JP4736034B2 - Functional gradient structure thin film manufacturing equipment - Google Patents

Functional gradient structure thin film manufacturing equipment Download PDF

Info

Publication number
JP4736034B2
JP4736034B2 JP2005263094A JP2005263094A JP4736034B2 JP 4736034 B2 JP4736034 B2 JP 4736034B2 JP 2005263094 A JP2005263094 A JP 2005263094A JP 2005263094 A JP2005263094 A JP 2005263094A JP 4736034 B2 JP4736034 B2 JP 4736034B2
Authority
JP
Japan
Prior art keywords
thin film
solution
concentration
cupc
spraying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005263094A
Other languages
Japanese (ja)
Other versions
JP2007075667A (en
Inventor
登志子 溝黒
暁亮 莫
隆 平賀
國榮 陳
宣孝 谷垣
厚子 小林
博孝 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2005263094A priority Critical patent/JP4736034B2/en
Publication of JP2007075667A publication Critical patent/JP2007075667A/en
Application granted granted Critical
Publication of JP4736034B2 publication Critical patent/JP4736034B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Nozzles (AREA)

Description

この発明は、傾斜構造を有する機能性薄膜の製造装置に関するものである。 The present invention relates to manufacturing equipment of the functional thin film having a gradient structure.

ポリマー中に分散した機能材料分子の濃度が、薄膜または部材表面から深さ方向に対して変化する傾斜構造材料は、様々な機能材料特性を発現ないし向上させることが知られている。   It is known that a gradient structure material in which the concentration of functional material molecules dispersed in a polymer changes in the depth direction from the surface of a thin film or member exhibits or improves various functional material properties.

例えば、ポリマー有機エレクトロルミネッセンス(EL)素子に使用される正孔輸送性ポリマーに電子輸送材料が傾斜構造となるように配設されることで、キャリアトラップの発生が抑制され、EL発光特性が向上する(非特許文献1)。また、屈折率分布形成作用のある機能材料分子を光学ポリマー中に分散させることで形成した屈折率分布型プラスチックレンズの場合には、多焦点タイプのレンズを得ることが比較的容易であることから、老視用コンタクトレンズとして高い有用性が期待される(特許文献1)。ポリマー有機太陽電池の場合も、p型ポリマー中にn型の機能材料(C60)が傾斜構造分布を取ることで、ドナーとアクセプター対が効率良く形成しやすくなり、太陽電池の光電変換効率が向上することが知られている(非特許文献2)。そして、プラスチック光ファイバーの場合には、屈折率分布型にすることでモード分散が起こりにくく伝送帯域が増加し、優れた光伝送特性を示すことが知られている(特許文献2−3)。さらには、深さ方向に対する屈折率分布曲線を精密に制御することで光伝送特性が飛躍的に向上することも、理論および実験的に確認されている(特許文献3−4)。 For example, the hole transporting polymer used in polymer organic electroluminescence (EL) devices is arranged so that the electron transporting material has an inclined structure, thereby suppressing the occurrence of carrier traps and improving the EL emission characteristics. (Non-Patent Document 1). In the case of a refractive index distribution type plastic lens formed by dispersing functional material molecules having a refractive index distribution forming function in an optical polymer, it is relatively easy to obtain a multifocal type lens. It is expected to be highly useful as a contact lens for presbyopia (Patent Document 1). Also in the case of a polymer organic solar cell, the n-type functional material (C 60 ) has a gradient structure distribution in the p-type polymer, so that a donor and an acceptor pair are easily formed efficiently, and the photoelectric conversion efficiency of the solar cell is improved. It is known to improve (Non-Patent Document 2). In the case of a plastic optical fiber, it is known that the refractive index distribution type makes it difficult for mode dispersion to occur, increases the transmission band, and exhibits excellent optical transmission characteristics (Patent Documents 2-3). Furthermore, it has been theoretically and experimentally confirmed that the optical transmission characteristics are dramatically improved by precisely controlling the refractive index distribution curve in the depth direction (Patent Documents 3-4).

たとえばこれら従来の傾斜構造材料を形成する方法にはいくつかの方法が知られているが、熱を加えて機能材料分子をポリマー中に熱拡散させる方法(非特許文献1−2)、もしくは2種以上のポリマーを混合したポリマーブレンド溶融体を温度勾配を有する状態で加熱、次いで冷却することで傾斜材料を形成する方法(特許文献4−5)が大半である。ただ、これらの熱を加えて傾斜材料を形成する方法だと、深さ方向の濃度分布制御がが一般的に困難である。   For example, several methods are known as methods for forming these conventional gradient structure materials, but a method of thermally diffusing functional material molecules in a polymer by applying heat (Non-Patent Document 1-2), or 2 Most of the methods (Patent Documents 4-5) form a gradient material by heating and then cooling a polymer blend melt in which a polymer of more than one species is mixed with a temperature gradient. However, it is generally difficult to control the concentration distribution in the depth direction with the method of forming the gradient material by applying these heats.

一方、たとえば以上のような熱によって傾斜材料を形成する方法やそのための装置とは別に、本出願人、そして本発明者らによって、以下のような、傾斜構造を有する機能性薄膜製造法とその製造装置が提案されている。   On the other hand, apart from the method of forming the gradient material by heat as described above and the apparatus therefor, the present applicant and the present inventors have made the following functional thin film manufacturing method having a gradient structure and the method thereof. Manufacturing equipment has been proposed.

すなわち、たとえば、溶液または分散液状態の有機系光学材料を高真空容器内に噴霧して基板上に堆積させ、加熱処理し、また必要に応じてさらに加圧処理することにより、より低温度において、光学材料の熱分解をもたらすことなく微細構造制御された高品質、高機能な有機系光学薄膜を形成する方法であり(特許文献6)、2成分以上の無機または有機材料を、大気圧下に置かれた溶液または分散液状態から、各成分毎に設けた噴霧ノズルを経て高真空容器内に直接噴霧して基板上に堆積させる薄膜製造装置であって、真空内より排気された溶媒または分散媒体を、これらの液体が凝固する程度の低温を発生することにより、または、物理吸着により、捕促し、これらの液体の真空排気装置の到達を阻止するとともに堆積室と真空排気装置間に大きな圧力差をつける排気捕促装置を有することを特徴とする薄膜製造装置を用いることで、有機系光材料の分解温度よりもはるかに低い温度において高品質で高機能な複合型光学薄膜の製造を可能とし、また、2成分以上の有機系光材料から成る複合型光学薄膜、さらに、その複合型光学薄膜において、その深さ方向に成分の濃度を任意に変化させた高機能な薄膜の製造を可能にする方法である(特許文献
7)。
That is, for example, by spraying an organic optical material in a solution or dispersion state into a high vacuum container and depositing it on a substrate, heat treatment, and further pressurizing treatment as necessary, at a lower temperature This is a method for forming a high-quality, high-functional organic optical thin film having a fine structure controlled without causing thermal decomposition of the optical material (Patent Document 6). An inorganic or organic material having two or more components is subjected to atmospheric pressure. A thin film manufacturing apparatus for directly depositing on a substrate by spraying into a high-vacuum container through a spray nozzle provided for each component from the state of the solution or dispersion placed on the solvent, the solvent exhausted from the vacuum or The dispersion medium is trapped by generating a low temperature at which these liquids solidify, or by physical adsorption, preventing these liquids from reaching the vacuum evacuation device, and the deposition chamber and vacuum evacuation device. High-quality, high-performance composite optical thin film at a temperature much lower than the decomposition temperature of organic optical materials by using a thin film manufacturing apparatus characterized by having an exhaust trapping device that creates a large pressure difference between them A composite optical thin film composed of an organic optical material having two or more components, and a high-performance thin film in which the concentration of components is arbitrarily changed in the depth direction in the composite optical thin film (Patent Document 7).

あるいは、2成分以上の有機系光学材料を溶液または分散液状態で各成分毎に設けた噴霧ノズルから高真空容器内に噴霧して基板上に堆積させ、加熱処理することで、有機系光材料の分解温度よりもはるかに低い温度において高品質で高機能な複合型光学薄膜の製造を可能とし、また2成分以上の有機系光材料から成る複合型光学薄膜において、マイクロメートル未満の微細領域で構造が制御された複合型光学薄膜の製造が可能となり、またさらに、2成分以上の有機系光材料から成る複合型光学薄膜において、その深さ方向に成分の濃度を任意に変化させたものの製造が可能となる方法である(特許文献8)。
特開2000−318057公報 特開平11-109144公報 特開2001-91758公報 特開平11−302397公報 特開2004−268568公報 特開平6−306181公報 特開平7−252670公報 特開平7−252671号公報 Applied Physics Letter誌、78巻、5号、2001年、p.574−576 Applied Physics Letter誌、81巻、24号、2002年、p.4607−4609 Journal of Lightwave Technology誌、13巻、7号、1995年、p.1475−1489 Journal of Lightwave Technology、15巻、11号、1997年、p.2095−2100
Alternatively, an organic optical material is formed by spraying an organic optical material having two or more components in a high-vacuum container from a spray nozzle provided for each component in a solution or dispersion state, and depositing it on a substrate, followed by heat treatment. It is possible to produce high-quality and high-performance composite optical thin films at temperatures much lower than the decomposition temperature of the above, and in composite optical thin films composed of two or more components of organic optical materials, A composite optical thin film with a controlled structure can be manufactured. Further, a composite optical thin film made of an organic optical material having two or more components can be manufactured by arbitrarily changing the concentration of components in the depth direction. (Patent Document 8).
JP 2000-318057 A JP-A-11-109144 JP 2001-91758 A JP-A-11-302397 JP 2004-268568 A JP-A-6-306181 JP-A-7-252670 JP-A-7-252671 Applied Physics Letter, 78, No. 5, 2001, p. 574-576 Applied Physics Letter, 81, 24, 2002, p. 4607-4609 Journal of Lightwave Technology, Vol. 13, No. 7, 1995, p. 1475-1489 Journal of Lightwave Technology, Vol. 15, No. 11, 1997, p. 2095-2100

本発明は以上のとおりの背景からなされたものであって、本発明者らが提案しているノズル噴霧による機能性薄膜の形成のための装置のより一層の高度化を図ることを課題としている。より具体的には、加熱する従来法に比べてはるかに低い温度、たとえば有機機能材料の分解温度よりもはるかに低い温度において成膜可能とする方法ではあるが、ノズル噴霧法においては薄膜形成材料の各々を噴霧するように複数のノズルを用いているため、薄膜の深さ(厚み)方向の濃度変化を精密に制御することは必ずしも容易ではなく、また、薄膜の平面位置、つまり基板の平面位置によって、深さ(厚み)方向の成分濃度の傾斜度を均一にすることが難しいという問題があった。そこで、本発明は、このような問題点を解決して、深さ(厚み)方向の濃度変化の精密な制御を容易とするとともに、深さ(厚み)の成分濃度の平面位置によるバラツキ、不均一性を解消し、高品質で精密制御可能とされた機能性傾斜構造薄膜の製造装置を提供することを課題としている。 The present invention was made from the background of the As described above, the object is achieved even more sophisticated equipment for the formation of a functional thin film by the nozzle spray present inventors have proposed Yes. More specifically, the film can be formed at a temperature much lower than the conventional heating method, for example, much lower than the decomposition temperature of the organic functional material. Since a plurality of nozzles are used to spray each of these, it is not always easy to precisely control the concentration change in the depth (thickness) direction of the thin film, and the plane position of the thin film, that is, the plane of the substrate There is a problem that it is difficult to make the gradient of the component concentration in the depth (thickness) direction uniform depending on the position. Therefore, the present invention solves such problems, facilitates precise control of concentration changes in the depth (thickness) direction, and also causes variations and inaccuracies in the depth (thickness) component concentration due to the planar position. eliminating the uniformity, and an object of the invention to provide a manufacturing apparatus of the functional gradient structure film is a precisely controllable high quality.

成分以上の薄膜形成材料の混合溶液または分散液を単一のノズルより真空容器内に噴霧して基板上に薄膜形成する際に、溶液または分散液中の少くとも一成分の濃度を経時的に変更することによって、薄膜を形成する材料の少くとも一成分の薄膜の深さ(厚み)方向の濃度を変化させた機能性傾斜構造薄膜を製造する機能性傾斜構造薄膜の製造装置であって、真空容器と、この真空容器内に配置される基板ホルダーと噴霧ノズルと、前記薄膜形成材料の混合溶液または分散液を供給する液供給部とを有し、前記液供給部は、前記薄膜形成材料の少くとも一成分の濃度を経時的に変更可能とする調整機構を備え、この調整機構は、前記薄膜形成材料を含有する複数の液容器をサイフォン機構により連結させていることを特徴とする機能性傾斜構造薄膜の製造装置。 When a thin film is formed on a substrate by spraying a mixed solution or dispersion of two or more components into a vacuum vessel from a single nozzle, the concentration of at least one component in the solution or dispersion is changed over time. A functionally graded thin film manufacturing apparatus for manufacturing a functionally graded thin film in which the concentration in the depth (thickness) direction of at least one component thin film of the material forming the thin film is changed by changing to A vacuum vessel, a substrate holder and a spray nozzle disposed in the vacuum vessel, and a liquid supply unit for supplying a mixed solution or dispersion of the thin film forming material, the liquid supply unit forming the thin film It is provided with an adjusting mechanism that can change the concentration of at least one component of the material over time, and this adjusting mechanism is characterized in that a plurality of liquid containers containing the thin film forming material are connected by a siphon mechanism. Functional slope Forming a thin film of manufacturing equipment.

上記のとおりの本願発明によれば、たとえば有機機能材料の分解温度よりもはるかに低い温度において成膜を可能とするノズル噴霧法の特徴を生かし、しかも、深さ(厚み)方向の濃度変化の精密な制御を容易とするとともに、その変化の薄膜平面位置でのバラツキ、不均一性を抑えて高品質で高機能な傾斜構造薄膜の製造が可能となる。   According to the present invention as described above, taking advantage of the characteristics of the nozzle spraying method that enables film formation at a temperature much lower than the decomposition temperature of the organic functional material, for example, the concentration change in the depth (thickness) direction While making precise control easy, it is possible to manufacture a high-quality and highly functional gradient structure thin film by suppressing variation and non-uniformity of the change in the plane of the thin film.

以下、本発明の実施の形態について説明する。   Embodiments of the present invention will be described below.

本発明における機能性傾斜構造薄膜は、薄膜の深さ、つまり厚み方向に、二成分以上の薄膜形成成分のうちの少くとも一成分の濃度が変化するという組成の傾斜性を有し、このことによって、光機能性、電子機能性、生体機能性、触媒機能性等の特有の機能の発現もしくは向上を可能とするものであることを意味している。従って、薄膜を形成する成分としては無機、有機の各種材料の2種以上のものであって、薄膜形成を有しているものであればよい。たとえば代表的には、光機能性薄膜としての傾斜構造膜が本発明により提供される。   The functionally graded thin film in the present invention has a compositional gradient in which the concentration of at least one of the two or more thin film forming components changes in the depth of the thin film, that is, in the thickness direction. This means that it is possible to develop or improve specific functions such as optical functionality, electronic functionality, biological functionality, and catalytic functionality. Therefore, the components for forming the thin film may be any of two or more of inorganic and organic materials, and those having a thin film formation. For example, typically, an inclined structure film as an optical functional thin film is provided by the present invention.

たとえば、有機高分子化合物と有機低分子化合物との組合せ、有機高分子化合物と液晶との組合せ、2種類以上の有機高分子化合物の組合せ、有機高分子化合物と低分子化合物との混合物と高分子化合物との組合せなどを挙げることができる。これらの組合せにおいて、個々の成分は、揮発性を有する溶媒に溶解可能なもの、あるいは分散媒に分散可能なものであれば任意の種類のものが用いられる。また、個々の成分はそれ自体単独で光学機能を発揮するものでも、混合または複合化されて光学機能を実現するものであっても、いずれでも良い。また、必要に応じて、これらの個々の成分に、セレン、テルル、ゲルマニウム、珪素、シリコンカーバイド、硫化カドミウム、セレン化カドミウム、Cd−Zn−Mn−Se−Te−S−OやGe−IN−Al−As−Pなどの半導体微粒子、および、金コロイドなどの金属微粒子を混合した状態で使用することができる。   For example, a combination of an organic polymer compound and an organic low molecular compound, a combination of an organic polymer compound and a liquid crystal, a combination of two or more organic polymer compounds, a mixture of an organic polymer compound and a low molecular compound, and a polymer The combination with a compound etc. can be mentioned. In these combinations, any kind of individual component can be used as long as it can be dissolved in a volatile solvent or can be dispersed in a dispersion medium. In addition, each component itself may exhibit an optical function alone, or may be a component that is mixed or combined to realize an optical function. If necessary, these individual components may include selenium, tellurium, germanium, silicon, silicon carbide, cadmium sulfide, cadmium selenide, Cd—Zn—Mn—Se—Te—S—O and Ge—IN—. It can be used in a state where semiconductor fine particles such as Al-As-P and metal fine particles such as gold colloid are mixed.

いずれにせよ、有機高分子化合物、有機低分子化合物、有機化合物の微粒子、および、液晶などを各々溶液または分散液状態にして使用することができる。   In any case, an organic polymer compound, an organic low-molecular compound, fine particles of an organic compound, liquid crystal, and the like can be used in a solution or dispersion state.

以下、個々の成分について、さらに具体的に例示する。
[有機高分子材料] 有機高分子化合物の内、いわゆる「光学的性質や機能」を有するものは、この発明の複合型光学薄膜の材料の一成分として利用することができる。このような有機高分子材料の具体例としては、ポリスチレン、ポリ(α−メチルスチレン)、ポリインデン、ポリ(4−メチル−1−ペンテン)、ポリビニルピリジン、ポリビニルホルマール、ポリビニルアセタール、ポリビニルブチラール、ポリ酢酸ビニル、ポリビニルアルコール、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリビニルメチルエーテル、ポリビニルエチルエーテル、ポリビニルベンジルエーテル、ポリビニルメチルケトン、ポリ(N−ビニルカルバゾール)、ポリ(N−ビニルピロリドン)、ポリアクリル酸メチル、ポリアクリル酸エチル、ポリアクリル酸、ポリアクリロニトリル、ポリメタクリル酸メチル、ポリ
メタクリル酸エチル、ポリメタクリル酸ブチル、ポリメタクリル酸ベンジル、ポリメタクリル酸シクロヘキシル、ポリメタクリル酸ベンジル、ポリメタクリル酸シクロヘキシル、ポリメタクリル酸、ポリメタクリル酸アミド、、ポリメタクリロニトリル、ポリアセトアルデヒド、ポリクロラール、ポリエチレンオキシド、ポリプロピレンオキシド、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリカーボネイト類(ビオスフェノール類+炭酸)、ポリ(ジエチレングリコール・ビスアリルカーボネイト類、6−ナイロン、6,6−ナイロン、12−ナイロン、6,12−ナイロン、ポリアスパラギン酸エチル、ポリグルタミン酸エチル、ポリリジン、ポリブロリン、ポリ(γ−ベンジル−L−グルタメート)、メチルセルロース、エチルセルロース、ベンジルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、アセチルセルロース、セルローストリアセテート、セルローストリブチレート、アルキド樹脂(無水フタル酸+グリセリン)、脂肪酸変性アルキド樹脂(脂肪酸+無水フタル酸+グリセリン)、不飽和ポリエステル樹脂(無水マレイン酸+無水フタル酸+プロピレングリコール)、エポキシ樹脂(ビスフェノール類+エピクロルヒドリン)、ポリウレタン樹脂、フェノール樹脂、尿素樹脂、メラミン樹脂、キシレン樹脂、トルエン樹脂、グアナミン樹脂などの樹脂、ポリ(フェニルメチルシラン)などの有機ポリシラン、有機ポリゲルマンおよびこれらの共重合・共重縮合体、および、二硫化炭素、四フッ化炭素、エチルベンゼン、パーフルオロベンゼン、パーフルオロシクロヘキサン、トリメチルクロロシランなどの、通常では重合性のない化合物をプラズマ重合して得た高分子化合物などを挙げることができる。
Hereinafter, the individual components will be illustrated more specifically.
[Organic Polymer Material] Among organic polymer compounds, those having so-called “optical properties and functions” can be used as one component of the composite optical thin film material of the present invention. Specific examples of such organic polymer materials include polystyrene, poly (α-methylstyrene), polyindene, poly (4-methyl-1-pentene), polyvinylpyridine, polyvinyl formal, polyvinyl acetal, polyvinyl butyral, polyacetic acid. Vinyl, polyvinyl alcohol, polyvinyl chloride, polyvinylidene chloride, polyvinyl methyl ether, polyvinyl ethyl ether, polyvinyl benzyl ether, polyvinyl methyl ketone, poly (N-vinyl carbazole), poly (N-vinyl pyrrolidone), methyl polyacrylate, Polyethyl acrylate, polyacrylic acid, polyacrylonitrile, polymethyl methacrylate, polyethyl methacrylate, polybutyl methacrylate, polybenzyl methacrylate, polycyclohexyl methacrylate , Polybenzyl methacrylate, polycyclohexyl methacrylate, polymethacrylic acid, polymethacrylamide, polymethacrylonitrile, polyacetaldehyde, polychloral, polyethylene oxide, polypropylene oxide, polyethylene terephthalate, polybutylene terephthalate, polycarbonates (biosphenol) + Carbonic acid), poly (diethylene glycol bisallyl carbonates), 6-nylon, 6,6-nylon, 12-nylon, 6,12-nylon, polyethyl aspartate, ethyl polyglutamate, polylysine, polybroline, poly (γ -Benzyl-L-glutamate), methylcellulose, ethylcellulose, benzylcellulose, hydroxyethylcellulose, hydroxypropylcellulose Acetylcellulose, cellulose triacetate, cellulose tributyrate, alkyd resin (phthalic anhydride + glycerin), fatty acid modified alkyd resin (fatty acid + phthalic anhydride + glycerin), unsaturated polyester resin (maleic anhydride + phthalic anhydride + propylene glycol) ), Epoxy resins (bisphenols + epichlorohydrin), polyurethane resins, phenol resins, urea resins, melamine resins, xylene resins, toluene resins, guanamine resins, organic polysilanes such as poly (phenylmethylsilane), organic polygermane and These copolymerization / copolycondensates and carbon disulfide, carbon tetrafluoride, ethylbenzene, perfluorobenzene, perfluorocyclohexane, trimethylchlorosilane, etc. There compounds may be mentioned such as a polymer compound obtained by plasma polymerization.

また、これら有機高分子化合物は、有機色素や光非線形効果を示す有機低分子化合物の残基をモノマー単位の側鎖として、あるいは架橋基として、共重合モノマー単位として、または、重合開始末端として含有しても良い。
[有機低分子化合物] この発明の複合型光学薄膜の材料の一成分として用いられる有機低分子化合物の具体例としては、尿素およびその誘導体、m−ニトロアニリン、2−メチル−4−ニトロ−アニリン、2−(N,N−ジメチルアミノ)−5−ニトロアセトアニリド、N,N’−ビス(4−ニトロフェニル)メタンジアミンなどのベンゼン誘導体、4−メトキシ−4’−ニトロビフェニルなどのビフェニル誘導体、4−メトキシ−4’−ニトロスチルベンなどのスチルベン誘導体、4−ニトロ−3−ピコリン−N−オキシド、(S)−(−)−N−(5−ニトロ−2−ピリジル)−プロリノールなどのピリジン誘導体、2’,4,4’−トリメトキシカルコンなどのカルコン誘導体、チエニルカルコン誘導体などの2次非線形光学活性物質の他、各種の有機色素、および、有機顔料などを挙げることができる。
[液晶] この発明の複合型光学薄膜の材料の一成分として用いられる液晶の具体例としては、種々のコレステロール誘導体、4’−n−ブトキシベンジリデン−4−シアノアニリン、4’−n−ヘキシルベンジリデン−4−シアノアニリンなどの4’−アルコキシベンジリデン−4−シアノアニリン類、4’−エトキシベンジリデン−4−n−ブチルアニリン、4’−メトキシベンジリデンアミノアゾベンゼン、4−(4’−メトキシベンジリデン)アミノビフェニル、4−(4’−メトキシベンジリデン)アミノスチルベンなどの4’−アルコキシベンジリデンアニリン類、4’−シアノベンジリデン−4−n−ブチトキシアニリン、4’−シアノベンジリデン−4−n−ヘキシルオキシアニリンなどの4’−シアノベンジリデン−4−アルコキシアニリン類、4’−n−ブトキシカルボニルオキシベンジリデン−4−メトキシアニリン、p−カルボキシフェニルn−アミルカーボネート、n−ヘプチル4−(4’−エトキシフェノキシカルボニル)フェニルカーボネートなどの炭酸エステル類、4−n−ブチル安息香酸4’−エトキシフェニル、4−n−ブチル安息香酸4’−オクチルオキシフェニル、4−n−ペンチル安息香酸4’−ヘキシルオキシフェニルなどの4−アルキル安息香酸4’−アルコキシフェニルエステル類、4,4’−ジ−n−アミルオキシアゾキシベンゼン、4,4’−ジ−n−ノニルオキシアゾキシベンゼンなどのアゾキシベンゼン誘導体、4−シアノ−4’−n−オクチルビフェニル、4−シアノ−4’−n−オクチルビフェニル、4−シアノ−4’−n−ドデシルビフェニル
などの4−シアノ−4’−アキルビフェニル類などの液晶ぉよび(2S,3S)−3−メチル−2−クロロペンタノイック酸、4’,4''−オクチルオキシビフェニル、4’−(2−メチルブチル)ビフェニル−4−カルボン酸4−ヘキシルオキシフェニル、および、4’−オクチルビフェニル−4−カルボン酸4−(2−メチルブチル)フェニルなどの強誘導性液晶を挙げることができる。
In addition, these organic polymer compounds contain organic dyes or residues of organic low molecular compounds that exhibit optical nonlinear effects as side chains of monomer units, as crosslinking groups, as copolymerization monomer units, or as polymerization initiation terminals. You may do it.
[Organic low-molecular compound] Specific examples of the organic low-molecular compound used as one component of the material of the composite optical thin film of the present invention include urea and its derivatives, m-nitroaniline, 2-methyl-4-nitro-aniline. Benzene derivatives such as 2- (N, N-dimethylamino) -5-nitroacetanilide, N, N′-bis (4-nitrophenyl) methanediamine, biphenyl derivatives such as 4-methoxy-4′-nitrobiphenyl, Stilbene derivatives such as 4-methoxy-4′-nitrostilbene, 4-nitro-3-picoline-N-oxide, (S)-(−)-N- (5-nitro-2-pyridyl) -prolinol, etc. In addition to chalcone derivatives such as pyridine derivatives, 2 ′, 4,4′-trimethoxychalcone, and second-order nonlinear optically active substances such as thienyl chalcone derivatives, Kind of organic dye, and the like can be mentioned organic pigments.
[Liquid Crystal] Specific examples of the liquid crystal used as one component of the material of the composite optical thin film of the present invention include various cholesterol derivatives, 4′-n-butoxybenzylidene-4-cyanoaniline, 4′-n-hexylbenzylidene. 4′-alkoxybenzylidene-4-cyanoanilines such as -4-cyanoaniline, 4′-ethoxybenzylidene-4-n-butylaniline, 4′-methoxybenzylideneaminoazobenzene, 4- (4′-methoxybenzylidene) amino 4'-alkoxybenzylideneanilines such as biphenyl, 4- (4'-methoxybenzylidene) aminostilbene, 4'-cyanobenzylidene-4-n-butoxyaniline, 4'-cyanobenzylidene-4-n-hexyloxyaniline 4′-cyanobenzylidene-4-alkoxyanily such as Carbonates such as 4′-n-butoxycarbonyloxybenzylidene-4-methoxyaniline, p-carboxyphenyl n-amyl carbonate, n-heptyl 4- (4′-ethoxyphenoxycarbonyl) phenyl carbonate, 4-n 4-alkylbenzoic acid 4′-alkoxyphenyl esters such as 4-butylbenzoic acid 4′-ethoxyphenyl, 4-n-butylbenzoic acid 4′-octyloxyphenyl, 4-n-pentylbenzoic acid 4′-hexyloxyphenyl, etc. 4,4′-di-n-amyloxyazoxybenzene, azoxybenzene derivatives such as 4,4′-di-n-nonyloxyazoxybenzene, 4-cyano-4′-n-octylbiphenyl, 4-cyano-4′-n-octylbiphenyl, 4-cyano-4′-n-dodecylbiphenyl, etc. Liquid crystal such as 4-cyano-4′-alkylbiphenyl and (2S, 3S) -3-methyl-2-chloropentanoic acid, 4 ′, 4 ″ -octyloxybiphenyl, 4 ′-(2 Examples include strongly inductive liquid crystals such as 4-methylbutyl) biphenyl-4-carboxylic acid 4-hexyloxyphenyl and 4′-octylbiphenyl-4-carboxylic acid 4- (2-methylbutyl) phenyl.

たとえば以上の通り例示することのできる有機高分子材料、有機低分子材料、色素物質、液晶物質等は、本発明においては複合して適宜な溶媒に溶解するか、あるいは分散媒に溶解するか、あるいは分散媒に分散させて高真空容器内に噴霧される。この際の溶媒もしくは分散媒についても各種のものを使用することができるが、たとえば上記のような複合型光学薄膜の個々の成分を溶解または分散する溶剤であり、揮発性を有し、腐食性のないものであれば、任意のものが使用できる。   For example, organic polymer materials, organic low molecular materials, pigment substances, liquid crystal substances and the like that can be exemplified as described above are combined in the present invention and dissolved in an appropriate solvent, or dissolved in a dispersion medium, Alternatively, it is dispersed in a dispersion medium and sprayed into a high vacuum container. Various types of solvents or dispersion media can be used at this time. For example, these are solvents that dissolve or disperse individual components of the composite optical thin film as described above, have volatility, and are corrosive. Anything can be used as long as it is not.

具体的にはメタノール、エタノール、イソプロピルアルコール、n−ブタノール、アミルアルコール、シクロヘキサノール、ベンジルアルコールなどのアルコール類、エチレングリコール、ジエチレングリコール、グリセリンなどの多価アルコール類、酢酸エチル、酢酸n−ブチル、酢酸アミル、酢酸イソプロピルなどのエステル類、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンなどのケトン類、ジエチルエーテル、ジブチルエーテル、メトキシエタノール、エトキシエタノール、ブトキシエタノール、カルビトールなどのエーテル類、テトラヒドロフラン、1,4−ジオキサンなどの環状エーテル類、ジクロロメタン、クロロホルム、四塩化炭素、1,2−ジクロロエタン、1,1,2−トリクロロエタン、トリクレンなどのハロゲン化炭化水素類、ベンゼン、トルエン、キシレン、クロロベンゼン、o−ジクロロベンゼン、ニトロベンゼン、アニソール、α−クロロナフタレンなどの芳香族炭化水素類、n−ペンタン、n−ヘキサン、n−ヘプタン、シクロヘキサンなどの脂肪族炭化水素類、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ヘキサメチルホスホリックトリアミドなどのアミド類、N−メチルピロリドンなどの環状アミド類、テトラメチル尿素、1,3−ジメチル−2−イミダゾリジノンなどの尿素誘導体類、ジメチルスルホキシドなどのスルホキシド類、炭酸エチレン、炭酸プロピレンなどの炭酸エステル類、アセトニトリル、プロピオニトリル、ベンゾニトリルなどのニトリル類、ピリジン、キノリンなどの含窒素複素環化合物類、トリエチルアミン、トリエタノールアミン、ジエチルアミノアルコール、アニリンなどのアミン類、などの他、水、ニトロメタン、二硫化炭素、スルホランなどの溶剤を用いることができる。   Specifically, alcohols such as methanol, ethanol, isopropyl alcohol, n-butanol, amyl alcohol, cyclohexanol, and benzyl alcohol, polyhydric alcohols such as ethylene glycol, diethylene glycol, and glycerin, ethyl acetate, n-butyl acetate, and acetic acid Esters such as amyl and isopropyl acetate, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone, ethers such as diethyl ether, dibutyl ether, methoxyethanol, ethoxyethanol, butoxyethanol and carbitol, tetrahydrofuran, 1,4 -Cyclic ethers such as dioxane, dichloromethane, chloroform, carbon tetrachloride, 1,2-dichloroethane, 1,1,2-trichloroethane Halogenated hydrocarbons such as trichlene, aromatic hydrocarbons such as benzene, toluene, xylene, chlorobenzene, o-dichlorobenzene, nitrobenzene, anisole, α-chloronaphthalene, n-pentane, n-hexane, n-heptane, Aliphatic hydrocarbons such as cyclohexane, amides such as N, N-dimethylformamide, N, N-dimethylacetamide, hexamethylphosphoric triamide, cyclic amides such as N-methylpyrrolidone, tetramethylurea, 1, Urea derivatives such as 3-dimethyl-2-imidazolidinone, sulfoxides such as dimethyl sulfoxide, carbonates such as ethylene carbonate and propylene carbonate, nitriles such as acetonitrile, propionitrile, benzonitrile, pyridine, quinoline, etc. of In addition to nitrogen-containing heterocyclic compounds, amines such as triethylamine, triethanolamine, diethylaminoalcohol, and aniline, solvents such as water, nitromethane, carbon disulfide, and sulfolane can be used.

そして、本発明の方法は、上記のとおり、二成分以上の薄膜を形成する成分の全てを単一のノズルより噴霧することにより、薄膜の深さ(厚み)方向に少くとも一成分の濃度が変化する傾斜性を与えることを特徴としているが、この方法の実施においては、本発明者らがすでに提案している噴霧による薄膜形成のための方法とその装置を技術的な基礎とすることができる。   And as above-mentioned, the method of this invention sprays all the components which form the thin film of two or more components from a single nozzle, and the density | concentration of at least one component is the depth (thickness) direction of a thin film. The method is characterized by providing a changing gradient, but in carrying out this method, the method and apparatus for forming a thin film by spraying already proposed by the present inventors are technically based. it can.

本発明の製造装置は、たとえば図1(A)に例示したものをひとつの基本的形態として示すことができ、二成分以上の薄膜形成材料の溶液または分散液をたとえば圧力1×10-4Pa以下の真空中へ噴霧するための手段として単一の噴霧ノズル(1)および噴霧ノズルの開閉機構部(2)を真空容器(3)に配設し、さらに、この真空容器(3)内で揮発した溶媒等の蒸気を迅速に排気し、真空容器(3)内の圧力を1×10-4Pa以下に保つ真空ポンプ(4)を備えている。 The manufacturing apparatus of the present invention can show, for example, the one illustrated in FIG. 1A as one basic form, and a solution or dispersion of a thin film forming material having two or more components can be used, for example, at a pressure of 1 × 10 −4 Pa. As a means for spraying into the following vacuum, a single spray nozzle (1) and an opening / closing mechanism part (2) of the spray nozzle are disposed in the vacuum container (3), and further in this vacuum container (3) A vacuum pump (4) is provided for quickly exhausting vapors of the volatilized solvent or the like and maintaining the pressure in the vacuum vessel (3) at 1 × 10 −4 Pa or less.

また、本発明の製造装置には、前記真空容器(3)内に設置した圧力測定装置(5)、真空容器(3)内で揮発した溶媒等の蒸気が真空ポンプ(4)へ到達することを防止するためのコールドトラップ(6)、噴霧ノズル(1)と基板(15)との間を遮蔽するシャ
ッター(7)、基板加熱装置(8)、および基板温度測定装置(9)をも備え、これらの装置により真空容器(3)内の基板(15)表面に機能性傾斜構造薄膜を形成することを可能としている。
Further, in the manufacturing apparatus of the present invention, the pressure measuring device (5) installed in the vacuum vessel (3), the vapor of the solvent volatilized in the vacuum vessel (3) reaches the vacuum pump (4). And a cold trap (6) for preventing water, a shutter (7) for shielding between the spray nozzle (1) and the substrate (15), a substrate heating device (8), and a substrate temperature measuring device (9). These devices make it possible to form a functionally graded thin film on the surface of the substrate (15) in the vacuum vessel (3).

この装置には、必要に応じて表面加熱装置(10)を設けることが好ましい。   The apparatus is preferably provided with a surface heating apparatus (10) as necessary.

真空ポンプ(4)は真空容器(3)を大気圧から高真空、より好ましくは、1×10-4Pa以下の圧力へできる限り迅速に排気し、かつ、真空容器内で揮発して、コールドトラップ(6)で捕獲されきれなかった溶媒等の気体成分を迅速に排気し、真空容器(3)内に圧力を1×10-4Pa以下に保つことができるものであれば、任意のものが使用可能である。具体的にはターボ分子ポンプとロータリーポンプとの組合せや、油拡散ポンプとロータリーポンプとの組合せを使用することができる。 The vacuum pump (4) evacuates the vacuum vessel (3) from atmospheric pressure to high vacuum, and more preferably as quickly as possible to a pressure of 1 × 10 −4 Pa or less, and volatilizes in the vacuum vessel to cold. Any gas component such as a solvent that could not be captured by the trap (6) can be quickly exhausted, and the pressure can be kept at 1 × 10 −4 Pa or less in the vacuum vessel (3). Can be used. Specifically, a combination of a turbo molecular pump and a rotary pump, or a combination of an oil diffusion pump and a rotary pump can be used.

圧力測定装置(5)については、一般的には1×10-2Pa以下の圧力を正確に測定できるものであれば公知の任意のものを使用することができる。たとえば具体的には、Bayard-Alpert型などの電離真空計を使用できる。 About a pressure measuring device (5), generally well-known arbitrary things can be used if a pressure below 1x10 <-2 > Pa can be measured correctly. For example, an ionization gauge such as a Bayard-Alpert type can be used.

真空容器(3)については装置形成部品を、真空系の容積が最小になるように配置する形態のものが好ましく、材質は高真空仕様のアルミニウムまたはステンレスが好ましい。基板加熱装置(8)は、基板温度を所定の値に制御する機構を含むものが好ましく、ヒーター部分を真空系内に置く形式と、真空系外から加熱する方式のいずれでも良く、基板(15)の形態に応じて、任意のものが使用可能である。   The vacuum vessel (3) preferably has a configuration in which the device forming parts are arranged so that the volume of the vacuum system is minimized, and the material is preferably high vacuum specification aluminum or stainless steel. The substrate heating device (8) preferably includes a mechanism for controlling the substrate temperature to a predetermined value. Either a type in which the heater portion is placed in a vacuum system or a method in which heating is performed from outside the vacuum system may be used. Any one of them can be used depending on the form).

基板温度測定装置(9)は、基板(15)の温度を測定するものであり、熱電対など測温部を高真空下に置いて作動するものであれば任意のものが使用できる。   The substrate temperature measuring device (9) measures the temperature of the substrate (15), and any device can be used as long as it operates by placing a temperature measuring unit such as a thermocouple under high vacuum.

表面加熱装置(10)は適宜であってよく、また、コールドトラップ(6)は高真空容器内で揮発した溶媒等の蒸気を確実に捕捉し、かつ排気の妨げにならないものであれば、任意の方式のものが使用できる。   The surface heating device (10) may be appropriate, and the cold trap (6) is optional as long as it reliably captures vapors such as solvent volatilized in the high-vacuum container and does not hinder exhaustion. Can be used.

なお、図1(A)の装置においては、基板(15)を支持する基板ホルダー(14)、開閉機構部(12)、コールドトラップ(13)等も装備されている。   1A is also equipped with a substrate holder (14) that supports the substrate (15), an opening / closing mechanism (12), a cold trap (13), and the like.

二成分以上の薄膜形成材料を単一のノズルより噴霧して傾斜構造薄膜を形成するためのノズルおよびその噴霧の機構としては各種の形態が考慮されてよい。   Various forms may be considered as a nozzle for spraying a thin film forming material of two or more components from a single nozzle to form a gradient structure thin film and the spraying mechanism.

たとえば後述の実施例1のようにサイフォン構造の溶液または分散液の濃度調整機構を採用してもよいし、参考例2、3のようにポンプを用いての調整機構を採用してもよい。いずれの場合も、噴霧の時間経過とともに、少くとも一成分の材料の濃度が変更可能とされる。また、ノズルそのものについても、シンプルなピンホール方式のものは、すでに発明者らの提案している構造等の各種であってよい。 For example, a siphon structured solution or dispersion concentration adjusting mechanism may be employed as in Example 1 described later, or an adjusting mechanism using a pump may be employed as in Reference Examples 2 and 3 . In any case, the concentration of at least one component can be changed with the lapse of time of spraying. As for the nozzle itself, the simple pinhole type may have various structures such as those already proposed by the inventors.

そして、本発明において、上記のような単一ノズル、すなわち二成分以上の薄膜形成材料の全ての混合溶液もしくは分散液を噴霧するノズルであって、噴霧の時間経過にともなって、少くとも一成分の濃度が制御されるようにした調整機構を備えたノズルを用いて傾斜構造を形成するとともに、その前後のプロセスとして、従来のノズル噴霧による薄膜形成によって、全体として不可分一体の多層形成の薄膜を形成してもよい。   In the present invention, a single nozzle as described above, that is, a nozzle for spraying all mixed solutions or dispersions of thin film forming materials having two or more components, and at least one component as the spraying time elapses. Inclined structure is formed using a nozzle equipped with an adjustment mechanism so that the concentration of the liquid is controlled, and as a process before and after that, by forming a thin film by conventional nozzle spraying, an inseparable multilayer thin film is formed as a whole. It may be formed.

また、本発明においてが、薄膜、すなわち傾斜構造膜あるいはこれを含む多層膜を加熱処理してもよいし、成形のための加圧処理を行ってもよい。これらのプロセス、手段とし
ては公知のものが採用されてもよい。
In the present invention, a thin film, that is, a gradient structure film or a multilayer film including the thin film may be subjected to heat treatment, or pressure treatment for molding may be performed. Known processes and means may be employed.

基板(15)について特にその種類に限定がないことは言うまでもない。形成される薄膜の組成や用途に応じて、ガラス、石英、シリコンをはじめ各種の無機、金属有機の材料からなる基板が用いられる。   Needless to say, the type of the substrate (15) is not particularly limited. Depending on the composition and application of the thin film to be formed, substrates made of various inorganic and metal organic materials such as glass, quartz and silicon are used.

以下、実施例を挙げて本発明を具体的に説明するが、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。
<実施例1>
図1にその形成を例示した装置を用いて有機機能性薄膜を製造した。すなわち、開閉機構部(16)を開け、真空容器(3)内を真空排気装置(17)(18)、(ターボ分子ポンプ及び油回転ポンプ)により真空排気後、容器(3)内の圧力を圧力測定装置(5)により測定し、1×10-4Pa以下の圧力であることを確認した。
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated concretely, this invention is not limited to a following example, unless the summary is exceeded.
<Example 1>
The organic functional thin film was manufactured using the apparatus which illustrated the formation in FIG. That is, the opening / closing mechanism (16) is opened, the inside of the vacuum vessel (3) is evacuated by the vacuum evacuation devices (17), (18), (turbo molecular pump and oil rotary pump), and then the pressure in the vessel (3) is increased. The pressure was measured with a pressure measuring device (5), and it was confirmed that the pressure was 1 × 10 −4 Pa or less.

有機系機能材料としてCopper (II)
2,9,16,23-tetra-tert-butyl-29H,31H-phthalocyanine [(t−Bu)CuPc]をポリマー中、たとえばポリカーボネイト(PC)中に分散させるため、(t−Bu)CuPc及びPCの双方を溶解する適当な溶媒、たとえばクロロホルムに(t−Bu)CuPcを0.01wt%の濃度で、PCをクロロホルムに対し0.1wt%の濃度でそれぞれ溶解して溶液A(21)を作製し、この溶液Aを容器A(19)に充填して溶器A(19)を液溜め部(100)に配置した。一方、(t−Bu)CuPcを含まず、PCをクロロホルムに対し0.1wt%の濃度で溶解して溶液B(22)を作製し、溶液B(20)を容器B(20)に充填して容器B(20)を液溜め部(100)に配置した。
Copper (II) as an organic functional material
In order to disperse 2,9,16,23-tetra-tert-butyl-29H, 31H-phthalocyanine [(t-Bu) 4 CuPc] in a polymer, for example, polycarbonate (PC), (t-Bu) 4 CuPc (T-Bu) 4 CuPc at a concentration of 0.01 wt% and PC at a concentration of 0.1 wt% in chloroform, respectively, in a suitable solvent that dissolves both PC and PC, for example, solution A (21 The solution A was filled in the container A (19), and the fuser A (19) was placed in the liquid reservoir (100). On the other hand, (t-Bu) 4 CuPc is not contained, PC is dissolved in chloroform at a concentration of 0.1 wt% to prepare solution B (22), and solution B (20) is filled into container B (20). The container B (20) was placed in the liquid reservoir (100).

容器A(19)と容器B(20)をサイフォン(23)で接続し、容器B(20)を高速液体クロマトグラフ(HPLC)ポンプ(11)に接続した。容器B(20)中の溶液(溶液Bまたは溶液Aと溶液Bの混合物)の濃度を常に均一にするために、容器B(20)を超音波洗浄機(24)中に設置した。開閉機構部(16)を閉じた後に開閉機構部(12)を開けて真空容器(3)内を真空排気装置(4)(油回転ポンプ)で排気し、次いで開閉機構部(2)を開けて、容器B(20)中の溶液Bを、孔径20μmのピンホール噴霧ノズル(1)から真空容器(3)の中へ1ml/分で噴霧した。噴霧による容器B(20)中の溶液体積の減少に伴って容器A(19)中の溶液がサイフォン(23)中を容器B(20)へ移動したために(サイフォンの原理)、噴霧ノズル(1)から噴霧された溶液中の(t−Bu)CuPc濃度は噴霧時間経過に伴い徐々に減少した。噴霧中、5cm×4cm×0.2mmのガラス製基板(15)を基板加熱装置(8)、表面加熱装置(10)および基板温度測定装置(9)を用いて150℃に加熱した。この加熱によって、基板(15)表面より溶媒等の揮発成分は除去され、真空容器(3)内に設置されたコールドトラップ(6)に捕獲された。従って、基板(15)表面にはクロロホルムなどの溶媒をほとんど含まない、(t−Bu)CuPc含有PCミストが到達し、到達したミストはPCのガラス転移温度(T)に等しく加熱された基板(15)上で溶解し、噴霧の継続により最終的に(t−Bu)CuPc含有PC薄膜を基板(15)上に形成することができた。 The container A (19) and the container B (20) were connected by a siphon (23), and the container B (20) was connected to a high performance liquid chromatograph (HPLC) pump (11). In order to always make the concentration of the solution (the solution B or a mixture of the solution A and the solution B) in the container B (20) constant, the container B (20) was placed in the ultrasonic cleaner (24). After closing the opening / closing mechanism (16), the opening / closing mechanism (12) is opened, the inside of the vacuum vessel (3) is evacuated by the vacuum exhaust device (4) (oil rotary pump), and then the opening / closing mechanism (2) is opened. Then, the solution B in the container B (20) was sprayed at 1 ml / min from the pinhole spray nozzle (1) having a pore diameter of 20 μm into the vacuum container (3). Since the solution in the container A (19) moved to the container B (20) through the siphon (23) as the solution volume in the container B (20) decreased due to the spraying (siphon principle), the spray nozzle (1 ), The (t-Bu) 4 CuPc concentration in the solution sprayed gradually decreased with the lapse of spraying time. During spraying, a glass substrate (15) of 5 cm × 4 cm × 0.2 mm was heated to 150 ° C. using a substrate heating device (8), a surface heating device (10) and a substrate temperature measuring device (9). By this heating, volatile components such as a solvent were removed from the surface of the substrate (15) and captured by a cold trap (6) installed in the vacuum vessel (3). Therefore, (t-Bu) 4 CuPc-containing PC mist that hardly contains a solvent such as chloroform reached the surface of the substrate (15), and the reached mist was heated equally to the glass transition temperature (T g ) of PC. The (t-Bu) 4 CuPc-containing PC thin film was finally formed on the substrate (15) by dissolving on the substrate (15) and continuing spraying.

膜厚制御は噴霧時間により行い、たとえば10分間の噴霧により5ミクロンの(t−Bu)CuPc/PC複合型薄膜が形成できた。 The film thickness was controlled by the spraying time. For example, a 5-micron (t-Bu) 4 CuPc / PC composite thin film could be formed by spraying for 10 minutes.

また、20ミクロン以上の膜厚を有する薄膜を堆積する際には、赤外線等による表面加熱装置(10)によって基板加熱を行い、基板表面に到達した揮発成分の除去を速やかに行った。堆積した(t−Bu)CuPc/PC複合型薄膜中の(t−Bu)CuPc
に含まれる銅原子の深さ方向に対する濃度分布を観るために、薄膜(5cm×4cm)中央部分をナイフで2mm×5mmのサイズに切り取り、次いでこの断面を透過型電子顕微鏡(TEM)試料作成装置の一種であるウルトラミクロトームで切り出すことで、厚さ150ナノメートルの薄片を加工し、モリブデン製のTEM用グリッド上に薄片を設置した。まず、広角散乱暗視野−走査型透過電子顕微鏡法(HAADF−STEM)で薄片を観察した。その結果を図2に示した。図2の明部は、重元素が含まれる部分を示している。薄膜の右端(薄膜裏面)から左端(薄膜表面)に向かって、明部から暗部に徐々に変化していることがわかる。エネルギー分散型蛍光X線分光器(EDX)で明部と暗部のEDXスペクトルを測定したところ、明部からは銅Kα線に由来するピークを検出したが、暗部からは銅に由来するピークは全く検出できなかった。また、銅以外の重元素に由来するピークはモリブデングリッドに由来するモリブデン以外全く観測されなかった。以上の結果から、明部は(t−Bu)CuPcに含まれる銅原子に由来し、従ってPC中の(t−Bu)CuPc濃度が膜の深さ方向に徐々に変化する傾斜構造膜が形成されていることが判明した。形成した図1の配置状態での薄膜(15)の平面の右端、左端、上端、下端のHAADF−STEM像は、図2と全く同じであり、薄膜の膜厚および(t−Bu)CuPcの深さ方向の濃度分布は薄膜の上下左右どの場所でも一定であることが確認された。
Further, when depositing a thin film having a thickness of 20 microns or more, the substrate was heated by a surface heating device (10) using infrared rays or the like, and the volatile components reaching the substrate surface were quickly removed. Deposited (t-Bu) 4 CuPc / PC composite thin film of (t-Bu) 4 CuPc
In order to observe the concentration distribution in the depth direction of copper atoms contained in the film, the central part of the thin film (5 cm × 4 cm) is cut into a size of 2 mm × 5 mm with a knife, and then this cross section is sampled by a transmission electron microscope (TEM) sample preparation device A thin piece having a thickness of 150 nanometers was processed by cutting with an ultramicrotome which is a kind of the above, and the thin piece was placed on a molybdenum TEM grid. First, the flakes were observed by wide-angle scattering dark field-scanning transmission electron microscopy (HAADF-STEM). The results are shown in FIG. The bright portion in FIG. 2 indicates a portion containing heavy elements. It turns out that it changes gradually from a bright part to a dark part from the right end (thin film back surface) of a thin film toward the left end (thin film surface). When the EDX spectrum of the bright part and the dark part was measured with an energy dispersive X-ray fluorescence spectrometer (EDX), the peak derived from the copper Kα ray was detected from the bright part, but the peak derived from copper was completely absent from the dark part. Could not be detected. In addition, no peaks derived from heavy elements other than copper were observed except for molybdenum derived from the molybdenum grid. From the above results, the bright part is derived from the copper atom contained in (t-Bu) 4 CuPc, and therefore the (t-Bu) 4 CuPc concentration in PC gradually changes in the depth direction of the film. Was found to be formed. The HAADF-STEM images of the right end, the left end, the upper end, and the lower end of the plane of the thin film (15) in the arrangement state of FIG. 1 are exactly the same as those in FIG. 2, and the film thickness of the thin film and (t-Bu) 4 CuPc It was confirmed that the concentration distribution in the depth direction was constant everywhere in the top, bottom, left and right of the thin film.

次に図2の左端(薄膜表面)から右端(薄膜裏面)を結ぶ直線上でEDXを用いた銅原子の線分析を行い、薄膜の表面から裏面にかけての銅原子濃度の変化を求めたところ、薄膜表面からの深さに対して比例的に銅原子濃度が変化する構造を形成できていることが確認された。   Next, when line analysis of copper atoms using EDX was performed on a straight line connecting the left end (thin film surface) to the right end (thin film back surface) in FIG. 2 and the change in copper atom concentration from the thin film surface to the back surface was determined, It was confirmed that a structure in which the copper atom concentration changes in proportion to the depth from the surface of the thin film can be formed.

図1に示す装置で薄膜を形成したとき、溶液Aと溶液Bの初期体積は溶液の噴霧速度に対して十分大きく、また溶液Aと溶液Bの液面は常に等しく、さらに噴霧速度は常に一定であると仮定すると、噴霧溶液(溶液Aと溶液Bの混合物)中の(t−Bu)CuPc濃度の時間変化は以下の式で近似される。 When the thin film is formed by the apparatus shown in FIG. 1, the initial volumes of the solution A and the solution B are sufficiently large with respect to the spray rate of the solution, the liquid surfaces of the solution A and the solution B are always equal, and the spray rate is always constant. Is assumed, the time change of the (t-Bu) 4 CuPc concentration in the spray solution (mixture of solution A and solution B) is approximated by the following equation.

dC(t)/dt=(CA0−C(t))v/(2V−vt)
ここで、tは噴霧時間、CA0は溶液A中の(t−Bu)CuPc初期濃度(定数)、C(t)はt秒後の容器B中の溶液(溶液Aと溶液Bの混合物)中の(t−Bu)CuPcの濃度(すなわち噴霧溶液中の(t−Bu)CuPc濃度)、vは溶液の噴霧速度(定数)、Vは溶液Aと溶液Bの初期体積(定数)である。
dC B (t) / dt = (C A0 −C B (t)) v / (2V 0 −vt)
Here, t is the spraying time, C A0 is the initial concentration (constant) of (t-Bu) 4 CuPc in solution A, and C B (t) is the solution in solution B (solution A and solution B after t seconds). (T-Bu) 4 CuPc concentration in the mixture) (ie (t-Bu) 4 CuPc concentration in the spray solution), v is the spray rate (constant) of the solution, V 0 is the initial volume of solution A and solution B (Constant).

従って、溶液B中の(t−Bu)CuPc初期濃度がCB0(定数)の場合、容器B
中の溶液濃度の時間依存性は以下のようになる。
Therefore, when the initial concentration of (t-Bu) 4 CuPc in the solution B is C B0 (constant), the container B
The time dependency of the concentration of the solution is as follows.

(t)=(CA0−CB0)vt/2V + CB0
噴霧速度vは一定であるうえに、溶液Aと溶液B中のポリマー濃度も等しく一定であるため、薄膜の膜厚は時間に比例して増加する。従って、表面から裏面への深さ方向の(t−Bu)CuPc濃度、すなわち銅原子濃度は薄膜表面からの深さに比例して変化することがわかり、このことは上記の結果を説明している。このように、サイフォンの原理を利用することで、非常に簡便な装置で(t−Bu)CuPc濃度が膜表面からの深さに比例して変化する傾斜構造膜を制御性良く形成することができた。
参考例1
また、サイフォン(23)が存在しない以外は図1と全く同じ装置で、上記と同様の条件で溶液Aを噴霧し、次いで容器Aと容器Bを交換して溶液Bを噴霧し、全体の膜厚30ミクロンの薄膜を形成した。上記と同様にHAADF−STEM観察およびEDXスペクトルを測定した。その結果、ところ、図3のHAADF−STEM画像に示すように、薄膜の右上には全く(t−Bu)CuPcが存在せず、左下には(t−Bu)CuPcがマイクロメートルレベルで均一な二層構造膜が形成できた。形成した薄膜の右端、左端、上端、下端のHAADF−STEM像は、図3と全く同じであり、二層の薄膜のそれぞれの膜厚は薄膜の上下左右どの場所でも一定であることが確認できた。このように、傾斜構造膜、二層構造膜を容易に作り分けられることも確認できた。
[比較例1]
溶液A、溶液Bの材料および濃度は、実施例1と同様にした。
C B (t) = (C A0 −C B0 ) vt / 2V 0 + C B0
Since the spray rate v is constant and the polymer concentrations in the solution A and the solution B are also constant, the film thickness of the thin film increases in proportion to time. Therefore, it can be seen that the (t-Bu) 4 CuPc concentration in the depth direction from the front surface to the back surface, that is, the copper atom concentration varies in proportion to the depth from the thin film surface, which explains the above result. ing. In this way, by using the principle of siphon, an inclined structure film in which the (t-Bu) 4 CuPc concentration changes in proportion to the depth from the film surface with a very simple apparatus is formed with good controllability. I was able to.
< Reference Example 1 >
Also, the solution A is sprayed under the same conditions as described above with the same apparatus as in FIG. 1 except that the siphon (23) does not exist, and then the solution A is sprayed by exchanging the container A and the container B. A thin film having a thickness of 30 microns was formed. HAADF-STEM observation and EDX spectrum were measured in the same manner as described above. As a result, when, as shown in HAADF-STEM image in FIG. 3, does not exist at all (t-Bu) 4 CuPc the upper right of the thin film, the lower left (t-Bu) 4 CuPc is micrometer level A uniform two-layer structure film could be formed. The HAADF-STEM images of the right edge, left edge, upper edge, and lower edge of the formed thin film are exactly the same as those in FIG. 3, and it can be confirmed that the thickness of each of the two thin films is constant at the upper, lower, left and right positions of the thin film. It was. Thus, it was also confirmed that the gradient structure film and the two-layer structure film can be easily formed separately.
[Comparative Example 1]
The materials and concentrations of Solution A and Solution B were the same as in Example 1.

特許文献7および8において開示されている装置を用い、これに取り付けられた2つの噴霧ノズルを用いて溶液Aと溶液Bを別々の噴霧ノズルから同時に噴霧した。前記特許文献の記載に従い、噴霧速度を相互に連動させて噴霧した。すなわち、噴霧開始時の溶液Aの噴霧速度を100μl/分で溶液Bの噴霧速度をゼロに調整して開始し、時間に比例させて溶液Aの噴霧速度を減じ、一方、溶液Bの噴霧速度を増加させ、両方の噴霧速度の合計を常に100μl/分に保ちながら、50分後に、溶液Aについてゼロ、溶液Bについて100μl/分とした。基板加熱温度は実施例1と同様150℃に設定した。膜厚35μm、面積5cm×4cmの傾斜構造膜を形成した。実施例1と同様に、薄膜の中央部、上下左右の部分をそれぞれ切り取ってHAADF−STEM観察およびEDXスペクトルを測定したところ、薄膜表面から薄膜裏面を結ぶ直線上で薄膜表面からの深さに対して比例的に銅原子濃度が変化する構造を形成できていることが確認された。一方、薄膜中央と上下部分における銅原子の深さ方向濃度分布に比べて薄膜平面の左右での濃度分布は異なり、また溶液Aを噴霧したノズルに近い右側の方が全銅含有量も大きくなった。これは、2つの噴霧ノズルを用いたためこのような濃度分布、全銅含有量の違いが生じたものと考えられる。
参考例2
図4にその形成を例示した装置を用い、溶液の噴霧方法以外の実験条件(色素濃度、基板加熱温度など)は実施例1と同様にして有機機能性薄膜を製造した。
Using the apparatus disclosed in Patent Documents 7 and 8, Solution A and Solution B were simultaneously sprayed from separate spray nozzles using two spray nozzles attached thereto. In accordance with the description in the patent document, spraying was performed with the spraying speeds being linked to each other. That is, the spray rate of solution A at the start of spraying is started at 100 μl / min by adjusting the spray rate of solution B to zero, and the spray rate of solution A is decreased in proportion to the time, while the spray rate of solution B , And the sum of both spray rates was always kept at 100 μl / min, after 50 minutes to zero for solution A and 100 μl / min for solution B. The substrate heating temperature was set to 150 ° C. as in Example 1. An inclined structure film having a thickness of 35 μm and an area of 5 cm × 4 cm was formed. As in Example 1, when the center portion, the top, bottom, left and right portions of the thin film were cut out and the HAADF-STEM observation and the EDX spectrum were measured, the depth from the thin film surface on the straight line connecting the thin film surface to the thin film back surface was measured. It was confirmed that a structure in which the copper atom concentration varies proportionally can be formed. On the other hand, the concentration distribution on the left and right of the thin film plane is different from the concentration distribution in the depth direction of copper atoms at the center and upper and lower portions of the thin film, and the total copper content is larger on the right side near the nozzle sprayed with the solution A. It was. This is considered to be caused by such a difference in concentration distribution and total copper content because two spray nozzles were used.
< Reference Example 2 >
An organic functional thin film was produced in the same manner as in Example 1 except that the apparatus illustrated in FIG. 4 was used for the experimental conditions (dye concentration, substrate heating temperature, etc.) other than the solution spraying method.

この場合の装置では、溶液A(21)を容器A(19)充填し、溶液B(22)を容器B(20)に充填し、容器A(19)と容器B(20)をそれぞれHPLCポンプ(11)とHPLCポンプ(25)に接続した。HPLCポンプ(11)とHPLCポンプ(25)出口をつないで噴霧ノズル(1)に接続し、噴霧ノズル(1)から真空容器(3)の中へ溶液Aと溶液Bを噴霧した。HPLCポンプ(11)の流速を、噴霧開始から100分の間に0ml/分から100μl/分に時間に比例して変化させ、またHPLCポンプ(25)の流速を100μl/分に固定した。基板温度等の他の条件は実施例1と同様に設定した。こうして形成した(t−Bu)CuPc含有PC薄膜中央部分の銅原子深さ方向濃度分布を求めるために、実施例1と同様にしてHAADF−STEM観察およびEDXスペクトルを測定したところ、銅原子濃度は薄膜の右端(薄膜裏面)から左端(薄膜表面)まで、徐々に増加していることが確認できた。形成した図4の配置状態での薄膜(15)の平面の右端、左端、上端、下端のHAADF−STEM像は全く同じであり、薄膜の膜厚および(t−Bu)CuPcの深さ方向の濃度分布は薄膜平面の上下左右どの場所でも一定であることが確認できた。 In the apparatus in this case, the solution A (21) is filled into the container A (19), the solution B (22) is filled into the container B (20), and the container A (19) and the container B (20) are respectively filled with the HPLC pump. (11) and an HPLC pump (25). The outlets of the HPLC pump (11) and the HPLC pump (25) were connected to the spray nozzle (1), and the solution A and the solution B were sprayed from the spray nozzle (1) into the vacuum vessel (3). The flow rate of the HPLC pump (11) was changed in proportion to time from 0 ml / min to 100 μl / min during 100 minutes from the start of spraying, and the flow rate of the HPLC pump (25) was fixed at 100 μl / min. Other conditions such as the substrate temperature were set in the same manner as in Example 1. In order to obtain the copper atom depth direction concentration distribution of the central portion of the (t-Bu) 4 CuPc-containing PC thin film thus formed, HAADF-STEM observation and EDX spectrum were measured in the same manner as in Example 1. It was confirmed that gradually increased from the right end (thin film back surface) to the left end (thin film surface) of the thin film. The HAADF-STEM images of the right end, the left end, the upper end, and the lower end of the plane of the thin film (15) in the arrangement state of FIG. 4 formed are exactly the same, and the film thickness of the thin film and the depth direction of (t-Bu) 4 CuPc It was confirmed that the concentration distribution was constant everywhere up, down, left and right on the thin film plane.

図4に示す装置で薄膜を形成したとき、溶液Aおよび溶液Bに対するポリマーの濃度は一定であり、さらに溶液A中のPCに対する(t−Bu)CuPc濃度は一定でC、溶液B中のPCに対する(t−Bu)CuPc濃度は一定でゼロ、溶液Aの噴霧速度は時間tに比例して増加してvt、溶液Bの噴霧速度は一定でvと仮定すると、時間tのときの噴霧溶液(すなわち溶液Aと溶液Bの混合物)中の(t−Bu)CuPc濃度C(t)は以下の式で表される。 When a thin film is formed in the apparatus shown in FIG. 4, the concentration of polymer to solutions A and B is constant, further (t-Bu) for PC in solution A 4 CuPc concentration C A constant, solution B Assuming that the (t-Bu) 4 CuPc concentration with respect to the PC is constant and zero, the spray rate of the solution A increases in proportion to the time t, v A t, and the spray rate of the solution B is constant and v B. The (t-Bu) 4 CuPc concentration C (t) in the spray solution at t (that is, the mixture of the solution A and the solution B) is expressed by the following equation.

C(t)= Ct/(vt+v
従って、時間t経過後の膜厚hは以下のようになる。
C (t) = C A v A t / (v A t + v B)
Accordingly, the film thickness h after the elapse of time t is as follows.

dh(t) = D(vt+v)dt
ここで、Dは定数である。これを解くと、
h(t) = D(v/2 + vt)
従って、
dh (t) = D (v A t + v B) dt
Here, D is a constant. Solving this,
h (t) = D (v A t 2/2 + v B t)
Therefore,

これをグラフにすると図5で示すようになり、これは実験結果とほぼ一致した。
また、図4に示す装置で上記と同様の実験条件で、HPLCポンプ(11)の流速を、噴霧開始から100分の間に0ml/分から100μl/分に時間に比例して変化させ、またHPLCポンプ(25)の流速を100μl/分から0ml/分に時間に比例して変化させて薄膜を形成したところ、(t−Bu)4CuPc濃度が膜裏面からの距離に比例して変化する傾斜構造膜を形成することができた。
When this is graphed, it is as shown in FIG. 5, which almost coincides with the experimental results.
In addition, the flow rate of the HPLC pump (11) was changed in proportion to the time from 0 ml / min to 100 μl / min during 100 minutes from the start of spraying under the same experimental conditions as described above with the apparatus shown in FIG. When the thin film is formed by changing the flow rate of the pump (25) from 100 μl / min to 0 ml / min in proportion to the time, the (t-Bu) 4CuPc concentration changes in proportion to the distance from the film back surface. Could be formed.

このように、図4で例示した装置を利用することで、(t−Bu)CuPc濃度が膜裏面からの距離に依存して図5のように、または距離に比例して変化する傾斜構造膜を形成することができた。
参考例3
図6にその形成を例示した装置を用い、溶液の噴霧方法以外の実験条件(色素濃度、基板加熱温度など)は実施例1と同様にして有機機能性薄膜を製造した。
As described above, by using the apparatus illustrated in FIG. 4, the (t-Bu) 4 CuPc concentration changes as shown in FIG. 5 or in proportion to the distance depending on the distance from the film back surface. A film could be formed.
< Reference Example 3 >
An organic functional thin film was produced in the same manner as in Example 1 except that the apparatus illustrated in FIG. 6 was used for the experimental conditions (pigment concentration, substrate heating temperature, etc.) other than the solution spraying method.

この場合の装置では、溶液A(21)を容器A(19)充填し、溶液B(22)を容器B(20)に充填し、容器A(19)と容器B(20)をそれぞれHPLCポンプ(11)に接続された溶媒切り替えユニット(30)接続した。HPLCポンプ(11)を噴霧ノズル(1)に接続し、噴霧ノズル(1)から真空容器(3)の中へ溶液Aと溶液Bを噴霧した。噴霧開始時の溶液Aと溶液Bの混合溶液において溶液Aの組成比を100%で溶液Bの組成比をゼロに調整して開始し、時間に比例させて溶液Aの組成比を減じ、一方、溶液Bの組成比を増加させ、100分後に、溶液Aについて組成比ゼロ、溶液Bについて100%とした。噴霧時間は100μl/分に固定した。基板温度等の他の条件は実施例
1と同様に設定した。こうして形成した(t−Bu)CuPc含有PC薄膜中央部分の銅原子深さ方向濃度分布を求めるために、実施例1と同様にしてHAADF−STEM観察およびEDXスペクトルを測定したところ、銅原子濃度は薄膜の右端(薄膜裏面)から左端(薄膜表面)まで、裏面からの距離に比例して減少していることが確認できた。形成した図6の配置状態での薄膜(15)の平面の右端、左端、上端、下端のHAADF−STEM像は全く同じであり、薄膜の膜厚および(t−Bu)CuPcの深さ方向の濃度分布は薄膜平面の上下左右どの場所でも一定であることが確認できた。
In the apparatus in this case, the solution A (21) is filled into the container A (19), the solution B (22) is filled into the container B (20), and the container A (19) and the container B (20) are respectively filled with the HPLC pump. The solvent switching unit (30) connected to (11) was connected. The HPLC pump (11) was connected to the spray nozzle (1), and the solution A and the solution B were sprayed from the spray nozzle (1) into the vacuum vessel (3). Start by adjusting the composition ratio of solution A to 100% and the composition ratio of solution B to zero in the mixed solution of solution A and solution B at the start of spraying, and reduce the composition ratio of solution A in proportion to the time. The composition ratio of solution B was increased, and after 100 minutes, the composition ratio was zero for solution A and 100% for solution B. The spraying time was fixed at 100 μl / min. Other conditions such as the substrate temperature were set in the same manner as in Example 1. In order to obtain the copper atom depth direction concentration distribution of the central portion of the (t-Bu) 4 CuPc-containing PC thin film thus formed, HAADF-STEM observation and EDX spectrum were measured in the same manner as in Example 1. From the right end (thin film back surface) of the thin film to the left end (thin film surface), it was confirmed that it decreased in proportion to the distance from the back surface. The HAADF-STEM images of the right end, left end, upper end, and lower end of the plane of the thin film (15) in the arrangement state of FIG. 6 formed are exactly the same, and the film thickness of the thin film and the depth direction of (t-Bu) 4 CuPc It was confirmed that the concentration distribution was constant everywhere up, down, left and right on the thin film plane.

また、図6に示す装置で上記と同様の実験条件で、噴霧開始時の溶液Aと溶液Bの混合溶液において溶液Aの組成比を100%で溶液Bの組成比をゼロに調整して開始し、時間に対して指数関数的に変化させて溶液Aの組成比を減じ、一方、溶液Bの組成比を指数関数的に増加させ、100分後に、溶液Aについて組成比ゼロ、溶液Bについて100%とした。噴霧時間は100μl/分に固定し、薄膜を形成したところ、(t−Bu)Cu
Pc濃度が膜裏面からの距離に対して指数関数的に減少する傾斜構造膜を形成することができた。
Further, the apparatus shown in FIG. 6 was started by adjusting the composition ratio of solution A to 100% and the composition ratio of solution B to zero in the mixed solution of solution A and solution B at the start of spraying under the same experimental conditions as above. The composition ratio of solution A is decreased exponentially with respect to time, while the composition ratio of solution B is exponentially increased. After 100 minutes, composition ratio is zero for solution A, and for solution B. 100%. When the spraying time was fixed at 100 μl / min and a thin film was formed, (t-Bu) 4 Cu
An inclined structure film in which the Pc concentration decreases exponentially with respect to the distance from the film back surface could be formed.

このように、図6で例示した装置を利用することで、(t−Bu)CuPc濃度が膜裏面からの距離に比例して、または距離に対して指数関数的に増加する傾斜構造膜を形成することができた。 As described above, by using the apparatus illustrated in FIG. 6, an inclined structure film in which the (t-Bu) 4 CuPc concentration increases in proportion to the distance from the film back surface or exponentially with respect to the distance. Could be formed.

サイフォンシステムを有したこの発明の装置形成を例示した形成図である。It is a formation figure which illustrated apparatus formation of this invention with a siphon system. 実施例1における、傾斜構造を有した(t−Bu)CuPc含有PC薄膜の断面のHAADF−STEM像である。It is a HAADF-STEM image of the cross section of the (t-Bu) 4 CuPc-containing PC thin film having an inclined structure in Example 1. 参考例1における、二層構造を有した(t−Bu)CuPc含有PC薄膜の断面のHAADF−STEM像である。In Reference Example 1, a had a two-layer structure (t-Bu) 4 HAADF- STEM image of CuPc-containing PC thin cross-section. 参考例2における、2台のHPLCポンプ有したこの発明の装置形成を例示した形成図である。It is a formation figure which illustrated the apparatus formation of this invention which has two HPLC pumps in the reference example 2 . 参考例2における方法を用いて形成した薄膜において、(t−Bu)CuPc濃度の薄膜裏面から表面にかけての距離における変化を示した図である。In thin film formed by using the method in Reference Example 2 is a diagram showing a change in distance over the (t-Bu) 4 CuPc surface of a thin film back surface concentrations. 参考例3における、溶媒切替ユニットを付属したHPLCポンプを有したこの発明の装置形成を例示した形成図である。It is the formation figure which illustrated the apparatus formation of this invention which has the HPLC pump which attached the solvent switching unit in the reference example 3. FIG.

符号の説明Explanation of symbols

1 制御ノズル部
2 開閉機構部
3 真空容器
4 真空排気装置
5 圧力測定装置
6 コールドトラップ
7 シャッター
8 基板加熱装置
9 基板温度測定装置
10 表面加熱装置
11 HPLCポンプ
12 開閉機構部
13 コールドトラップ
14 基板ホルダー
15 基板
16 開閉機構部
17 真空排気装置
18 真空排気装置
19 容器A
20 容器B
21 溶液A
22 溶液B
23 サイフォン
24 超音波洗浄機
25 HPLCポンプ
30 溶媒切替ユニット
100 液溜め
DESCRIPTION OF SYMBOLS 1 Control nozzle part 2 Opening / closing mechanism part 3 Vacuum container 4 Evacuation apparatus 5 Pressure measuring apparatus 6 Cold trap 7 Shutter 8 Substrate heating apparatus 9 Substrate temperature measuring apparatus 10 Surface heating apparatus 11 HPLC pump 12 Opening / closing mechanism part 13 Cold trap 14 Substrate holder 15 Substrate 16 Opening / closing mechanism 17 Vacuum exhaust device 18 Vacuum exhaust device 19 Container A
20 Container B
21 Solution A
22 Solution B
23 Siphon 24 Ultrasonic cleaner 25 HPLC pump 30 Solvent switching unit 100 Liquid reservoir

Claims (1)

成分以上の薄膜形成材料の混合溶液または分散液を単一のノズルより真空容器内に噴霧して基板上に薄膜形成する際に、溶液または分散液中の少くとも一成分の濃度を経時的に変更することによって、薄膜を形成する材料の少くとも一成分の薄膜の深さ(厚み)方向の濃度を変化させた機能性傾斜構造薄膜を製造する機能性傾斜構造薄膜の製造装置であって、真空容器と、この真空容器内に配置される基板ホルダーと噴霧ノズルと、前記薄膜形成材料の混合溶液または分散液を供給する液供給部とを有し、前記液供給部は、前記薄膜形成材料の少くとも一成分の濃度を経時的に変更可能とする調整機構を備え、この調整機構は、前記薄膜形成材料を含有する複数の液容器をサイフォン機構により連結させていることを特徴とする機能性傾斜構造薄膜の製造装置。 When a thin film is formed on a substrate by spraying a mixed solution or dispersion of two or more components into a vacuum vessel from a single nozzle, the concentration of at least one component in the solution or dispersion is changed over time. A functionally graded thin film manufacturing apparatus for manufacturing a functionally graded thin film in which the concentration in the depth (thickness) direction of at least one component thin film of the material forming the thin film is changed by changing to A vacuum vessel, a substrate holder and a spray nozzle disposed in the vacuum vessel, and a liquid supply unit for supplying a mixed solution or dispersion of the thin film forming material, the liquid supply unit forming the thin film It is provided with an adjusting mechanism that can change the concentration of at least one component of the material over time, and this adjusting mechanism is characterized in that a plurality of liquid containers containing the thin film forming material are connected by a siphon mechanism. Functional slope Forming a thin film of manufacturing equipment.
JP2005263094A 2005-09-09 2005-09-09 Functional gradient structure thin film manufacturing equipment Expired - Fee Related JP4736034B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005263094A JP4736034B2 (en) 2005-09-09 2005-09-09 Functional gradient structure thin film manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005263094A JP4736034B2 (en) 2005-09-09 2005-09-09 Functional gradient structure thin film manufacturing equipment

Publications (2)

Publication Number Publication Date
JP2007075667A JP2007075667A (en) 2007-03-29
JP4736034B2 true JP4736034B2 (en) 2011-07-27

Family

ID=37936497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005263094A Expired - Fee Related JP4736034B2 (en) 2005-09-09 2005-09-09 Functional gradient structure thin film manufacturing equipment

Country Status (1)

Country Link
JP (1) JP4736034B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07252671A (en) * 1994-03-09 1995-10-03 Agency Of Ind Science & Technol Production of composite type optical thin film and apparatus for producing the same
JP2002066396A (en) * 2000-08-29 2002-03-05 Honda Motor Co Ltd Two fluid mixing type discharge device
JP2002292611A (en) * 2001-03-30 2002-10-09 Gifu Prefecture Method for manufacturing gradient function material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07252671A (en) * 1994-03-09 1995-10-03 Agency Of Ind Science & Technol Production of composite type optical thin film and apparatus for producing the same
JP2002066396A (en) * 2000-08-29 2002-03-05 Honda Motor Co Ltd Two fluid mixing type discharge device
JP2002292611A (en) * 2001-03-30 2002-10-09 Gifu Prefecture Method for manufacturing gradient function material

Also Published As

Publication number Publication date
JP2007075667A (en) 2007-03-29

Similar Documents

Publication Publication Date Title
Park et al. Structural color filters based on an all-dielectric metasurface exploiting silicon-rich silicon nitride nanodisks
Yim et al. Fabrication and characterization of ultrafast carbon nanotube saturable absorbers for solid-state laser mode locking near 1μm
KR100264347B1 (en) Process and device for fabricating thin films
Sridharan et al. Reversible tuning of photonic crystal cavities using photochromic thin films
Muskens et al. Giant optical birefringence in ensembles of semiconductor nanowires
WO2008094526A2 (en) Plasmon assisted control of optofluidics
JP3740557B2 (en) Organic thin film manufacturing method and organic thin film manufacturing apparatus
Pinedo Rivera et al. Assisted convective-capillary force assembly of gold colloids in a microfluidic cell: Plasmonic properties of deterministic nanostructures
WO2017054779A1 (en) Nano bi-material electromagnetic spectrum shifter
Egen et al. Artificial opals as effect pigments in clear‐coatings
Alhasan et al. Surface morphology and roughness of silver oxide prepared employing pulsed laser at optimum laser fluence
Soydan et al. Deep subwavelength light confinement in disordered bismuth nanorods as a linearly thermal‐tunable metamaterial
JP4736034B2 (en) Functional gradient structure thin film manufacturing equipment
JP2599569B2 (en) Method and apparatus for manufacturing composite optical thin film
Kang et al. Dichroic Plasmon Superstructures of Au Nanorods over Macroscopic Areas via Directed Self‐Assemblies of Diblock Copolymers
Mirabito et al. Physical vapor deposition of zinc phthalocyanine nanostructures on oxidized silicon and graphene substrates
Hurand et al. Anisotropic optical properties of indium tin oxide thin films prepared by ion beam sputtering under oblique angle deposition
JP3059972B2 (en) Manufacturing method of organic optical thin film and its equipment
Shahravan et al. Controlled manipulation of wetting characteristics of nanoparticles with dry-based plasma polymerization method
Enlow et al. Plasma polymerized ferrocene films
FR3072664B1 (en) METHOD FOR MANUFACTURING A MICROSTRUCTURE DEVICE
Jiménez et al. In situ optical microspectroscopy approach for the study of metal transport in dielectrics via temperature-and time-dependent plasmonics: Ag nanoparticles in SiO2 films
Fang et al. Localized surface plasmon of Ag nanoparticles affected by annealing and its coupling with the excitons of Rhodamine 6G
Chen et al. A “layer-by-layer” building strategy for the fabrication of a metal–hydrogel–metallic nanoarray plasmonic cavity with dynamic color display performance
Li et al. Efficient fabrication of large, robust films of 3D-ordered polystyrene latex

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101019

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20101020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110414

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees