JP4733804B2 - Wiring formation method - Google Patents

Wiring formation method Download PDF

Info

Publication number
JP4733804B2
JP4733804B2 JP2000041807A JP2000041807A JP4733804B2 JP 4733804 B2 JP4733804 B2 JP 4733804B2 JP 2000041807 A JP2000041807 A JP 2000041807A JP 2000041807 A JP2000041807 A JP 2000041807A JP 4733804 B2 JP4733804 B2 JP 4733804B2
Authority
JP
Japan
Prior art keywords
forming
wiring
layer
film
intermediate layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000041807A
Other languages
Japanese (ja)
Other versions
JP2001230219A (en
Inventor
信幸 大塚
紀嘉 清水
久弥 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Semiconductor Ltd
Original Assignee
Fujitsu Semiconductor Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Semiconductor Ltd filed Critical Fujitsu Semiconductor Ltd
Priority to JP2000041807A priority Critical patent/JP4733804B2/en
Publication of JP2001230219A publication Critical patent/JP2001230219A/en
Application granted granted Critical
Publication of JP4733804B2 publication Critical patent/JP4733804B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic System
    • H01L21/28556Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic System by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76843Barrier, adhesion or liner layers formed in openings in a dielectric
    • H01L21/76846Layer combinations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/53204Conductive materials
    • H01L23/53209Conductive materials based on metals, e.g. alloys, metal silicides
    • H01L23/53228Conductive materials based on metals, e.g. alloys, metal silicides the principal metal being copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain highly reliable wiring which can cope with further scale down and a higher degree of integration by making desired fine wiring formable, by sufficiently securing not on the surface covering property of a plated Cu film, but also the adhesion between the Cu film and a base film, and a semiconductor device provided with the wiring. SOLUTION: At the time of forming fine multilayered Cu wiring by using both the dual damascene method and electroplating method, a base layer 14 composed of a material containing a metal having a high melting point, an intermediate layer 15 composed of Zr or a Zr compound, and a Cu seed layer 16 are formed by the CVD method so as to cover the internal wall surfaces of wiring grooves 12 and via holes 13 before the groove 12 and holes 13 are filled up with plated Cu. The Zr compound used for forming the intermediate film 15 is Zr N(C2H5)2}4.

Description

【0001】
【発明の属する技術分野】
本発明は、いわゆるダマシン法により絶縁膜の微細な溝内に配線を充填形成してなる配線の形成方法及び半導体装置に関し、特に当該配線を下層配線とビア孔を通じて接続するように形成するデュアルダマシン法に適用して好適である。
【0002】
【従来の技術】
従来より、低抵抗で高いエレクトロマイグレーション(EM)耐性を有するCu配線は、近時におけるLSIの高集積化及び微細化の要請に応え得る高信頼性材料として期待されている。
【0003】
その一方で、Cuは微細加工が困難な配線材料であり、例えば通常の金属配線のようにフォトリソグラフィーでは微細加工に限界がある。
【0004】
そこで、Cu配線の微細加工に有効な手法の一つとして、下層配線上を覆う下地絶縁膜にビア・溝加工を施し、当該ビア孔及び溝内をCuで充填することによりビア孔で接続された多層配線の形成を行うデュアルダマシン法が注目され始めている。そして、このデュアルダマシン法を用いてCuの埋め込みを行う実用化に最も適切な手法として、電解メッキ法が検討されている。
【0005】
【発明が解決しようとする課題】
電解メッキ法を用いてCu配線形成を行う場合、メッキ下地膜としてCuシード層が必要であり、現在のところCuシード層はスパッタ法により成膜されている。ところが、デュアルダマシン法に電解メッキ法を併用して微細配線(例えば、アスペクト比が3以上)を形成する場合、微細且つ複雑な形状の溝及びビア孔の内壁面をきれいに覆うようにスパッタ法でCuシード層を形成することは極めて困難である。
【0006】
そこで、スパッタ法に替わり、高アスペクト比構造の前記内壁面にCuシード層をきれいに形成する有効な手法として、化学気相成長法(CVD法)の適用が検討されている。
【0007】
Cuシード層は、その膜質として前述のように下地構造に対する表面被覆性に加え、下地膜との密着性に優れていることが要求される。CVD法を用いてCuシード層を形成する際には、表面被覆性については十分な効果が得られるが、下地膜との密着性が弱くなるという問題がある。Cuシード層が密着性に劣るものであれば、その後のCuメッキ膜を形成した状態では更なる密着性の劣化を生じ、続く化学機械研磨(CMP)の工程でCuメッキ膜の剥離が発生してしまうため、実際のプロセスとして使用に耐え得るものとは言えない。
【0008】
このように、デュアルダマシン法に電解メッキ法を併用して微細なCu配線を形成する場合、Cuメッキ膜の表面被覆性の向上についてはCVD法の導入により解決されるものの、密着性の低下による悪影響は甚大であり、これを克服する好適な手法が模索されている現況にある。
【0009】
本発明は、前記課題に鑑みてなされたものであり、ダマシン法に電解メッキ法を併用して微細なCu配線を形成するに際して、Cuメッキ膜の表面被覆性のみならず下地膜との密着性を十分に確保して所望の微細配線の形成を可能とし、更なる微細化・高集積化に対応した信頼性の高い配線の形成方法及び当該配線を備えた半導体装置を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明者らは、鋭意検討の結果、以下に示す発明の諸態様に想到するに至った。
【0011】
第1の態様は、ダマシン法に電解メッキ法を併用して微細なCu配線を形成する配線の形成方法である。具体的には、基板の上層に形成された絶縁膜に少なくとも配線溝を形成する工程と、前記配線溝の内壁面を覆うように、少なくとも高融点金属を含有する材料からなる下地層を化学気相成長法により形成する工程と、Zr又はZr化合物からなる中間層を化学気相成長法により形成する工程と、電解メッキ用のシード層を化学気相成長法により形成する工程と、前記配線溝を埋め込むように電解メッキ法により銅又は銅を含む金属層を形成する工程と、前記銅又は銅を含む金属層を研磨して、前記配線溝内を充填するように前記銅又は銅を含む金属層を残して配線を形成する工程とを有し、前記中間層を形成した後に、前記中間層に対してアニール処理及び還元処理を施す
【0012】
ここで、前記中間層を形成する際に用いる化学気相成長による成膜原料を、常温で気体又は液体であり、前記中間層の適切な成長温度が350℃〜450℃であり、前記成長温度以下の取り扱い所定温度範囲で高蒸気圧を有するものとすることが好適である。
【0013】
この場合、前記下地層を形成する前記工程と、前記中間層を形成する前記工程とを同一の成膜室内で連続的に実行することが好適である。
【0014】
また、前記下地層を形成する際に用いる化学気相成長による成膜原料における前記高融点金属と化学結合した付加物と、前記中間層を形成する際に用いる化学気相成長による成膜原料におけるZrと化学結合した付加物とを同一のものとすることが好適である。
【0015】
また、前記下地層を形成する前記工程と、前記中間層を形成する前記工程とを、真空を介して接続したそれぞれ独立の成膜室内で実行してもよい。
【0016】
この場合、前記中間層を形成する際に用いる化学気相成長による成膜原料を、常温で気体又は液体であり、前記中間層の適切な成長温度が100℃〜450℃であり、前記成長温度以下の取り扱い所定温度範囲で高蒸気圧を有するものとすることが好適である。
【0017】
また前記第1の態様は、ダマシン法を用いる場合に比べて、更に複雑且つ微細な成膜を要するデュアルダマシン法に適用して好適である。即ち、前記基板の上層に下部配線が形成されており、前記下部配線と接続孔を通じて電気的に接続されるように前記配線を形成するに際して、前記下地膜を前記配線溝及び前記接続孔の内壁面を覆うように形成した後、前記中間層及び前記シード層を形成し、前記配線溝及び前記接続孔を埋め込むように前記銅又は銅を含む金属層を形成する。
【0020】
【作用】
微細且つ高アスペクト比の複雑な形状の部位に優れた表面被覆性をもって成膜を行うには、化学気相成長法(CVD法)が最も有効な手段である。そこで本発明においては、ダマシン法に電解メッキ法を併用して高アスペクト比の微細なCu配線を形成するに際して、高融点金属を含有する下地膜及び電解メッキ用のシード層をCVD法により成膜することに加え、下地膜とシード層との間にZr又はZr化合物からなる中間層をCVD法により成膜する。この中間層の存在により、シード層が優れた表面被覆性をもって密着性良く形成され、これに依存して電解メッキによる銅又は銅を含む金属層が密着性良く微細な配線溝(及び接続孔)内を充填し、所望の微細配線が実現する。
【0021】
【発明の実施の形態】
以下、本発明を適用した具体的な実施形態について図面を参照しながら詳細に説明する。
【0022】
(本実施形態による多層配線の形成)
本実施形態では、いわゆるデュアルダマシン法に電解メッキ法を併用して高アスペクト比の微細なCu又はCuを含む金属多層配線、ここでは多層Cu配線を形成する好適な方法を開示する。
図1〜図3は、本実施形態による多層Cu配線(ここでは2層)の形成方法を工程順に示す概略断面図である。
【0023】
先ず、図1(a)に示すように、所定の半導体素子が形成された半導体基板(不図示)を覆うようにSiO2を材料として層間絶縁膜2を膜厚500nm程度に堆積形成した後、膜厚30nm程度の薄いSiN膜3を形成し、フォトリソグラフィー及びそれに続くドライエッチングによりSiN膜3及び層間絶縁膜2を加工し、幅300nm程度、深さ530nm程度の配線溝4をパターン形成する。
【0024】
続いて、配線溝4の内壁面を含むSiN膜3上に、高融点金属を含む材料、ここではTiN又はTaNよりなる下地層(バリアメタル層)5をCVD法により膜厚10nm程度に成膜し、次いでメッキ用のCuシード層1をCVD法により膜厚50nm程度に成膜した後、電解メッキ法により配線溝4を埋め込むようにSiN膜3上にCu層6を堆積形成する。
【0025】
そして、SiN膜3をストッパーとして、Cu層6に化学機械研磨(CMP)を施し、配線溝4を充填する下部Cu配線7を形成する。
【0026】
続いて、図1(b)に示すように、下部Cu配線7上を含むSiN膜3上にSiO2を材料として層間絶縁膜8を膜厚700nm程度に堆積形成した後、膜厚30nm程度の薄いSiN膜9を形成し、フォトリソグラフィー及びそれに続くドライエッチングによりSiN膜9を加工して、下部Cu配線7の直上に孔部10をパターン形成する。
【0027】
続いて、図1(c)に示すように、孔部10上を含むSiN膜9上にSiO2を材料として層間絶縁膜11を膜厚500nm程度に堆積形成し、フォトリソグラフィー及びそれに続くドライエッチングにより層間絶縁膜8,11を加工する。このとき、層間絶縁膜11上のレジストマスク形状に倣って層間絶縁膜11に配線溝12がパターン形成されるとともに、当該配線溝12の底部に存するSiN膜9がマスクとなって孔部10の形状に倣ったパターンが層間絶縁膜8に形成され、下部Cu配線7の表面の一部を露出させるビア孔13が形成される。
【0028】
続いて、図2(a)に示すように、配線溝12及びビア孔13の内壁面を含む層間絶縁膜11上に、高融点金属を含む材料、ここではTiN又はTaNよりなる下地層(バリアメタル層)14をCVD法により膜厚10nm程度に成膜する。
【0029】
続いて、図2(b)に示すように、バリアメタル層14を覆うように、Zr又はZr化合物、ここではZrからなる中間層15をCVD法により膜厚5nm程度に成膜する。なお後述するように、中間層15の形成前後に半導体基板にアニール処理を施すことが好適である。当該アニール処理の後、H2(H2+N2)ガスを用いたプラズマ処理及びHhfac処理を行うことが好ましい。
【0030】
更に後述するように、バリアメタル層14の形成工程と中間層15の形成工程は各々のCVD成膜原料を適宜選択することにより、同一成膜室内で同一成膜温度により連続的に行うことが可能となる。
【0031】
続いて、図2(c)に示すように、中間層15を覆うように、Cuメッキ用のCuシード層16をCVD法により膜厚50nm程度に成膜する。なお後述するように、Cuシード層16の形成後に、再びアニール処理を施すことが好適である。
【0032】
続いて、図3(a)に示すように、電解メッキ法により配線溝12及びビア孔13を埋め込むようにCuシード層16上にCu層17を堆積形成する。
【0033】
そして、図3(b)に示すように、Cu層17に化学機械研磨(CMP)を施し、配線溝12及びビア孔13を充填する上部Cu配線18を形成する。
以上の工程により、下部Cu配線7と上部Cu配線18とがビア孔13を通じて電気的に接続されてなる微細な多層配線が完成する。
【0034】
なおここでは、上部Cu配線18の形成のみに中間層15を用いた例を開示したが、もちろん下部Cu配線7に適用してもよい。実際、多層配線の更なる微細化を図る際には、ビア孔13をもたない下部Cu配線7にも中間層15を適用することが好適である。
【0035】
(本実施形態による主要構成の機能)
上述した多層配線の形成方法において、本実施形態の主要構成は、配線溝12及びビア孔13が一体となった微細で複雑な部位をCuで充填してなる上部Cu配線18を形成する際に、バリアメタル層14及びCuシード層16をCVD法により成膜することに加え、バリアメタル層14とCuシード層16との間にZr又はZr化合物からなる中間層15をCVD法により成膜することにある。
【0036】
ここで、中間層15を成膜するにあたり、CVD用の成膜原料の適切な選択が重要である。具体的には、他の構成部材に与える影響、当該成膜原料の取り扱いの容易性、形成工程の簡略性、他の構成部材、特にバリアメタル層14との関連性等を総合的に考察して選択する必要がある。
【0037】
先ず、他の構成部材に与える影響を緩和する要請から、特にCVD法による成膜温度が問題となる。高い成膜温度が必要な成膜原料を用いた場合、特に下層に形成された配線や半導体素子に悪影響を及ぼすおそれがある。従って、成膜温度が比較的低い(好ましくは450℃以下)成膜原料であることが要求される。
【0038】
次に、取り扱いの容易性の要請から、成膜原料は常温で気体又は液体であることが要求される。もちろん、気体であることが理想的ではあるが、前記成膜温度の制限要請から、現実的には液体の成膜原料が使用候補として挙げられる。更に当該成膜原料は、成膜温度以下の取り扱い所定温度範囲で十分な蒸気圧を有するものであることが必要である。
【0039】
上記の各要件を満たすことがCVD法により中間層15の成膜を行ううえで必須となるが、更にこれらに加えて、バリアメタル層14との関連性から、形成工程の簡略化を図ることが要請される。具体的には、バリアメタル層14を形成する工程と、中間層15を形成する工程とを同一の成膜室内で連続的に実行することが好ましい。これを実現する好適な一例として、バリアメタル層14のCVD成膜原料における高融点金属と化学結合する付加物と、中間層15のCVD成膜原料におけるZrと化学結合する付加物とを同一となるように成膜原料を選択することが考えられる。
【0040】
本発明者らは、以上の考察から、中間層15のCVD成膜原料として、Zr{N(C2524(テトラジエチルアミノジルコニウム)等のアミノジルコニウムが最も好適な化合物の一つであることを見出した。以下、前記各要件との関連で、Zr{N(C2524を例に採り中間層15のCVD成膜原料としての有用性について説明する。
【0041】
即ち、Zr{N(C2524は常温で液体であり、成膜温度が200℃程度と比較的低く、当該成膜温度以下の取り扱い所定温度範囲で十分な蒸気圧を有する。
【0042】
具体的に、Zr{N(C2524の熱物性評価を行った。
先ず、図4の円内に示すような圧力測定器を用いて、Zr{N(C2524の加熱時における圧力測定を行ったところ、図4の特性曲線に示されるように、100℃付近から圧力上昇の割合に変化が生じており、この付近から熱分解が生じていることがわかる。この100℃以下における領域での圧力変化から蒸気圧曲線を求めた結果、飽和蒸気圧P(Torr)は、温度をT(K)として、
logP=−1756/T+4.727 (313<T<353) …(1)
であることが判明した。これは、CVD成膜原料として申し分ない値である。
【0043】
更に、200℃付近からは圧力上昇の割合が急激に変化していることがわかった。残留ガスのFI−IR測定の結果、
100℃付近からの変化は、Rを所定の炭価水素として、
Zr{N(C2524→Zr+2HN(C252+N2+2RH …(2)
200℃付近からの変化は、Rを所定の炭価水素として、
2HN(C252→N2+2RH …(3)
となるものと予測される。
【0044】
以上の結果から、Zr{N(C2524をCVD成膜原料として用いる場合、100℃程度、好ましくは200℃程度の比較的低温の成膜温度から成膜可能であり、しかも十分な飽和蒸気圧を有するために取り扱いが容易であって、所望の正確な成膜は可能であることがわかった。
【0045】
更に、Zr{N(C2524は、バリアメタル膜14のCVD成膜原料として用いられるTi{N(C2524(テトラジエチルアミノチタニウム)と付加物に相当する部分、即ち{N(C252}が同一であるため、副反応生成物が発生するおそれがなく、従ってバリアメタル層14を形成する工程と、中間層15を形成する工程とを同一の成膜室内で連続的に実行することが可能となる。
【0046】
ここで、Ti{N(C2524の飽和蒸気圧P(Torr)は、温度をT(K)として、
logP=−3038/T+7.906 …(4)
であり、上述したZr{N(C2524の飽和蒸気圧と大差なく、しかもZr{N(C2524とTi{N(C2524とでは分解温度が近接していることから、同一温度での連続成長が可能である。当該成膜温度としては、バリアメタル層14の方が高温を要するためにこれに律され、350℃〜450℃となる。従ってこの場合、CVD成膜原料を切り替えるだけでバリアメタル層14及び中間層15の連続的成膜が可能であり、工程数の大幅な削減化及び簡略化が実現する。もちろん、バリアメタル層14及び中間層15を別の成膜室内で形成する場合には、中間層15の成膜温度はバリアメタル層14とは独立に100℃〜450℃の範囲内で設定することができる。
【0047】
以上説明したように、Zr{N(C2524が中間層15のCVD成膜原料として最適であることがわかった。そして、これにより中間層15を形成することにより、ダマシン法に電解メッキ法を併用して高アスペクト比の微細なCu配線を優れた表面被覆性をもって密着性良く形成することが可能となる。
【0048】
更に、中間層15及びCuシード層16の各形成工程の前後でアニール処理を行うことにより、更なる密着性の向上が実現することが確認された。これは、当該アニール処理により、バリアメタル層14については膜中に残留した不純物の除去、中間層15については膜中に残留した不純物の除去、結晶性の向上及び脱N、Cuシード層16については膜中に残留した不純物の除去の各効果を奏するためである。
【0049】
また、Zr{N(C2524は窒素(N)を含有するため、成膜されたZrからなる中間層15は窒化物になり易い傾向がある。ZrNの抵抗率は13.6μΩcmであり、Zrの抵抗率である40.0μΩcmより低いが、4価の窒化物であるZr34は高抵抗物質であるため、ビア孔13の部位に使用するには若干問題である。そこで中間層15の高抵抗化を防止するため、中間層15の成膜後に還元処理、特にH2(H2+N2)ガスを用いたプラズマ処理やHhfac処理を行うことが有効である。また、バリアメタル層の材料として、Ta,Ti等の窒化物を作り易い高融点金属を使用することにより、Zrの窒化を抑制し、高抵抗化を防止するようにしても好適である。
【0050】
(実験例)
以下、上述した本実施形態による主要構成の諸効果を調べた各実験について説明する。
ここでは、中間層15のCVD成膜原料としてZr{N(C2524を用い、図5に示すように、反応室Aと反応室Bが搬送室を介して併設されてなるCVD成膜チャンバーを用いて中間層15及びCuシード層16をそれぞれ成膜した。
【0051】
−実験1−
バリアメタル層14としてPVD法により膜厚20nm程度のTaN膜を形成した下地基板を用いた。先ず、反応室A内で中間層15の成膜を行い、続いて反応室B内でCuシード層16の成膜を行った。
【0052】
このときの各成膜条件は、
中間層15については、バブラー温度を50℃で供給量を200sccm、キャリアガスをHeとして供給量を500sccm、基板温度を250℃、圧力を1kPaとした。
Cuシード層16については、CuのCVD成膜原料をCu(hfac)TMVS−1.0g/min、キャリアガスをH2として供給量を500sccm、、基板温度を180℃、圧力を1kPaとした。
【0053】
成膜した中間層15及びCuシード層16の膜厚はそれぞれ10nm程度、50nm程度となった。
得られたCuシード層16上にCu層17を膜厚1μm程度にメッキ成膜し、CMPを施した結果、膜剥離が発生していないことが確認された。
【0054】
−実験2−
バリアメタル層14としてCVD法により膜厚10nm程度のTiN膜を形成した下地基板を用い、実験1と同様に中間層15及びCuシード層16の成膜を行った。ここでは、中間層15の成膜前に、400℃で10分間のアニール処理を施した。
得られたCuシード層16上にCu層17を膜厚1μm程度にメッキ成膜し、テープテストを行った結果、アニール処理を行わない場合に比して良好な密着性を示した。
【0055】
−実験3−
実験1と同様に中間層15及びCuシード層16の成膜を行った。ここでは、中間層15の成膜後に、H2を用い300℃で10分間のアニール処理を施した。
得られたCuシード層16上にCu層17を膜厚1μm程度にメッキ成膜し、テープテストを行った結果、アニール処理を行わない場合に比して良好な密着性を示した。
【0056】
−実験4−
実験1と同様に中間層15及びCuシード層16の成膜を行った。ここでは、Cuシード層16の成膜前にH2を用いたプラズマ処理を施した。
得られたCuシード層16の抵抗測定を行った結果、その比抵抗が2.8μΩcmとなり、プラズマ処理を施さない場合の3.5μΩcmに比して減少することが確認された。
【0057】
−実験5−
実験1と同様に中間層15及びCuシード層16の成膜を行った。ここでは、Cuシード層16の成膜前に供給量10sccm,1min,180℃の条件でHhfac処理を施した。
得られたCuシード層16の抵抗測定を行った結果、その比抵抗が2.9μΩcmとなり、Hhfac処理を施さない場合の3.5μΩcmに比して減少することが確認された。
【0058】
−実験6−
バリアメタル層14としてPVD法によりTa膜を形成した下地基板を用い、実験1と同様に中間層15及びCuシード層16の成膜を行った。
得られたCuシード層16の抵抗測定を行った結果、その比抵抗が2.7μΩcmと低値を示すことが確認された。
【0059】
−実験7−
実験1と同様に中間層15及びCuシード層16の成膜を行った。ここでは、Cuシード層16の成膜後に、真空・350℃で10分間のアニール処理を施した。
得られたCuシード層16上にCu層17を膜厚1μm程度にメッキ成膜し、テープテストを行った結果、アニール処理を行わない場合に比して良好な密着性を示した。
【0060】
−実験8−
先ず、Ti{N(C2524をCVD成膜原料とし、350℃の成膜温度でTiNからなるバリアメタル層14を膜厚10nm程度に成膜した後、同一成膜室内で連続して中間層15を成膜した。
中間層15の各成膜条件は、、バブラー温度を50℃で供給量を100sccm、キャリアガスをHeとして供給量を500sccm、基板温度を350℃、圧力を0.5kPaとした。
得られた膜厚50nm程度Cuシード層16上にCu層17を膜厚1μm程度にメッキ成膜し、テープテストを行った結果、良好な密着性を示した。
【0061】
−実験9−
バリアメタル層14としてCVD法により膜厚10nm程度のTiN膜を形成した下地基板を用い、中間層15を(1)膜厚10nm程度、(2)膜厚20nm程度、(3)膜厚50nm程度の3種類成膜した後、Cuシード層16を膜厚50nm程度に成膜した。
得られたCuシード層16上にCu層17を膜厚1μm程度にメッキ成膜し、テープテストを行った結果、密着強度は(1)>(2)>(3)となり、(1),(2)については良好な密着性を示すことを確認した。
【0062】
前記各実験結果を含む各種条件に対するテープテストの結果を、まとめて以下の表1に示す。
【0063】
【表1】

Figure 0004733804
【0064】
以上説明したように、本実施形態によれば、ダマシン法に電解メッキ法を併用して高アスペクト比の微細なCu配線を形成するに際して、高融点金属を含有するバリアメタル層14及び電解メッキ用のCuシード層16をCVD法により成膜することに加え、バリアメタル層14とCuシード層16との間にZr又はZr化合物からなる中間層15をCVD法により成膜する。この中間層15の存在により、Cuシード層16が優れた表面被覆性をもって密着性良く形成され、これに依存して電解メッキによるCu層17が密着性良く微細な配線溝(及び接続孔)内を充填し、所望の微細配線18が実現する。
【0065】
(多層配線を備えた半導体装置)
具体的に、半導体基板上に半導体素子を備え、前述の各工程により多層配線が形成されてなる半導体装置の一例を図6に示す。
【0066】
この半導体装置は、半導体基板101上に形成されたMOSトランジスタと、当該MOSトランジスタと接続された多層配線(ここでは2層)とを有して構成されている。
【0067】
MOSトランジスタは、ゲート絶縁膜102を介して帯状のゲート電極103がパターン形成され、ゲート電極103の両側における半導体基板1の表層に不純物が導入されてソース/ドレイン104が形成されて構成されている。
【0068】
更に、MOSトランジスタを覆う層間絶縁膜105が形成され、ソース/ドレイン104とコンタクト孔106を介して前述の下部Cu配線7が形成される。そして、下部Cu配線7とビア孔13を介して接続されるように上部Cu配線18が形成されて、半導体装置が構成される。ここで、下部Cu配線7及び上部Cu配線18は、前述のようにデュアルダマシン法に電解メッキ法を併用して形成されたものであり、特に上部Cu配線18は、配線溝12及びビア孔13の内壁面にバリアメタル層14、Zr又はZr化合物からなる中間層15及びCuシード層16がCVD法により順次成膜され、配線溝12及びビア孔13をCuメッキで充填するように形成されるものである。
【0069】
この半導体装置は、優れた表面被覆性及び密着性を確保された微細な多層配線を有しており、近時における装置の微細化・高集積化の要請に十分応えることのできる信頼性の高いものである。
【0070】
なお、本実施形態では、多層Cu配線を形成する場合を例示したが、本発明はこれに限定されず、Cuを含む金属多層配線に適用可能である。具体的に当該金属としては、Cu−Sn、Cu−Ag等が好適であり、これによりマイグレーション耐性を大幅に改善することができる。
【0071】
以下に示す諸態様もまた、本発明を構成する。
【0072】
態様1は、前記第1の態様に記載の配線の形成方法であり、前記下地層を形成する前記工程と、前記中間層を形成する前記工程とを同一の成膜室内で連続的に実行するに際して、前記両工程における成膜温度を350℃〜450℃の同一温度とすることを特徴とする。
【0073】
態様2は、前記第1の態様に記載の配線の形成方法であり、前記下地層を形成する前記工程と、前記中間層を形成する前記工程とをそれぞれ独立の成膜室内で実行するに際して、前者の前記工程における成膜温度を350℃〜450℃とし、後者の前記工程における成膜温度を100℃〜450℃とすることを特徴とする。
【0074】
態様3は、前記第1の態様に記載の配線の形成方法であり、前記中間層を形成する際に用いる化学気相成長による前記成膜原料がアミノジルコニウムであることを特徴とする。
【0075】
態様4は、前記第1の態様に記載の配線の形成方法であり、前記下地層を形成した後にアニール処理を施すことを特徴とする。
【0076】
態様5は、前記第1の態様に記載の配線の形成方法であり、前記中間層を形成した後にアニール処理を施すことを特徴とする。
【0077】
態様6は、前記第1の態様に記載の配線の形成方法であり、前記Cuシード層を形成した後にアニール処理を施すことを特徴とする。
【0078】
態様7は、前記第1の態様に記載の配線の形成方法であり、前記中間層を形成した後、前記Cuシード層を形成する前に、前記中間層にプラズマ処理を施すことを特徴とする。
【0079】
態様8は、前記第1の態様に記載の配線の形成方法であり、前記中間層を形成した後、前記Cuシード層を形成する前に、前記中間層にHhfac処理を施すことを特徴とする。
【0080】
態様9は、前記第1の態様に記載の配線の形成方法であり、前記中間層を膜厚10nm以下に形成することを特徴とする。
【0081】
態様10は、前記第2の態様に記載の半導体装置であり、前記態様1〜9を適用することを特徴とする。
【0082】
【発明の効果】
本発明によれば、ダマシン法に電解メッキ法を併用して微細なCu配線を形成するに際して、Cuメッキ膜の表面被覆性のみならず下地膜との密着性を十分に確保して所望の微細配線の形成を可能とし、更なる微細化・高集積化に対応した信頼性の高い配線の形成が可能となる。
【図面の簡単な説明】
【図1】本発明の実施形態による多層配線の形成方法を工程順に示す概略断面図である。
【図2】図1に引き続き、本発明の実施形態による多層配線の形成方法を工程順に示す概略断面図である。
【図3】図2に引き続き、本発明の実施形態による多層配線の形成方法を工程順に示す概略断面図である。
【図4】中間層のCVD成膜原料であるZr{N(C2524の熱物性評価を示す特性図である。
【図5】中間層及びCuシード層を成膜するためのCVDチャンバーを示す模式図である。
【図6】本実施形態の半導体装置の一例を示す概略断面図である。
【符号の説明】
2,8,11,105 層間絶縁膜
3,9 SiN膜
4,12 配線溝
5,14 下地層(バリアメタル層)
6,17 Cu層
7 下部Cu配線
10 孔部
13 ビア孔
15 中間層
16 Cuシード層
18 上部Cu配線
101 半導体基板
102 ゲート絶縁膜
103 ゲート電極
104 ソース/ドレイン
106 コンタクト孔[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a wiring formation method and a semiconductor device in which a wiring is filled in a fine groove of an insulating film by a so-called damascene method, and in particular, dual damascene formed so as to connect the wiring to a lower layer wiring through a via hole. It is suitable to apply to the law.
[0002]
[Prior art]
Conventionally, Cu wiring having low resistance and high electromigration (EM) resistance is expected as a highly reliable material capable of meeting the recent demand for higher integration and miniaturization of LSIs.
[0003]
On the other hand, Cu is a wiring material that is difficult to finely process, and there is a limit to fine processing in photolithography, for example, like ordinary metal wiring.
[0004]
Therefore, as one of the effective methods for fine processing of Cu wiring, via / groove processing is performed on the base insulating film covering the lower layer wiring, and the via hole and the groove are filled with Cu so that the via hole is connected. The dual damascene method for forming a multi-layer wiring has begun to attract attention. An electrolytic plating method has been studied as a method most suitable for practical use in which Cu is embedded using this dual damascene method.
[0005]
[Problems to be solved by the invention]
When forming a Cu wiring using the electrolytic plating method, a Cu seed layer is required as a plating base film, and the Cu seed layer is currently formed by sputtering. However, when a fine wiring (for example, an aspect ratio of 3 or more) is formed by using the dual damascene method together with the electrolytic plating method, a sputtering method is used so as to neatly cover the inner wall surface of the fine and complicated groove and via hole. It is extremely difficult to form a Cu seed layer.
[0006]
Therefore, instead of sputtering, application of chemical vapor deposition (CVD) is being studied as an effective technique for neatly forming a Cu seed layer on the inner wall surface having a high aspect ratio structure.
[0007]
As described above, the Cu seed layer is required to have excellent adhesion to the base film in addition to the surface coverage with respect to the base structure as described above. When the Cu seed layer is formed using the CVD method, a sufficient effect can be obtained with respect to the surface coverage, but there is a problem that the adhesion with the base film is weakened. If the Cu seed layer is inferior in adhesion, further deterioration of adhesion occurs in the state in which the subsequent Cu plating film is formed, and peeling of the Cu plating film occurs in the subsequent chemical mechanical polishing (CMP) process. Therefore, it cannot be said that it can be used as an actual process.
[0008]
As described above, when forming a fine Cu wiring by using the electrolytic plating method in combination with the dual damascene method, the improvement of the surface coverage of the Cu plating film can be solved by the introduction of the CVD method, but due to the decrease in adhesion. The adverse effects are enormous, and a suitable method to overcome this is being sought.
[0009]
The present invention has been made in view of the above problems, and in forming a fine Cu wiring by using an electroplating method in combination with a damascene method, not only the surface coverage of the Cu plating film but also the adhesion to the base film. It is an object of the present invention to provide a method for forming a highly reliable wiring corresponding to further miniaturization and higher integration, and a semiconductor device provided with the wiring, capable of forming a desired fine wiring by sufficiently securing To do.
[0010]
[Means for Solving the Problems]
As a result of intensive studies, the present inventors have arrived at the following aspects of the invention.
[0011]
The first aspect is a wiring forming method in which a fine Cu wiring is formed by using an electroplating method together with a damascene method. Specifically, a step of forming at least a wiring groove in an insulating film formed on the upper layer of the substrate and a base layer made of a material containing at least a refractory metal so as to cover the inner wall surface of the wiring groove are chemically vaporized. A step of forming by phase growth, a step of forming an intermediate layer made of Zr or a Zr compound by chemical vapor deposition, a step of forming a seed layer for electrolytic plating by chemical vapor deposition, and the wiring trench Forming a copper or copper-containing metal layer by an electrolytic plating method so as to embed the copper, and polishing the copper or copper-containing metal layer to fill the wiring groove so that the copper or copper-containing metal is filled Forming a wiring leaving a layer, and after forming the intermediate layer, Annealing and reducing the intermediate layer .
[0012]
Here, a film forming material by chemical vapor deposition used for forming the intermediate layer is a gas or a liquid at room temperature, an appropriate growth temperature of the intermediate layer is 350 ° C. to 450 ° C., and the growth temperature It is preferable to have a high vapor pressure in the following predetermined temperature range for handling.
[0013]
In this case, it is preferable that the step of forming the base layer and the step of forming the intermediate layer are continuously performed in the same film formation chamber.
[0014]
In addition, in the film-forming raw material by chemical vapor deposition used for forming the intermediate layer and the adduct chemically bonded to the refractory metal in the film-forming raw material by chemical vapor deposition used when forming the underlayer It is preferable that Zr and the chemically bonded adduct are the same.
[0015]
Further, the step of forming the base layer and the step of forming the intermediate layer may be performed in respective independent film formation chambers connected via a vacuum.
[0016]
In this case, a raw material for film formation by chemical vapor deposition used for forming the intermediate layer is a gas or a liquid at room temperature, an appropriate growth temperature of the intermediate layer is 100 ° C. to 450 ° C., and the growth temperature It is preferable to have a high vapor pressure in the following predetermined temperature range for handling.
[0017]
In addition, the first aspect is suitable for application to a dual damascene method that requires a more complicated and fine film formation as compared with the case where the damascene method is used. That is, a lower wiring is formed in an upper layer of the substrate, and when forming the wiring so as to be electrically connected to the lower wiring through a connection hole, the base film is formed in the wiring groove and the connection hole. After forming so as to cover the wall surface, the intermediate layer and the seed layer are formed, and the copper or a metal layer containing copper is formed so as to fill the wiring groove and the connection hole.
[0020]
[Action]
The chemical vapor deposition method (CVD method) is the most effective means for forming a film with excellent surface coverage on a finely shaped, high aspect ratio, complex shape portion. Therefore, in the present invention, when forming a fine Cu wiring with a high aspect ratio by using an electrolytic plating method together with a damascene method, a base film containing a refractory metal and a seed layer for electrolytic plating are formed by a CVD method. In addition, an intermediate layer made of Zr or a Zr compound is formed between the base film and the seed layer by a CVD method. Due to the presence of this intermediate layer, the seed layer is formed with excellent surface coverage and good adhesion, and depending on this, the copper layer or the metal layer containing copper by electroplating has fine adhesion and fine wiring grooves (and connection holes). The inside is filled and desired fine wiring is realized.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, specific embodiments to which the present invention is applied will be described in detail with reference to the drawings.
[0022]
(Formation of multilayer wiring according to this embodiment)
In the present embodiment, a suitable method for forming a high-aspect-ratio fine Cu or Cu-containing metal multilayer wiring, here, a multilayer Cu wiring by using an electroplating method in combination with a so-called dual damascene method is disclosed.
1 to 3 are schematic cross-sectional views showing a method of forming a multilayer Cu wiring (here, two layers) according to the present embodiment in the order of steps.
[0023]
First, as shown in FIG. 1A, SiO is formed so as to cover a semiconductor substrate (not shown) on which a predetermined semiconductor element is formed. 2 After the interlayer insulating film 2 is deposited and formed to a thickness of about 500 nm using the material as a material, a thin SiN film 3 having a thickness of about 30 nm is formed, and the SiN film 3 and the interlayer insulating film 2 are processed by photolithography and subsequent dry etching. Then, a pattern of the wiring trench 4 having a width of about 300 nm and a depth of about 530 nm is formed.
[0024]
Subsequently, on the SiN film 3 including the inner wall surface of the wiring trench 4, a base layer (barrier metal layer) 5 made of a material containing a refractory metal, here TiN or TaN, is formed to a film thickness of about 10 nm by the CVD method. Then, a Cu seed layer 1 for plating is formed to a film thickness of about 50 nm by a CVD method, and then a Cu layer 6 is deposited on the SiN film 3 so as to fill the wiring groove 4 by an electrolytic plating method.
[0025]
Then, using the SiN film 3 as a stopper, the Cu layer 6 is subjected to chemical mechanical polishing (CMP) to form a lower Cu wiring 7 filling the wiring groove 4.
[0026]
Subsequently, as shown in FIG. 1B, SiO 2 is formed on the SiN film 3 including the lower Cu wiring 7. 2 After the interlayer insulating film 8 is deposited and formed to a thickness of about 700 nm using as a material, a thin SiN film 9 having a thickness of about 30 nm is formed, and the SiN film 9 is processed by photolithography and subsequent dry etching to form a lower Cu wiring. The hole 10 is formed in a pattern immediately above the surface 7.
[0027]
Subsequently, as shown in FIG. 1C, SiON is formed on the SiN film 9 including the hole 10. 2 An interlayer insulating film 11 is deposited and formed to a thickness of about 500 nm using the above as a material, and the interlayer insulating films 8 and 11 are processed by photolithography and subsequent dry etching. At this time, the wiring groove 12 is patterned in the interlayer insulating film 11 following the resist mask shape on the interlayer insulating film 11, and the SiN film 9 existing at the bottom of the wiring groove 12 serves as a mask to form the hole 10. A pattern following the shape is formed in the interlayer insulating film 8, and a via hole 13 exposing a part of the surface of the lower Cu wiring 7 is formed.
[0028]
Subsequently, as shown in FIG. 2A, an underlying layer (barrier) made of a material containing a refractory metal, here TiN or TaN, is formed on the interlayer insulating film 11 including the inner wall surfaces of the wiring trench 12 and the via hole 13. A metal layer 14 is formed to a thickness of about 10 nm by a CVD method.
[0029]
Subsequently, as shown in FIG. 2B, an intermediate layer 15 made of Zr or a Zr compound, here Zr, is formed to a thickness of about 5 nm by a CVD method so as to cover the barrier metal layer 14. As will be described later, it is preferable to anneal the semiconductor substrate before and after forming the intermediate layer 15. After the annealing treatment, H 2 (H 2 + N 2 It is preferable to perform plasma treatment using gas and Hhfac treatment.
[0030]
Further, as will be described later, the formation process of the barrier metal layer 14 and the formation process of the intermediate layer 15 can be continuously performed at the same film formation temperature in the same film formation chamber by appropriately selecting each CVD film formation raw material. It becomes possible.
[0031]
Subsequently, as shown in FIG. 2C, a Cu seed layer 16 for Cu plating is formed to a thickness of about 50 nm by a CVD method so as to cover the intermediate layer 15. As will be described later, it is preferable to perform annealing again after the formation of the Cu seed layer 16.
[0032]
Subsequently, as shown in FIG. 3A, a Cu layer 17 is deposited on the Cu seed layer 16 so as to fill the wiring trench 12 and the via hole 13 by electrolytic plating.
[0033]
Then, as shown in FIG. 3B, the Cu layer 17 is subjected to chemical mechanical polishing (CMP) to form an upper Cu wiring 18 that fills the wiring groove 12 and the via hole 13.
Through the above steps, a fine multilayer wiring in which the lower Cu wiring 7 and the upper Cu wiring 18 are electrically connected through the via hole 13 is completed.
[0034]
Although an example in which the intermediate layer 15 is used only for the formation of the upper Cu wiring 18 is disclosed here, it may be applied to the lower Cu wiring 7 as a matter of course. In fact, when further miniaturizing the multilayer wiring, it is preferable to apply the intermediate layer 15 also to the lower Cu wiring 7 having no via hole 13.
[0035]
(Functions of main configuration according to this embodiment)
In the multilayer wiring formation method described above, the main configuration of the present embodiment is that when forming the upper Cu wiring 18 in which a fine and complicated portion in which the wiring groove 12 and the via hole 13 are integrated is filled with Cu. In addition to forming the barrier metal layer 14 and the Cu seed layer 16 by the CVD method, an intermediate layer 15 made of Zr or a Zr compound is formed by the CVD method between the barrier metal layer 14 and the Cu seed layer 16. There is.
[0036]
Here, in forming the intermediate layer 15, it is important to appropriately select a film forming raw material for CVD. Specifically, comprehensive consideration is given to the effects on other components, the ease of handling the film-forming materials, the simplicity of the formation process, and the relevance to other components, particularly the barrier metal layer 14. Need to select.
[0037]
First, the film forming temperature by the CVD method becomes a problem because of the demand for mitigating the influence on other components. When a film forming material that requires a high film forming temperature is used, there is a risk of adversely affecting wirings and semiconductor elements formed particularly in the lower layer. Therefore, it is required that the film forming temperature be relatively low (preferably 450 ° C. or lower).
[0038]
Next, from the request for ease of handling, the film forming raw material is required to be a gas or a liquid at room temperature. Of course, although it is ideal that it is a gas, from the request | requirement of the said film-forming temperature restriction | limiting, the liquid film-forming raw material is actually mentioned as a use candidate. Further, the film forming raw material needs to have a sufficient vapor pressure within a predetermined temperature range for handling that is equal to or lower than the film forming temperature.
[0039]
Satisfying the above requirements is essential for the formation of the intermediate layer 15 by the CVD method. In addition to these, the formation process should be simplified from the relevance to the barrier metal layer 14. Is requested. Specifically, it is preferable to continuously execute the step of forming the barrier metal layer 14 and the step of forming the intermediate layer 15 in the same film formation chamber. As a preferred example for realizing this, the adduct that chemically bonds to the refractory metal in the CVD film forming material of the barrier metal layer 14 and the adduct that chemically bonds to Zr in the CVD film forming material of the intermediate layer 15 are the same. It is conceivable to select the film forming raw material so that
[0040]
From the above consideration, the present inventors have used Zr {N (C 2 H Five ) 2 } Four We have found that aminozirconium such as (tetradiethylaminozirconium) is one of the most preferred compounds. In the following, Zr {N (C 2 H Five ) 2 } Four The usefulness of the intermediate layer 15 as a CVD film forming raw material will be described.
[0041]
That is, Zr {N (C 2 H Five ) 2 } Four Is a liquid at room temperature, has a relatively low film forming temperature of about 200 ° C., and has a sufficient vapor pressure in a predetermined temperature range of handling below the film forming temperature.
[0042]
Specifically, Zr {N (C 2 H Five ) 2 } Four The thermophysical property evaluation was performed.
First, using a pressure measuring device as shown in the circle of FIG. 4, Zr {N (C 2 H Five ) 2 } Four When the pressure was measured during heating, as shown in the characteristic curve of FIG. 4, it was found that the rate of increase in pressure changed from around 100 ° C., and thermal decomposition occurred from around this. As a result of obtaining the vapor pressure curve from the pressure change in the region below 100 ° C., the saturated vapor pressure P (Torr)
logP = −1756 / T + 4.727 (313 <T <353) (1)
It turned out to be. This is a satisfactory value as a CVD film forming material.
[0043]
Furthermore, it was found that the rate of pressure increase changed rapidly from around 200 ° C. As a result of FI-IR measurement of residual gas,
The change from around 100 ° C. is based on R as the predetermined hydrogen
Zr {N (C 2 H Five ) 2 } Four → Zr + 2HN (C 2 H Five ) 2 + N 2 + 2RH (2)
The change from around 200 ° C. is based on R as the predetermined hydrogen
2HN (C 2 H Five ) 2 → N 2 + 2RH (3)
It is predicted that
[0044]
From the above results, Zr {N (C 2 H Five ) 2 } Four Can be formed from a relatively low film formation temperature of about 100 ° C., preferably about 200 ° C., and has a sufficient saturated vapor pressure, and is easy to handle, It was found that the desired accurate film formation is possible.
[0045]
Furthermore, Zr {N (C 2 H Five ) 2 } Four Is Ti {N (C) used as a CVD film forming material for the barrier metal film 14. 2 H Five ) 2 } Four (Tetradiethylaminotitanium) and the part corresponding to the adduct, ie {N (C 2 H Five ) 2 } Are the same, there is no possibility of generating a side reaction product. Therefore, the step of forming the barrier metal layer 14 and the step of forming the intermediate layer 15 are continuously performed in the same film formation chamber. Is possible.
[0046]
Here, Ti {N (C 2 H Five ) 2 } Four The saturated vapor pressure P (Torr) of the temperature is T (K),
logP = -3038 / T + 7.906 (4)
Zr {N (C 2 H Five ) 2 } Four The saturated vapor pressure of Zr {N (C 2 H Five ) 2 } Four And Ti {N (C 2 H Five ) 2 } Four Since the decomposition temperatures are close to each other, continuous growth at the same temperature is possible. The deposition temperature is limited to 350 ° C. to 450 ° C. because the barrier metal layer 14 requires a higher temperature. Therefore, in this case, the barrier metal layer 14 and the intermediate layer 15 can be continuously formed only by switching the CVD film forming material, and the number of steps can be greatly reduced and simplified. Of course, when the barrier metal layer 14 and the intermediate layer 15 are formed in separate film formation chambers, the film formation temperature of the intermediate layer 15 is set within a range of 100 ° C. to 450 ° C. independently of the barrier metal layer 14. be able to.
[0047]
As explained above, Zr {N (C 2 H Five ) 2 } Four Was found to be optimal as a CVD film forming material for the intermediate layer 15. Then, by forming the intermediate layer 15 in this way, it is possible to form a fine Cu wiring with a high aspect ratio with excellent surface coverage and good adhesion by using the electroplating method together with the damascene method.
[0048]
Furthermore, it was confirmed that further improvement in adhesion was realized by performing an annealing process before and after each step of forming the intermediate layer 15 and the Cu seed layer 16. This is because the annealing process removes impurities remaining in the film for the barrier metal layer 14, removal of impurities remaining in the film for the intermediate layer 15, improvement of crystallinity and de-N, and Cu seed layer 16. This is because each effect of removing impurities remaining in the film is exhibited.
[0049]
Also, Zr {N (C 2 H Five ) 2 } Four Contains nitrogen (N), so that the deposited intermediate layer 15 made of Zr tends to be nitrided. The resistivity of ZrN is 13.6 μΩcm, which is lower than the resistivity of Zr, 40.0 μΩcm, but is Zr which is a tetravalent nitride. Three N Four Is a high-resistance material, and is slightly problematic when used for the via hole 13. Therefore, in order to prevent the resistance of the intermediate layer 15 from being increased, reduction treatment, in particular H, is performed after the intermediate layer 15 is formed. 2 (H 2 + N 2 It is effective to perform plasma treatment using gas or Hhfac treatment. Further, as the material of the barrier metal layer, it is preferable to use a refractory metal that can easily form nitrides such as Ta and Ti, thereby suppressing nitridation of Zr and preventing high resistance.
[0050]
(Experimental example)
Hereinafter, each experiment in which various effects of the main configuration according to the above-described embodiment are examined will be described.
Here, Zr {N (C 2 H Five ) 2 } Four As shown in FIG. 5, the intermediate layer 15 and the Cu seed layer 16 were formed using a CVD film forming chamber in which a reaction chamber A and a reaction chamber B were provided side by side through a transfer chamber.
[0051]
-Experiment 1
As the barrier metal layer 14, a base substrate on which a TaN film having a thickness of about 20 nm was formed by the PVD method was used. First, the intermediate layer 15 was formed in the reaction chamber A, and then the Cu seed layer 16 was formed in the reaction chamber B.
[0052]
Each film formation condition at this time is
For the intermediate layer 15, the bubbler temperature was 50 ° C., the supply amount was 200 sccm, the carrier gas was He, the supply amount was 500 sccm, the substrate temperature was 250 ° C., and the pressure was 1 kPa.
For the Cu seed layer 16, Cu (hfac) TMVS-1.0 g / min is used as the CVD film-forming material for Cu, and H is used as the carrier gas. 2 The supply amount was 500 sccm, the substrate temperature was 180 ° C., and the pressure was 1 kPa.
[0053]
The film thicknesses of the intermediate layer 15 and the Cu seed layer 16 formed were about 10 nm and about 50 nm, respectively.
As a result of plating the Cu layer 17 on the obtained Cu seed layer 16 to a thickness of about 1 μm and performing CMP, it was confirmed that no film peeling occurred.
[0054]
-Experiment 2-
An intermediate layer 15 and a Cu seed layer 16 were formed in the same manner as in Experiment 1 using a base substrate on which a TiN film having a thickness of about 10 nm was formed by CVD as the barrier metal layer 14. Here, before the intermediate layer 15 was formed, an annealing treatment was performed at 400 ° C. for 10 minutes.
A Cu layer 17 was plated on the obtained Cu seed layer 16 to a thickness of about 1 μm, and a tape test was performed. As a result, the adhesiveness was better than when the annealing treatment was not performed.
[0055]
-Experiment 3-
In the same manner as in Experiment 1, the intermediate layer 15 and the Cu seed layer 16 were formed. Here, after the intermediate layer 15 is formed, H 2 Was used for annealing at 300 ° C. for 10 minutes.
A Cu layer 17 was plated on the obtained Cu seed layer 16 to a thickness of about 1 μm, and a tape test was performed. As a result, the adhesiveness was better than when the annealing treatment was not performed.
[0056]
-Experiment 4
In the same manner as in Experiment 1, the intermediate layer 15 and the Cu seed layer 16 were formed. Here, H is formed before the Cu seed layer 16 is formed. 2 Plasma treatment using was performed.
As a result of measuring the resistance of the obtained Cu seed layer 16, it was confirmed that the specific resistance was 2.8 μΩcm, which was smaller than 3.5 μΩcm when the plasma treatment was not performed.
[0057]
-Experiment 5
In the same manner as in Experiment 1, the intermediate layer 15 and the Cu seed layer 16 were formed. Here, before the Cu seed layer 16 was formed, the Hhfac treatment was performed under conditions of a supply amount of 10 sccm, 1 min, and 180 ° C.
As a result of measuring the resistance of the obtained Cu seed layer 16, it was confirmed that the specific resistance was 2.9 μΩcm, which was smaller than 3.5 μΩcm when the Hhfac treatment was not performed.
[0058]
-Experiment 6
An intermediate layer 15 and a Cu seed layer 16 were formed in the same manner as in Experiment 1 using a base substrate on which a Ta film was formed by the PVD method as the barrier metal layer 14.
As a result of measuring the resistance of the obtained Cu seed layer 16, it was confirmed that the specific resistance was as low as 2.7 μΩcm.
[0059]
-Experiment 7-
In the same manner as in Experiment 1, the intermediate layer 15 and the Cu seed layer 16 were formed. Here, after the Cu seed layer 16 was formed, an annealing treatment was performed for 10 minutes at 350 ° C. in vacuum.
A Cu layer 17 was plated on the obtained Cu seed layer 16 to a thickness of about 1 μm, and a tape test was performed. As a result, the adhesiveness was better than when the annealing treatment was not performed.
[0060]
-Experiment 8-
First, Ti {N (C 2 H Five ) 2 } Four As a CVD film forming material, a barrier metal layer 14 made of TiN was formed to a thickness of about 10 nm at a film forming temperature of 350 ° C., and then an intermediate layer 15 was formed continuously in the same film forming chamber.
The deposition conditions of the intermediate layer 15 were as follows: the bubbler temperature was 50 ° C., the supply amount was 100 sccm, the carrier gas was He, the supply amount was 500 sccm, the substrate temperature was 350 ° C., and the pressure was 0.5 kPa.
A Cu layer 17 was plated to a thickness of about 1 μm on the Cu seed layer 16 having a thickness of about 50 nm, and a tape test was performed. As a result, good adhesion was shown.
[0061]
-Experiment 9-
A base substrate on which a TiN film having a thickness of about 10 nm is formed by a CVD method is used as the barrier metal layer 14, and the intermediate layer 15 is (1) about 10 nm thick, (2) about 20 nm thick, and (3) about 50 nm thick. Then, the Cu seed layer 16 was formed to a film thickness of about 50 nm.
As a result of plating a Cu layer 17 on the obtained Cu seed layer 16 to a film thickness of about 1 μm and performing a tape test, the adhesion strength was (1)>(2)> (3), and (1), About (2), it confirmed confirming favorable adhesiveness.
[0062]
The tape test results for various conditions including the experimental results are shown in Table 1 below.
[0063]
[Table 1]
Figure 0004733804
[0064]
As described above, according to the present embodiment, when a fine Cu wiring having a high aspect ratio is formed by using an electrolytic plating method together with a damascene method, the barrier metal layer 14 containing a refractory metal and the electrolytic plating are used. In addition to forming the Cu seed layer 16 by the CVD method, an intermediate layer 15 made of Zr or a Zr compound is formed by the CVD method between the barrier metal layer 14 and the Cu seed layer 16. Due to the presence of the intermediate layer 15, the Cu seed layer 16 is formed with excellent surface coverage and good adhesion, and depending on this, the Cu layer 17 formed by electrolytic plating has fine adhesion in the fine wiring grooves (and connection holes). The desired fine wiring 18 is realized.
[0065]
(Semiconductor device with multilayer wiring)
Specifically, FIG. 6 shows an example of a semiconductor device in which a semiconductor element is provided on a semiconductor substrate and a multilayer wiring is formed by the above-described steps.
[0066]
This semiconductor device includes a MOS transistor formed on a semiconductor substrate 101 and a multilayer wiring (here, two layers) connected to the MOS transistor.
[0067]
The MOS transistor has a configuration in which a strip-like gate electrode 103 is patterned through a gate insulating film 102, and impurities are introduced into the surface layer of the semiconductor substrate 1 on both sides of the gate electrode 103 to form a source / drain 104. .
[0068]
Further, an interlayer insulating film 105 covering the MOS transistor is formed, and the aforementioned lower Cu wiring 7 is formed via the source / drain 104 and the contact hole 106. Then, an upper Cu wiring 18 is formed so as to be connected to the lower Cu wiring 7 via the via hole 13 to constitute a semiconductor device. Here, the lower Cu wiring 7 and the upper Cu wiring 18 are formed by using the dual damascene method in combination with the electrolytic plating method as described above. In particular, the upper Cu wiring 18 includes the wiring groove 12 and the via hole 13. A barrier metal layer 14, an intermediate layer 15 made of Zr or a Zr compound, and a Cu seed layer 16 are sequentially formed on the inner wall surface of the substrate by a CVD method so that the wiring trench 12 and the via hole 13 are filled with Cu plating. Is.
[0069]
This semiconductor device has fine multilayer wiring that ensures excellent surface coverage and adhesion, and is highly reliable to meet the recent demand for miniaturization and high integration of devices. Is.
[0070]
In the present embodiment, the case of forming the multilayer Cu wiring is exemplified, but the present invention is not limited to this and can be applied to a metal multilayer wiring containing Cu. Specifically, Cu—Sn, Cu—Ag, or the like is preferable as the metal, and migration resistance can be greatly improved.
[0071]
The following aspects also constitute the present invention.
[0072]
Aspect 1 is the wiring formation method according to the first aspect, wherein the step of forming the base layer and the step of forming the intermediate layer are continuously performed in the same film formation chamber. In this case, the film forming temperature in both the steps is set to the same temperature of 350 ° C. to 450 ° C.
[0073]
Aspect 2 is the method for forming a wiring according to the first aspect, wherein the step of forming the base layer and the step of forming the intermediate layer are performed in independent film forming chambers. The film forming temperature in the former process is 350 ° C. to 450 ° C., and the film forming temperature in the latter process is 100 ° C. to 450 ° C.
[0074]
Aspect 3 is the wiring formation method according to the first aspect, characterized in that the film-forming raw material by chemical vapor deposition used for forming the intermediate layer is aminozirconium.
[0075]
Aspect 4 is the wiring formation method according to the first aspect, characterized in that an annealing treatment is performed after the foundation layer is formed.
[0076]
Aspect 5 is the wiring formation method according to the first aspect, and is characterized in that an annealing treatment is performed after the intermediate layer is formed.
[0077]
Aspect 6 is the wiring formation method according to the first aspect, characterized in that an annealing treatment is performed after the Cu seed layer is formed.
[0078]
Aspect 7 is the wiring forming method according to the first aspect, wherein after the intermediate layer is formed, the intermediate layer is subjected to plasma treatment before the Cu seed layer is formed. .
[0079]
Aspect 8 is the method for forming a wiring according to the first aspect, wherein the intermediate layer is subjected to Hhfac treatment after the intermediate layer is formed and before the Cu seed layer is formed. .
[0080]
Aspect 9 is the wiring formation method according to the first aspect, wherein the intermediate layer is formed to a thickness of 10 nm or less.
[0081]
A tenth aspect is the semiconductor device according to the second aspect, wherein the first to ninth aspects are applied.
[0082]
【The invention's effect】
According to the present invention, when forming a fine Cu wiring by using the electroplating method together with the damascene method, not only the surface coverage of the Cu plating film but also sufficient adhesion with the base film is ensured to obtain the desired fineness. Wiring can be formed, and highly reliable wiring corresponding to further miniaturization and higher integration can be formed.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view illustrating a multilayer wiring forming method according to an embodiment of the present invention in the order of steps.
FIG. 2 is a schematic cross-sectional view subsequent to FIG. 1, showing a multilayer wiring forming method according to an embodiment of the present invention in the order of steps.
FIG. 3 is a schematic cross-sectional view subsequent to FIG. 2, illustrating a multilayer wiring forming method according to an embodiment of the present invention in the order of steps.
FIG. 4 shows Zr {N (C 2 H Five ) 2 } Four It is a characteristic view which shows the thermophysical property evaluation of.
FIG. 5 is a schematic view showing a CVD chamber for forming an intermediate layer and a Cu seed layer.
FIG. 6 is a schematic cross-sectional view showing an example of a semiconductor device of the present embodiment.
[Explanation of symbols]
2, 8, 11, 105 Interlayer insulating film
3.9 SiN film
4,12 Wiring groove
5,14 Underlayer (barrier metal layer)
6,17 Cu layer
7 Lower Cu wiring
10 holes
13 Via hole
15 Middle layer
16 Cu seed layer
18 Upper Cu wiring
101 Semiconductor substrate
102 Gate insulation film
103 Gate electrode
104 source / drain
106 Contact hole

Claims (10)

基板の上層に形成された絶縁膜に少なくとも配線溝を形成する工程と、
前記配線溝の内壁面を覆うように、少なくとも高融点金属を含有する材料からなる下地層を化学気相成長法により形成する工程と、
Zr又はZr化合物からなる中間層を化学気相成長法により形成する工程と、
電解メッキ用のシード層を化学気相成長法により形成する工程と、
前記配線溝を埋め込むように電解メッキ法により銅又は銅を含む金属層を形成する工程と、
前記銅又は銅を含む金属層を研磨して、前記配線溝内を充填するように前記銅又は銅を含む金属層を残して配線を形成する工程と
を有し、
前記中間層を形成した後に、前記中間層に対してアニール処理及び還元処理を施すことを特徴とする配線の形成方法。
Forming at least a wiring groove in an insulating film formed in an upper layer of the substrate;
Forming a base layer made of a material containing at least a refractory metal by chemical vapor deposition so as to cover the inner wall surface of the wiring groove;
Forming an intermediate layer made of Zr or a Zr compound by chemical vapor deposition;
Forming a seed layer for electrolytic plating by chemical vapor deposition;
Forming a copper or copper-containing metal layer by electrolytic plating so as to fill the wiring groove;
Polishing the copper or copper-containing metal layer, and forming the wiring leaving the copper or copper-containing metal layer so as to fill the wiring groove,
After forming the said intermediate | middle layer, an annealing process and a reduction process are performed with respect to the said intermediate | middle layer, The formation method of the wiring characterized by the above-mentioned.
前記中間層を形成する際に用いる化学気相成長による成膜原料は、常温で気体又は液体であり、前記中間層を、350℃〜450℃の成長温度で形成することを特徴とする請求項1に記載の配線の形成方法。  The raw material for film formation by chemical vapor deposition used for forming the intermediate layer is a gas or a liquid at normal temperature, and the intermediate layer is formed at a growth temperature of 350 ° C. to 450 ° C. A method for forming a wiring according to 1. 前記下地層を形成する前記工程と、前記中間層を形成する前記工程とを同一の成膜室内で連続的に実行することを特徴とする請求項2に記載の配線の形成方法。  3. The method of forming a wiring according to claim 2, wherein the step of forming the base layer and the step of forming the intermediate layer are continuously performed in the same film formation chamber. 前記下地層を形成する際に用いる化学気相成長による成膜原料における前記高融点金属と化学結合した付加物と、前記中間層を形成する際に用いる化学気相成長による成膜原料におけるZrと化学結合した付加物とが同一であることを特徴とする請求項3に記載の配線の形成方法。  An adduct chemically bonded to the refractory metal in the film forming raw material by chemical vapor deposition used for forming the underlayer, and Zr in the film forming raw material by chemical vapor deposition used to form the intermediate layer, 4. The method of forming a wiring according to claim 3, wherein the chemically bonded adduct is the same. 前記中間層を形成する際に用いる化学気相成長による成膜原料は、常温で気体又は液体であり、前記中間層を、100℃〜450℃の成長温度で形成することを特徴とする請求項1に記載の配線の形成方法。  The raw material for film formation by chemical vapor deposition used for forming the intermediate layer is a gas or a liquid at normal temperature, and the intermediate layer is formed at a growth temperature of 100 ° C to 450 ° C. A method for forming a wiring according to 1. 前記下地層を形成する前記工程と、前記中間層を形成する前記工程とを、真空を介して接続したそれぞれ独立の成膜室内で実行することを特徴とする請求項5に記載の配線の形成方法。  6. The wiring formation according to claim 5, wherein the step of forming the base layer and the step of forming the intermediate layer are performed in respective independent film formation chambers connected via a vacuum. Method. 前記基板の上層に下部配線が形成されており、前記下部配線と接続孔を通じて電気的に接続されるように前記配線を形成するに際して、前記下地膜を前記配線溝及び前記接続孔の内壁面を覆うように形成した後、前記中間層及び前記シード層を形成し、前記配線溝及び前記接続孔を埋め込むように前記銅又は銅を含む金属層を形成することを特徴とする請求項1に記載の配線の形成方法。  A lower wiring is formed in an upper layer of the substrate, and when forming the wiring so as to be electrically connected to the lower wiring through a connection hole, the base film is formed on the inner surface of the wiring groove and the connection hole. The said intermediate | middle layer and the said seed layer are formed after forming so that it may cover, The metal layer containing the said copper or copper is formed so that the said wiring groove | channel and the said connection hole may be embedded. Wiring formation method. 前記シード層を形成した後に、アニール処理を行うことを特徴とする請求項1〜7のいずれか1項に記載の配線の形成方法。  The method of forming a wiring according to claim 1, wherein annealing is performed after the seed layer is formed. 前記下地層を形成した後に、アニール処理を行うことを特徴とする請求項1〜8のいずれか1項に記載の配線の形成方法。  The method of forming a wiring according to claim 1, wherein an annealing process is performed after the foundation layer is formed. 前記還元処理がH2を用いたプラズマ処理又はHhfac処理であることを特徴とする請求項1〜9のいずれか1項に記載の配線の形成方法。The wiring forming method according to claim 1, wherein the reduction treatment is a plasma treatment using H 2 or an Hhfac treatment.
JP2000041807A 2000-02-18 2000-02-18 Wiring formation method Expired - Fee Related JP4733804B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000041807A JP4733804B2 (en) 2000-02-18 2000-02-18 Wiring formation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000041807A JP4733804B2 (en) 2000-02-18 2000-02-18 Wiring formation method

Publications (2)

Publication Number Publication Date
JP2001230219A JP2001230219A (en) 2001-08-24
JP4733804B2 true JP4733804B2 (en) 2011-07-27

Family

ID=18564976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000041807A Expired - Fee Related JP4733804B2 (en) 2000-02-18 2000-02-18 Wiring formation method

Country Status (1)

Country Link
JP (1) JP4733804B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1331664A4 (en) * 2000-11-02 2008-10-08 Fujitsu Ltd Semiconductor device and its manufacturing method
KR100447232B1 (en) * 2001-12-28 2004-09-04 주식회사 하이닉스반도체 Method for Forming Metal Line in Dual Damascene Structure
JP3944838B2 (en) 2002-05-08 2007-07-18 富士通株式会社 Semiconductor device and manufacturing method thereof
WO2009107205A1 (en) 2008-02-27 2009-09-03 富士通マイクロエレクトロニクス株式会社 Semiconductor device and method for manufacturing the same
US8679970B2 (en) * 2008-05-21 2014-03-25 International Business Machines Corporation Structure and process for conductive contact integration
US9397045B2 (en) * 2014-10-16 2016-07-19 Taiwan Semiconductor Manufacturing Co., Ltd Structure and formation method of damascene structure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08291385A (en) * 1995-04-20 1996-11-05 Tokyo Electron Ltd Structure of shower head of treating device and method for supplying treating gas
JPH09330647A (en) * 1996-06-07 1997-12-22 Canon Inc Electron emitting element, electron source with the electron emitting element, image forming device with the electron source, and manufacture of the electron emitting element
JPH11186261A (en) * 1997-12-19 1999-07-09 Fujitsu Ltd Manufacture of semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08291385A (en) * 1995-04-20 1996-11-05 Tokyo Electron Ltd Structure of shower head of treating device and method for supplying treating gas
JPH09330647A (en) * 1996-06-07 1997-12-22 Canon Inc Electron emitting element, electron source with the electron emitting element, image forming device with the electron source, and manufacture of the electron emitting element
JPH11186261A (en) * 1997-12-19 1999-07-09 Fujitsu Ltd Manufacture of semiconductor device

Also Published As

Publication number Publication date
JP2001230219A (en) 2001-08-24

Similar Documents

Publication Publication Date Title
JP4236201B2 (en) Manufacturing method of semiconductor device
US20020024142A1 (en) Semiconductor device and manufacturing method of the same
KR100558009B1 (en) Method of fabricating a semiconductor device forming a diffusion barrier layer selectively and a semiconductor device fabricated thereby
US7205666B2 (en) Interconnections having double capping layer and method for forming the same
US7435679B2 (en) Alloyed underlayer for microelectronic interconnects
US20070252278A1 (en) Process of forming a composite diffusion barrier in copper/organic low-k damascene technology
US20120282768A1 (en) Schemes for Forming Barrier Layers for Copper in Interconnect Structures
US20120292767A1 (en) Novel Approach for Reducing Copper Line Resistivity
JP2009231497A (en) Semiconductor device and manufacturing method therefor
US5994775A (en) Metal-filled via/contact opening with thin barrier layers in integrated circuit structure for fast response, and process for making same
JP5481989B2 (en) Manufacturing method of semiconductor device
US20060138670A1 (en) Method of forming copper line in semiconductor device
US20040224500A1 (en) Method of forming metal line of semiconductor device
JP3244058B2 (en) Method for manufacturing semiconductor device
JP4733804B2 (en) Wiring formation method
JP2005005383A (en) Semiconductor device and method of manufacturing the same
US20100193956A1 (en) Multi-layer metal wiring of semiconductor device preventing mutual metal diffusion between metal wirings and method for forming the same
JP2003045878A (en) Method for forming wiring of semiconductor element
KR100289515B1 (en) Barrier emtal layer and method of forming the same
US20010018273A1 (en) Method of fabricating copper interconnecting line
KR100924556B1 (en) Metal wiring of semiconductor device and method of manufacturing the same
US5948705A (en) Method of forming interconnection line
US20090001579A1 (en) Multi-layered metal line having an improved diffusion barrier of a semiconductor device and method for forming the same
KR20070005870A (en) Method of forming a copper wiring in a semiconductor device
WO2002037558A1 (en) Semiconductor device and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070208

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080731

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090212

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090319

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20090410

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110318

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110425

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees