JP4731853B2 - How to distinguish the phase sequence of distribution lines - Google Patents

How to distinguish the phase sequence of distribution lines Download PDF

Info

Publication number
JP4731853B2
JP4731853B2 JP2004226013A JP2004226013A JP4731853B2 JP 4731853 B2 JP4731853 B2 JP 4731853B2 JP 2004226013 A JP2004226013 A JP 2004226013A JP 2004226013 A JP2004226013 A JP 2004226013A JP 4731853 B2 JP4731853 B2 JP 4731853B2
Authority
JP
Japan
Prior art keywords
time
slave station
phase
determination
station
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004226013A
Other languages
Japanese (ja)
Other versions
JP2006047020A (en
Inventor
誠二 東
弘次 石橋
昌弘 澤口
裕治 荒巻
昭弘 野口
宏志 吉田
英二 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiden Co Inc
Kyushu Electric Power Co Inc
Nishimu Electronics Industries Co Inc
Nishi Nippon Electric Wire and Cable Co Ltd
Original Assignee
Daiden Co Inc
Kyushu Electric Power Co Inc
Nishimu Electronics Industries Co Inc
Nishi Nippon Electric Wire and Cable Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiden Co Inc, Kyushu Electric Power Co Inc, Nishimu Electronics Industries Co Inc, Nishi Nippon Electric Wire and Cable Co Ltd filed Critical Daiden Co Inc
Priority to JP2004226013A priority Critical patent/JP4731853B2/en
Publication of JP2006047020A publication Critical patent/JP2006047020A/en
Application granted granted Critical
Publication of JP4731853B2 publication Critical patent/JP4731853B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、配電系統の営業所に設置された親局と高圧配電線に対応する適当箇所に設置された複数の子局により、各子局設置点における高圧配電線の相接続順番を判定する方法に関する。   The present invention determines the phase connection order of the high-voltage distribution lines at each slave station installation point by using a master station installed at a sales office of the distribution system and a plurality of slave stations installed at appropriate locations corresponding to the high-voltage distribution lines. Regarding the method.

図10(a)は従来の高圧配電線の敷設状態を示し、同図(b)は近年の高圧配電線の敷設状態を示す図である。   FIG. 10 (a) shows the laying state of a conventional high-voltage distribution line, and FIG. 10 (b) shows the laying state of a recent high-voltage distribution line.

高圧配電系統において高圧配電線を敷設する場合、電圧送出元である配電用変電所(以下、「変電所」と略す)と各地点の高圧配電線用柱上開閉器(以下、「開閉器」と略す)は、極力同じ相順番で接続されるよう計画および設計される。高圧配電線の敷設工事では、図10(a)に示されているように、高圧配電線を接続する電柱の支持アーム部分に、相順番を示す色分けされたプレートを設置することで識別を行えるようにする。各地点の開閉器に接続された相順番は、各地点の開閉器に接続された子局の情報として、工事終了後に高圧配電系統を複数管理する拠点(以下、「営業所」と略す)に設置された計算機に入力され、高圧配電系統ごとに一元管理される。   When laying high-voltage distribution lines in a high-voltage distribution system, the distribution substation (hereinafter abbreviated as “substation”) that is the source of voltage transmission and the high-voltage distribution line pole switches (hereinafter referred to as “switches”) Are designed and designed to be connected in the same phase sequence as much as possible. In laying high-voltage distribution lines, as shown in Fig. 10 (a), identification can be performed by installing color-coded plates indicating the phase order on the support arm portions of the utility poles connecting the high-voltage distribution lines. Like that. The phase sequence connected to the switch at each point is used as the information of the slave station connected to the switch at each point to the base that manages multiple high-voltage distribution systems after construction (hereinafter referred to as “sales office”). It is input to the installed computer and is centrally managed for each high-voltage distribution system.

従来は変電所から並行して3相分を敷設するため、相順番が入れ替わることはなく管理も容易であったが、近年は、図10(b)に示すように、様々な要因から従来の敷設形態が維持できない場合が多い。   Conventionally, since the three phases were laid in parallel from the substation, the phase order did not change and management was easy. However, in recent years, as shown in FIG. In many cases, the laying configuration cannot be maintained.

大きな要因としては、電線と建物や樹木との離隔状況、及び電線の景観などによって、縦列に高圧配電線を敷設せざるを得ない場合があるとともに、別電柱にて並行に戻す際にも、周囲状況や工事手順によっては同一相順番に戻せない場合があるためである。従って、多くの電柱に相順番を示す色分けされたプレートを設置しなければならなくなったが、近年その煩雑さからプレートの設置を省略する場合が多くなってきており、相順番の確認は必要の都度、変電所から順に追っていく他に確認の手段がないのが実態である。また、環境や景観などへの配慮から高圧配電線を地中に埋設する場合もあるため、変電所から高圧配電線の相順番を確認するのは容易ではなく、時間も多大に要するため、事実上は不可能に近い。   As a major factor, depending on the separation situation between the electric wire and the building or tree, the landscape of the electric wire, etc., there are cases where high voltage distribution lines have to be laid in parallel, and when returning in parallel on separate power poles, This is because it may not be possible to return to the same phase order depending on the surrounding conditions and construction procedures. Therefore, it has become necessary to install color-coded plates indicating the phase order on many utility poles. However, in recent years, installation of plates has been often omitted due to its complexity, and confirmation of the phase order is necessary. In fact, there is no other means of confirmation other than following from the substation each time. In addition, because the high voltage distribution lines may be buried underground due to consideration of the environment and landscape, it is not easy to check the phase sequence of the high voltage distribution lines from the substation, and it takes a lot of time. The top is almost impossible.

しかしながら、近年分散型電源の普及などにより電気は高品質なものが求められており、相毎の電圧や電流の管理を行うことや、高圧配電線に接続する単相の柱上変圧器の相毎の接続状況を管理し、相毎の電圧や電流の平衡を図ることが必要となってきている。そのためには、子局設置点毎に高圧配電線の相順番の管理が、前記の各要因に左右されない相順番判別手法により可能となれば、非常に有効な課題解決となる。   However, in recent years, high-quality electricity has been demanded due to the spread of distributed power sources, etc., and it is necessary to manage the voltage and current for each phase and to use a single-phase pole transformer connected to a high-voltage distribution line. It is necessary to manage the connection status for each phase and to balance the voltage and current for each phase. For that purpose, if the management of the phase order of the high-voltage distribution lines for each slave station installation point becomes possible by the phase order discrimination method that does not depend on each of the above-mentioned factors, the problem can be solved very effectively.

本発明の目的は、前記した従来方法の課題を解消し、容易に管理可能となる配電線の相接続順番判定方法(以下、相順判別方法)を提供することにある。   The objective of this invention is providing the phase connection order determination method (henceforth a phase order determination method) of the distribution line which eliminates the subject of the above-mentioned conventional method and becomes easily manageable.

前記した目的を達成するために、この発明は、子局の総括を行う送受信機を備えた親局は、複数の子局のうちの任意の1台を基準子局、他の任意の1台を判定子局と指定し、該基準および判定子局に相順判別に関する指令を同時に受信させて高圧配電線の電圧波形の立ち上がりおよび立ち下がりのいずれか一方のゼロクロス点検出を同時に開始させ、前記基準および判定子局は前記ゼロクロス点を検出後、内部で処理に要した時間(内部処理時間)を付して、直ちにIPプロトコルを用いて前記親局へゼロクロス点検出データを送信し、前記親局は、前記基準および判定子局が送信したゼロクロス点検出データと、該検出データを受信した時間を記録し、該基準子局の検出データ受信時間から該基準子局の内部処理時間を引いて基準子局修正時間を求め、該基準子局修正時間の時間間隔の平均値を、前記高圧配電系統の系統周波数の1周期時間とし、該1周期時間の1/3を相順の位相差時間とし、該相順の位相差時間の一定割合を相順判別許容誤差時間とし、また前記判定子局の検出データを受信した時間から該判定子局の内部処理時間を引いて判定子局修正時間を求め、下記の(1)の条件が満たされれば同相、(2)の条件が満たされれば120度遅れ、(3)の条件が満たされれば120度進みと相順判別するようにした点に第1の特徴がある。
(1)(基準子局修正時間+相順判別許容誤差時間)>判定子局修正時間>(基準子局修正時間−相順判別許容誤差時間)
(2)(基準子局修正時間+位相差時間+相順判別許容誤差時間)>判定子局修正時間>(基準子局修正時間+位相差時間−相順判別許容誤差時間)
(3)(基準子局修正時間+2×位相差時間+相順判別許容誤差時間)>判定子局修正時間>(基準子局修正時間+2×位相差時間−相順判別許容誤差時間)
In order to achieve the above-described object, the present invention provides a master station equipped with a transceiver for summarizing slave stations, wherein any one of a plurality of slave stations is a reference slave station, and any other arbitrary one Is designated as a determination slave station, and the reference and determination slave station simultaneously receive a command relating to phase order determination to simultaneously start detection of a zero-crossing point of either the rising or falling of the voltage waveform of the high-voltage distribution line, After detecting the zero cross point, the reference and determination slave station adds time (internal processing time) required for processing internally, and immediately transmits the zero cross point detection data to the master station using the IP protocol. station, the zero-crossing point detection data to which the reference and determining slave station transmits, to record the time that has received the detection data, by subtracting the internal processing time of the base Junko station from the detected data reception time of the Kijunko station Reference slave station correction The average value of the time interval of the reference slave station correction time is defined as one cycle time of the system frequency of the high-voltage distribution system, and 1/3 of the one cycle time is defined as the phase difference time of the phase sequence. A constant ratio of the forward phase difference time is set as the phase order discrimination allowable error time, and the judgment slave station correction time is obtained by subtracting the internal processing time of the judgment slave station from the time when the detection data of the judgment slave station is received, The first phase is determined to be in-phase when the condition (1) is satisfied, 120 degrees delayed if the condition (2) is satisfied, and 120 degrees advanced if the condition (3) is satisfied . There are features.
(1) (reference slave station correction time + phase order discrimination allowable error time)> judgment slave station correction time> (reference slave station correction time-phase sequence discrimination allowable error time)
(2) (reference slave station correction time + phase difference time + phase order discrimination allowable error time)> determination slave station correction time> (reference slave station correction time + phase difference time−phase order discrimination allowable error time)
(3) (reference slave station correction time + 2 × phase difference time + phase sequence determination allowable error time)> determination slave station correction time> (reference slave station correction time + 2 × phase difference time−phase sequence determination allowable error time)

また、前記親局が、前記子局から受信したデータのうち、相順判別に使用した有効なデータの総数が、指定した検出回数に対し一定の割合より低い場合は、相順判別を任意回数または一定回数やり直すようにした点に第の特徴がある。また、前記親局が、相順判別に使用した有効なデータの総数に対し、相順判別結果に該当したデータの総数の割合が一定の割合より低い場合は、相順判別を任意回数または一定回数やり直すようにした点に第の特徴がある。 In addition, when the total number of valid data used for phase order discrimination among the data received from the slave station by the master station is lower than a certain ratio with respect to the designated number of detections, the phase sequence discrimination is performed any number of times. Alternatively, the second feature is that the process is repeated a certain number of times. In addition, when the ratio of the total number of data corresponding to the phase sequence determination result is lower than a certain ratio with respect to the total number of valid data used for the phase sequence determination by the master station, the phase sequence determination is performed any number of times or a fixed number. The third feature is that the number of times is redone.

本発明によれば、下記の効果を奏することができる。   According to the present invention, the following effects can be obtained.

(1) 高圧配電系統に複数設置された送受信機を備えた子局のうち任意の1台を基準子局、任意の1台を判定子局として、該子局の総括を行う送受信機を備えた親局を用いたので、高圧配電系統の任意の子局設置点の相順判別が可能となる。   (1) It is equipped with a transmitter / receiver that generalizes the slave stations with any one of the slave stations equipped with transmitters / receivers installed in the high-voltage distribution system as a reference slave station and any one as a determination slave station. Therefore, it is possible to determine the phase sequence of any slave station installation point in the high-voltage distribution system.

(2) 高圧配電線の電圧波形の立ち上がりまたは立ち下がりゼロクロス点を連続して検出させることで、相順判別の信頼性を向上することができる。   (2) The reliability of phase sequence discrimination can be improved by continuously detecting the rising or falling zero-cross point of the voltage waveform of the high-voltage distribution line.

(3) 親局は、前記子局が連続送信したゼロクロス点検出データを受信した時間を、全てのデータについて記録し、該記録された時間のうち、基準子局のデータを受信した記録時間間隔の平均値を、前記高圧配電系統の系統周波数の1周期時間とし、前記高圧配電系統の系統周波数の1周期時間の1/3を相順の位相差時間とし、前記相順位相時間の一定割合を相順判別許容誤差時間として相順判別の条件に用いることで、高圧配電系統別に固有の値を持つ必要がなく、高圧配電系統の周波数に依存しない相順判別が可能となる。   (3) The master station records the time at which the slave station continuously receives the zero-cross point detection data transmitted by the slave station for all data, and the recording time interval at which the reference slave station data is received out of the recorded time. Is defined as one cycle time of the system frequency of the high-voltage distribution system, 1/3 of one cycle time of the system frequency of the high-voltage distribution system is defined as a phase difference time in phase order, and a constant ratio of the phase rank phase time Is used as the phase order discrimination allowable error time as a phase sequence discrimination condition, so that there is no need to have a specific value for each high voltage distribution system, and phase sequence discrimination independent of the frequency of the high voltage distribution system is possible.

(4) 子局は前記親局へ送信するデータに、該子局が内部で処理に要した時間を明記し、前記親局は前記子局が連続送信したデータの記録時間(以下、連続送信データ記録時間)から前記子局のデータに明記された内部処理時間を引くことで、ゼロクロス点検出の時間を補正することができ、相順判別の信頼性を向上することができる。   (4) The slave station specifies in the data to be transmitted to the master station the time that the slave station took to process internally, and the master station recorded the data recorded by the slave station continuously (hereinafter referred to as continuous transmission). By subtracting the internal processing time specified in the data of the slave station from the data recording time), the time for detecting the zero cross point can be corrected, and the reliability of the phase order determination can be improved.

(5) 親局は、前記子局から受信したデータのうち、相順判別に使用した有効なデータの総数が、指定した検出回数に対し一定の割合より低い場合は、相順判別を任意回数または一定回数やり直す機能を具備することで相順判別の信頼性を向上することができる。   (5) When the total number of valid data used for phase order discrimination is lower than a certain percentage of the specified number of detections among the data received from the slave station, the master station performs phase sequence discrimination any number of times. Alternatively, the reliability of the phase order determination can be improved by providing a function for performing a predetermined number of times.

(6)親局は、相順判別に使用した有効なデータの総数に対し、相順判別結果に該当したデータの総数の割合が一定の割合より低い場合は、相順判別を任意回数または一定回数やり直す機能を具備することで相順判別の信頼性を向上することができる。   (6) When the ratio of the total number of data corresponding to the phase order discrimination result is lower than a certain ratio with respect to the total number of valid data used for phase order discrimination, the master station performs phase sequence discrimination any number of times or constant The reliability of the phase order determination can be improved by providing the function of performing the number of times over.

以下に、本発明を図面を参照して詳細に説明する。本発明者は、前記した従来技術の課題に鑑み、営業所に設置された親局と高圧配電線に対応する適当箇所に設置された複数子局のうち任意の1台を基準子局、任意の1台を判定子局として用い、IPプロトコルにてデータの送受信を行うことで、高圧配電線に対応する適当箇所に設置された複数子局の任意の箇所での相順判別を行うことを発明した。   Hereinafter, the present invention will be described in detail with reference to the drawings. In view of the above-described problems of the prior art, the present inventor sets any one of a plurality of slave stations installed at appropriate locations corresponding to a master station installed at a sales office and a high-voltage distribution line as a reference slave station, arbitrarily By using one unit as a decision slave station and transmitting and receiving data using the IP protocol, it is possible to determine the phase sequence at any location of multiple slave stations installed at appropriate locations corresponding to high-voltage distribution lines. Invented.

図1は、本発明の一実施形態の概略の構成を示すシステム図である。   FIG. 1 is a system diagram showing a schematic configuration of an embodiment of the present invention.

配電系統の営業所内に設置された光IP親局1と高圧配電線11の適当箇所に設置された複数(1系統当たり、例えば500台程度)の光IP子局5はそれぞれ送受信機1a、6aを有し、該光IP親局1と光IP子局5とは1心の光ファイバーケーブル4によって1対n方式で接続され、光IP親局1と光IP子局5はIPプロトコルにて通信を行っている。該光IP親局1は、光IP子局5の各々の総括を行う。   The optical IP master station 1 installed in the sales office of the distribution system and a plurality (for example, about 500 units per optical system) of optical IP slave stations 5 installed at appropriate locations of the high-voltage distribution line 11 are respectively connected to the transceivers 1a and 6a. The optical IP master station 1 and the optical IP slave station 5 are connected by a one-to-n system by a single optical fiber cable 4, and the optical IP master station 1 and the optical IP slave station 5 communicate by the IP protocol. It is carried out. The optical IP master station 1 generalizes each of the optical IP slave stations 5.

光IP親局1から出力された電気的なIP通信データ(IPプロトコルに従って通信されるデータ)は、同じく営業所内に設置されたSW-Hub(スイッチハブ)2に入力され、メディアコンバータ(以下、MCと略する)3により光信号に変換され、光ファイバーケーブル4を伝送媒体として光IP子局5に送信される。光IP子局5に届いたIP通信データは内蔵される光SW-Hub8により、電気的な信号に変換され処理部6に到達し、処理される。9は開閉器、10は高圧開閉器内蔵センサ、11は高圧配電線である。   Electrical IP communication data (data communicated in accordance with the IP protocol) output from the optical IP master station 1 is input to a SW-Hub (switch hub) 2 also installed in the sales office, MC is abbreviated to 3) and is converted to an optical signal and transmitted to the optical IP slave station 5 using the optical fiber cable 4 as a transmission medium. The IP communication data that reaches the optical IP slave station 5 is converted into an electrical signal by the built-in optical SW-Hub 8, reaches the processing unit 6, and is processed. 9 is a switch, 10 is a high voltage switch built-in sensor, and 11 is a high voltage distribution line.

なお、光IP子局5には、停電の障害時にも、後段の光IP子局5へIP通信データを伝える必要があるため、光IP子局5は光SW-Hub8のバックアップ用電源として、バッテリ7を有する。光IP子局5には、該光SW-Hub8をバッテリ7によりバックアップするタイプの他に、バッテリレスタイプとして、光SW12を内蔵しているタイプがある。このタイプの光IP子局は、符号5’で示されている。   In addition, since it is necessary to transmit IP communication data to the optical IP slave station 5 in the subsequent stage even in the event of a power failure, the optical IP slave station 5 serves as a backup power source for the optical SW-Hub 8. A battery 7 is included. In addition to the type in which the optical SW-Hub 8 is backed up by the battery 7, the optical IP slave station 5 includes a type in which the optical SW 12 is built in as a battery-less type. This type of optical IP slave station is denoted by reference numeral 5 '.

このタイプの光IP子局5’では、無停電時には親局からのIP通信データは光SW12に入力され、光SW-Hub8経由で処理部6に伝えられる。一方、後段の光IP子局5へは光SW-Hub8経由で光SW12を再度経由して送信される。しかしながら、停電の障害時には光SW12の電源が消失することになるので、光SW-Hub8を経由することなく、光SW12を光信号のまま通過し、後段の光IP子局5へIP通信データを伝える。   In this type of optical IP slave station 5 ′, the IP communication data from the master station is input to the optical SW 12 and transmitted to the processing unit 6 via the optical SW-Hub 8 when there is no power failure. On the other hand, the optical IP slave station 5 in the subsequent stage is transmitted via the optical SW 12 via the optical SW-Hub 8 again. However, since the power supply of the optical SW 12 is lost at the time of a power failure, the optical SW 12 passes through the optical SW 12 as it is without passing through the optical SW-Hub 8, and the IP communication data is transmitted to the optical IP slave station 5 in the subsequent stage. Tell.

図2は、親局1から相順判別データ要求を送信した場合の、ネットワーク内のデータの流れを示す図である。   FIG. 2 is a diagram illustrating a data flow in the network when a phase order determination data request is transmitted from the master station 1.

親局1は、相順判別データ要求31をコネクションレス型のプロトコルであるUDP/IP(User Dtagram Protocol/Internet Protocol)のブロードキャストを使用して送信する。ブロードキャストで送信された相順判別データ要求31は、ネットワーク内の全ての子局でほぼ同時に受信される。相順判別データ要求31には、基準子局となる子局番号、判定子局となる子局番号、判別を行う相、およびゼロクロス点を検出する回数が指定されており、子局は、基準子局となる子局番号もしくは判定子局となる子局番号のいずれかが、自局に設定されている子局番号と同じである場合、相順判別データ要求にて指定された判別を行う相の電圧波形のゼロクロス点検出を開始する。例えば、基準子局の子局番号が1、判定子局の子局番号が4と指定されていた場合、子局21と子局24の処理部が、自局が相順判別データ要求の対象子局であると認識し、波形取込部によって取り込まれたデータ(電圧波形)から判別を行う相のゼロクロス点検出を開始することになる。   The master station 1 transmits the phase order determination data request 31 by using UDP / IP (User Dtagram Protocol / Internet Protocol) broadcast, which is a connectionless protocol. The phase order determination data request 31 transmitted by broadcasting is received almost simultaneously by all the slave stations in the network. The phase order discrimination data request 31 specifies a slave station number serving as a reference slave station, a slave station number serving as a decision slave station, a phase to be discriminated, and the number of times to detect a zero cross point. If either the slave station number serving as a slave station or the slave station number serving as a judgment slave station is the same as the slave station number set in the local station, the discrimination specified in the phase order discrimination data request is performed. Starts zero-cross point detection of phase voltage waveform. For example, when the slave station number of the reference slave station is 1 and the slave station number of the judgment slave station is specified as 4, the processing unit of the slave station 21 and the slave station 24 is the target of the phase order determination data request. Recognizing that it is a slave station, the detection of the zero-cross point of the phase in which discrimination is performed from the data (voltage waveform) captured by the waveform capturing unit is started.

図3は、基準子局および判定子局となった子局の動作を示す図である。   FIG. 3 is a diagram illustrating operations of the slave stations that are the reference slave station and the determination slave station.

基準子局および判定子局は、判定を行う相の電圧波形の立ち上がりのゼロクロス点を検出した場合、ゼロクロス点検出データを親局へ送信する。ゼロクロス点検出データには、検出データを送信した回数(連番)、検出対象としている相、子局内部で処理に要した時間が含まれている。前記基準子局および判定子局は、前記相順判別データ要求で指定された回数まで、ゼロクロス点の検出と検出データの送信を繰り返す。なお、このゼロクロス点は、電圧波形の立ち下がりのゼロクロス点であってもよい。   When the reference slave station and the determination slave station detect the zero-cross point of the rising of the voltage waveform of the phase to be determined, the reference slave station and the determination slave station transmit zero-cross point detection data to the master station. The zero cross point detection data includes the number of times the detection data is transmitted (serial number), the phase to be detected, and the time required for processing inside the slave station. The reference slave station and the determination slave station repeat detection of the zero cross point and transmission of detection data up to the number of times specified by the phase order determination data request. The zero cross point may be a zero cross point at the falling edge of the voltage waveform.

図4は、親局が基準子局および判定子局からのゼロクロス点検出データを受信した場合の動作を示す図である。   FIG. 4 is a diagram illustrating an operation when the master station receives zero-cross point detection data from the reference slave station and the determination slave station.

親局は、基準子局および判定子局からのゼロクロス点検出データ内容と、相順判別データ要求を送信してから基準局および判定局からの前記ゼロクロス点検出データを受信するまでの経過時間(以下「データ受信時間」と略す)とを、全データについて記録する。データ受信時間は、高圧配電系統の系統周波数(例えば60Hz)の1周期時間を計算できる精度(例えば、0.1m秒単位)で記録する。   The master station transmits the zero-cross point detection data contents from the reference slave station and the determination slave station and the elapsed time (hereinafter referred to as the zero-cross point detection data from the reference station and the determination station) after transmitting the phase order determination data request. "Data reception time") is recorded for all data. The data reception time is recorded with an accuracy (for example, 0.1 msec unit) that can calculate one cycle time of the system frequency (for example, 60 Hz) of the high-voltage distribution system.

図5は、相順判別に関する親局の処理の概要を示す図である。ステップS1では、相順判別データ要求を行う。ステップS2では、基準子局および判定子局からゼロクロス検出データを受信し、該ゼロクロス検出データの内容とデータ受信時間とを記録する。ステップS3では、相順判別処理を行う。   FIG. 5 is a diagram showing an outline of the processing of the master station regarding the phase order determination. In step S1, a phase order discrimination data request is made. In step S2, the zero cross detection data is received from the reference slave station and the determination slave station, and the contents of the zero cross detection data and the data reception time are recorded. In step S3, a phase order determination process is performed.

図6は、該ステップS3の相順判別処理の全体の流れを示す図である。相順判別処理は、大きく分けて6ステップ(ステップS11〜S16)に分かれている。図7は、図6のステップS11の処理内容の詳細を示す図である。   FIG. 6 is a diagram showing the overall flow of the phase sequence determination processing in step S3. The phase order determination process is roughly divided into 6 steps (steps S11 to S16). FIG. 7 is a diagram showing details of the processing content of step S11 of FIG.

親局は、まず、基準子局の全データについて、データ受信時間から基準子局の子局内部処理時間を引いた値(以下「基準子局修正時間」と略す)を求め、前記基準子局修正時間のデータ受信間隔の平均値を計算する。この平均値を高圧配電系統の系統周波数の1周期時間(以下「周期時間」と略す)とする。通信ネットワークに問題がなく、電圧波形が正常であれば、例えば系統周波数が60Hzであれば、周期時間は約16.67m秒となる。   First, the master station obtains a value obtained by subtracting the slave station internal processing time of the reference slave station from the data reception time for all data of the reference slave station (hereinafter abbreviated as “reference slave station correction time”). Calculate the average value of the data reception interval for the correction time. This average value is defined as one cycle time (hereinafter abbreviated as “cycle time”) of the system frequency of the high-voltage distribution system. If there is no problem in the communication network and the voltage waveform is normal, for example, if the system frequency is 60 Hz, the cycle time is about 16.67 msec.

次に、前記周期時間の1/3を、相順の位相差の基準時間(以下「位相差時間」と略す)とする。更に、前記位相差時間の1/2の一定割合(例えば75%)、すなわち、位相差時間×1/2×誤差率(例えば75%)を、同相判定の許容誤差(以下「判定誤差」と略す)とする。前記の例であれば、位相差時間は5.56m秒、判定誤差は2.09m秒となる。以上3種類の値を相順判別の条件に用いる。   Next, 1/3 of the period time is set as a phase difference reference time (hereinafter referred to as “phase difference time”). Further, a constant ratio of 1/2 of the phase difference time (for example, 75%), that is, phase difference time × 1/2 × error rate (for example, 75%) is set as an in-phase determination allowable error (hereinafter referred to as “determination error”). Abbreviated). In the above example, the phase difference time is 5.56 ms, and the determination error is 2.09 ms. The above three types of values are used as the phase order discrimination conditions.

図8は、図6のステップS12の処理内容の詳細を示す図である。判定子局の全データについても、データ受信時間から判定子局の子局処理時間を引いた値(以下「判定子局修正時間」と略す)を求める。ここで、該判定子局修正時間と、前記の基準子局修正時間を比較すると、子局が相順判別データ要求を受信してから、ゼロクロス点検出を開始するまでのタイムラグや、電圧波形の取り込み処理状態によっては、1データ目の時間が1周期分ずれている場合があるため、このデータずれを調整する必要がある。図8は、このデータずれが起きた場合の例である。具体的には、|基準子局修正時間の1データ目−判定子局修正時間の1データ目|>(位相差時間×2+判定誤差)が成立すれば、基準子局修正時間または判定子局修正時間を1データずらす。   FIG. 8 is a diagram showing details of the processing content of step S12 of FIG. Also for all data of the determination slave station, a value obtained by subtracting the slave station processing time of the determination slave station from the data reception time (hereinafter referred to as “determination slave station correction time”) is obtained. Here, when the determination slave station correction time is compared with the reference slave station correction time, the time lag from when the slave station receives the phase sequence determination data request until the zero cross point detection is started, and the voltage waveform Depending on the capture processing state, the time of the first data may be shifted by one cycle, so this data shift needs to be adjusted. FIG. 8 shows an example when this data shift occurs. Specifically, if | first data of reference slave station modification time−first data of judgment slave station modification time |> (phase difference time × 2 + decision error) is satisfied, reference slave station modification time or judgment slave station Shift the correction time by one data.

図9は、図6のステップS13の処理内容を示す図である。前記のデータずれを調整後、相順判別条件に基づいて、基準子局修正時間と判定子局修正時間の検査を行う。基準子局修正時間に対し、(1)判定子局修正時間が(±判定誤差)以内なら、基準子局と判定子局は同相として同相カウントを+1とする。(2)判定子局修正時間が(+位相差時間±判定誤差)以内なら、基準子局に対し判定子局は120度遅れているとして120度遅れカウントを+1とする。(3)判定子局修正時間が(+位相差時間×2±判定誤差)以内なら、基準子局に対し判定子局は120度進んでいるとして120度進みカウントを+1とする。以上の3条件に当てはまらない場合は、無効データとする。   FIG. 9 is a diagram showing the processing content of step S13 in FIG. After adjusting the data deviation, the reference slave station correction time and the determination slave station correction time are inspected based on the phase order determination condition. (1) If the determination slave station correction time is within (± determination error) with respect to the reference slave station correction time, the reference slave station and the determination slave station are in phase and the in-phase count is +1. (2) If the judgment slave station correction time is within (+ phase difference time ± judgment error), the judgment slave station is 120 degrees behind the reference slave station, and the 120 degree delay count is set to +1. (3) If the determination slave station correction time is within (+ phase difference time × 2 ± determination error), the determination slave station has advanced 120 degrees with respect to the reference slave station, and the count is advanced by 120 degrees and the count is incremented by +1. If the above three conditions are not met, the data is invalid.

図6のステップS14では、ステップS13の検査終了後、親局が指定したゼロクロス点検出回数に対し、前記3条件に該当したデータの総数の割合が一定割合未満(例えば、80%未満)であれば、検査に使用したデータの信頼性が不十分であると判断して、相順判別をやり直す。例えば、ゼロクロス点検出回数が50回、前記3条件に該当したデータの総数が35件であった場合の割合は35÷50=70%であるため、使用データ全体の信頼性が低いと判断して、前記ステップS1(図5参照)の相順判別データ要求からやり直す。やり直す回数は任意とする。   In step S14 of FIG. 6, after the inspection in step S13, the ratio of the total number of data corresponding to the above three conditions is less than a certain ratio (for example, less than 80%) with respect to the number of zero cross point detections designated by the master station. For example, it is determined that the reliability of the data used for the inspection is insufficient, and the phase sequence determination is performed again. For example, if the number of zero crossing points detected is 50 and the total number of data corresponding to the above three conditions is 35, the ratio is 35 ÷ 50 = 70%. Then, the processing is restarted from the phase sequence determination data request in step S1 (see FIG. 5). The number of redoes is arbitrary.

図6のステップS15では更に、前記のデータ信頼性が十分であった場合でも、3条件に該当したデータの総数に対する、最も多く該当した条件のカウントの割合が一定割合未満(例えば、90%未満)であれば、相順判別結果の信頼性が不十分であると判断して相順判別をやり直す。例えば、ゼロクロス点検出回数が50回、前記3条件に該当したデータの総数が45件、最も多く該当した条件が同相で、カウントが35回であった場合は、使用データ全体の信頼性は45÷50=95%あるが、相順判別の該当確率は35÷45=77.8%しかないため、相順判別結果の信頼性が低いと判断して、前記ステップS1の相順判別データ要求からやり直す。やり直す回数は任意または一定回数とする。   Further, in step S15 of FIG. 6, even when the data reliability is sufficient, the ratio of the count of the most applicable condition to the total number of data corresponding to the three conditions is less than a certain ratio (for example, less than 90%). ), It is determined that the reliability of the phase sequence determination result is insufficient, and the phase sequence determination is performed again. For example, if the number of zero-cross point detections is 50, the total number of data corresponding to the above three conditions is 45, the most applicable condition is in-phase, and the count is 35, the reliability of the entire used data is 45 ÷ 50 = 95%, but the corresponding probability of phase order discrimination is only 35 ÷ 45 = 77.8%. Therefore, it is judged that the reliability of the phase order discrimination result is low, and the phase sequence discrimination data request in step S1 is performed. Start over. The number of redoes is arbitrary or fixed.

ステップS14およびS15の判断が否定の時、すなわち相順判別をやり直さなければ、図6のステップS16で相順判別結果は信頼できるとして、判定子局の判別相を確定する。例えば、判定相が内相で、最も多いカウントが同相カウントであれば基準局に対する判定局の相を内相と判別する。該最も多いカウントが120度遅れであれば中相、また120進みであれば外相と判別する。   If the determinations in steps S14 and S15 are negative, that is, if the phase order determination is not performed again, the determination result of the determination slave station is determined in step S16 in FIG. For example, if the determination phase is the inner phase and the largest count is the in-phase count, the phase of the determination station with respect to the reference station is determined as the inner phase. If the largest count is 120 degrees behind, it is determined as the middle phase, and if it is advanced 120, it is determined as the outer phase.

なお、本発明では、前記高圧配電系統を複数管理する拠点に前記親局を配置することで、一定範囲内の前記高圧配電系統の相順データを一元管理できるようにすることができる。   In the present invention, it is possible to centrally manage the phase sequence data of the high-voltage distribution system within a certain range by arranging the master station at a base that manages a plurality of the high-voltage distribution systems.

本発明の一実施形態の遠方監視制御通信方式の要部構成を示すシステム図である。It is a system diagram which shows the principal part structure of the remote monitoring control communication system of one Embodiment of this invention. 親局から子局への要求送信時の流れを示す図である。It is a figure which shows the flow at the time of the request transmission from a master station to a slave station. 子局が親局からの要求を受信した場合の動作を示す図である。It is a figure which shows operation | movement when a slave station receives the request | requirement from a master station. 親局が子局からデータを受信した場合の動作を示す図である。It is a figure which shows operation | movement when a main | base station receives data from a substation. 親局の相順判別に関する処理の概要を示すフローチャートである。It is a flowchart which shows the outline | summary of the process regarding phase order determination of a master station. 親局での相順判別処理の詳細を示すフローチャートである。It is a flowchart which shows the detail of the phase order discrimination | determination process in a master station. 前記相順判別処理のうちのステップS11の詳細を示す説明図である。It is explanatory drawing which shows the detail of step S11 among the said phase order discrimination | determination processes. 前記相順判別処理のうちのステップS12の詳細を示す説明図である。It is explanatory drawing which shows the detail of step S12 among the said phase order discrimination | determination processes. 前記相順判別処理のうちのステップS13の詳細を示す説明図である。It is explanatory drawing which shows the detail of step S13 among the said phase order discrimination | determination processes. 高圧配電線の従来敷設形態と近年の敷設形態を示す図である。It is a figure which shows the conventional laying form of a high voltage distribution line, and the recent laying form.

符号の説明Explanation of symbols

1・・・光IP親局、2・・・SW−Hub(スイッチングハブ)、3・・・MC(メディアコンバータ)、4・・・光ファイバーケーブル、5、5’・・・光IP子局、6・・・処理部、8・・・光SW−Hub、9、19・・・開閉器、10・・・開閉器内蔵センサ、11・・・高圧配電線、21〜25・・・子局、31・・・相順判別データ要求。   DESCRIPTION OF SYMBOLS 1 ... Optical IP master station, 2 ... SW-Hub (switching hub), 3 ... MC (media converter), 4 ... Optical fiber cable, 5, 5 '... Optical IP slave station, 6 ... Processing unit, 8 ... Optical SW-Hub, 9, 19 ... Switch, 10 ... Sensor with built-in switch, 11 ... High voltage distribution line, 21-25 ... Slave station 31 ... Phase order discrimination data request.

Claims (3)

高圧配電系統に設置された複数の子局の各設置点における高圧配電線の相接続順番を判定する方法において、
前記子局の総括を行う送受信機を備えた親局は、前記複数の子局のうちの任意の1台を基準子局、他の任意の1台を判定子局と指定し、該基準および判定子局に相順判別に関する指令を同時に受信させて高圧配電線の電圧波形の立ち上がりおよび立ち下がりのいずれか一方のゼロクロス点検出を同時に開始させ、
前記基準および判定子局は前記ゼロクロス点を検出後、内部で処理に要した時間(内部処理時間)を付して、直ちにIPプロトコルを用いて前記親局へゼロクロス点検出データを送信し、
前記親局は、前記基準および判定子局が送信したゼロクロス点検出データと、該検出データを受信した時間を記録し、該基準子局の検出データ受信時間から該基準子局の内部処理時間を引いて基準子局修正時間を求め、該基準子局修正時間の時間間隔の平均値を、前記高圧配電系統の系統周波数の1周期時間とし、該1周期時間の1/3を相順の位相差時間とし、該相順の位相差時間の一定割合を相順判別許容誤差時間とし、また前記判定子局の検出データを受信した時間から該判定子局の内部処理時間を引いて判定子局修正時間を求め、
下記の(1)の条件が満たされれば同相、(2)の条件が満たされれば120度遅れ、(3)の条件が満たされれば120度進みと相順判別することを特徴とする配電線の相順判別方法。
(1)(基準子局修正時間+相順判別許容誤差時間)>判定子局修正時間>(基準子局修正時間−相順判別許容誤差時間)
(2)(基準子局修正時間+位相差時間+相順判別許容誤差時間)>判定子局修正時間>(基準子局修正時間+位相差時間−相順判別許容誤差時間)
(3)(基準子局修正時間+2×位相差時間+相順判別許容誤差時間)>判定子局修正時間>(基準子局修正時間+2×位相差時間−相順判別許容誤差時間)
In the method of determining the phase connection order of the high-voltage distribution lines at each installation point of a plurality of slave stations installed in the high-voltage distribution system,
A master station provided with a transmitter / receiver for summarizing the slave stations designates any one of the plurality of slave stations as a reference slave station, and any other one as a determination slave station, Have the decision slave station simultaneously receive a command related to phase sequence discrimination and simultaneously start the zero-cross point detection of either the rising or falling voltage waveform of the high-voltage distribution line,
The reference and determination slave station, after detecting the zero cross point, attaches the time required for processing internally (internal processing time), immediately transmits the zero cross point detection data to the master station using the IP protocol,
The master station includes a zero-crossing point detection data to which the reference and determining slave station transmits, to record the time that has received the detection data, internal processing time of the base Junko station from the detected data reception time of the Kijunko station The reference slave station correction time is obtained by subtraction, and the average value of the time interval of the reference slave station correction time is defined as one cycle time of the system frequency of the high-voltage distribution system, and 1/3 of the one cycle time is the phase order. The phase difference time, a certain ratio of the phase difference time of the phase sequence is set as a phase sequence determination allowable error time, and the internal processing time of the determination slave station is subtracted from the time when the detection data of the determination slave station is received. Find the correction time,
The distribution line is characterized in that the phase is determined to be in-phase if the following condition (1) is satisfied, 120 degrees delayed if the condition (2) is satisfied, and 120 degrees advanced if the condition (3) is satisfied. Phase order discrimination method.
(1) (reference slave station correction time + phase order discrimination allowable error time)> judgment slave station correction time> (reference slave station correction time-phase sequence discrimination allowable error time)
(2) (reference slave station correction time + phase difference time + phase order discrimination allowable error time)> determination slave station correction time> (reference slave station correction time + phase difference time−phase order discrimination allowable error time)
(3) (reference slave station correction time + 2 × phase difference time + phase sequence determination allowable error time)> determination slave station correction time> (reference slave station correction time + 2 × phase difference time−phase sequence determination allowable error time)
請求項1に記載の配電線の相順判別方法において、In the phase sequence distinction method of the distribution line according to claim 1,
前記親局が、前記子局から受信した前記ゼロクロス点検出データのうち、相順判別に使用した有効なデータの総数が、指定した連続検出回数に対し一定の割合より低い場合は、相順判別を任意回数または一定回数やり直すようにすることを特徴とする配電線の相順判別方法。  If the total number of valid data used for phase order discrimination among the zero cross point detection data received from the slave station by the master station is lower than a certain ratio with respect to the designated number of consecutive detections, the phase order discrimination A method for discriminating the phase sequence of a distribution line, characterized in that the number of times is determined or repeated a certain number of times.
請求項1に記載の配電線の相順判別方法において、In the phase sequence distinction method of the distribution line according to claim 1,
前記親局が、相順判別に使用した有効なデータの総数に対し、相順判別結果に該当したデータの総数の割合が一定の割合より低い場合は、相順判別を任意回数または一定回数やり直すようにすることを特徴とする配電線の相順判別方法。  When the ratio of the total number of data corresponding to the phase sequence determination result is lower than a certain ratio with respect to the total number of valid data used for the phase sequence determination by the master station, the phase sequence determination is repeated an arbitrary number of times or a predetermined number of times. A method for discriminating the phase sequence of a distribution line.
JP2004226013A 2004-08-02 2004-08-02 How to distinguish the phase sequence of distribution lines Active JP4731853B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004226013A JP4731853B2 (en) 2004-08-02 2004-08-02 How to distinguish the phase sequence of distribution lines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004226013A JP4731853B2 (en) 2004-08-02 2004-08-02 How to distinguish the phase sequence of distribution lines

Publications (2)

Publication Number Publication Date
JP2006047020A JP2006047020A (en) 2006-02-16
JP4731853B2 true JP4731853B2 (en) 2011-07-27

Family

ID=36025744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004226013A Active JP4731853B2 (en) 2004-08-02 2004-08-02 How to distinguish the phase sequence of distribution lines

Country Status (1)

Country Link
JP (1) JP4731853B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017197823A1 (en) * 2016-05-17 2017-11-23 深圳市思达仪表有限公司 Method and system for detecting voltage reverse phase sequence of three-phase electricity meter
CN109212333A (en) * 2018-09-27 2019-01-15 深圳友讯达科技股份有限公司 Collector management electric energy meter phase sequence Home System and device

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8207726B2 (en) * 2008-09-05 2012-06-26 Silver Spring Networks, Inc. Determining electric grid endpoint phase connectivity
CN102621405B (en) * 2009-12-09 2014-11-05 电子科技大学 Device for detecting stator winding phase sequence and encoder output level
CN102495297B (en) * 2011-12-09 2014-10-22 辽宁省电力有限公司沈阳供电公司 Method for realizing phase check function by relay contact
CN102495298B (en) * 2011-12-09 2013-09-25 辽宁省电力有限公司沈阳供电公司 Method for realizing line phase check by using programmable logic controller (PLC)
CN103063934B (en) * 2012-12-31 2017-02-08 国家电网公司 Three-phase voltage phase distinguishing method
JP5485421B1 (en) * 2013-01-08 2014-05-07 中国電力株式会社 Connection phase determination method and connection phase determination device
JP5485422B1 (en) * 2013-01-08 2014-05-07 中国電力株式会社 Connection phase determination method and connection phase determination device
JP5485420B1 (en) * 2013-01-08 2014-05-07 中国電力株式会社 Connection phase determination method and connection phase determination device
JP2014191354A (en) * 2013-03-26 2014-10-06 Aichi Electric Co Ltd Power distribution equipment and update method of monitoring control software
CN106707043B (en) * 2017-02-08 2023-10-17 杭州宇诺电子科技有限公司 Three-phase alternating current phase discrimination method and phase discrimination system thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07140184A (en) * 1993-11-15 1995-06-02 Takemoto Denki Keiki Kk Voltage/current measuring system for distribution line
CN1039750C (en) * 1994-11-17 1998-09-09 郝玉山 Method for measuring phase angle of sinusoidal quantity of electric power system and measuring system
JP2001215248A (en) * 2000-01-31 2001-08-10 Kansai Electric Power Co Inc:The Phase detecting system, for power transmission/ distribution line
JP3544654B2 (en) * 2001-06-08 2004-07-21 中部電力株式会社 Phase discriminator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017197823A1 (en) * 2016-05-17 2017-11-23 深圳市思达仪表有限公司 Method and system for detecting voltage reverse phase sequence of three-phase electricity meter
CN109212333A (en) * 2018-09-27 2019-01-15 深圳友讯达科技股份有限公司 Collector management electric energy meter phase sequence Home System and device

Also Published As

Publication number Publication date
JP2006047020A (en) 2006-02-16

Similar Documents

Publication Publication Date Title
JP4731853B2 (en) How to distinguish the phase sequence of distribution lines
US6141763A (en) Self-powered network access point
KR100672924B1 (en) Remote monitoring apparatus and system and method thereof
CA2401714A1 (en) System and method for surveying utility outages
MX2011001025A (en) Wireless communications providing interoperability between devices capable of communicating at different data rates.
US20130135526A1 (en) Electronic device and audio output method
JP4996699B2 (en) Communications system
US11721977B2 (en) Automatic discovery of electrical supply network topology and phase
KR101698227B1 (en) Apparatus for time synchronization of substation automation system
WO2013093810A1 (en) Bandwidth management in a home network
US20110161687A1 (en) Power supply apparatus, power reception apparatus and information notification method
US11950325B2 (en) Gateway with backup power and communications system
JP6754693B2 (en) How to match data and event gaps sent and received on networks using different communication technologies
CN108512680B (en) Power distribution bar monitoring method, power distribution bar, network switch and power supply system
JP2022510676A (en) Rebuilding a personal area network or system after a network or system failure
US20210102979A1 (en) Measurement device, time information provision device, measurement device control method, time information provision control method, measurement device control program, and time information provision control program
CN109274763B (en) Information synchronization method and dual-computer hot standby equipment
JP4405820B2 (en) Distribution line remote monitoring and control communication system using IP
CN113133097B (en) Wireless communication method and system
KR101171661B1 (en) System and method for monitoring theft of power line
JP2011151736A (en) Communication system
CN201887943U (en) Wireless microphone system
EP3730951A1 (en) Measurement device, measurement device control method, and measurement device control program
EP3136202B1 (en) Powering an information delivery network
KR102171186B1 (en) Apparatus and method for controlling a slave node in a multi-node system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110420

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4731853

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250