JP4736278B2 - Double glazing - Google Patents

Double glazing Download PDF

Info

Publication number
JP4736278B2
JP4736278B2 JP2001259750A JP2001259750A JP4736278B2 JP 4736278 B2 JP4736278 B2 JP 4736278B2 JP 2001259750 A JP2001259750 A JP 2001259750A JP 2001259750 A JP2001259750 A JP 2001259750A JP 4736278 B2 JP4736278 B2 JP 4736278B2
Authority
JP
Japan
Prior art keywords
glass
rod
shaped member
spacer member
resonator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001259750A
Other languages
Japanese (ja)
Other versions
JP2003063844A (en
Inventor
貴彦 秋山
芳春 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2001259750A priority Critical patent/JP4736278B2/en
Publication of JP2003063844A publication Critical patent/JP2003063844A/en
Application granted granted Critical
Publication of JP4736278B2 publication Critical patent/JP4736278B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/67Units comprising two or more parallel glass or like panes permanently secured together characterised by additional arrangements or devices for heat or sound insulation or for controlled passage of light
    • E06B3/6707Units comprising two or more parallel glass or like panes permanently secured together characterised by additional arrangements or devices for heat or sound insulation or for controlled passage of light specially adapted for increased acoustical insulation

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Securing Of Glass Panes Or The Like (AREA)
  • Joining Of Glass To Other Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、遮音性能を高めることにより建築物の窓用としてはもとより、車輌や船舶などの窓用としても好適に使用できる複層ガラスに関する。
【0002】
【従来の技術】
複層ガラスにおける遮音性能の良否は、コインシデンス効果と共鳴透過現象との如何に依存するとされている。このうち、コインシデンス効果による遮音性能の低下は、使用する板ガラスの密度や縦弾性係数のほか、その時々の気温等にも関係するとされており、単板ガラスのみならず複層ガラスにも発生する共通の現象である。
【0003】
一方、低音域での共鳴透過現象は、等間隔で隔置された2枚の板ガラスが共鳴することにより発生する複層ガラスに特有の現象である。
【0004】
従来より使用されている一般的な複層ガラスにおいては、スペーサ部材の両側面と板ガラスとの間には一次シールが、2枚の板ガラス端縁とスペーサ部材の外側面とを覆って二次シールが設けられている。
【0005】
しかし、この構成では、複層ガラスの中空層の大きさ、該中空層に封入された気体の種類、板ガラスの厚さ、等の制限より、200〜500Hzの音域で共鳴透過現象による遮音性能の低下という不具合が生じやすい。
また、2枚の板ガラスの板厚が同一または近似である場合、コインシデンス効果を顕著に生じ、高音域から中音域にかけても遮音性能の低下という不具合が生じやすい。
【0006】
なお、共鳴器を使用した従来の吸音機構は、相当数の共鳴器を建築空間の内装壁、天井等に挿入し、特定の周波数域の過多残響音を吸収させる例や、共鳴器を自動車等の排気部のマフラー、ダクト、管等の内部、等に設け、出口での音圧レベルを低減させる例があった。これに対し、吸音機構を複層ガラスのような壁体等の構造体の内部に使用する例は、従来見られなかった。
【0007】
【発明が解決しようとする課題】
上記欠点の対処法として、特開平11−229722号において吸音材が封入された筒状体を使用した構成が提案されている。しかし、この構成においても遮音性能が低下するという問題が完全に解決された訳ではない。
【0008】
このような複層ガラスにおいては、高周波数域よりも低周波数域の騒音を低減する対策は困難であり、特に多くの環境騒音の成分に含まれる200〜500Hzの音域での騒音制御技術にかかわる大きな課題となっている。
【0009】
【課題を解決するための手段】
本発明は、前述の課題を解決すべくなされたものであり、2枚の板ガラス相互をスペーサ部材を介して気密状に隔置することにより板ガラス相互間に中空層を形成してなる複層ガラスにおいて、該複層ガラスの少なくとも1端縁部分において、前記中空層内にはスペーサ部材に平行に該スペーサ部材と所定距離の位置に棒状部材が配設され、棒状部材、スペーサ部材および2枚の板ガラスで画する空洞部を形成しており、前記棒状部材には前記中空層と前記空洞部とを連通する複数個の貫通孔が設けられており、前記棒状部材と前記空洞部とにより共鳴器を形成してなることを特徴とする複層ガラスを提供する。
【0010】
この構成により、遮音複層ガラスにおいて、共鳴透過による低周波数域での遮音欠損を共鳴器を構成することにより改善できる。
【0011】
本発明において、前記スペーサ部材と棒状部材との間隔が5〜50mmであり、前記棒状部材の厚さが5〜20mmであり、貫通孔相互の間隔が30〜100mmであり、貫通孔の孔径が1〜5mmであることが好ましい。
また、本発明において、前記板ガラスの厚さが2〜30mmであり、板ガラス相互の間隔が4〜30mmであることが好ましい。
このような構成であれば、遮音複層ガラスにおいて、共鳴透過による低周波数域での遮音欠損を一層改善できる。
【0012】
また、本発明において、共鳴器の共鳴周波数が160〜630Hzであることが好ましい。一般的な複層ガラスにおいては、中空層の大きさ、該中空層に封入された気体の種類、板ガラスの厚さ、等の制限より、200〜500Hzの音域で共鳴透過現象による遮音性能の低下という不具合が生じやすく、共鳴器の共鳴周波数を160〜630Hzとすればこの不具合が解消しやすいからである。
【0013】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。
図1は、本発明における複層ガラス1の一例を示す構成断面図である。複層ガラス1は、2枚の板ガラス2および2を、スペーサ部材3によって、板ガラス2、2とスペーサ部材3との間に一次シール8を介して所定の間隔に保持し、板ガラス2および2の周縁部内部とスペーサ部材3の外周面とで形成された凹部に二次シール9を配して周縁部がシールされている。
【0014】
板ガラス2としては、建築用に一般的に使用されるソーダライムシリカガラス(たとえば、旭硝子社製、商品名:AS)が代表的であるが、これに限られず、その他の組成の板ガラスも使用できる。また、無機質の板ガラスのみならず、有機質の板ガラス、たとえば、ポリカーボネート、アクリル樹脂、等も使用できる。
【0015】
スペーサ部材3は、板ガラス2、2の相互の間隔が所定値に確保できれば材質、形状は限定されないが、図示のような断面矩形状が好ましい。なお、図示は省略したが、スペーサ部材3の中空部分に乾燥剤を充填し、かつ、スペーサ部材3の中空層側に貫通孔を所定間隔で複数個設けてもよい。
【0016】
一次シール8としては主に粘着力を発揮できる材質が好ましく、たとえば、ポリイソブチレンが好適に使用できる。二次シール9としては主に接着力を発揮できる材質が好ましく、たとえば、ポリスルフィド、シリコーン樹脂が好適に使用できる。
【0017】
図1において、中空層4内にはスペーサ部材3に平行にスペーサ部材3と所定距離Hの間隔を隔て棒状部材5が配設され、棒状部材5、スペーサ部材3および2枚の板ガラス2、2で画する空洞部7を形成している。棒状部材5は所定の厚さLを有しており、また、棒状部材5には中空層4と空洞部7とを連通する直径dの複数個の貫通孔6、6…が所定ピッチ間隔P毎に設けられている(図2参照)。
【0018】
棒状部材5の幅は、板ガラス2、2の相互の間隔Wと略等しく、図示しない接着剤等の固定手段により板ガラス2、2に固定されている。棒状部材5の材質としては、各種の材料が使用できるが、硬質樹脂、ゴム、金属材料、等が吸音性が少なくて好ましい。また、棒状部材5の表面、すなわち、棒状部材5の上下面および貫通孔6の周壁面は、平滑に仕上げてあることが、吸音性が少なくて好ましい。
【0019】
上記図1に示される構成、すなわち、棒状部材5と空洞部7とにより、共鳴器が形成されてなる。以下、この共鳴器の原理を説明する。棒状部材5に中空層4側から音波が入射すると、特定の周波数で貫通孔6内の空気が激しく振動する。このとき、貫通孔6内の空気と、貫通孔6の周壁面との摩擦によって音響エネルギーが熱エネルギーに変換されて吸音効果が得られる。
【0020】
図1、図2に示されるように、所定の厚さLの棒状部材5に連続的に貫通孔6が配されている構成は、ヘルムホルツ共鳴器が連続的に並んでいる構成と等価であると考えられる。この場合、該共鳴器は貫通孔6の数が多い程(ただし、孔6、6…の間隔は制限されるが)、その吸音効果は大きい。また、図1の例では複層ガラス1の1端縁部分に共鳴器を配する構成としたが、矩形状の複層ガラスのさらに他の端縁部分に共鳴器を配する構成とすれば、一層吸音効果が得られる。
【0021】
このように、本発明の複層ガラスは、従来の複層ガラスに僅かの変更を加えるのみで、充分な吸音効果が得られ、建築空間の他の部分に共鳴器を設ける必要はない。したがって、建築空間に全く変更を加えることなく、優れた遮音性能が得られる技術であり、人口密度の高い都市空間において極めて有益である。
【0022】
本発明において、複層ガラスの構成によってf(共鳴器の共鳴周波数)が求められる。すなわち、気体の音速C、スペーサ部材3と棒状部材5との間隔H、棒状部材5の厚さL、貫通孔6の直径d、貫通孔相互の間隔Pおよび板ガラス2、2の内のり寸法Wを下記(1)式に代入することによりfが算出される。
【0023】
【数1】

Figure 0004736278
【0024】
また一般に、複層ガラスの構成によってfrmd(複層ガラスの共鳴透過周波数)が求められる。すなわち、気体中の音速C、気体の密度ρ、ガラスの面密度mおよび板ガラス2、2の内のり寸法Wを下記(2)式に代入することによりfrmdが算出される。
【0025】
【数2】
Figure 0004736278
【0026】
このように、複層ガラスの構成における各値を任意に設定することにより、所望のf(共鳴器の共鳴周波数)と、frmd(複層ガラスの共鳴透過周波数)とを合わせることができる。
【0027】
本発明の他の実施の形態として、少なくとも1枚の板ガラスが合わせガラスである複層ガラスが挙げられる。このように、合わせガラスが使用されたり、板ガラスの外側にフィルムや樹脂等が接着された複層ガラスは、安全面に優れ、複層ガラスとしての機能向上に寄与できる。
【0028】
本発明のさらに他の実施の形態として、中空層に六フッ化硫黄ガス、アルゴンガスまたはクリプトンガスを封入した複層ガラスが挙げられる。通常の複層ガラスは、中空層に乾燥空気または窒素ガスが封入される構成が一般的であるが、これの代わりに、断熱性能を上げることを主たる目的で上記ガスを封入すると、媒体間の音速の違いによる波動的エネルギー損失を生じ、遮音性能が向上する効果が得られる。
【0029】
なお、六フッ化硫黄ガス、アルゴンガス、クリプトンガスの0℃、1気圧での密度ρは、それぞれ、6.6kg/m、1.78kg/m、3.74kg/mであり、音速Cは、それぞれ、130m/秒、308m/秒、212m/秒であり、その結果frmd(複層ガラスの共鳴透過周波数)は、それぞれ、250Hz、308Hz、308Hzと算出される。
【0030】
本発明のさらに他の実施の形態として、図3に示されるような、スペーサ部材3と棒状部材5とが連結部材10を介して一体化してなる構成が挙げられる。すなわち、スペーサ部材3上辺の両側端には水平片である係止部3a、3aが延設されており、棒状部材5の下部両側端からは連結部材10、10が垂設されており、かつ、連結部材10、10の下端部には、それぞれ2箇所に内向きの水平片が平行に延設されており係合凹部10a、10aを形成している。
【0031】
したがって、図3に示されるように、係止部3a、3aと係合凹部10a、10aとを嵌合することにより、スペーサ部材3と棒状部材5とが一体化する。この構成であれば、スペーサ部材3を一次シール8および二次シール9を介して板ガラス2、2に固定するのみでよく、棒状部材5を別途板ガラス2、2に固定する必要がない。なお、連結部材10、10はスペーサ部材3(棒状部材5)の全長に亘って設ける構成でも、スペーサ部材3(棒状部材5)の全長に対し局部的に所定間隔をおいて設ける構成でもよい。
【0032】
本発明のさらに他の実施の形態として、連結部材10が、好ましくは棒状部材5も透明部材である構成が挙げられる。このような構成であれば、連結部材10も、棒状部材5も透視性を妨げにくく、複層ガラスとして好ましい。
【0033】
本発明のさらに他の実施の形態として、貫通孔の少なくとも一方の開口部には音響抵抗材11が配されてなる構成が挙げられる。このような構成であれば、音響抵抗材11が貫通孔の前後での気体の摩擦運動を促進し、広い周波数範囲の吸音の効果が得られる。
【0034】
図3において、平面状の音響抵抗材11、11は棒状部材5の上下面に棒状部材5を覆って配されており、前記効果が得られる構成となっている。
なお、音響抵抗材とは、気体振動(空気振動)により自ら励振されやすい物質であり、たとえば、グラスウール、ロックウール等の繊維材、フィルム等の膜状材、等が挙げられる。
【0035】
【実施例】
矩形で、縦1480mm、横1230mm、厚さ3mmの板ガラス(旭硝子社製、商品名:AS)を使用し、複層ガラスを製作し、この遮音性能を評価した。複層ガラスの全体の厚さは18mmである。
【0036】
共鳴器を設ける本発明に係る複層ガラス、および、同一の外形で共鳴器を設けない通常の複層ガラスを、それぞれ実施例、比較例として比較した。なお、板ガラス2、2の内のり寸法Wはいずれも12mmとした。
【0037】
[実施例1]
図1に示される構成の共鳴器を複層ガラスの四端縁部分に設けた。
スペーサ部材3と棒状部材5との間隔Hを20mm、棒状部材5の厚さLを5mm、貫通孔6の直径dを2mm、貫通孔相互の間隔Pを50mmとした。棒状部材5の材質としては、ポリ塩化ビニルを使用した。
この場合前記(2)式によるfrmd(共鳴透過周波数)は286Hzとなり、前記(1)式によるf(共鳴器の共鳴周波数)は341Hzとなった。
【0038】
[実施例2]
図1に示される構成の共鳴器を複層ガラスの四端縁部分に設けた。
スペーサ部材3と棒状部材5との間隔Hを10mm、棒状部材5の厚さLを10mm、貫通孔6の直径dを2mm、貫通孔相互の間隔Pを50mmとした。棒状部材5の材質としては、ポリ塩化ビニルを使用した。
この場合前記(2)式によるfrmd(共鳴透過周波数)は286Hzとなり、前記(1)式によるf(共鳴器の共鳴周波数)は364Hzとなった。
【0039】
[比較例]
実施例1、2と同一構成の複層ガラスとし、共鳴器は設けない。
この場合前記(2)式によるfrmd(共鳴透過周波数)は286Hzとなった。
【0040】
上記実施例および比較例において、JIS A1416に準拠して各周波数毎の音響透過損失を測定した。
上記実施例および比較例の比較結果は、図4に示されるようになった。図4は、周波数毎の音響透過損失を示すグラフであり、図中で黒丸の点は実施例1を、白角の点は実施例2を、白丸の点は比較例を、それぞれ示す。
【0041】
図において、1/3オクターブ・バンド中心周波数で250〜500Hzにおいて、黒丸の点で示される本発明の実施例1、および、白角の点で示される実施例2は、白丸の点で示される比較例に比べて音響透過損失が2〜4dB高くなっている。すなわち、上記周波数においては、共鳴器を設けた効果が現れている。
また、上記結果より、共鳴器の設計周波数fのみならず、設計周波数に隣接する周波数域においても音響透過損失が2〜4dB高くなっており、共鳴器を設けた効果が現れている。
【0042】
【発明の効果】
本発明によれば、遮音複層ガラスにおいて、共鳴透過による低周波数域での遮音欠損を、貫通孔が設けられた棒状部材と空洞部とより構成される共鳴器を設けることにより改善できる。
また、本発明によれば、共鳴器の共鳴周波数を160〜630Hzとすることにより、一般的な複層ガラスにおける200〜500Hzの音域で共鳴透過現象による遮音性能の低下という不具合が解消できる。
【0043】
また、本発明によれば、少なくとも1枚の板ガラスが合わせガラスであることにより、安全面に優れ、複層ガラスとしての機能向上に寄与できる。
また、本発明によれば、中空層に六フッ化硫黄ガス、アルゴンガスまたはクリプトンガスを封入することにより、媒体間の音速の違いによる波動的エネルギー損失を生じ、遮音性能が向上する効果が得られる。
【0044】
また、本発明によれば、スペーサ部材と前記棒状部材とが連結部材を介して一体化してなることにより、複層ガラスの組み立て作業が簡略化できる。
また、本発明によれば、連結部材および/または前記棒状部材を透明部材とすることにより、連結部材等が透視性を妨げにくく、複層ガラスとして好ましい。
また、本発明によれば、貫通孔の少なくとも一方の開口部には音響抵抗材が配されてなることにより、広い周波数範囲の吸音の効果が得られる。
【図面の簡単な説明】
【図1】本発明の複層ガラスの実施例の概要を説明する要部断面図。
【図2】本発明に使用される棒状部材の要部平面図。
【図3】本発明の複層ガラスの他の実施例の概要を説明する要部断面図。
【図4】周波数毎の音響透過損失を示すグラフ。
【符号の説明】
1:複層ガラス
2:板ガラス
3:スペーサ部材
4:中空層
5:棒状部材
6:貫通孔
7:空洞部
8:一次シール
9:二次シール
10:連結部材
11:音響抵抗材[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a multilayer glass that can be suitably used not only for a window of a building but also for a window of a vehicle or a ship by enhancing sound insulation performance.
[0002]
[Prior art]
The sound insulation performance of the double-glazed glass depends on the coincidence effect and the resonance transmission phenomenon. Among these, the decrease in sound insulation performance due to the coincidence effect is said to be related to the density and longitudinal elastic modulus of the plate glass used, as well as the temperature at that time, and it is common to not only single plate glass but also multilayer glass. It is a phenomenon.
[0003]
On the other hand, the resonance transmission phenomenon in the low sound range is a phenomenon peculiar to multilayer glass generated by resonating two plate glasses spaced at equal intervals.
[0004]
In a conventional multi-layer glass used in the past, a primary seal is provided between both side surfaces of the spacer member and the plate glass, and a secondary seal is formed covering the two plate glass edges and the outer surface of the spacer member. Is provided.
[0005]
However, in this configuration, due to the limitations of the size of the hollow layer of the multilayer glass, the type of gas sealed in the hollow layer, the thickness of the plate glass, etc., the sound insulation performance due to the resonance transmission phenomenon in the 200 to 500 Hz sound range. It is easy to cause a problem of deterioration.
In addition, when the thicknesses of the two plate glasses are the same or approximate, the coincidence effect is remarkably generated, and a problem that the sound insulation performance is deteriorated easily occurs from the high sound range to the mid sound range.
[0006]
In addition, the conventional sound absorbing mechanism using a resonator is an example in which a considerable number of resonators are inserted into an interior wall or ceiling of a building space to absorb excessive reverberation sound in a specific frequency range, or the resonator is an automobile or the like. There is an example in which the sound pressure level at the outlet is reduced by providing the exhaust part inside a muffler, a duct, a pipe or the like. On the other hand, the example which uses a sound-absorbing mechanism inside structures, such as a wall body like a multilayer glass, was not seen conventionally.
[0007]
[Problems to be solved by the invention]
As a countermeasure against the above-mentioned drawback, Japanese Patent Application Laid-Open No. 11-229722 proposes a configuration using a cylindrical body in which a sound absorbing material is enclosed. However, even in this configuration, the problem that the sound insulation performance is lowered is not completely solved.
[0008]
In such a double-glazed glass, it is difficult to take measures to reduce the noise in the lower frequency range than in the high frequency range, and in particular, it relates to a noise control technique in the 200 to 500 Hz sound range included in many environmental noise components. It has become a big issue.
[0009]
[Means for Solving the Problems]
The present invention has been made to solve the above-mentioned problems, and is a multilayer glass formed by forming a hollow layer between two glass sheets by separating two glass sheets in an airtight manner through a spacer member. And at least one edge portion of the multi-layer glass, a rod-shaped member is disposed in the hollow layer at a predetermined distance from the spacer member in parallel to the spacer member, and the rod-shaped member, the spacer member, and the two sheets A hollow portion defined by plate glass is formed, and the rod-shaped member is provided with a plurality of through-holes communicating the hollow layer and the hollow portion, and the resonator is formed by the rod-shaped member and the hollow portion. A double-glazed glass is provided.
[0010]
With this configuration, in the sound insulation double-glazed glass, sound insulation defects in a low frequency region due to resonance transmission can be improved by configuring the resonator.
[0011]
In this invention, the space | interval of the said spacer member and a rod-shaped member is 5-50 mm, the thickness of the said rod-shaped member is 5-20 mm, the space | interval of through-holes is 30-100 mm, and the hole diameter of a through-hole is It is preferable that it is 1-5 mm.
Moreover, in this invention, it is preferable that the thickness of the said plate glass is 2-30 mm, and the space | interval between plate glasses is 4-30 mm.
With such a configuration, sound insulation defects in a low frequency region due to resonance transmission can be further improved in the sound insulation double-glazed glass.
[0012]
In the present invention, the resonance frequency of the resonator is preferably 160 to 630 Hz. In general multi-layer glass, the sound insulation performance is reduced due to the resonance transmission phenomenon in the 200 to 500 Hz sound range due to limitations such as the size of the hollow layer, the type of gas enclosed in the hollow layer, the thickness of the plate glass, etc. This is because such a problem is likely to occur, and if the resonance frequency of the resonator is set to 160 to 630 Hz, this problem can be easily solved.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a cross-sectional view showing an example of a multilayer glass 1 in the present invention. The multi-layer glass 1 holds two plate glasses 2 and 2 with a spacer member 3 at a predetermined interval between the plate glasses 2 and 2 and the spacer member 3 via a primary seal 8. A secondary seal 9 is disposed in a recess formed by the inside of the peripheral edge and the outer peripheral surface of the spacer member 3 to seal the peripheral edge.
[0014]
The plate glass 2 is typically soda lime silica glass (for example, manufactured by Asahi Glass Co., Ltd., trade name: AS) that is generally used for construction, but is not limited thereto, and plate glass of other compositions can also be used. . Moreover, not only an inorganic plate glass but also an organic plate glass such as polycarbonate and acrylic resin can be used.
[0015]
The material and shape of the spacer member 3 are not limited as long as the distance between the glass plates 2 and 2 can be secured to a predetermined value, but a rectangular cross section as shown in the drawing is preferable. Although illustration is omitted, the hollow portion of the spacer member 3 may be filled with a desiccant, and a plurality of through holes may be provided on the hollow layer side of the spacer member 3 at a predetermined interval.
[0016]
The primary seal 8 is preferably made of a material capable of mainly exerting adhesive force, for example, polyisobutylene can be suitably used. The secondary seal 9 is preferably made of a material that can mainly exert an adhesive force. For example, polysulfide or silicone resin can be suitably used.
[0017]
In FIG. 1, a rod-shaped member 5 is disposed in the hollow layer 4 in parallel to the spacer member 3 and spaced from the spacer member 3 by a predetermined distance H, and the rod-shaped member 5, the spacer member 3, and the two glass sheets 2, 2. Cavity portion 7 is formed. The rod-like member 5 has a predetermined thickness L, and the rod-like member 5 has a plurality of through-holes 6, 6... Having a diameter d communicating the hollow layer 4 and the hollow portion 7, with a predetermined pitch interval P. Each is provided (see FIG. 2).
[0018]
The width of the rod-like member 5 is substantially equal to the interval W between the glass plates 2 and 2 and is fixed to the glass plates 2 and 2 by a fixing means such as an adhesive (not shown). Various materials can be used as the material of the rod-like member 5, but hard resin, rubber, metal material, etc. are preferable because of low sound absorption. In addition, it is preferable that the surface of the bar-shaped member 5, that is, the upper and lower surfaces of the bar-shaped member 5 and the peripheral wall surface of the through-hole 6, are smooth and have low sound absorption.
[0019]
A resonator is formed by the configuration shown in FIG. 1, that is, the rod-shaped member 5 and the cavity portion 7. Hereinafter, the principle of this resonator will be described. When sound waves enter the rod-shaped member 5 from the hollow layer 4 side, the air in the through-hole 6 vibrates vigorously at a specific frequency. At this time, acoustic energy is converted into thermal energy by friction between the air in the through-hole 6 and the peripheral wall surface of the through-hole 6 to obtain a sound absorption effect.
[0020]
As shown in FIGS. 1 and 2, the configuration in which the through-hole 6 is continuously arranged in the rod-shaped member 5 having a predetermined thickness L is equivalent to the configuration in which the Helmholtz resonators are continuously arranged. it is conceivable that. In this case, the sound absorbing effect of the resonator increases as the number of the through holes 6 increases (however, the interval between the holes 6 is limited). In the example of FIG. 1, the resonator is disposed at one edge portion of the multilayer glass 1. However, if the resonator is disposed at the other edge portion of the rectangular multilayer glass, Further, a sound absorbing effect can be obtained.
[0021]
As described above, the double-glazed glass of the present invention can provide a sufficient sound absorbing effect only by adding a slight change to the conventional double-glazed glass, and it is not necessary to provide a resonator in the other part of the building space. Therefore, it is a technology that provides excellent sound insulation performance without any change to the architectural space, and is extremely useful in urban spaces with high population density.
[0022]
In the present invention, f r (resonance frequency of the resonator) is determined by the structure of the double-glazed glass. That is, the sound velocity C of the gas, the distance H between the spacer member 3 and the rod-like member 5, the thickness L of the rod-like member 5, the diameter d of the through-holes 6, the interval P between the through-holes, and the inner dimension W of the plate glasses 2, 2. f r is calculated by substituting the following equation (1).
[0023]
[Expression 1]
Figure 0004736278
[0024]
Generally, frmd (resonance transmission frequency of double-layer glass) is determined depending on the structure of double-layer glass. That is, frmd is calculated by substituting the velocity of sound C in the gas, the density ρ of the gas, the surface density m of the glass, and the inner dimension W of the glass plates 2 and 2 into the following equation (2).
[0025]
[Expression 2]
Figure 0004736278
[0026]
Thus, by arbitrarily setting the values in the configuration of the double glazing can be combined with the desired f r (resonator resonance frequency), and f rmd (resonant transmission frequency of the double glazing) .
[0027]
As another embodiment of the present invention, a multi-layer glass in which at least one sheet glass is a laminated glass can be mentioned. Thus, the laminated glass in which laminated glass is used or a film, a resin, or the like is adhered to the outside of the plate glass is excellent in safety and can contribute to improvement of the function as the laminated glass.
[0028]
Still another embodiment of the present invention includes a double-glazed glass in which sulfur hexafluoride gas, argon gas, or krypton gas is sealed in a hollow layer. Ordinary double-glazed glass generally has a structure in which dry air or nitrogen gas is sealed in a hollow layer. Instead of this, if the above gas is sealed for the purpose of mainly improving heat insulation performance, the space between media Wave energy is lost due to the difference in sound speed, and the effect of improving the sound insulation performance is obtained.
[0029]
Incidentally, sulfur hexafluoride gas, argon gas, 0 ° C. krypton gas, the density ρ at one atmospheric pressure, respectively, 6.6kg / m 3, 1.78kg / m 3, a 3.74 kg / m 3, The sound velocities C are 130 m / sec, 308 m / sec, and 212 m / sec, respectively. As a result, frmd (resonance transmission frequency of the multilayer glass) is calculated as 250 Hz, 308 Hz, and 308 Hz, respectively.
[0030]
As still another embodiment of the present invention, a configuration in which the spacer member 3 and the rod-like member 5 are integrated through the connecting member 10 as shown in FIG. That is, locking portions 3a and 3a, which are horizontal pieces, are extended from both side ends of the upper side of the spacer member 3, and connecting members 10 and 10 are vertically extended from both side ends of the lower part of the rod-shaped member 5, and In the lower end portions of the connecting members 10 and 10, inward horizontal pieces are extended in parallel at two locations to form engagement recesses 10a and 10a.
[0031]
Therefore, as shown in FIG. 3, the spacer member 3 and the rod-shaped member 5 are integrated by fitting the locking portions 3a, 3a and the engaging recesses 10a, 10a. With this configuration, it is only necessary to fix the spacer member 3 to the plate glasses 2 and 2 via the primary seal 8 and the secondary seal 9, and it is not necessary to fix the rod-like member 5 to the plate glasses 2 and 2 separately. The connecting members 10 and 10 may be provided over the entire length of the spacer member 3 (rod-like member 5) or may be provided locally at a predetermined interval with respect to the entire length of the spacer member 3 (rod-like member 5).
[0032]
Still another embodiment of the present invention includes a configuration in which the connecting member 10 is preferably a transparent member. If it is such a structure, both the connection member 10 and the rod-shaped member 5 are hard to disturb transparency, and are preferable as a multilayer glass.
[0033]
As still another embodiment of the present invention, a configuration in which the acoustic resistance material 11 is disposed in at least one opening of the through hole is mentioned. If it is such a structure, the acoustic resistance material 11 will accelerate | stimulate the frictional motion of the gas before and behind a through-hole, and the effect of the sound absorption of a wide frequency range will be acquired.
[0034]
In FIG. 3, the planar acoustic resistance members 11, 11 are arranged on the upper and lower surfaces of the rod-shaped member 5 so as to cover the rod-shaped member 5, so that the above-described effect can be obtained.
The acoustic resistance material is a substance that is easily excited by gas vibration (air vibration). Examples thereof include fiber materials such as glass wool and rock wool, and film-like materials such as films.
[0035]
【Example】
Using a rectangular glass plate (length: 1480 mm, width: 1230 mm, thickness: 3 mm) (manufactured by Asahi Glass Co., Ltd., trade name: AS), a multi-layer glass was manufactured, and the sound insulation performance was evaluated. The total thickness of the multilayer glass is 18 mm.
[0036]
The multilayer glass according to the present invention in which the resonator is provided and the normal multilayer glass in which the resonator is not provided with the same outer shape were compared as examples and comparative examples, respectively. The inner dimension W of the plate glasses 2 and 2 was 12 mm.
[0037]
[Example 1]
The resonator having the configuration shown in FIG. 1 was provided at the four edge portions of the double-glazed glass.
The distance H between the spacer member 3 and the rod-shaped member 5 was 20 mm, the thickness L of the rod-shaped member 5 was 5 mm, the diameter d of the through holes 6 was 2 mm, and the distance P between the through holes was 50 mm. Polyvinyl chloride was used as the material for the rod-like member 5.
In this case, f rmd (resonance transmission frequency) according to the equation (2) was 286 Hz, and f r (resonance frequency of the resonator) according to the equation (1) was 341 Hz.
[0038]
[Example 2]
The resonator having the configuration shown in FIG. 1 was provided at the four edge portions of the double-glazed glass.
The distance H between the spacer member 3 and the rod-shaped member 5 was 10 mm, the thickness L of the rod-shaped member 5 was 10 mm, the diameter d of the through holes 6 was 2 mm, and the distance P between the through holes was 50 mm. Polyvinyl chloride was used as the material for the rod-like member 5.
In this case, f rmd (resonance transmission frequency) according to the equation (2) was 286 Hz, and f r (resonance frequency of the resonator) according to the equation (1) was 364 Hz.
[0039]
[Comparative example]
It is a double-layer glass having the same configuration as in Examples 1 and 2, and no resonator is provided.
In this case, f rmd (resonance transmission frequency) according to the equation (2) was 286 Hz.
[0040]
In the said Example and comparative example, the sound transmission loss for every frequency was measured based on JISA1416.
The comparison results of the above examples and comparative examples are as shown in FIG. FIG. 4 is a graph showing sound transmission loss for each frequency. In the figure, black dots indicate Example 1, white corners indicate Example 2, and white circles indicate a comparative example.
[0041]
In the figure, Example 1 of the present invention indicated by a black circle point and Example 2 indicated by a white corner point are indicated by white circle points at 250 to 500 Hz at the center frequency of 1/3 octave band. The sound transmission loss is 2 to 4 dB higher than that of the comparative example. That is, the effect of providing a resonator appears at the above frequency.
Further, from the above result, not only the design frequency f r of the resonator, sound transmission loss even in a frequency range adjacent to the design frequency has become higher buys 2-4 dB, the effect has appeared in which a resonator.
[0042]
【The invention's effect】
According to the present invention, sound insulation defects in a low frequency region due to resonance transmission can be improved in a sound insulation multilayer glass by providing a resonator composed of a rod-like member provided with a through hole and a cavity.
In addition, according to the present invention, by setting the resonance frequency of the resonator to 160 to 630 Hz, it is possible to solve the problem of a decrease in sound insulation performance due to a resonance transmission phenomenon in a sound range of 200 to 500 Hz in a general multilayer glass.
[0043]
Moreover, according to this invention, when at least 1 sheet glass is a laminated glass, it is excellent in safety | security and can contribute to the function improvement as multilayer glass.
Further, according to the present invention, by encapsulating sulfur hexafluoride gas, argon gas or krypton gas in the hollow layer, wave energy loss due to the difference in sound speed between the media occurs, and the sound insulation performance is improved. It is done.
[0044]
Moreover, according to this invention, the assembly operation of a multilayer glass can be simplified by integrating a spacer member and the said rod-shaped member via a connection member.
Moreover, according to this invention, a connection member and / or the said rod-shaped member are made into a transparent member, and a connection member etc. cannot disturb transparency easily, and is preferable as multilayer glass.
Further, according to the present invention, an acoustic resistance material is disposed in at least one opening of the through hole, so that an effect of absorbing sound in a wide frequency range can be obtained.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of an essential part for explaining an outline of an embodiment of a double glass according to the present invention.
FIG. 2 is a plan view of an essential part of a rod-shaped member used in the present invention.
FIG. 3 is a cross-sectional view of an essential part for explaining the outline of another embodiment of the multilayer glass of the present invention.
FIG. 4 is a graph showing sound transmission loss for each frequency.
[Explanation of symbols]
1: Multi-layer glass 2: Plate glass 3: Spacer member 4: Hollow layer 5: Bar-shaped member 6: Through hole 7: Cavity 8: Primary seal 9: Secondary seal 10: Connecting member 11: Acoustic resistance material

Claims (7)

2枚の板ガラス相互をスペーサ部材を介して気密状に隔離することにより板ガラス相互間に中空層を形成してなる複層ガラスにおいて、該複層ガラスの少なくとも1端縁部分において、前記中空層内にはスペーサ部材に平行に該スペーサ部材と所定距離の位置に棒状部材が配設され、棒状部材、スペーサ部材および2枚の板ガラスで画する空洞部を形成しており、前記棒状部材には前記中空層と前記空洞部とを連通する複数個の貫通孔が設けられており、前記棒状部材と前記空洞部とにより共鳴器を形成し、前記スペーサ部材と前記棒状部材との間隔が5〜50mmであり、前記棒状部材の厚さが5〜20mmであり、前記貫通孔相互の間隔が30〜100mmであり、前記貫通孔の孔径が1〜5mmであり、前記共鳴器の共鳴周波数が160〜630Hzであることを特徴とする複層ガラス。In a double-glazed glass in which a hollow layer is formed between the glass plates by separating the two glass plates in an air-tight manner via a spacer member, at least one edge portion of the double-glazed glass has the inside of the hollow layer. A bar-shaped member is disposed parallel to the spacer member at a predetermined distance from the spacer member, and a hollow portion defined by the bar-shaped member, the spacer member, and two plate glasses is formed. A plurality of through-holes communicating the hollow layer and the hollow portion are provided, a resonator is formed by the rod-shaped member and the hollow portion, and an interval between the spacer member and the rod-shaped member is 5 to 50 mm. The thickness of the rod-shaped member is 5 to 20 mm, the interval between the through holes is 30 to 100 mm, the diameter of the through holes is 1 to 5 mm, and the resonance frequency of the resonator is 16 Double glazing, which is a ~630Hz. 前記板ガラスの厚さが2〜30mmであり、板ガラス相互の間隔が4〜30mmである請求項1に記載の複層ガラス。The multilayer glass according to claim 1, wherein the thickness of the plate glass is 2 to 30 mm, and the distance between the plate glasses is 4 to 30 mm. 少なくとも1枚の板ガラスが合わせガラスである請求項1または2に記載の複層ガラス。The multilayer glass according to claim 1 or 2 , wherein at least one sheet glass is laminated glass. 前記中空層に六フッ化硫黄ガス、アルゴンガスまたはクリプトンガスが封入された請求項1〜のいずれかに記載の複層ガラス。The multilayer glass according to any one of claims 1 to 3 , wherein the hollow layer is filled with sulfur hexafluoride gas, argon gas, or krypton gas. 前記スペーサ部材と前記棒状部材とが連結部材を介して一体化してなる請求項1〜のいずれかに記載の複層ガラス。The multilayer glass according to any one of claims 1 to 4 , wherein the spacer member and the rod-shaped member are integrated via a connecting member. 前記連結部材および/または前記棒状部材が透明部材である請求項1〜のいずれかに記載の複層ガラス。The coupling member and / or multiple glazing according to any one of claims 1 to 5, wherein said rod-like member is a transparent member. 前記貫通孔の少なくとも一方の開口部には音響抵抗材が配されてなる請求項1〜のいずれかに記載の複層ガラス。The multilayer glass according to any one of claims 1 to 6 , wherein an acoustic resistance material is disposed in at least one opening of the through hole.
JP2001259750A 2001-08-29 2001-08-29 Double glazing Expired - Fee Related JP4736278B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001259750A JP4736278B2 (en) 2001-08-29 2001-08-29 Double glazing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001259750A JP4736278B2 (en) 2001-08-29 2001-08-29 Double glazing

Publications (2)

Publication Number Publication Date
JP2003063844A JP2003063844A (en) 2003-03-05
JP4736278B2 true JP4736278B2 (en) 2011-07-27

Family

ID=19087072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001259750A Expired - Fee Related JP4736278B2 (en) 2001-08-29 2001-08-29 Double glazing

Country Status (1)

Country Link
JP (1) JP4736278B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1854449B (en) * 2005-04-28 2011-07-06 旭硝子株式会社 Multilayer glasses
US20070039258A1 (en) 2005-08-19 2007-02-22 Walker John R Iii Adjustable attachment system
US20070116907A1 (en) * 2005-11-18 2007-05-24 Landon Shayne J Insulated glass unit possessing room temperature-cured siloxane sealant composition of reduced gas permeability
US7987644B2 (en) 2006-09-15 2011-08-02 Enclos Corporation Curtainwall system
JP5388920B2 (en) * 2010-03-25 2014-01-15 株式会社Lixil sash
FR3122689B1 (en) * 2021-05-07 2024-01-19 Saint Gobain Perforated devices and glazing comprising them

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06167983A (en) * 1992-07-16 1994-06-14 Saint Gobain Vitrage Internatl Acoustic insulation box
JP2001163639A (en) * 1999-12-08 2001-06-19 Central Glass Co Ltd Double-glazing unit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06167983A (en) * 1992-07-16 1994-06-14 Saint Gobain Vitrage Internatl Acoustic insulation box
JP2001163639A (en) * 1999-12-08 2001-06-19 Central Glass Co Ltd Double-glazing unit

Also Published As

Publication number Publication date
JP2003063844A (en) 2003-03-05

Similar Documents

Publication Publication Date Title
US11841163B2 (en) Silencing system
JP2007100394A (en) Sound absorbing panel
JP3270580B2 (en) Method for increasing the acoustic isolation of a room
WO2008007447A1 (en) Translucent perforated laminate acoustical board and translucent acoustical panel
US8006442B2 (en) Double-glazed windows with inherent noise attenuation
KR20210001934U (en) sound insulation panel
JP4736278B2 (en) Double glazing
JP2008024546A (en) Double-glazed glass
JP2008266062A (en) Double-glazed glass
JP2002356934A (en) Sound insulation structure using double board
KR101330462B1 (en) Pair glass having wide band width noise reduction effect
JP4178452B2 (en) Double glazing
JP2010013847A (en) Structure for improving sound insulation defect caused by glass curtain wall
JP2004210553A (en) Sealed double-glazed unit
JP4027068B2 (en) Sound absorbing material
JPH1037619A (en) Sound-proof door
JP5363149B2 (en) Shoji
JP2005180096A (en) Double layer panel
JP3294519B2 (en) Soundproof glass
JP6825988B2 (en) Multi-layer window unit for railroad vehicles
US20240229542A1 (en) Perforated devices and glazings comprising same
JP5888496B2 (en) Double glazing
JP2003122370A (en) Acoustic material
JP2013043798A (en) Double glazing
JP2004138709A (en) Sound absorbing panel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110418

R151 Written notification of patent or utility model registration

Ref document number: 4736278

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees