JP4734122B2 - Light modulation element, actuator, and driving method of actuator - Google Patents

Light modulation element, actuator, and driving method of actuator Download PDF

Info

Publication number
JP4734122B2
JP4734122B2 JP2006007799A JP2006007799A JP4734122B2 JP 4734122 B2 JP4734122 B2 JP 4734122B2 JP 2006007799 A JP2006007799 A JP 2006007799A JP 2006007799 A JP2006007799 A JP 2006007799A JP 4734122 B2 JP4734122 B2 JP 4734122B2
Authority
JP
Japan
Prior art keywords
conductive surface
movable member
opposing conductive
movable
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006007799A
Other languages
Japanese (ja)
Other versions
JP2007188005A (en
Inventor
宏一 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2006007799A priority Critical patent/JP4734122B2/en
Publication of JP2007188005A publication Critical patent/JP2007188005A/en
Application granted granted Critical
Publication of JP4734122B2 publication Critical patent/JP4734122B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laser Beam Printer (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Micromachines (AREA)

Description

本発明は、フォトリソグラフィ工程に使用されるオンデマンドのデジタル露光ヘッド、デジタル露光ヘッドによる画像形成装置、プロジェクタ等の投影表示装置、ヘッドマウントディスプレイ等のマイクロディスプレイ装置などに搭載される光変調素子および微小機械を変位させるアクチュエータに関する。   The present invention relates to an on-demand digital exposure head used in a photolithography process, an image forming apparatus using the digital exposure head, a projection display device such as a projector, a light modulation element mounted on a micro display device such as a head-mounted display, and the like. The present invention relates to an actuator for displacing a micromachine.

従来の光変調素子として、例えば、10〜20ミクロン四方程度の可動マイクロミラーを備え、このマイクロミラーがアドレス回路上に形成され、光変調素子アレイによって表示される画像の一画素を形成し、2つの位置のうち一方の位置で、入射光を投射レンズに反射し、他方の位置で入射光を光アブソーバーに偏向するものがある。   As a conventional light modulation element, for example, a movable micromirror of about 10 to 20 microns square is provided, and this micromirror is formed on an address circuit to form one pixel of an image displayed by the light modulation element array. Some of the two positions reflect incident light to the projection lens and deflect the incident light to the optical absorber at the other position.

上記の光変調素子としては、例えば、下記の特許文献1に記載されているものがある。これら光変調素子は、ヨークによって支持されたミラー素子が、ミラーアドレス電極との間に生じる静電気力によりミラー素子が回転することで、反射される入射光の方向を偏向している。   As said light modulation element, there exists a thing described in the following patent document 1, for example. In these light modulation elements, the mirror element supported by the yoke is deflected by the electrostatic force generated between the mirror element and the mirror address electrode, thereby deflecting the direction of the incident light to be reflected.

特開2001−242395号公報JP 2001-242395 A

しかし、上記特許文献1に示される光変調素子は、アドレス電極とヨークとが同一平面に配置されているため、各電極の面積が小さくなり、画素ミラーとアドレス電極とに働く静電気力及びヨークとアドレス電極とに働く静電気力がいずれも小さくなり、ミラーの変位駆動の高速化を図る点で改善の余地があった。   However, since the address electrode and the yoke are arranged on the same plane in the light modulation element disclosed in Patent Document 1, the area of each electrode is reduced, and the electrostatic force and yoke acting on the pixel mirror and the address electrode are reduced. All of the electrostatic force acting on the address electrodes is reduced, and there is room for improvement in terms of speeding up the mirror displacement drive.

本発明は、このような事情に鑑みてなされたもので、その目的は、高速応答性に優れた光変調素子、アクチュエータ及びアクチュエータの駆動方法を提供することにある。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide an optical modulation element, an actuator, and an actuator driving method excellent in high-speed response.

本発明の上記目的は、基板と、
前記基板上に架設された梁体を回転軸として回動変位する平板部材を含み、該平板部材の上面が光学反射性のミラー部として機能する可動部材と、
前記平板部材における前記回動軸に対称な位置に一対で設けられた可動電極と、
前記可動部材の機械的変位が可能となる軌道範囲外に配置され、電圧印加により前記可動電極と協働して前記可動部材を変位駆動させる固定電極とを備え、
前記可動電極には前記可動部材の回動変位する方向に延びる第1の対向導電面が設けられ、前記固定電極には、前記可動部材の回動変位時に前記第1の対向導電面と対向しつつ前記第1の対向導電面に生じる静電吸引力を増加せしめる第2の対向導電面が設けられ、前記第1の対向導電面及び前記第2の対向導電面が前記回転軸に対して平行する面であることを特徴とする光変調素子によって達成される。
The object of the present invention is to provide a substrate,
A movable member that includes a flat plate member that rotates and displaces a beam body installed on the substrate as a rotation axis, and the upper surface of the flat plate member functions as an optically reflective mirror part ;
A pair of movable electrodes provided at positions symmetrical to the rotation axis of the flat plate member ;
A fixed electrode that is disposed outside a trajectory range in which the movable member is mechanically displaceable, and that drives the movable member to move in cooperation with the movable electrode by applying a voltage;
The movable electrode is provided with a first opposing conductive surface extending in the direction of rotational displacement of the movable member, and the fixed electrode is opposed to the first opposing conductive surface when the movable member is rotationally displaced. A second opposing conductive surface that increases the electrostatic attractive force generated on the first opposing conductive surface is provided , and the first opposing conductive surface and the second opposing conductive surface are parallel to the rotation axis. It is achieved by a light modulation element characterized in that the surface is a surface to be illuminated.

本発明の光変調素子は、電圧駆動制御により固定電極に電圧を印加して該固定電極と可動部材に設けられた可動電極との電位差を生じさせると、可動電極と固定電極との間に静電気力が発生し、例えば、光反射性を有するミラー部などの光学機能を備えた可動部材が、この静電気力を駆動力とすることによって基板に対して変位する構成である。   When a voltage is applied to the fixed electrode by voltage drive control to generate a potential difference between the fixed electrode and the movable electrode provided on the movable member, the light modulation element of the present invention generates static electricity between the movable electrode and the fixed electrode. For example, a movable member having an optical function such as a mirror part having light reflectivity is displaced with respect to the substrate by using the electrostatic force as a driving force.

ここで、可動電極と固定電極には、それぞれ第1の対向導電面と第2の対向導電面が設けられているため、これら面同士の間で電場の集中が起こり、可動電極を固定電極側にひきつけようとする静電吸引力が増加する。このため、可動部材の変位駆動時に固定電極に電圧を印加すると、第1の対向導電面と第2の対向導電面との間の静電吸引力に応じて可動部材が変位駆動するときの駆動力が大きくなり、可動部材の変位する速度が上がる。したがって、本発明の光変調素子は高速応答性を向上させることができる。   Here, since the movable electrode and the fixed electrode are provided with the first opposite conductive surface and the second opposite conductive surface, respectively, the electric field is concentrated between these surfaces, and the movable electrode is placed on the fixed electrode side. Increases the electrostatic attraction force that tries to attract it. For this reason, when a voltage is applied to the fixed electrode during the displacement driving of the movable member, the driving when the movable member is displaced and driven according to the electrostatic attraction force between the first opposing conductive surface and the second opposing conductive surface. The force increases and the moving member moves faster. Therefore, the light modulation element of the present invention can improve high-speed response.

上記光変調素子は、第1の対向導電面及び第2の対向導電面がともに平坦面であることが好ましい。
こうすれば、第1の対向導電面及び第2の対向導電面に生じる静電気力をより効率良く増加させることができる。
In the light modulation element, it is preferable that both the first opposing conductive surface and the second opposing conductive surface are flat surfaces.
If it carries out like this, the electrostatic force which arises on the 1st counter conductive surface and the 2nd counter conductive surface can be increased more efficiently.

上記光変調素子は、第1の対向導電面及び第2の対向導電面がともに可動部材の回動方向に沿って湾曲する曲面であり、第2の対向導電面が一対の導電部からなり、一対の導電部が可動部材の回動方向に並べて設けられていることが好ましい。
こうすれば、各固定電極における一対の導電部のうち、変位する方向の導電部をそれぞれ電圧駆動制御することで、可動部材が梁体を回転軸として回動方向両側に変位可能であるうえ、可動部材には各固定電極の第2の対向導電面の両方から静電吸引力がかかるため、より大きい回転トルクを得ることができる。このため、双方向駆動の光変調素子についても高速応答性を実現することができる。また、可動部材の変位後において、各固定電極の第2の対向導電面から作用する静電吸引力によって可動部材が変位後の位置を保持する静止力もより一層増加させることができる。
The light modulation element is a curved surface in which both the first counter conductive surface and the second counter conductive surface are curved along the rotation direction of the movable member, and the second counter conductive surface is composed of a pair of conductive portions, It is preferable that the pair of conductive portions is provided side by side in the rotation direction of the movable member.
In this way, among the pair of conductive portions in each fixed electrode, by controlling the voltage drive of the conductive portions in the direction of displacement, the movable member can be displaced on both sides in the rotational direction with the beam body as the rotation axis. Since the electrostatic attraction force is applied to the movable member from both of the second opposing conductive surfaces of the fixed electrodes, a larger rotational torque can be obtained. For this reason, high-speed responsiveness can also be realized for a bidirectionally driven light modulation element. Further, after the displacement of the movable member, the static force that holds the position after the displacement of the movable member by the electrostatic attractive force acting from the second opposing conductive surface of each fixed electrode can be further increased.

上記光変調素子において、基板上には、可動電極に静電気力を作用せしめる補助電極が設けられていることが好ましい。
こうすれば、補助電極によって、可動電極にかかる静電吸引力を大きくすることで、光変調素子の高速応答性をより一層向上させることができるうえ、変位後の可動部材を静止させる静止力も増加させることができる。
In the light modulation element, it is preferable that an auxiliary electrode for applying an electrostatic force to the movable electrode is provided on the substrate.
In this way, by increasing the electrostatic attraction force applied to the movable electrode by the auxiliary electrode, the high-speed response of the light modulation element can be further improved, and the stationary force that stops the movable member after displacement is also increased. Can be made.

上記光変調素子において、基板上には、可動電極と同電位に調整可能なシールド電極が設けられていることが好ましい。
こうすれば、シールド電極によって光変調素子に及ぼす周囲の不要な電界を遮蔽することが可能となり、例えば光変調素子を2次元又は3次元に配列してなる光変調素子アレイとした場合に、他の光変調素子からの静電気力に作用されて、可動部材が不適切に変位することを防止することができ、光変調素子の駆動動作がより一層正確に行うことができる。
In the light modulation element, a shield electrode that can be adjusted to the same potential as the movable electrode is preferably provided on the substrate.
In this way, it is possible to shield an unnecessary electric field around the light modulation element by the shield electrode. For example, when a light modulation element array in which the light modulation elements are arranged two-dimensionally or three-dimensionally is used, It is possible to prevent the movable member from being inappropriately displaced due to the electrostatic force from the light modulation element, and to drive the light modulation element more accurately.

また、本発明はアクチュエータに適用することができ、具体的には、基板と、前記基板上に架設された梁体を回転軸として回動変位する平板部材を含み、該平板部材の上面が光学反射性のミラー部として機能する可動部材と、前記平板部材における前記回動軸に対称な位置に一対で設けられた可動電極と、該可動部材の機械的変位が可能となる軌道範囲外に配置され、電圧印加により前記可動電極と協働して前記可動部材を変位駆動させる固定電極とを備え、
前記可動電極には前記可動部材の回動変位する方向に延びる第1の対向導電面が設けられ、前記固定電極には、前記可動部材の回動変位時に前記第1の対向導電面と対向しつつ前記第1の対向導電面に生じる静電吸引力を増加せしめる第2の対向導電面が設けられ、前記第1の対向導電面及び前記第2の対向導電面が前記回転軸に対して平行する面であることを特徴とするアクチュエータとすることができる。
こうすれば、高速応答性に優れたアクチュエータを提供することができる。
In addition, the present invention can be applied to an actuator. Specifically, the invention includes a substrate and a flat plate member that rotates and displaces a beam body laid on the substrate as a rotation axis, and the upper surface of the flat plate member is optical. A movable member that functions as a reflective mirror portion , a pair of movable electrodes provided at positions symmetrical to the rotation axis of the flat plate member, and an out-of-track range in which the movable member can be mechanically displaced And a fixed electrode for driving the movable member to move in cooperation with the movable electrode by applying a voltage,
The movable electrode is provided with a first opposing conductive surface extending in the direction of rotational displacement of the movable member, and the fixed electrode is opposed to the first opposing conductive surface when the movable member is rotationally displaced. A second opposing conductive surface that increases the electrostatic attractive force generated on the first opposing conductive surface is provided , and the first opposing conductive surface and the second opposing conductive surface are parallel to the rotation axis. It is possible to provide an actuator characterized by being a surface to be operated.
By doing so, it is possible to provide an actuator with excellent high-speed response.

さらに、本発明は、上記アクチュエータの駆動方法に適用することができ、具体的には、基板と、前記基板上に架設された梁体を回転軸として回動変位する平板部材を含み、該平板部材の上面が光学反射性のミラー部として機能する可動部材と、前記平板部材における前記回動軸に対称な位置に一対で可動部材と、前記平板部材における前記回動軸に対称な位置に一対で設けられた可動電極と、該可動部材の機械的変位が可能となる軌道範囲外に配置され、電圧印加により前記可動電極と協働して前記可動部材を回動変位駆動させる固定電極とを備え、前記固定電極には、前記可動部材の回動変位時に前記第1の対向導電面と対向する第2の対向導電面が設けられ、前記第1の対向導電面及び前記第2の対向導電面が前記回転軸に対して平行する面であるアクチュエータの駆動方法であって、
前記可動部材の変位駆動時に、前記可動電極に前記可動部材の変位する方向に延設された前記第1の対向導電面と前記第2の対向導電面とを対向させるように両者の間に作用する静電吸引力を増加させることを特徴とするアクチュエータの駆動方法とすることができる。
こうすれば、アクチュエータを駆動させる場合に、このアクチュエータの変位動作の速度を高速化することができる。
Furthermore, the present invention can be applied to the above-described actuator driving method, and specifically includes a substrate and a flat plate member that rotates and displaces a beam body laid on the substrate as a rotation axis. A pair of a movable member whose upper surface functions as an optically reflective mirror , a pair of movable members symmetrically with respect to the rotational axis of the flat plate member , and a pair of positions of the flat plate member symmetrical with respect to the rotational axis. And a fixed electrode that is arranged outside the trajectory range in which the movable member can be mechanically displaced and cooperates with the movable electrode by applying a voltage to drive the movable member to rotate and move. The fixed electrode is provided with a second counter conductive surface that faces the first counter conductive surface when the movable member is rotationally displaced, and the first counter conductive surface and the second counter conductive surface are provided. Surface parallel to the axis of rotation A driving method of the actuator is a surface that,
When the displacement drive of the movable member, acting between them so as to face with said first opposing conductive surface and the second opposing conductive surfaces which extend in the direction of displacement of the movable member to the movable electrode The driving method of the actuator can be characterized by increasing the electrostatic attraction force.
In this way, when the actuator is driven, the speed of the displacement operation of the actuator can be increased.

本発明によれば、高速応答性に優れた光変調素子、アクチュエータ及びアクチュエータの駆動方法を提供できる。   According to the present invention, it is possible to provide an optical modulation element, an actuator, and an actuator driving method that are excellent in high-speed response.

以下、本発明の実施形態を図面に基づいて詳しく説明する。
(第1の実施形態)
図1は、本発明にかかる光変調素子の第1の実施形態を示す斜視図である。図2は、光変調素子の形状、および寸法を説明するための説明図である。図3は、図1に示す光変調素子のA−A矢視図における断面図である。図4は、図3に示す光変調素子を変位させた状態を示す図である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
(First embodiment)
FIG. 1 is a perspective view showing a first embodiment of a light modulation element according to the present invention. FIG. 2 is an explanatory diagram for explaining the shape and dimensions of the light modulation element. FIG. 3 is a cross-sectional view of the light modulation element shown in FIG. FIG. 4 is a diagram illustrating a state where the light modulation element illustrated in FIG. 3 is displaced.

光変調素子10は、基板11と、該基板11上で回転変位可能に架設された可動部材14と、可動部材14を支持する支持部19と、基板11上に設けられた固定電極12,13とを備えている。   The light modulation element 10 includes a substrate 11, a movable member 14 that is rotatably mounted on the substrate 11, a support portion 19 that supports the movable member 14, and fixed electrodes 12 and 13 provided on the substrate 11. And.

基板11は、所定の厚さを有する板体であり、一方の面(図1中の上面)に長方体形状の固定電極12,13が固定されている。本実施形態の光変調素子10において、固定電極12,13が対になるように設けられている。   The substrate 11 is a plate having a predetermined thickness, and fixed electrodes 12 and 13 having a rectangular shape are fixed to one surface (the upper surface in FIG. 1). In the light modulation element 10 of the present embodiment, the fixed electrodes 12 and 13 are provided in pairs.

可動部材14は、固定電極12,13同士の間において、基板11に設けられた一対の支持体19に支持されて固定電極12,13と非接触となるように架設されている。可動部材14は、上面に平坦部を有する長方体の支持板16と、該支持板16の周縁辺のうち対向する2つの縁辺それぞれに垂直、且つ互いに平行に形成された一対の板体である可動電極17A,17Bと、支持板16の中心(一対の可動電極17A,17Bの中央)を通り、他の2つの縁辺から側方に突設された梁体15とからなり、導電性材料により一体に形成されている。   The movable member 14 is supported between the fixed electrodes 12 and 13 so as to be supported by a pair of support bodies 19 provided on the substrate 11 so as not to contact the fixed electrodes 12 and 13. The movable member 14 is a rectangular support plate 16 having a flat portion on the upper surface, and a pair of plates formed perpendicular to and parallel to each of two opposing edges of the peripheral edge of the support plate 16. It is composed of a certain movable electrode 17A, 17B and a beam 15 that passes through the center of the support plate 16 (the center of the pair of movable electrodes 17A, 17B) and projects laterally from the other two edges. Are integrally formed.

導電性材料をアルミニウムなどの金属で構成した場合、支持板16の平坦部(図1中の上面)は光学機能としての光学反射性を有し、ミラー部18として機能する。   When the conductive material is made of a metal such as aluminum, the flat portion (upper surface in FIG. 1) of the support plate 16 has optical reflectivity as an optical function and functions as the mirror portion 18.

可動部材14は、駆動力を加えられることによって梁体15を捩れの軸としつつ、この軸を回転軸Sとして矢印D1,D2で示す方向に回動するといった機械的変位が可能である。   The movable member 14 can be mechanically displaced by applying a driving force such that the beam body 15 is used as a torsion shaft and the shaft is rotated in the direction indicated by the arrows D1 and D2 with the shaft as the rotation axis S.

固定電極12,13は、可動部材14の機械的変位が可能となる軌道範囲外に配置され、駆動電圧制御で印加される電圧によって、可動電極17A,17Bと協働して可動部材14を変位駆動させる。固定電極12、13には、可動部材14の変位駆動時に第1の対向導電面である側面17a,17bと略平行に対向する側面12a,13aが設けられている。この側面12a,13aは第2の対向導電面として機能する。   The fixed electrodes 12 and 13 are disposed outside the track range in which the movable member 14 can be mechanically displaced, and the movable member 14 is displaced in cooperation with the movable electrodes 17A and 17B by a voltage applied by driving voltage control. Drive. The fixed electrodes 12 and 13 are provided with side surfaces 12a and 13a that are opposed to the side surfaces 17a and 17b, which are first opposing conductive surfaces, when the movable member 14 is displaced. The side surfaces 12a and 13a function as a second opposing conductive surface.

可動電極17A,17Bには、それぞれ固定電極12,13に対向するように支持板16の固定電極12,13側端部から支持板16に対して垂直に立設された側面17a,17bが設けられている。本実施形態において、可動電極17A,17Bの側面17a,17bが第1の対向導電面として機能する。   The movable electrodes 17A and 17B are provided with side surfaces 17a and 17b erected perpendicularly to the support plate 16 from the fixed electrode 12 and 13 side ends of the support plate 16 so as to face the fixed electrodes 12 and 13, respectively. It has been. In the present embodiment, the side surfaces 17a and 17b of the movable electrodes 17A and 17B function as first opposing conductive surfaces.

可動部材14を支持する支持部19が、導電性材料で形成されている場合、可動部材14と支持部19とは電気的に接続されているので、可動部材14の電位を制御するとき、基板11に形成された駆動回路(図示せず)の出力は、支持部19を介して可動部材14に供給することが可能となり、構造の簡素化が図られる。   When the support portion 19 that supports the movable member 14 is formed of a conductive material, the movable member 14 and the support portion 19 are electrically connected. Therefore, when the potential of the movable member 14 is controlled, the substrate The output of a drive circuit (not shown) formed in 11 can be supplied to the movable member 14 via the support portion 19, and the structure can be simplified.

尚、可動電極17A,17Bは、全体が導電性材料から構成されていてもよいし、側面17a,17b含む、少なくとも一部がアルミ薄膜や導電性材料から構成されていてもよい。ここで、側面17a,17bは、本実施形態のように支持板16に対して垂直に立設された構成に限定されず、可動部材14の変位する方向に延設されたものであればよい。   The movable electrodes 17A and 17B may be entirely made of a conductive material, or at least a part of the movable electrodes 17A and 17b may be made of an aluminum thin film or a conductive material. Here, the side surfaces 17a and 17b are not limited to the configuration in which the side surfaces 17a and 17b are erected vertically with respect to the support plate 16 as long as they are extended in the direction in which the movable member 14 is displaced. .

次に、本実施形態における光変調素子の望ましい形状、寸法について図2に基づいて説明する。図2は光変調素子の形状、および寸法を説明するための説明図である。図2に示すように、可動部材14の回転中心をPとし、P点から第1の対向導電面(可動電極17Aの側面17aまたは可動電極17Bの側面17b)までの距離をa、P点から第2の対向導電面(固定電極12の側面12aまたは固定電極13の側面13a)までの水平距離をb、基板11の垂直線VLに対する固定電極12の側面12aまたは固定電極13の側面13aの傾斜角度をθとする。   Next, a desirable shape and size of the light modulation element in this embodiment will be described with reference to FIG. FIG. 2 is an explanatory diagram for explaining the shape and dimensions of the light modulation element. As shown in FIG. 2, the center of rotation of the movable member 14 is P, and the distance from the point P to the first opposing conductive surface (the side surface 17a of the movable electrode 17A or the side surface 17b of the movable electrode 17B) is from a and P points. The horizontal distance to the second opposing conductive surface (the side surface 12a of the fixed electrode 12 or the side surface 13a of the fixed electrode 13) is b, and the side surface 12a of the fixed electrode 12 or the side surface 13a of the fixed electrode 13 is inclined with respect to the vertical line VL of the substrate 11. Let the angle be θ.

ここで、可動部材14が図2中に破線で示すように、角度θ変位すると、側面17a(第1の対向導電面)と側面12a(第2の対向導電面)とのギャップgは、(式1)により求められる。   Here, when the movable member 14 is displaced by the angle θ as shown by a broken line in FIG. 2, the gap g between the side surface 17a (first counter conductive surface) and the side surface 12a (second counter conductive surface) is ( It is calculated | required by Formula 1).

g=b・cosθ−a ・・・(式1)   g = b · cos θ−a (Formula 1)

ここで、実用的な低い駆動電圧(5〜50V程度)で、可動部材14を変位させるのに十分な静電気力を得るには、ギャップgは、0.1μm〜2.0μmとするのが好ましい。更に、実用的には0.2μm〜1.0μmとするのが好ましい。   Here, in order to obtain an electrostatic force sufficient to displace the movable member 14 with a practically low driving voltage (about 5 to 50 V), the gap g is preferably set to 0.1 μm to 2.0 μm. . Furthermore, it is preferable to set it as 0.2 micrometer-1.0 micrometer practically.

一方、固定電極12の側面12aおよび固定電極13の側面13aの傾斜角度をθは、支持板16の上面に設けられたミラー部18によって光を変調させる光変調素子を想定した場合、1°〜45°程度が実用的に好ましい値であるので、P点から第1の対向導電面(側面17a,17b)までの距離a、およびP点から第2の対向導電面(側面12a,13a)までの水平距離bは、第1の対向導電面(側面17a,17b)と第2の対向導電面(側面12a,13a)とのギャップg、および固定電極12,13の側面12a,13aの傾斜角度θを適宜決めることにより、求められる。   On the other hand, when the inclination angle of the side surface 12a of the fixed electrode 12 and the side surface 13a of the fixed electrode 13 is assumed to be a light modulation element that modulates light by the mirror portion 18 provided on the upper surface of the support plate 16, 1 ° to Since about 45 ° is a practically preferable value, the distance a from the point P to the first opposing conductive surface (side surfaces 17a, 17b) and the point P to the second opposing conductive surface (side surfaces 12a, 13a) The horizontal distance b is the gap g between the first opposing conductive surface (side surfaces 17a, 17b) and the second opposing conductive surface (side surfaces 12a, 13a), and the inclination angle of the side surfaces 12a, 13a of the fixed electrodes 12, 13 It is obtained by appropriately determining θ.

尚、第1の対向導電面(側面17a、17b)の高さcが高くなると、静電気力を発生するための面積が増加して傾斜変位時の保持力が大きくなるが、高過ぎると可動部材14の慣性モーメントが大きくなり、高速応答性を損ねる。従って、第1の対向導電面(側面17a、17b)の高さcは、傾斜変位時の保持力および応答性の両者をバランスよく満足させる範囲で適宜最適値が決められる。   If the height c of the first opposing conductive surfaces (side surfaces 17a, 17b) is increased, the area for generating electrostatic force is increased and the holding force at the time of tilt displacement is increased. The moment of inertia of 14 becomes large and the high-speed response is impaired. Accordingly, the height c of the first opposing conductive surfaces (side surfaces 17a and 17b) is appropriately determined within a range that satisfies both the holding force and the responsiveness during the tilt displacement in a well-balanced manner.

図3に示すように、可動電極17A,17Bには駆動電極V11,V12がそれぞれ電気的に接続され、また、固定電極12,13には駆動電極V21,V22がそれぞれ電気的に接続されている。本実施形態の光変調素子10は、駆動電極V11,V21又は/及び駆動電極V12,V22を駆動電圧制御することで、第1の対向導電面17a,17bと第2の対向導電面12a,13aとに電位差を生じさせることができる構成である。   As shown in FIG. 3, the drive electrodes V11 and V12 are electrically connected to the movable electrodes 17A and 17B, respectively, and the drive electrodes V21 and V22 are electrically connected to the fixed electrodes 12 and 13, respectively. . The light modulation element 10 according to the present embodiment controls the drive voltages of the drive electrodes V11 and V21 and / or the drive electrodes V12 and V22, so that the first counter conductive surfaces 17a and 17b and the second counter conductive surfaces 12a and 13a are controlled. And a potential difference can be generated.

基板11は、Si基板上に図示しないCMOS回路を形成し、この回路上にSiO等からなる絶縁膜を形成する。その表面をCMPなどで平坦化した後、駆動回路の出力を素子の各電極と接続するためのコンタクトホールを形成して構成される。尚、可動部材14を支持する支持部19が、導電性材料で形成されている場合には、駆動電極V11,V12を基板11上に形成することにより、駆動電圧を支持部19を介して可動部材14に供給することができる。 As the substrate 11, a CMOS circuit (not shown) is formed on a Si substrate, and an insulating film made of SiO 2 or the like is formed on the circuit. After the surface is planarized by CMP or the like, contact holes for connecting the output of the drive circuit to each electrode of the element are formed. When the support portion 19 that supports the movable member 14 is formed of a conductive material, the drive voltage can be moved via the support portion 19 by forming the drive electrodes V11 and V12 on the substrate 11. The member 14 can be supplied.

次に、本実施形態の光変調素子が変位するときの動作を説明する。
光変調素子10において、可動部材14を図3中の矢印d1及びd2で示す方向に可動駆動させて変位させるときには、駆動電極V12,V22の電圧印加により第1の対向導電面である側面17bと第2の対向導電面である側面13aとの電位差を生じさせて、両者の間に静電気力を発生させる。すると、可動部材14の可動電極17Bには、静電気力を駆動力として固定電極13の第2の対向導電面13aに向って引きつけられる静電吸引力が生じる。こうして、可動部材14は、梁体15の捩れの軸Sを回転軸として図3中矢印d1及びd2で示す方向に駆動され、第1の対向導電面17bと第2の対向導電面13aとの間の静電気力が最大となる位置で停止する。この結果、図4に示すように、光学機能として上面にミラー部18が形成された可動部材14の位置が変位する。このため、ミラー部18に照射される入射光Lの反射する方向が偏向することができるようになる。
Next, an operation when the light modulation element of this embodiment is displaced will be described.
In the light modulation element 10, when the movable member 14 is movably driven and displaced in the directions indicated by the arrows d1 and d2 in FIG. 3, the side surface 17b, which is the first opposing conductive surface, is applied by voltage application of the drive electrodes V12 and V22. A potential difference with the side surface 13a which is the second opposing conductive surface is generated, and an electrostatic force is generated between them. Then, an electrostatic attraction force that is attracted toward the second opposing conductive surface 13a of the fixed electrode 13 is generated on the movable electrode 17B of the movable member 14 by using an electrostatic force as a driving force. Thus, the movable member 14 is driven in the direction indicated by the arrows d1 and d2 in FIG. 3 with the torsion axis S of the beam body 15 as the rotation axis, and the first opposing conductive surface 17b and the second opposing conductive surface 13a are driven. Stop at the position where the electrostatic force between them becomes maximum. As a result, as shown in FIG. 4, the position of the movable member 14 having the mirror portion 18 formed on the upper surface is displaced as an optical function. For this reason, the reflection direction of the incident light L applied to the mirror unit 18 can be deflected.

変位した可動部材14の変位位置は、第1の対向導電面である側面17bと第2の対向導電面である側面13aとの間の静電気力によって確実に保持することができる。   The displaced position of the movable member 14 can be reliably held by the electrostatic force between the side surface 17b that is the first opposing conductive surface and the side surface 13a that is the second opposing conductive surface.

また、可動部材14を変位前における元の位置に戻すには、駆動電極V12,V22の電圧印加を中止して第1の対向導電面である側面17bと第2の対向導電面である側面13aとの電位差をなくすことで、両者の間の静電気力を消失させる。すると、可動部材14が、梁体15の捩じりによる応力によって図3中矢印d3及びd4に示す方向に機械的変位し、元のように可動部材14の支持板16が基板11表面に対して略平行になる。   Further, in order to return the movable member 14 to the original position before the displacement, the voltage application to the drive electrodes V12 and V22 is stopped and the side surface 17b which is the first counter conductive surface and the side surface 13a which is the second counter conductive surface. By eliminating the potential difference between the two, the electrostatic force between the two disappears. Then, the movable member 14 is mechanically displaced in the directions indicated by arrows d3 and d4 in FIG. Become almost parallel.

一方、光変調素子10において、可動部材14を図3中の矢印d3及びd4で示す方向に可動駆動させて変位させるときには、駆動電極V11,V21の電圧印加により第1の対向導電面である側面17aと第2の対向導電面である側面12aとの電位差を生じさせて、両者の間に静電気力を発生させる。すると、可動部材14の可動電極17Aには、静電気力を駆動力として固定電極12の第2の対向導電面12aに向って引きつけられる静電吸引力が生じる。こうして、可動部材14は、梁体15の捩れの軸Sを回転軸として図3中矢印d3及びd4で示す方向に駆動され、ミラー部18に照射される入射光Lの反射する方向が偏向することができるようになる。同様に、可動部材14を変位前における元の位置に戻すには、駆動電極V11,V21の電圧印加を中止して第1の対向導電面である側面17aと第2の対向導電面である側面12aとの電位差をなくすことで、可動部材14が図3中矢印d1及びd2に示す方向に機械的変位し、元のように支持板16が基板11表面に対して略平行な位置になる。   On the other hand, in the light modulation element 10, when the movable member 14 is movably driven and displaced in the directions indicated by the arrows d3 and d4 in FIG. 3, the side surface that is the first opposing conductive surface is applied by voltage application of the drive electrodes V11 and V21. A potential difference is generated between the side surface 12a, which is the second opposing conductive surface, and an electrostatic force is generated between the two. Then, an electrostatic attraction force that is attracted toward the second opposing conductive surface 12a of the fixed electrode 12 is generated on the movable electrode 17A of the movable member 14 by using an electrostatic force as a driving force. Thus, the movable member 14 is driven in the direction indicated by the arrows d3 and d4 in FIG. 3 with the torsion axis S of the beam body 15 as the rotation axis, and the direction in which the incident light L applied to the mirror portion 18 is reflected is deflected. Will be able to. Similarly, in order to return the movable member 14 to the original position before displacement, voltage application to the drive electrodes V11 and V21 is stopped and the side surface 17a which is the first counter conductive surface and the side surface which is the second counter conductive surface. By eliminating the potential difference from 12a, the movable member 14 is mechanically displaced in the directions indicated by the arrows d1 and d2 in FIG. 3, and the support plate 16 becomes substantially parallel to the surface of the substrate 11 as originally.

上記実施形態のように、本発明に係る光変調素子10は、電圧駆動制御により固定電極12,13に電圧を印加して該固定電極12,13と可動部材14に設けられた可動電極17A,17Bとの電位差を生じさせると、可動電極17A,17Bと固定電極12,13との間に静電気力が発生し、可動部材14がこの静電気力を駆動力とすることによってミラー部18と共に基板11に対して変位する構成である。   As in the above embodiment, the light modulation element 10 according to the present invention applies voltage to the fixed electrodes 12 and 13 by voltage drive control, and the movable electrodes 17A and 17A provided on the fixed electrodes 12 and 13 and the movable member 14 are provided. When a potential difference from 17B is generated, an electrostatic force is generated between the movable electrodes 17A and 17B and the fixed electrodes 12 and 13, and the movable member 14 uses the electrostatic force as a driving force so that the substrate 11 together with the mirror portion 18 is driven. It is the structure displaced with respect to.

ここで、可動電極17A,17Bと固定電極12,13には、それぞれ第1の対向導電面17a,17bと第2の対向導電面12a,13aが設けられているため、これら面同士の間で電場の集中が起こり、可動電極17A,17Bを固定電極12,13側にひきつけようとする静電吸引力が増加する。このため、可動部材14の変位駆動時に固定電極12,13に電圧を印加すると、第1の対向導電面17a,17bと第2の対向導電面12a,13aとの間の静電吸引力に応じて可動部材14が変位駆動される際の駆動力が大きくなり、可動部材14の変位する速度が上がる。したがって、本発明の光変調素子10は高速応答性を向上させることができる。   Here, the movable electrodes 17A and 17B and the fixed electrodes 12 and 13 are provided with the first opposing conductive surfaces 17a and 17b and the second opposing conductive surfaces 12a and 13a, respectively. The concentration of the electric field occurs, and the electrostatic attractive force that tries to attract the movable electrodes 17A and 17B to the fixed electrodes 12 and 13 side increases. For this reason, when a voltage is applied to the fixed electrodes 12 and 13 during the displacement driving of the movable member 14, the electrostatic attractive force between the first opposing conductive surfaces 17a and 17b and the second opposing conductive surfaces 12a and 13a is determined. Thus, the driving force when the movable member 14 is displaced is increased, and the moving speed of the movable member 14 is increased. Therefore, the light modulation element 10 of the present invention can improve high-speed response.

本実施形態の光変調素子10において、可動電極17A,17Bと固定電極12,13とは、可動部材14の変位時に第1の対向導電面17a,17bと第2の対向導電面12a,13aとの向かい合う2つの平坦面によって静電気力を及ぼし合う位置関係にあり、第1の対向導電面17a,17b及び第2の対向導電面12a,13aに生じる静電気力をより効率良く増加させることができる。   In the light modulation element 10 of the present embodiment, the movable electrodes 17A and 17B and the fixed electrodes 12 and 13 include the first opposing conductive surfaces 17a and 17b and the second opposing conductive surfaces 12a and 13a when the movable member 14 is displaced. Therefore, the electrostatic force generated by the first opposing conductive surfaces 17a and 17b and the second opposing conductive surfaces 12a and 13a can be increased more efficiently.

次に、上記した光変調素子の作成方法について、図5に基づいて説明する。図5は光変調素子の作成過程を(a)から(h)で説明する概略図である。   Next, a method for producing the above-described light modulation element will be described with reference to FIG. FIG. 5 is a schematic view for explaining the process of producing the light modulation element from (a) to (h).

図5(a)に示すように、基板11は、Si基板61上にCMOS駆動回路(図示せず)を形成し、その上に第1のSi0絶縁膜(図示せず)を形成してその表面をCMP(化学的機械的研磨)等で平坦化した後、CMOS駆動回路の出力を固定電極12,13,および可動電極17A,17Bと接続するためのコンタクトホール(図示せず)を形成して構成される。Si基板61の上部に第1導電膜62であるアルミニウム(好ましくは、高融点金属を含有したアルミニウム合金)をスパッタで成膜する。 As shown in FIG. 5 (a), the substrate 11 forms a CMOS drive circuit (not shown) on the Si substrate 61, to form a first Si0 2 insulating film (not shown) thereon After the surface is flattened by CMP (chemical mechanical polishing) or the like, contact holes (not shown) for connecting the output of the CMOS drive circuit to the fixed electrodes 12, 13 and the movable electrodes 17A, 17B are formed. Configured. Aluminum (preferably an aluminum alloy containing a refractory metal) as the first conductive film 62 is formed on the Si substrate 61 by sputtering.

次に、図5(b)に示すように、ポジ型レジスト膜を塗布し、グレースケールフォトマスクを使用したフォトリソグラフィにより、所望の形状を有した第1レジスト構造体63を形成する。この第1レジスト構造体63は、内側に所望の傾斜を有した一対の固定電極12,13の下半分と、梁体15を支持する支持部19の形状と相似な構造体である。   Next, as shown in FIG. 5B, a positive resist film is applied, and a first resist structure 63 having a desired shape is formed by photolithography using a gray scale photomask. The first resist structure 63 is a structure similar to the shape of the lower half of the pair of fixed electrodes 12 and 13 having a desired inclination on the inner side and the support portion 19 that supports the beam body 15.

次に、図5(c)に示すように、塩素系ガスによるRIEドライエッチングにより、第1導電膜側面の内側に所望の傾斜を有した第1導電膜62を形成する。即ち、第1レジスト構造体63を第1導電膜62の構造に転写する。ここで、第1導電膜62は、左右の固定電極12,13に分離されるが、それぞれは、Si基板61側で駆動電極V21,V22にコンタクトホール(図示せず)を介して接続される。   Next, as shown in FIG. 5C, a first conductive film 62 having a desired inclination is formed inside the side surface of the first conductive film by RIE dry etching using a chlorine-based gas. That is, the first resist structure 63 is transferred to the structure of the first conductive film 62. Here, the first conductive film 62 is separated into the left and right fixed electrodes 12 and 13, which are connected to the drive electrodes V21 and V22 on the Si substrate 61 side via contact holes (not shown). .

次に、図5(d)に示すように、犠牲層64としてポジ型レジスト膜を塗布し、ハードベークする。ハードベークはDeep UVを照射しながら200°Cを超える温度で行う。これにより後工程の高温プロセスにおいてもその形状を維持し、又レジスト剥離溶剤に不溶となる。また、ベーク時のリフロー効果により、下地膜の段差に依らずレジスト表面は概ね平坦となるが、更にエッチバックや研磨法を用いてレジストの上面を第1導電膜62の高さと同じにする。この犠牲層64は、後述する工程で除去される。従って、レジストの膜厚は、将来の基板11上面と支持板16下面の空隙を決定する。尚、犠牲層64として、上記レジストの代わりに感光性ポリイミドも使用可能である。   Next, as shown in FIG. 5D, a positive resist film is applied as the sacrificial layer 64 and hard-baked. Hard baking is performed at a temperature exceeding 200 ° C. while irradiating with Deep UV. As a result, the shape is maintained even in a high-temperature process as a subsequent step, and becomes insoluble in the resist stripping solvent. In addition, due to the reflow effect at the time of baking, the resist surface becomes substantially flat regardless of the level difference of the base film, but the upper surface of the resist is made the same as the height of the first conductive film 62 by using etch back or polishing method. The sacrificial layer 64 is removed in a process described later. Accordingly, the resist film thickness determines the gap between the upper surface of the substrate 11 and the lower surface of the support plate 16 in the future. As the sacrificial layer 64, photosensitive polyimide can be used instead of the resist.

そして、図5(e)に示すように、第2導電膜65として第2のアルミニウム薄膜(好ましくは、高融点金属を含有したアルミニウム合金)をスパッタで成膜する。   Then, as shown in FIG. 5E, a second aluminum thin film (preferably an aluminum alloy containing a refractory metal) is formed as the second conductive film 65 by sputtering.

次に、図5(f)に示すように、ポジ型レジストを塗布し、グレースケールフォトマスクを使用したフォトリソグラフィにより、所望の形状を有した第2レジスト構造体66を形成する。この第2レジスト構造体66は、内側に所望の傾斜を有した一対の固定電極12,13の上半分と、一対の対向電極面17a,17bを有した可動部14と、梁体15の形状と相似な構造体である。   Next, as shown in FIG. 5F, a positive resist is applied, and a second resist structure 66 having a desired shape is formed by photolithography using a gray scale photomask. The second resist structure 66 includes an upper half of a pair of fixed electrodes 12 and 13 having a desired inclination inside, a movable portion 14 having a pair of counter electrode surfaces 17a and 17b, and the shape of the beam body 15. It is a similar structure.

そして、図5(g)に示すように、塩素系ガスによるRIEドライエッチングにより、第2導電膜側面の内側に所望の傾斜を有した一対の固定電極12,13の上半分と、一対の対向電極面17a,17bを有した可動部14と、梁体15を形成する。即ち、第2レジスト構造体66を第2導電膜65の構造に転写する。   Then, as shown in FIG. 5 (g), the upper half of the pair of fixed electrodes 12 and 13 having a desired inclination inside the side surface of the second conductive film and the pair of opposing layers by RIE dry etching using a chlorine-based gas. The movable part 14 having the electrode surfaces 17a and 17b and the beam body 15 are formed. That is, the second resist structure 66 is transferred to the structure of the second conductive film 65.

最後に、図5(h)に示すように、酸素系ガスのプラズマエッチング(アッシング)により、犠牲層64であるレジスト層を除去して空隙Cを形成し、所望構造の光変調素子を形成する。
尚、本発明の主旨に沿うものであれば、構造・材料・プロセスは上記したものに限定されない。
Finally, as shown in FIG. 5 (h), the resist layer, which is the sacrificial layer 64, is removed by plasma etching (ashing) of an oxygen-based gas to form a gap C, thereby forming a light modulation element having a desired structure. .
Note that the structure, material, and process are not limited to those described above as long as they conform to the gist of the present invention.

(第2の実施形態)
図6、図7及び図8に、本発明にかかる第2の実施形態を示す。なお、以下に説明する実施形態において、すでに説明した部材などと同等な構成・作用を有する部材等については、図中に同一符号又は相当符号を付すことにより、説明を簡略化或いは省略する。ここで、図6は、本発明にかかる光変調素子の第2の実施形態を示す斜視図である。図7は、図6に示す光変調素子のB−B矢視図における断面図である。図8は、図7に示す光変調素子を変位させた状態を示す図である。
(Second Embodiment)
6, 7 and 8 show a second embodiment according to the present invention. In the embodiments described below, members having the same configuration / action as those already described are denoted by the same or corresponding reference numerals in the drawings, and description thereof is simplified or omitted. Here, FIG. 6 is a perspective view showing a second embodiment of the light modulation element according to the present invention. 7 is a cross-sectional view of the light modulation element shown in FIG. FIG. 8 is a diagram illustrating a state in which the light modulation element illustrated in FIG. 7 is displaced.

本実施形態の光変調素子20において、支持部19により支持された可動部材24は、支持板26の固定電極22,23側端辺のそれぞれに、梁体25の捩れの軸Sを回転軸とした回動方向に沿うように湾曲した可動電極27A,27Bが取り付けられている。本実施形態において、可動電極27A,27Bの、固定電極22,23に向かい合う湾曲した側面27a,27bが第1の対向導電面として機能する。   In the light modulation element 20 of the present embodiment, the movable member 24 supported by the support portion 19 has the torsion axis S of the beam body 25 as the rotation axis at each of the fixed electrode 22 and 23 side edges of the support plate 26. The movable electrodes 27A and 27B curved so as to follow the rotating direction are attached. In the present embodiment, the curved side surfaces 27a and 27b of the movable electrodes 27A and 27B facing the fixed electrodes 22 and 23 function as the first opposing conductive surface.

固定電極22,23において、互いに向かい合う側面が、それぞれ反対側の側面に向って凹むように形成された湾曲面である。これら各湾曲面上には一対の導電部22A,22B,23A,23Bが可動部材24の変位する方向に沿って固定されている。導電部22A,22B,23A,23Bは、上記湾曲面に沿って湾曲した板状部材であり、可動部材24側の湾曲面22a,22b,23a,23bが第2の対向導電面として機能する。   In the fixed electrodes 22 and 23, the side surfaces facing each other are curved surfaces formed so as to be recessed toward the opposite side surfaces. A pair of conductive portions 22A, 22B, 23A, and 23B are fixed on these curved surfaces along the direction in which the movable member 24 is displaced. The conductive portions 22A, 22B, 23A, and 23B are plate-like members that are curved along the curved surface, and the curved surfaces 22a, 22b, 23a, and 23b on the movable member 24 side function as second opposing conductive surfaces.

図7に示すように、固定電極22B,23Aには駆動電極V31が、固定電極22A,23Bには駆動電極V32がそれぞれ電気的に接続されている。また、可動部材24の可動電極27A,27Bには駆動電極V33が電気的に接続されている。これら駆動電極V31,V32及びV33を電圧駆動制御することで、第1の対向導電面27a,27bと第2の対向導電面22a,22b,23a,23bとの間に電位差を形成し、静電気力を発生させることができる構成である。   As shown in FIG. 7, the driving electrode V31 is electrically connected to the fixed electrodes 22B and 23A, and the driving electrode V32 is electrically connected to the fixed electrodes 22A and 23B. The drive electrode V33 is electrically connected to the movable electrodes 27A and 27B of the movable member 24. By controlling the voltage of these drive electrodes V31, V32 and V33, a potential difference is formed between the first opposing conductive surfaces 27a and 27b and the second opposing conductive surfaces 22a, 22b, 23a and 23b, and electrostatic force It is the structure which can generate | occur | produce.

なお、電圧駆動制御により電位差を形成することができることを条件として、固定電極22B,23Aにはそれぞれ別の駆動電極が接続されていてもよく、また、固定電極22A,23Bにはそれぞれ別の駆動電極が接続されていてもよい。さらに、可動電極27A,27Bにはそれぞれ別の駆動電極が接続されていてもよい。   Note that, on the condition that a potential difference can be formed by voltage drive control, separate drive electrodes may be connected to the fixed electrodes 22B and 23A, and separate drive electrodes may be connected to the fixed electrodes 22A and 23B. An electrode may be connected. Furthermore, separate drive electrodes may be connected to the movable electrodes 27A and 27B, respectively.

次に、本実施形態の光変調素子が変位するときの動作を説明する。
光変調素子20において、可動部材24を図7中の矢印d1及びd2で示す方向に可動駆動させて変位させるときには、駆動電極V32,V33の電圧印加により第1の対向導電面である側面27aと第2の対向導電面である側面22aとの電位差を生じさせるとともに、第1の対向導電面である側面27bと第2の対向導電面である側面23bとの電位差を生じさせる。すると、第1の対向導電面である側面27aと第2の対向導電面である側面22aとの間、及び、第1の対向導電面である側面27bと第2の対向導電面である側面23bとの間に静電気力が発生する。すると、可動部材24の可動電極27Aには静電気力を駆動力として固定電極12の第2の対向導電面22aに向って引きつけられる静電吸引力が生じ、可動部材24の可動電極27Bには静電気力を駆動力として固定電極13の第2の対向導電面23bに向って引きつけられる静電吸引力が生じる。こうして、可動部材24は、梁体25の捩れの軸Sを回転軸として、図7中矢印d1及びd2で示す方向に駆動され、第2の対向導電面22aと第1の対向導電面である側面27a、および第2の対向導電面23bと第1の対向導電面である側面27bの間の静電気力が最大となる位置で停止する。
この結果、図8に示すように、光学機能として上面にミラー部28が形成された可動部材24の位置が変位する。このため、ミラー部28に照射される入射光Lの反射する方向が偏向することができるようになる。
Next, an operation when the light modulation element of this embodiment is displaced will be described.
In the light modulation element 20, when the movable member 24 is movably driven and displaced in the directions indicated by the arrows d1 and d2 in FIG. 7, the side surface 27a, which is the first opposing conductive surface, is applied by voltage application of the drive electrodes V32 and V33. A potential difference is generated between the side surface 22a that is the second counter conductive surface and a potential difference between the side surface 27b that is the first counter conductive surface and the side surface 23b that is the second counter conductive surface. Then, between the side surface 27a which is the first counter conductive surface and the side surface 22a which is the second counter conductive surface, and the side surface 27b which is the first counter conductive surface and the side surface 23b which is the second counter conductive surface. Electrostatic force is generated between Then, an electrostatic attraction force that is attracted toward the second opposing conductive surface 22a of the fixed electrode 12 using the electrostatic force as a driving force is generated in the movable electrode 27A of the movable member 24, and the movable electrode 27B of the movable member 24 is electrostatically charged. An electrostatic attractive force that is attracted toward the second opposing conductive surface 23b of the fixed electrode 13 is generated using the force as a driving force. Thus, the movable member 24 is driven in the direction indicated by the arrows d1 and d2 in FIG. 7 with the torsion axis S of the beam body 25 as the rotation axis, and is the second opposing conductive surface 22a and the first opposing conductive surface. It stops at the position where the electrostatic force between the side surface 27a and the second opposing conductive surface 23b and the side surface 27b which is the first opposing conductive surface is maximized.
As a result, as shown in FIG. 8, the position of the movable member 24 having the mirror portion 28 formed on the upper surface is displaced as an optical function. For this reason, the direction in which the incident light L applied to the mirror portion 28 is reflected can be deflected.

また、可動部材24を変位前における元の位置に戻すには、駆動電極V32,V33の電圧印加を中止して、第1の対向導電面である側面27aと第2の対向導電面である側面22aとの電位差、及び、第1の対向導電面である側面27bと第2の対向導電面である側面23bとの電位差をなくす。すると、両者の間における静電気力が消失し、可動部材24が梁体25の捩じりによる応力によって図7中矢印d3及びd4に示す方向に機械的変位し、元のように可動部材24の支持板26が基板21表面に対して略平行になる位置に戻る。   Further, in order to return the movable member 24 to the original position before the displacement, voltage application to the drive electrodes V32 and V33 is stopped, and the side surface 27a that is the first opposing conductive surface and the side surface that is the second opposing conductive surface. The potential difference between 22a and the potential difference between the side surface 27b which is the first counter conductive surface and the side surface 23b which is the second counter conductive surface is eliminated. Then, the electrostatic force between the two disappears, and the movable member 24 is mechanically displaced in the directions indicated by the arrows d3 and d4 in FIG. The support plate 26 returns to a position that is substantially parallel to the surface of the substrate 21.

つまり、本実施形態の光変調素子20は、第1の対向導電面27a,27bと第2の対向導電面22a,22b,23a,23bがともに可動部材24の回動方向に沿って湾曲する曲面であり、第2の対向導電面22a,22b,23a,23bが一対の導電部22A,22B,23A,23Bから形成され、一対の導電部22A,22B,23A,23Bが可動部材の回動方向に並べて設けられている。   That is, in the light modulation element 20 of the present embodiment, the first opposing conductive surfaces 27a and 27b and the second opposing conductive surfaces 22a, 22b, 23a, and 23b are both curved surfaces that are curved along the rotation direction of the movable member 24. The second opposing conductive surfaces 22a, 22b, 23a, and 23b are formed of a pair of conductive portions 22A, 22B, 23A, and 23B, and the pair of conductive portions 22A, 22B, 23A, and 23B is the rotational direction of the movable member. Are arranged side by side.

こうすれば、各固定電極22,23における一対の導電部22A,22B,23A,23Bのうち、変位する方向の導電部22A,23B(又は、22B,23A)をそれぞれ電圧駆動制御することで、可動部材24が梁体25を回転軸として回動方向両側に変位可能であるうえ、可動部材24には各固定電極22,23の第2の対向導電面22a,23b(又は、22b,23a)の両方から静電吸引力がかかるようになる。この結果、可動部材24は、より大きい回転トルクを得ることができる。このため、本実施形態の構成とすれば、双方向駆動の光変調素子についても高速応答性を実現することができる。また、可動部材24の変位後において、各固定電極22,23の第2の対向導電面22a,23b(又は、22b,23a)の両方から作用する静電吸引力によって可動部材24が変位後の位置を保持する静止力もより一層増加させることができる。   By doing this, voltage drive control is performed on the conductive portions 22A, 23B (or 22B, 23A) in the displacing direction among the pair of conductive portions 22A, 22B, 23A, 23B in the fixed electrodes 22, 23, respectively. The movable member 24 can be displaced to both sides in the rotational direction with the beam body 25 as a rotation axis, and the movable member 24 has second opposing conductive surfaces 22a and 23b (or 22b and 23a) of the fixed electrodes 22 and 23. The electrostatic attraction force is applied from both. As a result, the movable member 24 can obtain a larger rotational torque. For this reason, with the configuration of the present embodiment, high-speed responsiveness can also be realized for a bidirectionally-modulated light modulation element. Further, after the movable member 24 is displaced, the movable member 24 is displaced by the electrostatic attraction force acting from both the second opposing conductive surfaces 22a and 23b (or 22b and 23a) of the fixed electrodes 22 and 23. The stationary force that holds the position can be further increased.

(第3の実施形態)
図9は、本発明にかかる光変調素子の第3の実施形態を説明する断面図である。本実施形態の基本的な構成は図1から図4に示す第1の実施形態と同様である。
本実施形態の光変調素子40は、基板41の上面であって、梁体45の軸S方向視した支持板46の一方の端部下方と他方の端部下方とのそれぞれに補助電極42A,43Aが設けられた構成である。
(Third embodiment)
FIG. 9 is a cross-sectional view for explaining a third embodiment of the light modulation element according to the present invention. The basic configuration of this embodiment is the same as that of the first embodiment shown in FIGS.
The light modulation element 40 of the present embodiment is an upper surface of the substrate 41, and the auxiliary electrodes 42 </ b> A, 43A is provided.

本実施形態の光変調素子40によれば、補助電極42A,43Aによって、可動電極47A,47Bにかかる静電吸引力を大きくすることで、光変調素子40の高速応答性をより一層向上させることができるうえ、変位後の可動部材44を静止させる静止力も増加させることができる。   According to the light modulation element 40 of the present embodiment, the high speed responsiveness of the light modulation element 40 can be further improved by increasing the electrostatic attractive force applied to the movable electrodes 47A and 47B by the auxiliary electrodes 42A and 43A. In addition, it is possible to increase the static force that stops the movable member 44 after the displacement.

なお、本実施形態の光変調素子40において、補助電極42A,43Aが設けられた位置は、一例であって、可動電極47A及び47Bに静電吸引力を作用させることができる範囲で他の位置に設けても同様の効果を得ることができる。   In the light modulation element 40 of the present embodiment, the positions where the auxiliary electrodes 42A and 43A are provided are merely examples, and other positions are within a range in which the electrostatic attractive force can be applied to the movable electrodes 47A and 47B. The same effect can be obtained even if it is provided.

(第4の実施形態)
図10は、本発明にかかる光変調素子の第4の実施形態を説明する断面図である。本実施形態の基本的な構成は図1から図4に示す第1の実施形態と同様である。
本実施形態の光変調素子50は、基板51の上面における、且つ、可動部材54の支持板56の下方にシールド電極52sが設けられている。シールド電極52sは、アルミ、Crなどの金属薄膜によって構成されている。
(Fourth embodiment)
FIG. 10 is a sectional view for explaining a fourth embodiment of the light modulation element according to the present invention. The basic configuration of this embodiment is the same as that of the first embodiment shown in FIGS.
In the light modulation element 50 of this embodiment, a shield electrode 52 s is provided on the upper surface of the substrate 51 and below the support plate 56 of the movable member 54. The shield electrode 52s is made of a metal thin film such as aluminum or Cr.

本実施形態の光変調素子50は、シールド電極52sによって光変調素子50の外部の帯電体から影響を及ぼす静電気を遮蔽することが可能となり、上記光変調素子50を2次元又は3次元に配列してなる光変調素子アレイとした場合に、他の光変調素子から及ぼされる静電気がシールド電極52sによって遮蔽されて可動電極57A,57Bに影響を与えることないため、可動部材54が外部の静電気力によって不適切に変位することを防止することができ、光変調素子50の駆動動作をより一層正確に行うことができる。   The light modulation element 50 according to the present embodiment can shield static electricity exerted from a charged body outside the light modulation element 50 by the shield electrode 52s, and the light modulation element 50 is arranged two-dimensionally or three-dimensionally. In this case, the static electricity exerted from the other light modulation elements is shielded by the shield electrode 52s and does not affect the movable electrodes 57A and 57B. Inappropriate displacement can be prevented, and the light modulator 50 can be driven more accurately.

尚、前述の各実施形態においては、可動部に設けられた光学機能としてミラーの例を説明したが、これに限らない。例えば、光学機能を有するものとして、誘電体多層膜からなる光干渉膜や、回折格子などでもよい。これらが回転変位することにより、その入射角依存性を利用した光変調素子にも応用可能である。   In each of the above-described embodiments, the example of the mirror has been described as the optical function provided in the movable portion. However, the present invention is not limited to this. For example, an optical interference film made of a dielectric multilayer film or a diffraction grating may be used as an optical function. When these are rotationally displaced, they can also be applied to light modulation elements that utilize the incident angle dependency.

本発明は、上記実施形態の光変調素子の構成を有するアクチュエータ及びアクチュエータの駆動方法に及ぶものである。
このようなアクチュエータとして、ミラー部を省略した構成とするとことができる。具体的には、基板と、該基板上で変位可能に架設された可動部材と、可動部材に設けられた可動電極と、該可動部材の機械的変位が可能となる軌道範囲外に配置され、電圧印加により可動電極と協働して可動部材を変位駆動させる固定電極とを備え、可動電極には可動部材の変位する方向に延びる第1の対向導電面が設けられ、固定電極には、可動部材の変位駆動時に第1の対向導電面と対向しつつ第1の対向導電面に生じる静電吸引力を増加せしめる第2の対向導電面が設けられているものである。
こうすれば、可動部材の駆動を高速化することができ、高速応答性に優れたアクチュエータを提供することができる。
The present invention extends to an actuator having the configuration of the light modulation element of the above embodiment and a driving method of the actuator.
As such an actuator, it can be set as the structure which abbreviate | omitted the mirror part. Specifically, the substrate, a movable member installed on the substrate so as to be displaceable, a movable electrode provided on the movable member, and disposed outside the trajectory range in which the movable member can be mechanically displaced, The movable electrode is provided with a fixed electrode that cooperates with the movable electrode by voltage application to drive the movable member. The movable electrode is provided with a first opposing conductive surface that extends in the direction in which the movable member is displaced. A second opposing conductive surface is provided that increases the electrostatic attractive force generated on the first opposing conductive surface while facing the first opposing conductive surface during displacement driving of the member.
If it carries out like this, the drive of a movable member can be sped up and an actuator excellent in high-speed response can be provided.

また、本発明にかかるアクチュエータの駆動方法としては、基板と、該基板上で変位可能に架設された可動部材と、可動部材に設けられた可動電極と、該可動部材の機械的変位が可能となる軌道範囲外に配置され、電圧印加により可動電極と協働して可動部材を変位駆動させる固定電極とを備えたアクチュエータの駆動方法であって、可動部材の変位駆動時に、可動電極に可動部材の変位する方向に延設された第1の対向導電面と固定電極に設けられた第2の対向導電面とを対向させるように両者の間に作用する静電吸引力を増加させることを特徴とする。   In addition, the actuator driving method according to the present invention includes a substrate, a movable member that can be displaced on the substrate, a movable electrode provided on the movable member, and a mechanical displacement of the movable member. A driving method of an actuator provided with a fixed electrode that is arranged outside a trajectory range and is driven to displace the movable member in cooperation with the movable electrode by applying a voltage, and the movable member is moved to the movable electrode during the displacement driving of the movable member. The electrostatic attraction force acting between the first opposing conductive surface extending in the direction in which the first opposing conductive surface and the second opposing conductive surface provided on the fixed electrode are opposed to each other is increased. And

なお、本発明は、前述した実施形態に限定されるものではなく、適宜な変形、改良などが可能である。
例えば、上記実施形態の光変調素子における電極配線、駆動電圧制御による可動部材の変位方法は一例であり、これに限定されるものではない。
In addition, this invention is not limited to embodiment mentioned above, A suitable deformation | transformation, improvement, etc. are possible.
For example, the method of displacing the movable member by the electrode wiring and the drive voltage control in the light modulation element of the above embodiment is an example, and is not limited to this.

本発明にかかる光変調素子の第1の実施形態を示す斜視図である。1 is a perspective view showing a first embodiment of a light modulation element according to the present invention. 図1に示す光変調素子の形状、および寸法を説明するための説明図である。It is explanatory drawing for demonstrating the shape and dimension of the light modulation element shown in FIG. 図1に示す光変調素子のA−A矢視図における断面図である。It is sectional drawing in the AA arrow line view of the light modulation element shown in FIG. 図3に示す光変調素子を変位させた状態を示す図である。It is a figure which shows the state which displaced the light modulation element shown in FIG. 光変調素子の作成過程を(a)から(h)で説明する概略図である。It is the schematic explaining the creation process of a light modulation element from (a) to (h). 本発明にかかる光変調素子の第2の実施形態を示す斜視図である。It is a perspective view which shows 2nd Embodiment of the light modulation element concerning this invention. 図6に示す光変調素子のB−B矢視図における断面図である。It is sectional drawing in the BB arrow line view of the light modulation element shown in FIG. 図7に示す光変調素子を変位させた状態を示す図である。It is a figure which shows the state which displaced the light modulation element shown in FIG. 本発明にかかる光変調素子の第3の実施形態を説明する図である。It is a figure explaining 3rd Embodiment of the light modulation element concerning this invention. 本発明にかかる光変調素子の第4の実施形態を説明する図である。It is a figure explaining 4th Embodiment of the light modulation element concerning this invention.

符号の説明Explanation of symbols

10,20,40,50 光変調素子
11,21,41,51 基板
12,13,22,23,42,43,52,53 固定電極
14,24,44,54 可動部材
17a,17b,27a,27b,47a,47b,57a,57b 第1の対向導電面(可動部材の側面)
12a,13a,22a,22b,23a,23b,42a,43a,52a,53a 第2の対向導電面(固定電極の側面)
10, 20, 40, 50 Light modulation elements 11, 21, 41, 51 Substrate 12, 13, 22, 23, 42, 43, 52, 53 Fixed electrodes 14, 24, 44, 54 Movable members 17a, 17b, 27a, 27b, 47a, 47b, 57a, 57b First opposing conductive surface (side surface of movable member)
12a, 13a, 22a, 22b, 23a, 23b, 42a, 43a, 52a, 53a Second opposing conductive surface (side surface of fixed electrode)

Claims (7)

基板と、
前記基板上に架設された梁体を回転軸として回動変位する平板部材を含み、該平板部材の上面が光学反射性のミラー部として機能する可動部材と、
前記平板部材における前記回動軸に対称な位置に一対で設けられた可動電極と、
前記可動部材の機械的変位が可能となる軌道範囲外に配置され、電圧印加により前記可動電極と協働して前記可動部材を変位駆動させる固定電極とを備え、
前記可動電極には前記可動部材の回動変位する方向に延びる第1の対向導電面が設けられ、前記固定電極には、前記可動部材の回動変位時に前記第1の対向導電面と対向しつつ前記第1の対向導電面に生じる静電吸引力を増加せしめる第2の対向導電面が設けられ、前記第1の対向導電面及び前記第2の対向導電面が前記回転軸に対して平行する面であることを特徴とする光変調素子。
A substrate,
A movable member that includes a flat plate member that rotates and displaces a beam body installed on the substrate as a rotation axis, and the upper surface of the flat plate member functions as an optically reflective mirror part ;
A pair of movable electrodes provided at positions symmetrical to the rotation axis of the flat plate member ;
A fixed electrode that is disposed outside a trajectory range in which the movable member is mechanically displaceable, and that drives the movable member to move in cooperation with the movable electrode by applying a voltage;
The movable electrode is provided with a first opposing conductive surface extending in the direction of rotational displacement of the movable member, and the fixed electrode is opposed to the first opposing conductive surface when the movable member is rotationally displaced. A second opposing conductive surface that increases the electrostatic attractive force generated on the first opposing conductive surface is provided , and the first opposing conductive surface and the second opposing conductive surface are parallel to the rotation axis. A light modulation element characterized in that the light modulation element.
前記第1の対向導電面及び前記第2の対向導電面がともに平坦面であることを特徴とする請求項に記載の光変調素子。 2. The light modulation element according to claim 1 , wherein both the first opposing conductive surface and the second opposing conductive surface are flat surfaces. 前記第1の対向導電面及び前記第2の対向導電面がともに前記可動部材の回動方向に沿って湾曲する曲面であり、前記第2の対向導電面が一対の導電部からなり、前記一対の導電部が前記可動部材の回動方向に並べて設けられていることを特徴とする請求項に記載の光変調素子。 The first opposing conductive surface and the second opposing conductive surface are both curved surfaces that are curved along the rotation direction of the movable member, and the second opposing conductive surface is composed of a pair of conductive portions, The light modulation element according to claim 1 , wherein the conductive portions are arranged side by side in the rotation direction of the movable member. 前記基板上には、前記可動電極に静電気力を作用せしめる補助電極が設けられていることを特徴とする請求項1からのいずれか1つに記載の光変調素子。 The light modulation element according to any one of claims 1 to 3 , wherein an auxiliary electrode for applying an electrostatic force to the movable electrode is provided on the substrate. 前記基板上には、前記可動電極と同電位に調整可能なシールド電極が設けられていることを特徴とする請求項1からのいずれか1つに記載の光変調素子。 Wherein the substrate, the optical modulation device according to claim 1, any one of 3, characterized in that adjustable shield electrode is provided on the movable electrode at the same potential. 基板と、前記基板上に架設された梁体を回転軸として回動変位する平板部材を含み、該平板部材の上面が光学反射性のミラー部として機能する可動部材と、前記平板部材における前記回動軸に対称な位置に一対で設けられた可動電極と、該可動部材の機械的変位が可能となる軌道範囲外に配置され、電圧印加により前記可動電極と協働して前記可動部材を変位駆動させる固定電極とを備え、
前記可動電極には前記可動部材の回動変位する方向に延びる第1の対向導電面が設けられ、前記固定電極には、前記可動部材の回動変位時に前記第1の対向導電面と対向しつつ前記第1の対向導電面に生じる静電吸引力を増加せしめる第2の対向導電面が設けられ、前記第1の対向導電面及び前記第2の対向導電面が前記回転軸に対して平行する面であることを特徴とするアクチュエータ。
A plate member that includes a substrate, a flat plate member that pivots and displaces with a beam mounted on the substrate as a rotation axis, a movable member whose upper surface functions as an optically reflective mirror portion, and the rotation of the flat plate member. A pair of movable electrodes provided at positions symmetrical to the moving axis, and the movable member are disposed outside the trajectory range in which the movable member can be mechanically displaced, and the movable member is displaced in cooperation with the movable electrode by applying a voltage. A fixed electrode to be driven,
The movable electrode is provided with a first opposing conductive surface extending in the direction of rotational displacement of the movable member, and the fixed electrode is opposed to the first opposing conductive surface when the movable member is rotationally displaced. A second opposing conductive surface that increases the electrostatic attractive force generated on the first opposing conductive surface is provided , and the first opposing conductive surface and the second opposing conductive surface are parallel to the rotation axis. Actuator characterized by being a surface to perform.
基板と、前記基板上に架設された梁体を回転軸として回動変位する平板部材を含み、該平板部材の上面が光学反射性のミラー部として機能する可動部材と、前記平板部材における前記回動軸に対称な位置に一対で可動部材と、前記平板部材における前記回動軸に対称な位置に一対で設けられた可動電極と、該可動部材の機械的変位が可能となる軌道範囲外に配置され、電圧印加により前記可動電極と協働して前記可動部材を回動変位駆動させる固定電極とを備え、前記固定電極には、前記可動部材の回動変位時に前記第1の対向導電面と対向する第2の対向導電面が設けられ、前記第1の対向導電面及び前記第2の対向導電面が前記回転軸に対して平行する面であるアクチュエータの駆動方法であって、
前記可動部材の変位駆動時に、前記可動電極に前記可動部材の変位する方向に延設された前記第1の対向導電面と前記第2の対向導電面とを対向させるように両者の間に作用する静電吸引力を増加させることを特徴とするアクチュエータの駆動方法。
A plate member that includes a substrate, a flat plate member that pivots and displaces with a beam mounted on the substrate as a rotation axis, a movable member whose upper surface functions as an optically reflective mirror portion, and the rotation of the flat plate member. A pair of movable members symmetric with respect to the moving axis, a pair of movable electrodes symmetric with respect to the rotational axis of the flat plate member, and an out of orbit range where the movable member can be mechanically displaced. A fixed electrode that is disposed and cooperates with the movable electrode by voltage application to drive the movable member to be rotationally displaced , and the fixed electrode has the first opposing conductive surface when the movable member is rotationally displaced. A second opposing conductive surface facing the actuator, wherein the first opposing conductive surface and the second opposing conductive surface are surfaces parallel to the rotation axis ,
When the displacement drive of the movable member, acting between them so as to face with said first opposing conductive surface and the second opposing conductive surfaces which extend in the direction of displacement of the movable member to the movable electrode An actuator driving method characterized by increasing an electrostatic attraction force.
JP2006007799A 2006-01-16 2006-01-16 Light modulation element, actuator, and driving method of actuator Expired - Fee Related JP4734122B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006007799A JP4734122B2 (en) 2006-01-16 2006-01-16 Light modulation element, actuator, and driving method of actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006007799A JP4734122B2 (en) 2006-01-16 2006-01-16 Light modulation element, actuator, and driving method of actuator

Publications (2)

Publication Number Publication Date
JP2007188005A JP2007188005A (en) 2007-07-26
JP4734122B2 true JP4734122B2 (en) 2011-07-27

Family

ID=38343197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006007799A Expired - Fee Related JP4734122B2 (en) 2006-01-16 2006-01-16 Light modulation element, actuator, and driving method of actuator

Country Status (1)

Country Link
JP (1) JP4734122B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4687532B2 (en) * 2006-03-28 2011-05-25 ブラザー工業株式会社 Optical scanning apparatus, image forming apparatus including the same, and image display apparatus including the same
JP5482015B2 (en) * 2009-08-19 2014-04-23 セイコーエプソン株式会社 Actuator, optical scanner and image forming apparatus
KR101981238B1 (en) * 2017-10-19 2019-05-22 한국과학기술연구원 Actuator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000147419A (en) * 1998-11-13 2000-05-26 Victor Co Of Japan Ltd Light deflector and display device using the same
JP2002148554A (en) * 2000-11-03 2002-05-22 Samsung Electronics Co Ltd Optical scanner and laser video projector applying the same and driving method for the same
JP2004139085A (en) * 2002-10-18 2004-05-13 Samsung Electronics Co Ltd 2-d actuator and manufacturing method thereof
JP2004252048A (en) * 2003-02-19 2004-09-09 Ricoh Co Ltd Vibration mirror, optical writing device and image forming device
JP2005128551A (en) * 2003-10-24 2005-05-19 Samsung Electronics Co Ltd Frequency modulatable resonant optical scanner

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000147419A (en) * 1998-11-13 2000-05-26 Victor Co Of Japan Ltd Light deflector and display device using the same
JP2002148554A (en) * 2000-11-03 2002-05-22 Samsung Electronics Co Ltd Optical scanner and laser video projector applying the same and driving method for the same
JP2004139085A (en) * 2002-10-18 2004-05-13 Samsung Electronics Co Ltd 2-d actuator and manufacturing method thereof
JP2004252048A (en) * 2003-02-19 2004-09-09 Ricoh Co Ltd Vibration mirror, optical writing device and image forming device
JP2005128551A (en) * 2003-10-24 2005-05-19 Samsung Electronics Co Ltd Frequency modulatable resonant optical scanner

Also Published As

Publication number Publication date
JP2007188005A (en) 2007-07-26

Similar Documents

Publication Publication Date Title
JP3203277B2 (en) Resonant mirror and its manufacturing method
JP3203276B2 (en) Light beam steering method and apparatus
KR100277450B1 (en) Beam steering device and manufacturing method
JP3347783B2 (en) Method and apparatus for steering a light beam
US8699116B2 (en) Microactuator, optical device, display apparatus, exposure apparatus, and method for producing device
JP4406549B2 (en) Light modulation element, light modulation array element, and exposure apparatus using the same
US7113321B2 (en) Optical deflection apparatus and manufacturing method thereof, optical deflection array, imaging apparatus, and image projection display apparatus
JP4872453B2 (en) Microactuator, optical device and display device
JP4392410B2 (en) Electromagnetic force-driven scanning micromirror and optical scanning device using the same
JP4792322B2 (en) Microelectromechanical modulator, microelectromechanical modulator array, image forming apparatus, and microelectromechanical modulator design method
JP2007052256A (en) Rotational displacement type optical modulator and optical apparatus using the same
JP4734122B2 (en) Light modulation element, actuator, and driving method of actuator
JP4452560B2 (en) Transmission type light modulation element and transmission type light modulation array element
JP2008046591A (en) Method of producing contact part of actuator, actuator, optical system and image forming apparatus
US7167290B2 (en) Optical deflection device
JP2008058963A (en) Speckle removal diffraction type optical modulation system
JP4364043B2 (en) Optical deflection apparatus, optical deflection array, image forming apparatus, and image projection display apparatus
JP2006154315A (en) Electrostatic comb-shaped swinging body device and manufacturing method thereof
JP2007199096A (en) Light deflector and light deflector array
KR20060018683A (en) Electrostatic mems scanning micromirror and fabrication method thereof
US11002953B2 (en) MEMS-based spatial light modulator and method of forming
CN113307224B (en) Preparation method of rotary structure
JP2006133387A (en) Rocking body apparatus and method of manufacturing same
JP2006136084A (en) Rocker and its manufacturing method
JP4404787B2 (en) Light modulation element and image forming apparatus

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071109

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071116

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071126

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110307

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110425

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees