本発明の組成物を1液型の組成物として製造することができる。
また、例えば、エポキシ樹脂(A)、芳香族ポリアミン化合物(B)、式(1)で表される化合物および/または式(2)で表される化合物、ならびに必要に応じて使用することができる添加剤を減圧下または窒素雰囲気下において、混合ミキサー等の撹拌装置を用いて充分混練し、均一に分散させることによって、本発明の組成物を1液型の組成物として製造することができる。
Examples of the thermosetting epoxy resin composition of the present invention include a one-component thermosetting epoxy resin composition and a two-component thermosetting epoxy resin composition. In the present invention, “one-component thermosetting epoxy resin composition” may be described as “one-component type”, and “two-component thermosetting epoxy resin composition” may be described as “two-component type”. .
The composition of the present invention is not particularly limited for its production. For example, the epoxy resin (A), the aromatic polyamine compound (B), the compound represented by the formula (I), and the additive are sufficiently kneaded using a stirring device such as a mixing mixer under reduced pressure or in a nitrogen atmosphere. By uniformly dispersing, the composition of the present invention can be produced as a one-component composition.
Further, for example, the epoxy resin (A), the aromatic polyamine compound (B), the compound represented by the formula (1) and / or the compound represented by the formula (2), and can be used as necessary. The composition of the present invention can be produced as a one-component composition by sufficiently kneading and uniformly dispersing the additive under a reduced pressure or in a nitrogen atmosphere using a stirring device such as a mixing mixer.

本発明の組成物は、式(I)で表される化合物及び/又は硬化剤がマイクロカプセルによって内包されている場合にもその製造について特に制限されない。マイクロカプセルが式(I)で表される化合物を内包する場合、例えば、エポキシ樹脂、式(I)で表される化合物を内包するマイクロカプセル、硬化剤および必要に応じて使用することができる添加剤を減圧下または窒素雰囲気下において、混合ミキサー等の撹拌装置を用いて充分混合することによって、本発明の組成物を1液型の組成物として製造することができる。また、マイクロカプセルが硬化剤を内包する場合、例えば、エポキシ樹脂、式(I)で表される化合物、硬化剤を内包するマイクロカプセルおよび必要に応じて使用することができる添加剤を減圧下または窒素雰囲気下において、混合ミキサー等の撹拌装置を用いて充分混合することによって、本発明の組成物を1液型の組成物として製造することができる。   The production of the composition of the present invention is not particularly limited even when the compound represented by formula (I) and / or the curing agent is encapsulated by microcapsules. When the microcapsule encapsulates the compound represented by the formula (I), for example, an epoxy resin, a microcapsule encapsulating the compound represented by the formula (I), a curing agent, and an addition that can be used as necessary The composition of the present invention can be produced as a one-component composition by sufficiently mixing the agent under a reduced pressure or under a nitrogen atmosphere using a stirring device such as a mixing mixer. Further, when the microcapsule encapsulates the curing agent, for example, the epoxy resin, the compound represented by the formula (I), the microcapsule encapsulating the curing agent, and an additive that can be used as necessary under reduced pressure or Under a nitrogen atmosphere, the composition of the present invention can be produced as a one-component composition by sufficiently mixing using a stirring device such as a mixing mixer.

本発明の組成物が式(I)で表される化合物及び/又は硬化剤がマイクロカプセルによって内包されている場合は、貯蔵安定性により優れるという観点から、初期粘度に対する、25℃の条件下に24時間置いた後の粘度の上昇率が、10%以下とすることができ、より好ましい。粘度は25℃においてE型粘度計VISCONIC EHD型(東機産業株式会社製)を用いて測定されたものとする。   In the case where the composition of the present invention and the compound represented by the formula (I) and / or the curing agent are encapsulated by microcapsules, from the viewpoint of excellent storage stability, the condition is at 25 ° C. with respect to the initial viscosity. The increase rate of the viscosity after leaving for 24 hours can be 10% or less, and is more preferable. The viscosity is measured at 25 ° C. using an E-type viscometer VISCONIC EHD type (manufactured by Toki Sangyo Co., Ltd.).

本発明の組成物の式(I)で表される化合物及び/又は硬化剤がマイクロカプセルによって内包されている場合、貯蔵安定性に優れ、室温(20〜30℃)において長期間保存することができる。
本発明の組成物が1液型である場合、現場での作業性に優れる。
When the compound represented by formula (I) and / or the curing agent of the composition of the present invention is encapsulated by microcapsules, it is excellent in storage stability and can be stored at room temperature (20 to 30 ° C.) for a long time. it can.
When the composition of the present invention is a one-pack type, the workability on site is excellent.

本発明の組成物を2液型する場合、その製造について特に制限されない。例えば、エポキシ樹脂(A)を含む第1液(主剤)と、芳香族ポリアミン化合物(B)、式(I)で表される化合物とを含む第2液(硬化剤)とを有する2液型の組成物として製造することができる。添加剤は第1液および/または第2液に加えることができる。第1液および第2液はそれぞれ減圧下または窒素雰囲気下において、混合ミキサー等の撹拌装置を用いて充分混練し、均一に分散させることによって製造することができる。
また、例えば、エポキシ樹脂(A)を含む第1液(主剤)と、芳香族ポリアミン化合物(B)、式(1)で表される化合物および/または式(2)で表される化合物とを含む第2液(硬化剤)とを有する2液型の組成物として本発明の組成物を製造することができる。添加剤は第1液および/または第2液に加えることができる。第1液および第2液はそれぞれ減圧下または窒素雰囲気下において、混合ミキサー等の撹拌装置を用いて充分混練し、均一に分散させることによって製造することができる。
本発明の組成物が2液型である場合、貯蔵安定性に優れるという観点から好ましい。
When the two-component composition of the present invention is used, the production thereof is not particularly limited. For example, a two-part type having a first liquid (main agent) containing an epoxy resin (A) and a second liquid (curing agent) containing an aromatic polyamine compound (B) and a compound represented by formula (I) It can be manufactured as a composition. The additive can be added to the first liquid and / or the second liquid. The first liquid and the second liquid can be produced by sufficiently kneading and uniformly dispersing using a stirring device such as a mixing mixer under reduced pressure or nitrogen atmosphere.
Further, for example, a first liquid (main agent) containing an epoxy resin (A), an aromatic polyamine compound (B), a compound represented by formula (1) and / or a compound represented by formula (2) The composition of the present invention can be produced as a two-component composition having a second liquid (curing agent) to be contained. The additive can be added to the first liquid and / or the second liquid. The first liquid and the second liquid can be produced by sufficiently kneading and uniformly dispersing using a stirring device such as a mixing mixer under reduced pressure or nitrogen atmosphere.
When the composition of the present invention is a two-component type, it is preferable from the viewpoint of excellent storage stability.

本発明において、熱硬化性エポキシ樹脂組成物のゲル化時間(ゲルタイム)は150℃で3分(180秒)以内である。ゲル化時間は好ましくは150℃で60秒以内であり、より好ましくは50秒以内である。
本発明においてゲル化時間(ゲルタイム)は、JIS C2161:1997に準じる方法、または安田式ゲルタイムテスターを使用する方法で測定された。
In the present invention, the gelation time (gel time) of the thermosetting epoxy resin composition is 3 minutes (180 seconds) at 150 ° C. The gel time is preferably within 60 seconds at 150 ° C., more preferably within 50 seconds.
In the present invention, the gel time (gel time) was measured by a method according to JIS C2161: 1997 or a method using a Yasuda gel time tester.

本発明の組成物は、例えば、接着剤用、塗料用、土木建築用、電気用、輸送機用、医療用、包装用、繊維用、スポーツ・レジャー用として使用することができる。
本発明の組成物を適用することができる被着体としては、例えば、金属、ガラス、プラスチック、モルタル、コンクリート、ゴム、木材、皮、布、紙が挙げられる。
本発明の組成物を被着体に付与する方法は特に制限されない。例えば、従来公知のものが挙げられる。
The composition of the present invention can be used, for example, for adhesives, paints, civil engineering and construction, electricity, transportation equipment, medical use, packaging use, textile use, and sports / leisure use.
Examples of the adherend to which the composition of the present invention can be applied include metal, glass, plastic, mortar, concrete, rubber, wood, leather, cloth, and paper.
The method for applying the composition of the present invention to the adherend is not particularly limited. For example, a conventionally well-known thing is mentioned.

本発明の組成物を硬化させる際の温度は、硬化性により優れ、硬化物のガラス転移温度が高いという観点から、100〜250℃であるのが好ましく、120〜200℃であるのがより好ましい。   The temperature for curing the composition of the present invention is preferably 100 to 250 ° C., more preferably 120 to 200 ° C., from the viewpoint that the curability is excellent and the glass transition temperature of the cured product is high. .

以下に、実施例を示して本発明を具体的に説明する。ただし、本発明はこれらに限定されない。   Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to these.

1.評価
下記のようにして得られたエポキシ樹脂組成物について以下に示す方法でゲルタイム、ガラス転移温度を評価した。結果を第1表、第2表に示す。
(1)ゲルタイム
硬化性の評価は安田式ゲルタイムテスター(株式会社安田精機製作所製、No.153ゲルタイムテスター)を用いて150℃でのゲルタイムを測定した。
安田式ゲルタイムテスターは、オイルバス中、試料を入れた試験管の中でローターを回転させ、ゲル化が進み一定のトルクが掛かると磁気カップリング機構によりローターが落ちタイマーが止まる装置である。
(2)ガラス転移温度
下記のようにして得られたエポキシ樹脂組成物を150℃のオーブンにて1時間硬化させ、硬化物について動的粘弾性測定(Dynamic Mechanical Analysis)を歪み0.01%、周波数10Hz、昇温速度5℃/minの条件で、室温から200℃までの温度領域において、強制伸長加振を行って貯蔵弾性率(G′)を測定した。
1. Evaluation About the epoxy resin composition obtained as follows, gel time and glass transition temperature were evaluated by the method shown below. The results are shown in Tables 1 and 2.
(1) Gel time Evaluation of curability measured the gel time at 150 degreeC using the Yasuda-type gel time tester (No.153 gel time tester by Yasuda Seiki Seisakusyo Co., Ltd.).
The Yasuda-type gel time tester is a device that rotates a rotor in a test tube containing a sample in an oil bath, and when the gelation proceeds and a certain torque is applied, the rotor is dropped by a magnetic coupling mechanism and the timer is stopped.
(2) Glass transition temperature The epoxy resin composition obtained as described below was cured in an oven at 150 ° C. for 1 hour, and the cured product was subjected to dynamic viscoelasticity measurement (Dynamic Mechanical Analysis) with a strain of 0.01% and a frequency of 10 Hz. Then, the storage elastic modulus (G ′) was measured by performing forced elongation excitation in the temperature range from room temperature to 200 ° C. under the condition of a temperature rising rate of 5 ° C./min.

2.エポキシ樹脂組成物の製造
下記第1表、第2表に示す成分を同表に示す量(質量部)で混合し、エポキシ樹脂組成物を製造した。
2. Production of Epoxy Resin Composition The components shown in Tables 1 and 2 below were mixed in the amounts (parts by mass) shown in the same table to produce an epoxy resin composition.

第1表、第2表に示す各成分の詳細は以下のとおりである。
・エポキシ樹脂(A):EP4100E(ADEKA社製) ビスフェノールA型エポキシ樹脂 エポキシ当量188g/mol
・芳香族ポリアミン化合物(B)1:下記式で表される化合物、東京化成工業株式会社製

・芳香族ポリアミン化合物(B)3:下記式で表されるビス(アミノフェニル)フルオレン、JFEケミカル株式会社製
・芳香族ポリアミン化合物(B)4:下記式で表されるメチレンビス(2−エチル6−メチルアニリン)(商品名カヤハードMED、イハラケミカル工業株式会社製)
・式(I)で表される化合物1:下記式(1)で表される化合物、北興化学工業株式会社製
・式(I)で表される化合物2:下記式(2)で表される化合物、北興化学工業株式会社製
・TPP:東京化成工業株式会社製、硬化促進助剤として使用
・脂肪族アミン:下記式で表される化合物、商品名DMP-30、東京化成工業株式会社社製
・アミン系潜在性硬化剤:PN23J(味の素ファインテクノ株式会社製)
・フェノールノボラック樹脂硬化剤:MEH−8000H(明和化成株式会社製)
・フェノールアラルキル樹脂硬化剤:MEH−7800S(明和化成株式会社製)
・酸無水物硬化剤:リカシッドMT−500(新日本理化株式会社製)
Details of each component shown in Tables 1 and 2 are as follows.
・ Epoxy resin (A): EP4100E (made by ADEKA) Bisphenol A type epoxy resin Epoxy equivalent 188g / mol
Aromatic polyamine compound (B) 1: Compound represented by the following formula, manufactured by Tokyo Chemical Industry Co., Ltd.

Aromatic polyamine compound (B) 3: bis (aminophenyl) fluorene represented by the following formula, manufactured by JFE Chemical Co., Ltd.
Aromatic polyamine compound (B) 4: Methylenebis (2-ethyl 6-methylaniline) represented by the following formula (trade name Kayahard MED, manufactured by Ihara Chemical Industry Co., Ltd.)
-Compound represented by formula (I) 1: Compound represented by formula (1) below, manufactured by Hokuko Chemical Co., Ltd.
Compound 2 represented by formula (I): Compound represented by formula (2) below, manufactured by Hokuko Chemical Co., Ltd.
-TPP: Tokyo Chemical Industry Co., Ltd., used as a curing accelerator-Aliphatic amine: Compound represented by the following formula, trade name: DMP-30, Tokyo Chemical Industry Co., Ltd.
・ Amine-based latent curing agent: PN23J (Ajinomoto Fine Techno Co., Ltd.)
・ Phenol novolac resin curing agent: MEH-8000H (Maywa Kasei Co., Ltd.)
・ Phenol aralkyl resin curing agent: MEH-7800S (Maywa Kasei Co., Ltd.)
・ Acid anhydride curing agent: Ricacid MT-500 (manufactured by Shin Nippon Chemical Co., Ltd.)

第1表、第2表に示す結果から明らかなように、式(I)で表される化合物を含有しない比較例I−1は、150℃におけるゲルタイムが3分を超え硬化性が悪くガラス転移温度が低かった。式(I)で表される化合物を含有しない比較例I−5は、150℃におけるゲルタイムが3分を超え硬化性が悪かった。また、式(I)で表される化合物を含有せず別の硬化促進剤(TPP、脂肪族アミン、アミン系潜在性硬化剤)を含有する比較例I−2〜4は150℃におけるゲルタイムが3分を超え硬化性が悪くガラス転移温度が低かった。式(I)で表される化合物を含有せず別の硬化促進剤(TPP、脂肪族アミン、アミン系潜在性硬化剤)を含有する比較例I−6〜8は150℃におけるゲルタイムが3分を超え硬化性が悪かった。エポキシ樹脂の硬化剤としてのフェノール系樹脂に対してトリフェニルホスフィンを使用する比較例I−9は150℃におけるゲルタイムが3分を超え硬化性が悪かった。さらに、式(I)で表される化合物を含有するもののフェノール系樹脂の硬化剤を含有する比較例I−10〜11(式(I)で表される化合物とフェノール系樹脂との組合わせ)、酸無水物系の硬化剤を含有する比較例I−12は、比較例I−9と同様に150℃におけるゲルタイムが3分を超え硬化性が悪かった。
これに対して、実施例I−1〜13は、150℃でのゲルタイムが120秒以内であり、硬化性に優れ、得られる硬化物のガラス転移温度が高かった。詳細には、実施例I−1〜13は、芳香族ポリアミンを含有するにもかかわらず、120〜200℃の条件下で硬化することができ、さらに硬化時間が短い。つまり本発明の熱硬化性エポキシ樹脂組成物は、エポキシ樹脂と芳香族ポリアミンとを含有する従来のエポキシ樹脂組成物と比較して低温硬化性に優れる。
3.評価
下記のようにして得られた組成物について以下の方法で、ゲルタイム、粘度、粘度上昇率を評価した。結果を第3表〜第7表に示す。
(1)ゲルタイム(速硬化性)
硬化性の評価はJIS C2161:1997に従って150℃でのゲルタイムをホットプレート上で測定した。具体的には熱板上に下記のようにして得られたエポキシ樹脂組成物0.1gを置き、金属棒を60±5回/分の速度でかき混ぜ、評価開始から組成物がゲル状になる(全体がかき混ぜられなくなったり針先に粘着しなくなるなど)までの時間をゲル化時間(ゲルタイム)とした。
As is apparent from the results shown in Tables 1 and 2, Comparative Example I-1, which does not contain the compound represented by formula (I), has a gel time at 150 ° C. of more than 3 minutes and poor curability, resulting in a glass transition. The temperature was low. In Comparative Example I-5 not containing the compound represented by the formula (I), the gel time at 150 ° C. exceeded 3 minutes and the curability was poor. In addition, Comparative Examples I-2 to 4 which do not contain the compound represented by formula (I) and contain another curing accelerator (TPP, aliphatic amine, amine-based latent curing agent) have a gel time at 150 ° C. Over 3 minutes, the curability was poor and the glass transition temperature was low. In Comparative Examples I-6 to 8 which do not contain the compound represented by the formula (I) and contain another curing accelerator (TPP, aliphatic amine, amine-based latent curing agent), the gel time at 150 ° C. is 3 minutes. And the curability was poor. In Comparative Example I-9 using triphenylphosphine with respect to the phenolic resin as a curing agent for the epoxy resin, the gel time at 150 ° C. exceeded 3 minutes and the curability was poor. Furthermore, Comparative Examples I-10 to 11 containing a compound represented by the formula (I) and a phenolic resin curing agent (combination of a compound represented by the formula (I) and a phenolic resin) In Comparative Example I-12 containing an acid anhydride-based curing agent, the gel time at 150 ° C. exceeded 3 minutes and the curability was poor as in Comparative Example I-9.
On the other hand, in Examples I-1 to 13, the gel time at 150 ° C. was within 120 seconds, the curability was excellent, and the glass transition temperature of the obtained cured product was high. Specifically, Examples I-1 to 13 can be cured under the conditions of 120 to 200 ° C. and have a short curing time despite containing the aromatic polyamine. That is, the thermosetting epoxy resin composition of the present invention is excellent in low-temperature curability as compared with a conventional epoxy resin composition containing an epoxy resin and an aromatic polyamine.
3. Evaluation About the composition obtained as follows, gel time, a viscosity, and a viscosity increase rate were evaluated with the following method. The results are shown in Tables 3-7.
(1) Gel time (fast curing)
For evaluation of curability, gel time at 150 ° C. was measured on a hot plate in accordance with JIS C2161: 1997. Specifically, 0.1 g of the epoxy resin composition obtained as described below was placed on a hot plate, and a metal bar was stirred at a rate of 60 ± 5 times / minute, and the composition became a gel from the start of evaluation ( The time until the entire mixture could not be stirred or the needle tip did not stick) was defined as the gel time (gel time).

(2)粘度
下記のようにして得られた組成物について25℃の条件下でE型粘度計 VISCONIC EHD型(東機産業株式会社製)を用いてに準じて初期粘度を測定した。
また、下記のようにして得られた組成物を恒温槽の中で25℃の条件下に24時間保存した後、初期粘度と同様にして組成物の粘度(保存後の粘度)を測定した。
(3)粘度上昇率(貯蔵安定性)
得られた初期粘度および保存後の粘度の値を下記式にあてはめて粘度上昇率を算出した。
粘度上昇率(%)=(保存後の粘度―初期粘度)/初期粘度×100
粘度上昇率の評価基準としては、10%以内の場合1液型熱硬化性エポキシ樹脂組成物として使用可能とした。
(2) Viscosity The initial viscosity of the composition obtained as described below was measured under the condition of 25 ° C. using an E-type viscometer VISCONIC EHD type (manufactured by Toki Sangyo Co., Ltd.).
In addition, the composition obtained as described below was stored in a thermostatic bath at 25 ° C. for 24 hours, and then the viscosity of the composition (viscosity after storage) was measured in the same manner as the initial viscosity.
(3) Viscosity increase rate (storage stability)
The viscosity increase rate was calculated by fitting the obtained initial viscosity and the viscosity value after storage to the following formula.
Viscosity increase rate (%) = (viscosity after storage−initial viscosity) / initial viscosity × 100
As a criterion for evaluating the rate of increase in viscosity, when it was within 10%, it could be used as a one-component thermosetting epoxy resin composition.

4.式(I)で表される化合物のマイクロカプセル化(式(I)で表される化合物をコアとするマイクロカプセルの製造)
マイクロカプセル化はヤマト科学株式会社製スプレードライヤーGS310を用いたスプレードライ法によって行った。
(1)コアの重さの10質量%に相当する厚みを有するマイクロカプセル
TPP−S(10g、融点205℃、北興化学工業株式会社製、以下同様。)(またはTPTP−S:10g、融点171℃、北興化学工業株式会社製、以下同様。)を溶剤:酢酸エチル(40g)に懸濁させた硬化促進剤溶液50gと、溶剤:酢酸エチル(9g)に溶解させた熱可塑性樹脂溶液(溶剤中熱可塑性樹脂1g)とを混合し、上記スプレードライ装置を用いてスプレードライを行い粉体(10質量%の厚みのマイクロカプセル)を得た。
(2)コアの重さの20質量%に相当する厚みを有するマイクロカプセル
TPP−S(10g)(またはTPTP−S:10g)を溶剤:酢酸エチル(40g)に懸濁させた硬化促進剤溶液50gと、溶剤:酢酸エチル(18g)に溶解させた熱可塑性樹脂溶液(溶剤中熱可塑性樹脂2g)とを混合し、上記スプレードライ装置を用いてスプレードライを行い粉体(20質量%の厚みのマイクロカプセル)を得た。
4). Microencapsulation of the compound represented by the formula (I) (production of microcapsules having the compound represented by the formula (I) as a core)
Microencapsulation was performed by a spray drying method using a spray dryer GS310 manufactured by Yamato Scientific Co., Ltd.
(1) Microcapsule having a thickness corresponding to 10% by mass of the core weight TPP-S (10 g, melting point 205 ° C., manufactured by Hokuko Chemical Co., Ltd., the same shall apply hereinafter) (or TPTP-S: 10 g, melting point 171 ℃, made by Hokuko Chemical Co., Ltd., the same shall apply hereinafter)) in a solvent: ethyl acetate (40 g), a curing accelerator solution 50 g, and a solvent: a thermoplastic resin solution (solvent) in ethyl acetate (9 g) Medium thermoplastic resin (1 g) was mixed and spray-dried using the above spray-drying device to obtain a powder (microcapsule having a thickness of 10% by mass).
(2) Hardening accelerator solution in which microcapsules TPP-S (10 g) (or TPTP-S: 10 g) having a thickness corresponding to 20% by mass of the core weight are suspended in a solvent: ethyl acetate (40 g) 50 g and a thermoplastic resin solution (2 g of thermoplastic resin in a solvent) dissolved in a solvent: ethyl acetate (18 g) are mixed and spray-dried using the above spray-drying apparatus to obtain a powder (20% by weight thickness). Microcapsules).

(1)TPP−S@MC1
シェル剤:ウレタン樹脂デスモコール500(バイエルホールディング株式会社製、以下同様。)がコア(TPP−S)に対して10質量%の厚みとなるようにマイクロカプセル化を行った。得られたマイクロカプセルをTPP−S@MC1とする。TPP−S@MC1の平均粒子は10μmであった。
(1) TPP-S @ MC1
Shell agent: Microencapsulation was performed so that urethane resin Desmocol 500 (manufactured by Bayer Holding Co., Ltd., the same applies hereinafter) had a thickness of 10% by mass with respect to the core (TPP-S). Let the obtained microcapsule be TPP-S @ MC1. The average particle size of TPP-S @ MC1 was 10 μm.

(2)TPP−S@MC2
シェル剤:ウレタン樹脂デスモコール500がコア(TPP−S)に対して20質量%の厚みとなるようにマイクロカプセル化を行った。得られたマイクロカプセルをTPP−S@MC2とする。TPP−S@MC2の平均粒子は11μmであった。
(2) TPP-S @ MC2
Shell agent: Microencapsulation was performed so that the urethane resin Desmocol 500 had a thickness of 20% by mass with respect to the core (TPP-S). Let the obtained microcapsule be TPP-S @ MC2. The average particle size of TPP-S @ MC2 was 11 μm.

(3)TPP−S@MC3
シェル剤:スチレンブタジエンエラストマー・タフプレン912(旭化成株式会社製、ブロック共重合体、以下同様。)がコア(TPP−S)に対して10質量%の厚みとなるようにマイクロカプセル化を行った。得られたマイクロカプセルをTPP−S@MC3とする。TPP−S@MC3の平均粒子は10μmであった。
(3) TPP-S @ MC3
Shell agent: Microencapsulation was performed so that styrene butadiene elastomer / tuffrene 912 (manufactured by Asahi Kasei Corporation, block copolymer, the same applies hereinafter) had a thickness of 10% by mass with respect to the core (TPP-S). Let the obtained microcapsule be TPP-S @ MC3. The average particle size of TPP-S @ MC3 was 10 μm.

(4)TPP−S@MC4
シェル剤:ポリビニルアセタール樹脂KS10(積水化学工業株式会社製、重量平均分子量56,000、ヒドロキシ基18モル%、アセタール化度80モル%、以下同様。)がコア(TPP−S)に対して10質量%の厚みとなるようにマイクロカプセル化を行った。得られたマイクロカプセルをTPP−S@MC4とする。TPP−S@MC4の平均粒子は10μmであった。
(4) TPP-S @ MC4
Shell agent: Polyvinyl acetal resin KS10 (manufactured by Sekisui Chemical Co., Ltd., weight average molecular weight 56,000, hydroxy group 18 mol%, acetalization degree 80 mol%, the same applies hereinafter) is 10 with respect to the core (TPP-S). Microencapsulation was performed so as to obtain a thickness of mass%. Let the obtained microcapsule be TPP-S @ MC4. The average particle size of TPP-S @ MC4 was 10 μm.

(5)TPP−S@MC5
シェル剤:フェノキシ樹脂YP−50(東都化成株式会社製、重量平均分子量60,000〜80,000、以下同様。)がコア(TPP−S)に対して10質量%の厚みとなるようにマイクロカプセル化を行った。得られたマイクロカプセルをTPP−S@MC5とする。TPP−S@MC5の平均粒子は10μmであった。
(5) TPP-S @ MC5
Shell agent: Micron such that phenoxy resin YP-50 (manufactured by Toto Kasei Co., Ltd., weight average molecular weight 60,000 to 80,000, the same applies hereinafter) has a thickness of 10% by mass with respect to the core (TPP-S). Encapsulation was performed. Let the obtained microcapsule be TPP-S @ MC5. The average particle size of TPP-S @ MC5 was 10 μm.

(6)TPP−S@MC6
シェル剤:ポリビニールアルコール(商品名NH−18、日本合成化学株式会社製)がコア(TPP−S)に対して10質量%の厚みとなるようにマイクロカプセル化を行った。得られたマイクロカプセルをTPP−S@MC6とする。TPP−S@MC6の平均粒子は10μmであった。
(6) TPP-S @ MC6
Shell agent: Microencapsulation was performed so that polyvinyl alcohol (trade name NH-18, manufactured by Nippon Synthetic Chemical Co., Ltd.) had a thickness of 10% by mass with respect to the core (TPP-S). Let the obtained microcapsule be TPP-S @ MC6. The average particle size of TPP-S @ MC6 was 10 μm.

(7)TPTP−S@MC1
シェル剤:フェノキシ樹脂YP−50がコア(TPTP−S)に対して10質量%の厚みとなるようにマイクロカプセル化を行った。得られたマイクロカプセルをTPTP−S@MC1とする。TPTP−S@MC1の平均粒子は10μmであった。
(7) TPTP-S @ MC1
Shell agent: Microencapsulation was performed so that the phenoxy resin YP-50 had a thickness of 10% by mass with respect to the core (TPTP-S). Let the obtained microcapsule be TPTP-S @ MC1. The average particle size of TPTP-S @ MC1 was 10 μm.

5.硬化剤のマイクロカプセル化(硬化剤をコアとするマイクロカプセルの製造)
(1)硬化剤(1)@MC1
シェル剤:ウレタン樹脂デスモコール500がコア[硬化剤(1):下記式で表される化合物、融点89℃、東京化成工業株式会社製、以下同様。]に対して10質量%の厚みとなるようにマイクロカプセル化を行った。得られたマイクロカプセルを硬化剤(1)@MC1とする。硬化剤(1)@MC1の平均粒子は10μmであった。
5. Microencapsulation of curing agent (Manufacture of microcapsules with curing agent as core)
(1) Curing agent (1) @ MC1
Shell agent: urethane resin Desmocol 500 is the core [curing agent (1): compound represented by the following formula, melting point 89 ° C., manufactured by Tokyo Chemical Industry Co., Ltd., and so on. The microencapsulation was performed so that the thickness was 10% by mass. Let the obtained microcapsule be hardening | curing agent (1) @ MC1. The average particle of the curing agent (1) @ MC1 was 10 μm.

(2)硬化剤(1)@MC2
シェル剤:ウレタン樹脂デスモコール500がコア[硬化剤(1)]に対して20質量%の厚みとなるようにマイクロカプセル化を行った。得られたマイクロカプセルを硬化剤(1)@MC2とする。硬化剤(1)@MC2の平均粒子は10μmであった。
(2) Curing agent (1) @ MC2
Shell agent: Microencapsulation was performed so that the urethane resin Desmocol 500 had a thickness of 20 mass% with respect to the core [curing agent (1)]. Let the obtained microcapsule be hardening | curing agent (1) @ MC2. The average particle of the curing agent (1) @ MC2 was 10 μm.

(3)硬化剤(1)@MC3
シェル剤:スチレンブタジエンエラストマー・タフプレン912がコア[硬化剤(1)]に対して10質量%の厚みとなるようにマイクロカプセル化を行った。得られたマイクロカプセルを硬化剤(1)@MC3とする。硬化剤(1)@MC3の平均粒子は10μmであった。
(3) Curing agent (1) @ MC3
Shell agent: Microencapsulation was carried out so that the thickness of styrene butadiene elastomer / tuffprene 912 was 10% by mass with respect to the core [curing agent (1)]. Let the obtained microcapsule be hardening | curing agent (1) @ MC3. The average particle of the curing agent (1) @ MC3 was 10 μm.

(4)硬化剤(1)@MC4
シェル剤:ポリビニルアセタール樹脂KS10がコア[硬化剤(1)]に対して10質量%の厚みとなるようにマイクロカプセル化を行った。得られたマイクロカプセルを硬化剤(1)@MC4とする。硬化剤(1)@MC4の平均粒子は10μmであった。
(4) Curing agent (1) @ MC4
Shell agent: Microencapsulation was performed so that the polyvinyl acetal resin KS10 had a thickness of 10% by mass with respect to the core [curing agent (1)]. Let the obtained microcapsule be hardening | curing agent (1) @ MC4. The average particle of the curing agent (1) @ MC4 was 10 μm.

(5)硬化剤(1)@MC5
シェル剤:フェノキシ樹脂YP−50がコア[硬化剤(1)]に対して10質量%の厚みとなるようにマイクロカプセル化を行った。得られたマイクロカプセルを硬化剤(1)@MC5とする。硬化剤(1)@MC5の平均粒子は10μmであった。
(5) Curing agent (1) @ MC5
Shell agent: Microencapsulation was performed so that the phenoxy resin YP-50 had a thickness of 10% by mass with respect to the core [curing agent (1)]. Let the obtained microcapsule be hardening | curing agent (1) @ MC5. The average particle of the curing agent (1) @ MC5 was 10 μm.

(6)硬化剤(2)@MC1
シェル剤:フェノキシ樹脂YP−50がコア[硬化剤(2):下記式で表されるビス(アミノフェニル、融点237℃)フルオレン、JFEケミカル株式会社製]に対して10質量%の厚みとなるようにマイクロカプセル化を行った。
得られたマイクロカプセルを硬化剤(2)@MC1とする。硬化剤(2)@MC1の平均粒子は10μmであった。
(6) Curing agent (2) @ MC1
Shell agent: phenoxy resin YP-50 has a thickness of 10% by mass with respect to the core [curing agent (2): bis (aminophenyl, melting point: 237 ° C.) fluorene represented by the following formula, manufactured by JFE Chemical Co., Ltd.]. Microencapsulation was performed as described above.
Let the obtained microcapsule be hardening | curing agent (2) @ MC1. The average particle of the curing agent (2) @ MC1 was 10 μm.

6.組成物の製造
第3表〜第7表に示す成分を同表に示す量(質量部)で用いてそれらを減圧攪拌機で混合し組成物を製造した。
なお、第3表、第4表、第6表において、硬化剤の量について単位として「eq」を有する数値は、エポキシ基に対する硬化剤の活性水素の当量数(活性水素/エポキシ基)である。
第3表、第4表において、式(I)で表される化合物を内包するマイクロカプセルについては、マイクロカプセルとしての量(質量部)を示す。
第5表において、硬化剤を内包するマイクロカプセルについては、マイクロカプセルとしての量(質量部)を示す。
6). Production of Composition Compositions were produced by using the components shown in Tables 3 to 7 in the amounts (parts by mass) shown in the same table and mixing them with a vacuum stirrer.
In Tables 3, 4 and 6, the numerical value having “eq” as a unit with respect to the amount of the curing agent is the number of equivalents of active hydrogen of the curing agent to the epoxy group (active hydrogen / epoxy group). .
In Tables 3 and 4, the microcapsules encapsulating the compound represented by formula (I) indicate the amount (parts by mass) as microcapsules.
In Table 5, about the microcapsule which encloses a hardening | curing agent, the quantity (mass part) as a microcapsule is shown.


第3表〜第7表に示されている各成分は、以下のとおりである。
・エポキシ樹脂:第1表と同様
・硬化剤(1):第1表の芳香族ポリアミン化合物(B)1と同様
・硬化剤(2):第1表の芳香族ポリアミン化合物(B)3と同様
・硬化剤(3):下記式で表されるTMTG:トリメチロールプロパントリスチオグリコレート、淀化学社製
・硬化剤(4):下記式で表されるメルカプトシラン縮合物(Z6362H、東レダウ製)
式中nは6〜8である。
・硬化剤(5):商品名PN、フェノールノボラック(日本化薬株式会社製)
・硬化剤(6):商品名XYLOK−4L、キシリレングリコール/フェノール縮合物(三井化学株式会社製)
・硬化剤(7):下記式で表されるメチレンビス(2−エチル6−メチルアニリン)(商品名カヤハードMED、イハラケミカル工業株式会社製)
・TPP−S@MC1〜TPP−S@MC6、TPTP−S@MC1:上記のとおり製造した、式(I)で表される化合物を内包するマイクロカプセル
・硬化剤(1)@MC1〜硬化剤(1)@MC5、硬化剤(2)@MC1:上記のとおり製造した、硬化剤を内包するマイクロカプセル
・TPP−S:第1表の式(I)で表される化合物1と同様
・TPTP−S:第1表の式(I)で表される化合物2と同様
・フェノールノボラック樹脂硬化剤:第2表と同様
・フェノールアラルキル樹脂硬化剤:第2表と同様
・酸無水物硬化剤:第2表と同様
・TPP:第2表と同様
・脂肪族アミン:第2表と同様
・アミン系潜在性硬化剤:第2表と同様
The components shown in Tables 3 to 7 are as follows.
-Epoxy resin: as in Table 1-Curing agent (1): similar to the aromatic polyamine compound (B) 1 in Table 1-Curing agent (2): with the aromatic polyamine compound (B) 3 in Table 1 Similarly ・ Curing agent (3): TMTG represented by the following formula: Trimethylolpropane tristhioglycolate, manufactured by Sakai Chemical Co., Ltd.
Curing agent (4): Mercaptosilane condensate represented by the following formula (Z6362H, manufactured by Toray Dow)
In the formula, n is 6-8.
Curing agent (5): Trade name PN, phenol novolak (manufactured by Nippon Kayaku Co., Ltd.)
Curing agent (6): trade name XYLOK-4L, xylylene glycol / phenol condensate (Mitsui Chemicals)
Curing agent (7): Methylene bis (2-ethyl 6-methylaniline) represented by the following formula (trade name: Kayahard MED, manufactured by Ihara Chemical Industry Co., Ltd.)
-TPP-S @ MC1-TPP-S @ MC6, TPTP-S @ MC1: Microcapsules containing the compound represented by the formula (I) produced as described above-Curing agent (1) @ MC1-hardening agent (1) @ MC5, curing agent (2) @ MC1: Microcapsules encapsulating the curing agent produced as described above. TPP-S: Similar to compound 1 represented by formula (I) in Table 1. TPTP -S: Same as compound 2 represented by formula (I) in Table 1 -Phenol novolak resin curing agent: same as Table 2 -Phenol aralkyl resin curing agent: Same as Table 2 -Acid anhydride curing agent: Same as Table 2. TPP: Same as Table 2. Aliphatic amine: Same as Table 2. Amine-based latent curing agent: Same as Table 2.

第3表から第7表に示す結果から明らかなように、エポキシ樹脂と、式(I)で表される化合物と、硬化剤として、式(II)で表される芳香族ポリアミンを含有し、式(I)で表される化合物および硬化剤が熱可塑性樹脂によって内包されていない、実施例IV−1〜6は、速硬化性に優れていた。式(II)で表される芳香族ポリアミンを含有せず代わりにフェノール樹脂またはフェノール樹脂の縮合物を含有する比較例III−5、6は速硬化性に劣った。
また、式(I)で表される化合物を含まない比較例IV−1〜8は速硬化性に劣った。硬化剤としてフェノール樹脂を含有し硬化促進剤としてTPPを含有する比較例IV−9、硬化剤として式(II)で表される芳香族ポリアミンを含有せず代わりにフェノール樹脂を含有し硬化促進剤としてTPP−Sを含有する比較例IV−10〜12は、速硬化性に劣った。
これに対して、実施例II−1〜15、実施例III−1〜12は、粘度上昇率が10%以内であり貯蔵安定性に優れるとともに、優れた速硬化性を維持することができた。
As apparent from the results shown in Table 3 to Table 7, the epoxy resin, the compound represented by the formula (I), and the curing agent containing an aromatic polyamine represented by the formula (II), Examples IV-1 to 6 in which the compound represented by the formula (I) and the curing agent were not encapsulated by the thermoplastic resin were excellent in rapid curability. Comparative Examples III-5 and 6 which did not contain the aromatic polyamine represented by the formula (II) but instead contained a phenol resin or a condensate of phenol resin were inferior in rapid curing.
In addition, Comparative Examples IV-1 to IV-8 that did not contain the compound represented by the formula (I) were inferior in rapid curability. Comparative Example IV-9 containing a phenol resin as a curing agent and containing TPP as a curing accelerator, and containing a phenol resin instead of an aromatic polyamine represented by the formula (II) as a curing agent Comparative Examples IV-10 to 12 containing TPP-S were inferior in rapid curability.
On the other hand, Examples II-1 to 15 and Examples III-1 to 12 had a viscosity increase rate of 10% or less and excellent storage stability and were able to maintain excellent fast curability. .

Claims (4)

エポキシ樹脂(A)と、
芳香族ポリアミン化合物(B)と、
下記式(I)で表される化合物と、を含有する熱硬化性エポキシ樹脂組成物において
ゲル化時間が150℃で3分以内であり、
前記芳香族ポリアミン化合物(B)が、4,4’−ジアミノジフェニルメタン、メチレンビス(2−エチル6−メチル)アニリン又はビス(アミノフェニル)フルオレンである
ことを特徴とする熱硬化性エポキシ樹脂組成物。
[式(I)中、R1、R2はそれぞれ水素原子、アルキル基を示す。]
Epoxy resin (A),
An aromatic polyamine compound (B);
In the thermosetting epoxy resin composition containing the compound represented by the following formula (I), the gelation time is within 3 minutes at 150 ° C.,
The thermosetting epoxy, wherein the aromatic polyamine compound (B) is 4,4'-diaminodiphenylmethane, methylenebis (2-ethyl6-methyl) aniline or bis (aminophenyl) fluorene. Resin composition.
[In formula (I), R < 1 >, R < 2 > shows a hydrogen atom and an alkyl group, respectively. ]
前記式(I)で表される化合物として、下記式(1)で表される化合物および/または下記式(2)で表される化合物を含有する請求項1に記載の熱硬化性エポキシ樹脂組成物。
(式中、Phはフェニル基またはフェニレン基を示す。)
The thermosetting epoxy resin composition according to claim 1, comprising a compound represented by the following formula (1) and / or a compound represented by the following formula (2) as the compound represented by the formula (I). object.
(In the formula, Ph represents a phenyl group or a phenylene group.)
前記式(I)で表される化合物および前記芳香族ポリアミン化合物(B)のうちのいずれか一方または両方が、熱可塑性樹脂によって内包されるマイクロカプセルとして含有される請求項1又は2に記載の熱硬化性エポキシ樹脂組成物。 3. The method according to claim 1, wherein one or both of the compound represented by the formula (I) and the aromatic polyamine compound (B) are contained as microcapsules encapsulated by a thermoplastic resin. Thermosetting epoxy resin composition. 前記芳香族ポリアミン化合物(B)が有する活性水素の当量数が、前記エポキシ樹脂(A)が有するエポキシ基に対して、0.5〜2.5当量であり、
前記式(I)で表される化合物の量が、前記エポキシ樹脂(A)100質量部に対して、1〜30質量部である請求項1〜のいずれかに記載の熱硬化性エポキシ樹脂組成物。
The number of active hydrogen equivalents of the aromatic polyamine compound (B) is 0.5 to 2.5 equivalents with respect to the epoxy group of the epoxy resin (A),
The thermosetting epoxy resin according to any one of claims 1 to 3 , wherein the amount of the compound represented by the formula (I) is 1 to 30 parts by mass with respect to 100 parts by mass of the epoxy resin (A). Composition.
JP2010516707A 2008-09-05 2009-09-07 Thermosetting epoxy resin composition Expired - Fee Related JP4737345B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010516707A JP4737345B2 (en) 2008-09-05 2009-09-07 Thermosetting epoxy resin composition

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP2008228312 2008-09-05
JP2008228312 2008-09-05
JP2008267327 2008-10-16
JP2008267327 2008-10-16
JP2008286992 2008-11-07
JP2008286992 2008-11-07
JP2009117615 2009-05-14
JP2009117615 2009-05-14
JP2009126401 2009-05-26
JP2009126401 2009-05-26
JP2010516707A JP4737345B2 (en) 2008-09-05 2009-09-07 Thermosetting epoxy resin composition
PCT/JP2009/004417 WO2010026777A1 (en) 2008-09-05 2009-09-07 Heat-cured epoxy resin composition

Publications (2)

Publication Number Publication Date
JP4737345B2 true JP4737345B2 (en) 2011-07-27
JPWO2010026777A1 JPWO2010026777A1 (en) 2012-02-02

Family

ID=41796956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010516707A Expired - Fee Related JP4737345B2 (en) 2008-09-05 2009-09-07 Thermosetting epoxy resin composition

Country Status (4)

Country Link
JP (1) JP4737345B2 (en)
KR (1) KR101245132B1 (en)
CN (1) CN102143987B (en)
WO (1) WO2010026777A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102423673A (en) * 2011-07-28 2012-04-25 西北工业大学 Latent microcapsule curing agent initiating thermosetting epoxy resin curing at medium temperature and preparation method of adhesive thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5485830B2 (en) * 2010-08-20 2014-05-07 積水化学工業株式会社 Epoxy resin curing microcapsules
WO2017145411A1 (en) * 2016-02-25 2017-08-31 日立化成株式会社 Epoxy resin molding material, molded product, molded cured product, and method for producing molded cured product
JP6943010B2 (en) * 2017-05-10 2021-09-29 信越化学工業株式会社 Semiconductor device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07133339A (en) * 1993-06-18 1995-05-23 Nippon Kayaku Co Ltd Microcapsuled phosphorus cure accelerator, epoxy resin composition containing same, and its cured item
JPH093164A (en) * 1995-06-15 1997-01-07 Nitto Denko Corp Micro-capsule type hardener or hardening accelerator and epoxy resin composition containing the same
WO2007063580A1 (en) * 2005-11-30 2007-06-07 Matsushita Electric Works, Ltd. Halogen-free epoxy resin composition, cover lay film, bonding sheet, prepreg, laminated sheet for printed wiring board
WO2008136096A1 (en) * 2007-04-24 2008-11-13 Panasonic Electric Works Co., Ltd. Halogen-free epoxy resin composition, coverlay film, bonding sheet, prepreg and printed wiring board laminate

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4783984B2 (en) * 2001-02-15 2011-09-28 日立化成工業株式会社 Resin composition, use thereof and production method thereof
JP2006290946A (en) * 2005-04-07 2006-10-26 Hokko Chem Ind Co Ltd Curing promoter for epoxy resin, and epoxy resin composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07133339A (en) * 1993-06-18 1995-05-23 Nippon Kayaku Co Ltd Microcapsuled phosphorus cure accelerator, epoxy resin composition containing same, and its cured item
JPH093164A (en) * 1995-06-15 1997-01-07 Nitto Denko Corp Micro-capsule type hardener or hardening accelerator and epoxy resin composition containing the same
WO2007063580A1 (en) * 2005-11-30 2007-06-07 Matsushita Electric Works, Ltd. Halogen-free epoxy resin composition, cover lay film, bonding sheet, prepreg, laminated sheet for printed wiring board
WO2008136096A1 (en) * 2007-04-24 2008-11-13 Panasonic Electric Works Co., Ltd. Halogen-free epoxy resin composition, coverlay film, bonding sheet, prepreg and printed wiring board laminate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102423673A (en) * 2011-07-28 2012-04-25 西北工业大学 Latent microcapsule curing agent initiating thermosetting epoxy resin curing at medium temperature and preparation method of adhesive thereof

Also Published As

Publication number Publication date
JPWO2010026777A1 (en) 2012-02-02
KR101245132B1 (en) 2013-03-25
CN102143987A (en) 2011-08-03
WO2010026777A1 (en) 2010-03-11
KR20110055656A (en) 2011-05-25
CN102143987B (en) 2013-08-21

Similar Documents

Publication Publication Date Title
JP4561937B2 (en) One-component thermosetting epoxy resin composition
JP6236044B2 (en) New resin curing agent
JP4308248B2 (en) Epoxy resin composition suitable for high temperature applications, containing Mannich base
KR101308611B1 (en) Low temperature curable epoxy compositions containing urea curatives
JP4737345B2 (en) Thermosetting epoxy resin composition
JPH066621B2 (en) One-component heat-curable epoxide composition
CN107001893A (en) Epobond epoxyn, motor vehicle component and its manufacture method
US20180118878A1 (en) Epoxy resin composition
JP5228644B2 (en) Microcapsule type latent curing agent for epoxy resin and method for producing the same, one-pack epoxy resin composition and cured epoxy resin
JPS58109526A (en) Hardenable polyurethane resin composition
JP5263521B2 (en) Curable resin composition
TW201120085A (en) Latent hardener for epoxy compositions
JPH06184274A (en) One component system thermoset epoxide composition
JP2005206744A (en) One pack-type heat-curable epoxide composition
US20030105266A1 (en) Curable resin composition
JP2011001523A (en) Thermosetting epoxy resin composition
KR102367328B1 (en) Dual cure 1k pu adhesive formulations using matrix encapsulated polyamines
JP2016153490A (en) Epoxy resin composition, potting agent and potting agent for hollow yarn film module
JP2006291060A (en) Room temperature-curable polyurethane resin composition
JP2011157505A (en) One-pack type thermosetting epoxy resin composition
JP2003137960A (en) Curable resin composition
JP2016094610A (en) Adduct for thermosetting epoxy-based reinforcement agent
JP2006077156A (en) Curable resin composition
JP2006291062A (en) Room temperature-curable resin composition
JP2003137959A (en) Curable resin composition

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110307

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110316

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110418

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees