JP4731818B2 - Method and apparatus for producing high-purity SiO solid - Google Patents

Method and apparatus for producing high-purity SiO solid Download PDF

Info

Publication number
JP4731818B2
JP4731818B2 JP2004034204A JP2004034204A JP4731818B2 JP 4731818 B2 JP4731818 B2 JP 4731818B2 JP 2004034204 A JP2004034204 A JP 2004034204A JP 2004034204 A JP2004034204 A JP 2004034204A JP 4731818 B2 JP4731818 B2 JP 4731818B2
Authority
JP
Japan
Prior art keywords
raw material
sio
material containing
solid
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004034204A
Other languages
Japanese (ja)
Other versions
JP2005225691A (en
Inventor
慎司 徳丸
正樹 岡島
次郎 近藤
信明 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical and Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical and Materials Co Ltd filed Critical Nippon Steel Chemical and Materials Co Ltd
Priority to JP2004034204A priority Critical patent/JP4731818B2/en
Publication of JP2005225691A publication Critical patent/JP2005225691A/en
Application granted granted Critical
Publication of JP4731818B2 publication Critical patent/JP4731818B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、高純度Si製造原料、Si系セラミックス製造原料、高分子フィルム蒸着用原料として利用される高純度のSiO固体を安価に、かつ生産性良く製造する方法及び製造装置に関するものである。   The present invention relates to a method and an apparatus for producing a high-purity Si solid material, a Si-based ceramics production material, and a high-purity SiO solid used as a raw material for polymer film deposition at low cost and high productivity.

SiO固体を製造する際には、Si原料+SiO原料又はC原料+SiO原料の組合せで、それぞれ粉体で用いられる場合が多い(例えば、特許文献1、特許文献2)。高純度のC粉末は比較的容易に手に入るが、SiやSiO粉末はSiO気体発生効率を上げるために、一般に市販されている50〜200μm径の粉末を粉砕し、50μm以下の原料を使用する方法(特許文献3、特許文献4)がある。この場合、粉砕過程での汚染を受け、いずれの粉末も混練するので、その時の汚染も避けられない。さらに、原料の粉径が小さくなるほど、スプラッシュ現象により飛散し、析出したSiO固体への混入の可能性が高くなる。 When producing a SiO solid, a combination of Si raw material + SiO 2 raw material or C raw material + SiO 2 raw material is often used in powder form (for example, Patent Document 1 and Patent Document 2). High-purity C powder is available relatively easily, but Si and SiO 2 powders are pulverized from commercially available 50-200 μm diameter powders to increase the efficiency of SiO gas generation. There are methods to be used (Patent Document 3 and Patent Document 4). In this case, since any powder is kneaded due to contamination during the pulverization process, contamination at that time is unavoidable. Furthermore, the smaller the powder diameter of the raw material, the higher the possibility that it will be scattered by the splash phenomenon and mixed into the deposited SiO solid.

(特許文献5)においては、スプラッシュ現象によるSiO固体への原料混入を抑えるため、原料充填箇所とSiO固体析出箇所に飛散した原料を通さずに、SiO気体のみを通過させる遮蔽板を設置すれば、金属不純物濃度が50ppm以下のSiO固体の製造が可能であるとされている。しかしながら、該発明では、原料Siとして、半導体Siウェハーを粉砕したものを使用しているにもかかわらず、SiO固体中のFe濃度は8ppm以上、さらに、数種類の不純物元素の濃度が1ppm以上となっており、原料Siより純度が低下している。この場合も、原料を粉砕する過程で汚染を受けていると考えられる。   In (Patent Document 5), in order to suppress the raw material mixture into the SiO solid due to the splash phenomenon, a shielding plate that allows only the SiO gas to pass through without passing the raw material scattered at the raw material filling location and the SiO solid deposition location is installed. It is said that it is possible to produce a SiO solid having a metal impurity concentration of 50 ppm or less. However, in this invention, although the raw material Si used is a pulverized semiconductor Si wafer, the Fe concentration in the SiO solid is 8 ppm or more, and the concentrations of several impurity elements are 1 ppm or more. The purity is lower than that of the raw material Si. Also in this case, it is considered that the raw material is contaminated in the process of grinding.

一方、SiOを高純度化する方法として、例えば、(特許文献6)で開示される方法がある。これは、SiO気体を急冷して得られたSiO固体を1400〜1800℃で蒸留する方法である。蒸発室と捕集室からなる装置において、蒸発室に入れられたSiO固体を前記温度に加熱し、捕集室を加熱せずに減圧状態にすると、蒸発室で蒸発したSiO気体は捕集室に導入され、粉末が形成するものであるが、この方法では、蒸発室の温度で蒸発してしまう不純物も捕集室に導入されることになり、実際に純度99.9%のSiOしか得られていない。
特開昭63−103814号公報 特開平4−81524号公報 特開平6−57417号公報 特開2000−262572号公報 特開2002−194535号公報 特開昭60−215514号公報
On the other hand, as a method for purifying SiO, for example, there is a method disclosed in (Patent Document 6). This is a method of distilling SiO solid obtained by quenching SiO gas at 1400-1800 ° C. In an apparatus consisting of an evaporation chamber and a collection chamber, when the SiO solid placed in the evaporation chamber is heated to the above temperature and the collection chamber is heated to a reduced pressure state, the SiO gas evaporated in the evaporation chamber is collected in the collection chamber. In this method, impurities that evaporate at the temperature of the evaporation chamber are also introduced into the collection chamber, and actually only 99.9% pure SiO is obtained. It is not done.
JP-A 63-103814 JP-A-4-81524 JP-A-6-57417 JP 2000-262572 A JP 2002-194535 A JP-A-60-215514

上述したように、原料として粉体を使用すると、スプラッシュ現象により、原料自身が飛散し、SiO固体中に混入することがあり、さらに、反応率を高めるために、微細な粉体を用いようとすると、よりその可能性が高くなってしまう。原料の1つであるSiO粉末は、安価で、高純度のものが比較的容易に入手することが可能であるが、Si粉末は、純度98〜99%程度の金属Siを用いられることが多い。このSi粉末は、質量割合で数百〜数千ppmのFe、Al、Cr、Ni、Ca等の不純物が含まれており、飛散してSiO固体中に混入すると、SiO中のこれらの不純物濃度が高くなってしまう。半導体グレードのような高純度Siを用いようとしても、粉砕工程や、SiO粉との混合工程により、汚染を受けてしまうため、同様の問題が起こり、さらに、原料コストが高くなるため、大量生産に適した原料とは言えない。また、高純度C粉末も容易に入手可能であるが、スプラッシュ現象が起こると、C自身がSiO固体中の不純物となってしまうと言う問題がある。 As described above, when powder is used as a raw material, the raw material itself may be scattered due to the splash phenomenon and mixed into the SiO solid. Further, in order to increase the reaction rate, a fine powder is used. Then, the possibility becomes higher. SiO 2 powder, which is one of the raw materials, is inexpensive and high-purity can be obtained relatively easily. However, Si powder may be made of metal Si having a purity of about 98 to 99%. Many. This Si powder contains impurities such as Fe, Al, Cr, Ni, Ca and the like in a mass ratio of several hundred to several thousand ppm. When scattered and mixed in the SiO solid, the concentration of these impurities in the SiO Becomes higher. Even if high-purity Si such as a semiconductor grade is used, the same problem occurs because of the contamination by the pulverization process and the mixing process with the SiO 2 powder. It is not a raw material suitable for production. High purity C powder is also readily available, but there is a problem that when the splash phenomenon occurs, C itself becomes an impurity in the SiO solid.

(特許文献6)で開示される、SiOを蒸留する方法においては、SiO気体を急冷してSiO粉を析出させるため、SiO中の不純物もそのまま残留することになってしまう。   In the method of distilling SiO disclosed in (Patent Document 6), the SiO gas is rapidly cooled to deposit SiO powder, so that impurities in SiO also remain as they are.

本発明は、SiOを含む原料及びSiを含む原料を減圧下で加熱し、SiO気体を発生させ、該SiO気体を冷却し、SiO固体を析出させる方法において、上記のような問題がなく、高純度で生産速度の高いSiO固体の製造方法及び製造装置を提供するものである。 In the method of heating the raw material containing SiO 2 and the raw material containing Si under reduced pressure to generate SiO gas, cooling the SiO gas, and depositing SiO solid, the present invention has no such problems as described above. The present invention provides a method and an apparatus for producing a SiO solid having a high purity and a high production rate.

本発明者らは、SiOを含む原料及びSiを含む原料を減圧下で加熱し、SiO気体を発生させ、該SiO気体を冷却し、SiO固体を析出させる方法において、スプラッシュ現象によるSiO固体への汚染を防止するために、粒状のSiOを含む原料を用い、原料温度をSiの融点以上にすることが必要であることを見出した。さらに、生産速度を高めるべく検討を行った結果、融液化されたSi原料とSiO原料との接触面積を最大にし、Si原料融液を流動化させることが有効であることがわかった。 In the method of heating the raw material containing SiO 2 and the raw material containing Si under reduced pressure to generate SiO gas, cooling the SiO gas, and precipitating the SiO solid, the SiO solid is generated by the splash phenomenon. In order to prevent contamination, it has been found that it is necessary to use a raw material containing granular SiO 2 and to make the raw material temperature equal to or higher than the melting point of Si. Furthermore, as a result of studies to increase the production rate, it has been found that it is effective to maximize the contact area between the melted Si raw material and the SiO 2 raw material and to fluidize the Si raw material melt.

不純物を含んだ原料から発生したSiO気体中には、蒸発した各不純物元素も気体として含まれる。原料容器内に装入され、一旦SiOを含む原料に接触したSiを含む原料の総質量に対して、その全量をSiO気化により消費させるのではなく、ある一定量に制限することで、不純物元素の気化を抑制できることがわかった。さらに、SiOを析出させる容器内に不純物元素の気体が飛来しても、SiO固体の析出温度を450℃以上とすれば不純物気体のSiO固体表面への付着率が低下し、SiO固体へ混入し難いことも判明した。 In the SiO gas generated from the raw material containing impurities, each evaporated impurity element is also contained as a gas. Impurities by limiting the total amount of the raw material containing Si, which is charged into the raw material container, once brought into contact with the raw material containing SiO 2 to a certain amount, rather than being consumed by SiO vaporization. It was found that element vaporization can be suppressed. Furthermore, even if the impurity element gas comes into the container for depositing SiO, if the deposition temperature of the SiO solid is set to 450 ° C. or higher, the adhesion rate of the impurity gas to the SiO solid surface is reduced and mixed into the SiO solid. It turned out to be difficult.

本発明は、SiOを含む原料及びSiを含む原料を減圧下で加熱し、SiO気体を発生させ、該SiO気体を冷却し、SiO固体を析出させることでSiO固体を製造する方法であって、反応原料容器内に前記SiO を含む原料を収容し、該SiO を含む原料の上部に前記Siを含む原料を配置してから加熱することを特徴とするSiO固体の製造方法であり、特に、反応原料容器内に前記SiOを含む原料を下層、前記Siを含む原料を上層として、積層してから加熱するSiO固体の製造方法と、前記Siを含む原料を融液状態に加熱してから、SiOを含む原料と接触させて反応させるSiO固体の製造方法、に関する。 The present invention is a method for producing a SiO solid by heating a raw material containing SiO 2 and a raw material containing Si under reduced pressure, generating SiO gas, cooling the SiO gas, and precipitating the SiO solid. A raw material containing SiO 2 in a reaction raw material container, and a method for producing an SiO solid characterized by heating after placing the raw material containing Si above the raw material containing SiO 2 , In particular, the raw material containing SiO 2 in the reaction raw material container is the lower layer, the raw material containing Si is the upper layer, and the method for producing the SiO solid is heated after being laminated, and the raw material containing Si is heated to the melt state. The present invention relates to a method for producing a SiO solid that is reacted with a raw material containing SiO 2 .

本発明の製造方法においては、SiOを含む原料を0.5〜100mmの粒度範囲のものを選択し、該原料を1420〜1800℃を加熱し、このとき、Siを含む原料が、SiOを含む原料との接触反応時に流動していることが望ましい。投入された原料の使用量に関しては、Siを含む原料とSiOを含む原料との接触反応において、Siを含む原料の投入量の少なくとも5質量%を反応残渣として反応系外に排出すること、SiOを固体析出に関しては、その温度を450〜1000℃とすることが望ましい。 In the production method of the present invention, the raw material containing SiO 2 is selected to have a particle size range of 0.5 to 100 mm, and the raw material is heated to 1420 to 1800 ° C. At this time, the raw material containing Si is SiO 2. It is desirable that it is fluidized during the contact reaction with the raw material containing. Regarding the amount of raw material used, in the contact reaction between the raw material containing Si and the raw material containing SiO 2 , at least 5% by mass of the input amount of the raw material containing Si is discharged out of the reaction system as a reaction residue. Regarding the solid deposition of SiO, the temperature is preferably 450 to 1000 ° C.

また、本発明は、SiO を含む原料及びSiを含む原料を減圧下で加熱し、SiO気体を発生させ、該SiO気体を冷却し、SiO固体を析出させることでSiO固体を製造する方法に用いる装置であって、真空ポンプを備えた減圧容器内に、Siを含む原料とSiOを含む原料を収容する反応原料容器及び該容器中のSiO を含む原料の上部にSiを含む原料を収容するSi原料容器を配置し、前記反応原料容器の加熱手段と、Siを含む原料とSiOを含む原料から生成するSiO気体を冷却固化するSiO析出部を備えたSiO固体の製造装置、に関する。 Further, the present invention provides a method for producing a SiO solid by heating a raw material containing SiO 2 and a raw material containing Si under reduced pressure, generating SiO gas, cooling the SiO gas, and precipitating the SiO solid. An apparatus to be used, a reaction material container containing a raw material containing Si and a raw material containing SiO 2 in a vacuum container equipped with a vacuum pump, and a raw material containing Si on the upper part of the raw material containing SiO 2 in the container the Si raw material container housing disposed a heating means of the reaction raw material vessel, SiO solid production apparatus including a SiO deposit part of the SiO gas is cooled and solidified to produce a raw material containing a raw material and SiO 2 containing S i, About.

さらに、前記Si原料容器内のSiを含む原料の流動手段を備えることが望ましい。又は、前記容器の加熱手段、Siを含む原料を収容するSi原料容器からSiOを含む原料を収容する反応原料容器へSiを含む原料を移動させる手段が具備されていることが望ましい。 Furthermore, it is desirable to provide a flow means for the raw material containing Si in the Si raw material container. Or, and heating means of the container, it is desirable that means for moving the raw material containing Si from the Si raw material container containing a raw material containing Si to reactant vessel containing a raw material containing SiO 2 is provided.

さらに、前記製造装置には、反応残渣分離手段及び反応残渣回収手段を備えていることが望ましい。 Furthermore, the prior SL production equipment, it is desirable to provide a reaction residue separating means and reaction residues recovery means.

本発明のSiO固体を製造する方法及び装置によれば、粉体原料を用いたときに生じるSiO固体への不純物汚染がなく、不純物濃度が高い原料を用いても、高純度のSiO固体を製造することが可能であるため、高価な高純度原料を使用する必要がなく、さらに粉砕、混練、造粒工程を省略でき、SiO固体の生産速度も大きいため、低コストで高純度SiO固体を提供することができる。   According to the method and apparatus for producing a SiO solid of the present invention, there is no impurity contamination to the SiO solid produced when using a powder raw material, and a high-purity SiO solid is produced even if a raw material having a high impurity concentration is used. This eliminates the need to use expensive high-purity raw materials, eliminates pulverization, kneading, and granulation processes, and provides a high production rate of SiO solids, providing high-purity SiO solids at low cost. can do.

SiOを含む原料及びSiを含む原料を減圧下で加熱し、SiO気体を発生させ、該SiO気体を冷却し、SiO固体を析出させる方法において、反応原料容器内に前記SiO を含む原料を収容し、該SiO を含む原料の上部に前記Siを含む原料を配置してから加熱する。望ましい方法として、反応原料容器内にSiOを含む原料を下層、前記Siを含む原料を上層として積層してから加熱するか、又はSiを含む原料を融液状態に加熱してからSiOを含む原料と接触させて反応させる。 In a method of heating a raw material containing SiO 2 and a raw material containing Si under reduced pressure to generate SiO gas, cooling the SiO gas, and depositing an SiO solid, the raw material containing SiO 2 is contained in a reaction raw material container. accommodated, it is heated by placing a raw material containing the Si at the top of the raw material containing the SiO 2. Desirable methods include laminating a raw material containing SiO 2 in a reaction raw material container as a lower layer, and laminating the raw material containing Si as an upper layer, and then heating or heating the raw material containing Si to a melt state and then adding SiO 2 . It is made to contact with the raw material to be reacted.

不純物を含んだ原料より発生したSiO気体中には、各不純物元素の蒸気圧分の気体として含まれ、その圧力比は、
α=ΣP/PSiO ・・・ (1)
(ここで、αは各不純物元素の蒸気圧の総和とSiO気体圧力の比、Pは各不純物元素の蒸気圧、PSiOはSiO気体の圧力)
となる。同じ不純物濃度をもった原料を同じ温度で加熱する場合、各不純物元素の蒸気圧は一定であるので、原料の反応によって発生するSiO気体の圧力を高める、つまり、SiO気体を効率的に発生させることにより、上記αが小さくなるため、SiO固体中に付着混入する不純物濃度を低下することが可能である。
The SiO gas generated from the raw material containing impurities is contained as a gas corresponding to the vapor pressure of each impurity element, and the pressure ratio is
α = ΣP i / P SiO (1)
(Where α is the ratio of the total vapor pressure of each impurity element to the SiO gas pressure, P i is the vapor pressure of each impurity element, and P SiO is the pressure of the SiO gas)
It becomes. When a raw material having the same impurity concentration is heated at the same temperature, the vapor pressure of each impurity element is constant, so the pressure of the SiO gas generated by the reaction of the raw material is increased, that is, the SiO gas is efficiently generated. As a result, the α is reduced, so that the concentration of impurities adhering to and mixed in the SiO solid can be reduced.

SiO気体を効率的に発生させるためには、Si原料とSiO原料の接触面積を大きくすることが必要である。しかしながら、粒状のSiO原料を用い、上層にSiO原料、下層にSi原料を積層して反応原料容器内に充填した場合、原料を加熱しSi原料が溶解し融液化しても、粒状のSiO原料の流動性が悪く、Si原料融液内に移動しないため、Si融液と接触するSiO原料は極僅かである。また、Si原料とSiO原料を混合して充填した場合には、粉体等の小さいサイズのSiを原料とした場合、Si原料が液滴化し、孤立してSiO原料内に担持される可能性があり、液滴化したSi原料が反応により消滅すると、その中に含まれる不純物元素は、固体になるもの以外はすべて気化することになるので、不純物元素気体の圧力が高い状態になってしまう。反対に、大きいサイズのSiを原料とした場合、Si原料が溶融して空隙になった部分はSiO原料が入り込み難いため、空隙になったままとなり、Si原料とSiO原料の接触面積を最大にすることができない。 In order to generate SiO gas efficiently, it is necessary to increase the contact area between the Si raw material and the SiO 2 raw material. However, when a granular SiO 2 raw material is used and an SiO 2 raw material is laminated on the upper layer and an Si raw material is stacked on the lower layer and filled in the reaction raw material container, the raw material is heated to dissolve and melt the Si raw material. Since the fluidity of the SiO 2 raw material is poor and does not move into the Si raw material melt, there is very little SiO 2 raw material in contact with the Si melt. In addition, when Si raw material and SiO 2 raw material are mixed and filled, when Si of a small size such as powder is used as the raw material, the Si raw material is formed into droplets and is carried in the SiO 2 raw material in isolation. There is a possibility, and when the Si raw material in the form of droplets disappears due to the reaction, all of the impurity elements contained therein will be vaporized except those that become solid, so the pressure of the impurity element gas will be high. End up. On the contrary, when Si of a large size is used as the raw material, the portion where the Si raw material is melted and becomes a void is difficult to enter the SiO 2 raw material, so that the void remains and the contact area between the Si raw material and the SiO 2 raw material is reduced. Can't be maximized.

一方、上層にSi原料、下層にSiO原料を積層して、反応原料容器内に充填すると、SiO原料は最密充填されており、融液化したSi原料が重力により下層のSiO原料に流れ込み、空隙を埋めることになるので、Si原料とSiO原料の接触面積を最大にすることができる。また、予め反応原料容器内にSiO原料のみを充填、加熱し、これに別の容器で溶解したSi原料の融液を流入させても良い。 On the other hand, when the Si raw material is laminated on the upper layer and the SiO 2 raw material is stacked on the lower layer and filled in the reaction raw material container, the SiO 2 raw material is packed most closely, and the melted Si raw material is converted into the lower SiO 2 raw material by gravity. Since it flows in and fills the gap, the contact area between the Si raw material and the SiO 2 raw material can be maximized. Alternatively, the reaction raw material container may be filled with only the SiO 2 raw material in advance and heated, and a melt of Si raw material dissolved in another container may be poured into the reaction raw material container.

ところで、粉体原料を用いる場合、原料の嵩密度が高く、SiO気体の通気性が悪い。また、一般的にSiとSiOのモル比を1(質量比Si:SiO=28:60)程度にすることが多く、真密度も差が無いため、SiO容量が大きく、熱伝導性が悪い。そのため、反応原料容器に充填された原料の内部が急激に加熱され、SiO気体が発生すると、その上部に堆積された原料がSiO気体の圧力に耐えられずに突沸する。原料の粉径が小さく軽いため、突沸した原料はSiO気体の気流に乗り飛散し、冷却固化したSiO固体に付着混入することになる。 By the way, when a powder raw material is used, the bulk density of the raw material is high and the gas permeability of SiO gas is poor. Further, generally the molar ratio of Si and SiO 2 1 (mass ratio Si: SiO 2 = 28: 60 ) is often to an extent, because there is no true density difference, SiO 2 has large capacity, thermal conductivity Is bad. Therefore, when the inside of the raw material filled in the reaction raw material container is rapidly heated and SiO gas is generated, the raw material deposited on the upper part of the raw material bumps without being able to withstand the pressure of the SiO gas. Since the powder diameter of the raw material is small and light, the bumped raw material rides on the SiO gas stream and adheres to and mixes with the cooled and solidified SiO solid.

SiO原料として、その粒度が0.5mm以上であれば、原料内部でSiO気体が急激に発生したとしても、通気性が確保されているため、原料の突沸は起こらない。一方、その粒度が100mm以上になると、Si原料の融液との接触面積が小さくなるため、生産速度が低下してしまう。 If the particle size of the SiO 2 raw material is 0.5 mm or more, even if SiO gas is rapidly generated inside the raw material, since the air permeability is ensured, the raw material does not bump. On the other hand, when the particle size is 100 mm or more, the contact area with the melt of the Si raw material becomes small, so that the production rate decreases.

SiOを含む原料の粒度が大きいために、Si原料が固体のままだと、SiO原料との接触面積が著しく小さいため反応速度が小さく、原料温度を1420℃以上にして、Si原料を溶解することが必要である。また、1800℃超でSiもしくはSiOが存在する環境下で、耐久性を確保できる炉材がないため、この温度以下でSiO気体を発生させる。 Since the raw material containing SiO 2 is large, if the Si raw material remains solid, the contact area with the SiO 2 raw material is extremely small, so the reaction rate is low, the raw material temperature is set to 1420 ° C. or higher, and the Si raw material is dissolved. It is necessary to. In addition, since there is no furnace material that can ensure durability in an environment where Si or SiO exists above 1800 ° C., SiO gas is generated below this temperature.

SiO気体の生成熱は360kJ/molと大きいが、上述したように、粉体原料を使用する場合、熱伝導率が小さいため、原料温度の低下を招く。本発明では、Si原料を融液化するので、これが熱媒体となり、効率的に原料を加熱できるという点で有利である。さらに、Si原料の融液を流動させ、強制対流を発生させることで、SiO気体生成により奪われた熱を、より効率的に補うことができ、生産速度の向上に繋がる。ここで、Si原料の融液を流動させるのは、融液の原料上部からの滴下又は流し込み、機械的な攪拌及び電磁誘導による攪拌の何れかの方法、もしくは複数組み合わせる方法で行う。   The heat of formation of SiO gas is as large as 360 kJ / mol. However, as described above, when a powder raw material is used, since the thermal conductivity is small, the raw material temperature is lowered. In the present invention, since the Si raw material is melted, this is advantageous in that it becomes a heat medium and the raw material can be efficiently heated. Furthermore, by causing the melt of Si raw material to flow and generating forced convection, the heat taken away by the generation of SiO gas can be compensated more efficiently, leading to an improvement in production speed. Here, the melt of the Si raw material is made to flow by dropping or pouring the melt from the upper part of the raw material, mechanical stirring and stirring by electromagnetic induction, or a combination of a plurality of methods.

不純物を含んだ原料より発生したSiO気体中には、各不純物元素がその蒸気圧分の気体として含まれる。Siと不純物との合金を溶液化した場合、その不純物の蒸気圧は、Siとの相互作用で決まる係数に、不純物単体の平衡蒸気圧とSi中に含まれる不純物のモル分率をかけた値となる。   Each impurity element is contained as a gas corresponding to the vapor pressure in the SiO gas generated from the raw material containing impurities. When an alloy of Si and impurities is dissolved, the vapor pressure of the impurities is a value determined by multiplying the coefficient determined by the interaction with Si by the equilibrium vapor pressure of the impurity alone and the mole fraction of impurities contained in Si. It becomes.

P=Σk・P・N ・・・ (2)
(ここで、Pは不純物の系内の蒸気圧、kはSiと不純物nとの相互作用で決まる係数(理想溶液の場合1となる)、Pは不純物n単体の平衡蒸気圧、Nは不純物nのモル分率)
不純物濃度が微量であるとき、その不純物はSi原子に囲まれ、周囲から均一な相互作用を受けることになるため、k=1が成立しなくなり、例えば、Si中のFeの場合、(2)式でkFe<1となり、蒸気圧はより低くなることが知られている。つまり、Si中のFeは蒸発し難いため、SiO気体生成によりSiが消費され減少すると、Feが濃化していくことになる。
P = Σk n · P n · N n (2)
(Wherein, P is made the vapor pressure in the system of impurities, k n is 1 when the coefficient (ideal solution determined by the interaction between the Si and the impurity n), P n is the impurity n single equilibrium vapor pressure, N n is the molar fraction of impurity n)
When the impurity concentration is very small, since the impurity is surrounded by Si atoms and receives a uniform interaction from the surroundings, k n = 1 is not established. For example, in the case of Fe in Si, (2 ) In which k Fe <1 and the vapor pressure is known to be lower. That is, since Fe in Si is difficult to evaporate, Fe is concentrated when Si is consumed and reduced by the generation of SiO gas.

Si融液とSiOを接触させると、SiOが分解し酸素原子がSi融液中に溶け込むことが知られており、Siより酸化され易い不純物元素は酸化物に変化する。例えば、Caは、本来蒸気圧が高い元素であるが、その酸化物であるCaOの蒸気圧が低いため、Si融液中に残存することになる。 It is known that when the Si melt and SiO 2 are brought into contact with each other, SiO 2 is decomposed and oxygen atoms are dissolved in the Si melt, and an impurity element that is more easily oxidized than Si is changed into an oxide. For example, Ca is an element with a high vapor pressure, but CaO, which is an oxide, has a low vapor pressure, and therefore remains in the Si melt.

原料として、Si原料粉末を用いると、SiO気体生成で消費され、ある割合で完全に消滅するSi粉が存在する。この場合、Si粉中に含まれる不純物は反応原料容器内に固体として残存する以外のものは気化し、Si粉が消滅する寸前には不純物が濃化されているために、その蒸気圧が高く、SiO気体中の不純物気体の濃度が高い状態になってしまう。それに対し、Si原料融液を用いた場合、蒸発し難い不純物元素、あるいはその酸化物の蒸気圧が低い元素については、原料中に留めておくことが可能である。ただし、SiO気体発生により、Si原料融液の量が減少していくので、不純物が濃化される。したがって、反応原料容器内に一度投入され、SiO気体生成に寄与するSi原料融液の減少量が95%に達する前に、即ち、Si原料の投入量の少なくとも5質量%を反応残渣として系外に排出すれば、濃化残留した不純物も系外に排出されるので、生成したSiO固体への不純物汚染を防止することができる。Si原料の反応残渣は、予め反応原料容器の底部に細孔を開ける等しておき、別の容器にSi融液を移動させる。移動させた残渣は、不純物元素が気化しないよう、Siの融点以下の温度に保持し、固化する。残渣を収容する容器は、SiO気体が流入しないで、独立に排気することが可能な区域に設置されることが望ましい。この場合、残渣を固化せずに、融液のまま容器に収容しても良い。 When Si raw material powder is used as a raw material, there is Si powder that is consumed by generation of SiO gas and completely disappears at a certain rate. In this case, impurities contained in the Si powder are vaporized except for those remaining as solids in the reaction raw material container, and since the impurities are concentrated just before the Si powder disappears, its vapor pressure is high. The impurity gas concentration in the SiO gas becomes high. On the other hand, when the Si raw material melt is used, it is possible to keep the impurity element which is difficult to evaporate or the element whose oxide has a low vapor pressure in the raw material. However, since the amount of Si raw material melt decreases due to the generation of SiO gas, impurities are concentrated. Therefore, before the reduction amount of the Si raw material melt that is once introduced into the reaction raw material container and contributes to the generation of SiO gas reaches 95%, that is, at least 5 mass% of the input amount of the Si raw material is used as a reaction residue. Since the impurities remaining concentrated are also discharged out of the system, impurity contamination of the generated SiO solid can be prevented. The reaction residue of the Si raw material is prepared by, for example, opening a pore in the bottom of the reaction raw material container in advance, and the Si melt is moved to another container. The moved residue is solidified by being kept at a temperature lower than the melting point of Si so that the impurity element is not vaporized. The container for storing the residue is desirably installed in an area where SiO gas does not flow and can be evacuated independently. In this case, the residue may be stored in the container as a melt without solidifying the residue.

また、反応残渣を系外に排出しない場合は、Si原料の投入量の少なくとも5質量%以下にならないところでSi原料を冷却固化し、SiO気体の発生を停止するか、あるいは新たにSi原料を投入して不純物濃度を希釈する処置を行っても良い。   When the reaction residue is not discharged out of the system, the Si raw material is cooled and solidified at least 5% by mass or less of the input amount of the Si raw material, and generation of SiO gas is stopped, or a new Si raw material is input. Then, a treatment for diluting the impurity concentration may be performed.

しかしながら、原料中に不純物が存在している限り、不純物気体を全く発生させないようにすることは不可能である。例えば、SiO気体を断熱膨張させて、急冷することによりSiO粉体を製造する場合、低温でも非常に高い蒸気圧をもつ不純物以外のものは、大部分がSiO粉体の中にトラップされることになる。そこで、本発明者らは、各不純物元素数種類について、SiO固体中の不純物濃度の析出温度依存性について調査したところ、B、Fe、Ni、Cr等は、SiO固体表面への付着係数に温度依存性があり、析出温度が450℃以上であれば充分、SiO固体から除去できることがわかった。ただし、析出温度を高温にし過ぎると、SiO固体自体の析出率が低下するため、上限を1000℃とした。   However, as long as impurities are present in the raw material, it is impossible to prevent generation of impurity gas at all. For example, when SiO powder is produced by adiabatic expansion of SiO gas and rapid cooling, most of the impurities other than impurities having a very high vapor pressure are trapped in the SiO powder even at a low temperature. become. Therefore, the present inventors investigated the deposition temperature dependence of the impurity concentration in the SiO solid for each of several types of impurity elements. B, Fe, Ni, Cr, etc. are temperature dependent on the adhesion coefficient to the SiO solid surface. It has been found that if the deposition temperature is 450 ° C. or higher, it can be sufficiently removed from the SiO solid. However, if the precipitation temperature is too high, the precipitation rate of the SiO solid itself decreases, so the upper limit was set to 1000 ° C.

上述した方法によるSiO固体製造を可能にすべく、第一の装置は、SiO を含む原料及びSiを含む原料を減圧下で加熱し、SiO気体を発生させ、該SiO気体を冷却し、SiO固体を析出させることでSiO固体を製造する方法に用いる装置であって、真空ポンプを備えた減圧容器内に、Siを含む原料とSiO を含む原料を収容する反応原料容器及び該容器中のSiO を含む原料の上部にSiを含む原料を収容するSi原料容器を配置し、前記反応原料収容容器の加熱手段と、Siを含む原料とSiO を含む原料から生成するSiO気体を冷却固化するSiO析出部を少なくとも備えることを特徴とするSiO固体の製造装置である。第二の装置は、真空ポンプを備えた減圧容器内に、Siを含む原料とSiOを含む原料を収容する反応原料容器及び該容器の加熱手段と、前記容器内のSiを含む原料の流動手段と、Siを含む原料とSiOを含む原料から生成するSiO気体を冷却固化するSiO析出部を少なくとも備えることを特徴とするSiO固体の製造装置である。真空ポンプは、容器内を少なくともSiOの蒸気圧以下に減圧できる能力を持つものを選択し、Si及びSiO原料を1420℃超に加熱できるヒータが具備され、融液の原料上部からの滴下又は流し込める装置、融液を機械的に攪拌できる装置及び電磁誘導による攪拌が可能な装置の何れか、もしくは複数が設置されている。SiO気体を固化するSiO析出部は、450〜1000℃の範囲に制御することができ、SiO気体が原料部から析出部まで移動する空間は、少なくともSiOが固化しない1300℃以上に設定することができるようになっている。 In order to enable the production of the SiO solid by the above-described method, the first apparatus heats the raw material containing SiO 2 and the raw material containing Si under reduced pressure to generate SiO gas, cool the SiO gas, An apparatus used in a method for producing a SiO solid by precipitating a solid, a reaction raw material container containing a raw material containing Si and a raw material containing SiO 2 in a decompression vessel equipped with a vacuum pump, and in the vessel An Si raw material container for containing a raw material containing Si is arranged on the upper part of the raw material containing SiO 2, and the heating means of the reaction raw material containing container, and the SiO gas generated from the raw material containing Si and the raw material containing SiO 2 are cooled and solidified. An SiO solid production apparatus comprising at least a SiO depositing portion. The second apparatus includes a reaction raw material container that contains a raw material containing Si and a raw material containing SiO 2 in a vacuum container equipped with a vacuum pump, a heating means for the container, and a flow of the raw material containing Si in the container. An apparatus for producing an SiO solid, comprising at least means, and an SiO precipitation portion for cooling and solidifying SiO gas generated from a raw material containing Si and a raw material containing SiO 2 . A vacuum pump is selected that has the ability to depressurize the inside of the container at least below the vapor pressure of SiO, and is equipped with a heater that can heat the Si and SiO 2 raw materials to over 1420 ° C. Any one or more of a pouring device, a device capable of mechanically stirring the melt, and a device capable of stirring by electromagnetic induction are installed. The SiO precipitation part that solidifies the SiO gas can be controlled in the range of 450 to 1000 ° C., and the space in which the SiO gas moves from the raw material part to the precipitation part can be set to at least 1300 ° C. at which SiO does not solidify. It can be done.

また、真空ポンプを備えた減圧容器内の、Siを含む原料とSiOを含む原料を収容する反応原料容器から、SiO析出部までのSiO気体が存在する空間は、SiO気体が加熱手段と接触しないように壁で覆われている。反応原料容器は減圧容器内下部に設置された原料容器回転装置上に載置されており、該反応原料容器内のSiを含む原料の流動手段とは、回転による機械的な攪拌手段、さらには、電磁誘導による攪拌手段が挙げられる。SiO析出部は該減圧用器内上部に設置され、SiO気体を導入する枝管を介して接続されている。該枝管にも少なくとも1300℃以上に加熱できる加熱手段が具備されている。該SiO析出部は450〜1000℃に保持できることが必要である。該SiO析出部を断熱し、加熱された枝管からの熱伝導あるいは輻射により、前記温度範囲まで加熱することが可能であれば、該SiO析出部の外周に断熱材を設置すればよく、それが不可能である場合には、加熱手段を備えることが必要である。 In addition, the space where the SiO gas exists from the reaction raw material container containing the raw material containing Si and the raw material containing SiO 2 to the SiO precipitation portion in a vacuum container equipped with a vacuum pump is in contact with the heating means. Not covered with walls. The reaction raw material container is placed on a raw material container rotating device installed in the lower part of the decompression container, and the flow means of the raw material containing Si in the reaction raw material container is a mechanical stirring means by rotation, And a stirring means by electromagnetic induction. The SiO depositing part is installed in the upper part of the decompression device and connected through a branch pipe for introducing SiO gas. The branch pipe is also provided with a heating means capable of heating to at least 1300 ° C. or higher. The SiO deposited portion must be able to be maintained at 450 to 1000 ° C. If it is possible to insulate the SiO deposited portion and heat to the temperature range by heat conduction or radiation from the heated branch pipe, a heat insulating material may be installed on the outer periphery of the SiO deposited portion. If this is impossible, it is necessary to provide heating means.

の装置は、Siを含む原料を収容するSi原料容器及び該容器の加熱手段と、SiOを含む原料を収容する反応原料容器及び該容器の加熱手段と、Siを含む原料を収容するSi原料容器からSiOを含む原料を収容する反応原料容器へ、Siを含む原料を必要により移動させることができる装置である。Si原料を収容するSi原料容器とSiO原料を収容する反応原料容器が別々に配置され、それぞれに1420℃超に加熱できるヒータが具備されている。Si原料を収容するSi原料容器は、Si融液を傾注できる装置を備えているか、もしくは容器自体がSi原料が融解すると、その融液が自動的にSiO原料を収容する反応原料容器に流入する機能を有している。すなわち、Siを含む原料を収容するSi原料容器は、目皿付き(粒度が小さい場合)のロートなどの融液滴下容器であり、原料が融解すると目皿を通過して自動的に落下する。SiOを含む原料を収容する反応原料容器は、SiOを収容するだけではなく、落下するSi融液をも収容する容量が必要である。したがって、Siを含む原料を収容するSi原料容器はSiOを含む原料を収容する反応原料容器の上方に位置し、かつ、SiOを含む原料を収容する反応原料容器は落下するSi融液を受け得る位置であることが必要である。減圧容器およびSiO析出部は、第一の発明の場合と同じである。 The third apparatus stores a Si raw material container containing a raw material containing Si , a heating means for the container, a reaction raw material container containing a raw material containing SiO 2 , a heating means for the container, and a raw material containing Si. This is an apparatus that can move a raw material containing Si, if necessary, from a raw material vessel of Si to a reaction raw material vessel containing a raw material containing SiO 2 . A Si raw material container for containing the Si raw material and a reaction raw material container for containing the SiO 2 raw material are disposed separately, and each is provided with a heater that can be heated to over 1420 ° C. The Si raw material container for storing the Si raw material is equipped with a device capable of pouring Si melt, or when the Si itself melts in the container itself, the melt automatically flows into the reaction raw material container for storing the SiO 2 raw material. It has a function to do. That is, the Si raw material container that contains the raw material containing Si is a melted droplet lower container such as a funnel with a scale plate (when the particle size is small), and when the raw material melts, it automatically drops through the scale plate. The reaction raw material container for containing the raw material containing SiO 2 needs to have a capacity not only for containing SiO 2 but also for containing the falling Si melt. Therefore, Si raw material container containing a material containing Si is located above the reactant vessel containing a raw material containing SiO 2, and the Si melt reactant vessel containing a raw material containing SiO 2 is falling It must be in a position where it can be received. The decompression vessel and the SiO depositing part are the same as in the case of the first invention.

の装置は、第一の装置の装置のいずれか反応原料容器からSi残渣を回収し、それを収容する容器が設置されているものである。反応原料容器に傾動装置が付いたもの、又は、反応原料容器の底部に細孔が開けられており、自動的にSi残渣回収容器に流入される機能を有している。Si残渣回収容器には、反応原料容器がSiO気体を発生させるための所定の温度に加熱されている際にも、Si融点以下の温度を保持できるようになっている。さらに、残渣を収容する容器が設置されている区域は、SiO気体が流入せず、独立に排気することが可能になっている。 In the fourth apparatus, a Si residue is collected from the reaction raw material container in any one of the first apparatus to the third apparatus, and a container for storing it is installed. The reaction raw material container is provided with a tilting device, or the bottom of the reaction raw material container has a pore, and has a function of automatically flowing into the Si residue collection container. The Si residue recovery container can maintain a temperature below the Si melting point even when the reaction raw material container is heated to a predetermined temperature for generating SiO gas. Furthermore, in the area where the container for storing the residue is installed, SiO gas does not flow in, and can be exhausted independently.

(実施例1)
図1は、本発明を実施するための装置の一例である。直径120mm、深さ300mmのカーボン製反応原料容器12に、3〜7mmのケイ石粒13を1.2kg充填し、その上に10〜50mmの金属Si粒0.6kgを入れたSi原料容器15を置き、カーボン製下部原料室4に装入した。各原料の不純物濃度は、表1に示す通りである。原料室用チャンバー1上部と析出室用チャンバー2の接合部側の開口部を直径100mm、他端を直径50mmとした長さ500mmの石英製析出容器6に断熱材11を装着し、析出用チャンバー2内に設置した。最初に、原料室用チャンバー1と析出室用チャンバー2を備えた真空容器内を、真空ポンプで排気口3より圧力が1Pa以下になるまで排気した後、Arを導入し、チャンバー内を大気圧にし、ヒータ7、8、9の昇温を開始した。ヒータ9により析出容器6内の温度分布が650〜800℃になるように制御し、このとき、下部原料室4、上部原料室5の温度がヒータ7、8により1450℃になるよう制御した。反応原料容器12内上部に堆積された金属Si原料は溶解して、ケイ石粒13の隙間にSi原料融液が浸入した状態となる。その後、チャンバー内を真空ポンプにより排気し、下部原料室4及び上部原料室5が1650℃になるまで昇温した。このとき、原料回転装置16により、反応原料容器12を50回転/分で1分間回転、その後、1分間停止のサイクルを繰り返した。Si原料融液が流動し、Si原料融液とケイ石粒との反応により、SiO気体が発生、カーボン製枝管10を経由して析出容器6に送り込まれ、ここで、SiO固体が析出する。Si原料融液の残量が0.1kgになるまで、SiO気体を発生させ、ヒータ7の電源出力をオフにして、下部原料室4の降温を開始した。このとき、上部原料室5は1650℃、析出容器6は650〜800℃の温度範囲を保ったままにした。下部原料室4が1300℃以下になった時点で、ヒータ8、9の電源出力をオフにした。この実施例でのSiOの生産速度は38kg/m/hrで、得られたSiOの不純物濃度は表1に示される通りであった。
Example 1
FIG. 1 is an example of an apparatus for carrying out the present invention. A Si raw material container 15 in which 1.2 kg of 3 to 7 mm silica stone particles 13 is filled in a carbon reaction raw material container 12 having a diameter of 120 mm and a depth of 300 mm, and 0.6 kg of metal Si particles of 10 to 50 mm are placed thereon. Was placed in the lower raw material chamber 4 made of carbon. The impurity concentration of each raw material is as shown in Table 1. A heat insulating material 11 is attached to a 500 mm-long quartz precipitation vessel 6 having a diameter of 100 mm at the junction side opening between the upper part of the raw material chamber 1 and the deposition chamber 2 and a diameter of 50 mm at the other end. 2 installed. First, after evacuating the inside of the vacuum vessel provided with the raw material chamber 1 and the deposition chamber 2 from the exhaust port 3 with the vacuum pump until the pressure becomes 1 Pa or less, Ar is introduced, and the atmospheric pressure in the chamber Then, the heating of the heaters 7, 8, and 9 was started. The temperature distribution in the deposition vessel 6 was controlled to 650 to 800 ° C. by the heater 9, and at this time, the temperatures of the lower raw material chamber 4 and the upper raw material chamber 5 were controlled to 1450 ° C. by the heaters 7 and 8. The metal Si raw material deposited in the upper part of the reaction raw material container 12 is dissolved, and the Si raw material melt enters the gaps between the quartzite grains 13. Thereafter, the inside of the chamber was evacuated by a vacuum pump, and the temperature was raised until the lower raw material chamber 4 and the upper raw material chamber 5 reached 1650 ° C. At this time, the reaction material container 12 was rotated at 50 rotations / minute for 1 minute by the material rotation device 16, and then a cycle of stopping for 1 minute was repeated. The Si raw material melt flows, and a reaction between the Si raw material melt and the silica particles generates SiO gas, which is sent to the precipitation vessel 6 via the carbon branch pipe 10, where the SiO solid is precipitated. . SiO gas was generated until the remaining amount of the Si raw material melt reached 0.1 kg, the power output of the heater 7 was turned off, and the lowering of the temperature of the lower raw material chamber 4 was started. At this time, the upper raw material chamber 5 was kept at 1650 ° C., and the precipitation vessel 6 was kept at a temperature range of 650 to 800 ° C. When the lower raw material chamber 4 became 1300 ° C. or lower, the power output of the heaters 8 and 9 was turned off. The production rate of SiO in this example was 38 kg / m 2 / hr, and the impurity concentration of the obtained SiO was as shown in Table 1.

(実施例2)
図2の装置により、本発明を実施した。ノズルの内径5mm、長さ200mmを有するカーボン製Si原料融液滴下用容器17に、10〜50mmの金属Si粒1.0kgを装入し、上部原料室5に設置した。直径120mm、深さ300mmのカーボン製反応原料容器12に、3〜7mmのケイ石粒13を3.0kg充填し、下部原料室4に設置した。反応原料容器12の底部には、1箇所、内径1mmの長さ50mmのノズルを設けておいた。排気口19が設けられているSi原料残渣室18に、直径120mm、深さ100mmのカーボン製Si融液受け皿21を設置した。各原料は、実施例1で使用したものと同じものを使用した。原料室用チャンバー1上部と析出室用チャンバー2の接合部側の開口部を直径100mm、他端を直径50mmとした長さ500mmの石英製析出容器6に断熱材11を装着し、析出用チャンバー2内に設置した。最初に、原料室用チャンバー1と析出室用チャンバー2を備えた真空容器内を、真空ポンプで排気口3より圧力が1Pa以下になるまで排気し、ヒータ7、8、9の昇温を開始した。ヒータ9により析出容器6内の温度分布が650〜800℃になるように制御し、このとき、下部原料室4、上部原料室5の温度が、ヒータ7、8により1400℃になるよう制御した。その後、下部原料室4及び上部原料室5を1650℃に昇温した。Si原料融液滴下用容器17に装入されたSi原料14は融解し、Si原料融液20が反応原料容器12に流入する。Si原料融液がケイ石粒13と反応し、SiO気体が発生、カーボン製枝管10を経由して析出容器6に送り込まれ、ここで、SiO固体が析出する。また、反応原料容器12にも貫通穴が開けられているため、融液が少しずつSi融液受け皿21に滴下される。これにより、原料容器12内のSi原料融液20は、重力により流動していることになる。また、Si融液受け皿21の温度はSi融点以下になっているため、不純物が濃縮され、滴下したSi融液は凝固する。凝固前に気化する微量の不純物元素は、排気口19により排気される。SiO気体発生が終了した時点で、ヒータ7の電源出力をオフにして、下部原料室4の降温を開始した。このとき、上部原料室5は1650℃、析出容器6は650〜800℃の温度範囲を保ったままにした。下部原料室4が1300℃以下になった時点で、ヒータ8、9の電源出力をオフにした。この実施例でのSiOの生産速度は72kg/m/hrで、得られたSiOの不純物濃度は、表1に示される通りであった。実験終了後、Si融液受け皿21に溜まったSi量を測定したところ0.3kgであった。
(Example 2)
The present invention was implemented with the apparatus of FIG. A carbon Si raw material melt dropping container 17 having a nozzle inner diameter of 5 mm and a length of 200 mm was charged with 1.0 kg of 10-50 mm metal Si particles and placed in the upper raw material chamber 5. A carbon reaction raw material container 12 having a diameter of 120 mm and a depth of 300 mm was filled with 3.0 kg of 3 to 7 mm of silica stone particles 13 and installed in the lower raw material chamber 4. A nozzle having a length of 50 mm and an inner diameter of 1 mm was provided at the bottom of the reaction raw material container 12. A carbon Si melt tray 21 having a diameter of 120 mm and a depth of 100 mm was installed in the Si raw material residue chamber 18 provided with the exhaust port 19. Each raw material was the same as that used in Example 1. A heat insulating material 11 is attached to a 500 mm-long quartz precipitation vessel 6 having a diameter of 100 mm at the junction side opening between the upper part of the raw material chamber 1 and the deposition chamber 2 and a diameter of 50 mm at the other end. 2 installed. First, the inside of the vacuum vessel provided with the raw material chamber 1 and the deposition chamber 2 is evacuated by a vacuum pump from the exhaust port 3 until the pressure becomes 1 Pa or less, and the heating of the heaters 7, 8 and 9 is started. did. The temperature distribution in the precipitation vessel 6 is controlled to 650 to 800 ° C. by the heater 9, and at this time, the temperatures of the lower raw material chamber 4 and the upper raw material chamber 5 are controlled to 1400 ° C. by the heaters 7 and 8. . Thereafter, the lower raw material chamber 4 and the upper raw material chamber 5 were heated to 1650 ° C. The Si raw material 14 charged in the Si raw material melt drop container 17 is melted, and the Si raw material melt 20 flows into the reaction raw material container 12. The Si raw material melt reacts with the silica particles 13 to generate SiO gas, which is fed into the deposition vessel 6 through the carbon branch pipe 10, where SiO solids are deposited. Further, since the reaction raw material container 12 is also provided with a through hole, the melt is gradually dropped onto the Si melt receiving tray 21. Thereby, the Si raw material melt 20 in the raw material container 12 flows due to gravity. Further, since the temperature of the Si melt receiving tray 21 is equal to or lower than the Si melting point, impurities are concentrated and the dropped Si melt is solidified. A trace amount of impurity elements that vaporize before solidification is exhausted through the exhaust port 19. When the generation of SiO gas was completed, the power output of the heater 7 was turned off and the temperature of the lower raw material chamber 4 was started to be lowered. At this time, the upper raw material chamber 5 was kept at 1650 ° C., and the precipitation vessel 6 was kept at a temperature range of 650 to 800 ° C. When the lower raw material chamber 4 became 1300 ° C. or lower, the power output of the heaters 8 and 9 was turned off. The production rate of SiO in this example was 72 kg / m 2 / hr, and the impurity concentration of the obtained SiO was as shown in Table 1. After the experiment, the amount of Si accumulated in the Si melt tray 21 was measured and found to be 0.3 kg.

(比較例1)
図3の装置により、比較実験を実施した。直径120mm、深さ300mmのカーボン製反応原料容器12に、3〜7mmのケイ石粒13を1.2kgと、10〜50mmの金属Si粒14を0.6kgとを混合して充填し、カーボン製下部原料室4に装入した。各原料は、実施例1と同じものを使用した。原料室用チャンバー1上部と析出室用チャンバー2の接合部側の開口部を直径100mm、他端を直径50mmとした長さ500mmの石英製析出容器6に、断熱材11を装着し、析出用チャンバー2内に設置した。最初に、原料室用チャンバー1と析出室用チャンバー2を備えた真空容器内を、真空ポンプで排気口3より圧力が1Pa以下になるまで排気し、ヒータ7、8、9の昇温を開始した。ヒータ9により、析出容器6内の温度分布が650〜800℃になるように制御し、このとき、下部原料室4、上部原料室5の温度が、ヒータ7、8により1400℃になるよう制御した。その後、下部原料室4及び上部原料室5が、1650℃になるまで昇温した。Si原料融液とケイ石粒との反応によりSiO気体が発生、カーボン製枝管10を経由して析出容器6に送り込まれ、ここで、SiO固体が析出する。Si原料融液の残量が0.1kgになるまで、SiO気体を発生させ、ヒータ7の電源出力をオフにして、下部原料室4の降温を開始した。このとき、上部原料室5は1650℃、析出容器6は650〜800℃の温度範囲を保ったままにした。下部原料室4が1300℃以下になった時点で、ヒータ8、9の電源出力をオフにした。この実施例でのSiOの生産速度は15kg/m/hrで、得られたSiOの不純物濃度は、表1に示される通りであった。
(Comparative Example 1)
A comparative experiment was performed with the apparatus of FIG. A carbon reaction raw material container 12 having a diameter of 120 mm and a depth of 300 mm is filled with 1.2 kg of 3 to 7 mm silica stone particles 13 and 0.6 kg of 10 to 50 mm metal Si particles 14 and mixed. The lower raw material chamber 4 was charged. Each raw material was the same as in Example 1. An insulating material 11 is attached to a 500 mm-long quartz deposition container 6 having a diameter of 100 mm at the junction side opening between the upper part of the raw material chamber 1 and the deposition chamber 2 and a diameter of 50 mm at the other end. Installed in chamber 2. First, the inside of the vacuum vessel provided with the raw material chamber 1 and the deposition chamber 2 is evacuated by a vacuum pump from the exhaust port 3 until the pressure becomes 1 Pa or less, and the heating of the heaters 7, 8 and 9 is started. did. The heater 9 controls the temperature distribution in the deposition vessel 6 to be 650 to 800 ° C., and at this time, the temperature of the lower raw material chamber 4 and the upper raw material chamber 5 is controlled to 1400 ° C. by the heaters 7 and 8. did. Thereafter, the temperature of the lower raw material chamber 4 and the upper raw material chamber 5 was increased to 1650 ° C. SiO gas is generated by the reaction between the Si raw material melt and the silica particles, and is sent to the precipitation vessel 6 via the carbon branch pipe 10, where the SiO solid is precipitated. SiO gas was generated until the remaining amount of the Si raw material melt reached 0.1 kg, the power output of the heater 7 was turned off, and the lowering of the temperature of the lower raw material chamber 4 was started. At this time, the upper raw material chamber 5 was kept at 1650 ° C., and the precipitation vessel 6 was kept at a temperature range of 650 to 800 ° C. When the lower raw material chamber 4 became 1300 ° C. or lower, the power output of the heaters 8 and 9 was turned off. The production rate of SiO in this example was 15 kg / m 2 / hr, and the impurity concentration of the obtained SiO was as shown in Table 1.

(比較例2)
比較例1と同じ装置を用い、析出容器6内の温度分布を300〜400℃に変えて、SiO固体を製造した。この実施例でのSiOの生産速度は15kg/m/hrで、得られたSiOの不純物濃度は、表1に示される通りであった。
(Comparative Example 2)
Using the same apparatus as in Comparative Example 1, the temperature distribution in the precipitation vessel 6 was changed to 300 to 400 ° C. to produce a SiO solid. The production rate of SiO in this example was 15 kg / m 2 / hr, and the impurity concentration of the obtained SiO was as shown in Table 1.

Figure 0004731818
Figure 0004731818

表1の結果より、本発明の実施によるSiO固体中の不純物濃度は、比較例の試料に比べて低いことがわかった。殊に、SiO固体の析出温度、系外に排出されるSi残渣量の条件を備え、かつ、Si融液をケイ石粒原料内に移動させ、Si融液がケイ石粒原料内で流動させることによって、最もSiO固体の生産速度が高い、実施例2で作製したSiO固体が最も高純度であった。   From the results of Table 1, it was found that the impurity concentration in the SiO solid according to the practice of the present invention was lower than that of the sample of the comparative example. In particular, it has conditions for the precipitation temperature of the SiO solid and the amount of Si residue discharged out of the system, and the Si melt is moved into the silica grain raw material so that the Si melt flows in the silica granule raw material. Thus, the SiO solid produced in Example 2 with the highest production rate of the SiO solid was the highest purity.

本発明を実施するSiO固体製造装置の一例を示す概念図である。It is a conceptual diagram which shows an example of the SiO solid manufacturing apparatus which implements this invention. 本発明を実施する別のSiO固体製造装置の概念図である。It is a conceptual diagram of another SiO solid manufacturing apparatus which implements this invention. 比較例を実施するSiO固体製造装置の概念図である。It is a conceptual diagram of the SiO solid manufacturing apparatus which implements a comparative example.

符号の説明Explanation of symbols

1 原料室用チャンバー、
2 析出室用チャンバー、
3 排気口、
4 下部原料室、
5 上部原料室、
6 析出器、
7 ヒータ、
8 ヒータ、
9 ヒータ、
10 枝管、
11 断熱材、
12 反応原料容器、
13 ケイ石粒、
14 Si原料、
15 Si原料容器、
16 原料容器回転装置、
17 Si原料融液滴下用容器、
18 Si原料残渣室、
19 排気口、
20 Si原料融液、
21 Si融液受け皿。
1 Raw material chamber
2 chamber for deposition chamber,
3 Exhaust port,
4 Lower raw material chamber,
5 Upper material chamber,
6 Precipitator,
7 Heater,
8 Heater,
9 Heater,
10 branch pipes,
11 Insulation,
12 reaction raw material container,
13 Silicate stone,
14 Si raw material,
15 Si raw material container,
16 Raw material container rotating device,
17 Si raw material melt drop container,
18 Si raw material residue chamber,
19 Exhaust port,
20 Si raw material melt,
21 Si melt pan.

Claims (13)

SiOSiO 2 を含む原料及びSiを含む原料を減圧下で加熱し、SiO気体を発生させ、該SiO気体を冷却し、SiO固体を析出させることでSiO固体を製造する方法であって、反応原料容器内に前記SiOA raw material containing Si and a raw material containing Si are heated under reduced pressure to generate SiO gas, the SiO gas is cooled, and a SiO solid is precipitated to produce a SiO solid, SiO 2 を含む原料を収容し、該SiOContaining raw material containing the SiO 2 2 を含む原料の上部に前記Siを含む原料を配置してから加熱することを特徴とするSiO固体の製造方法。A method for producing an SiO solid, comprising: heating a raw material containing Si, after disposing the raw material containing Si. SiOを含む原料及びSiを含む原料を減圧下で加熱し、SiO気体を発生させ、該SiO気体を冷却し、SiO固体を析出させることでSiO固体を製造する方法であって、反応原料容器内に前記SiOを含む原料を下層、前記Siを含む原料を上層として積層してから加熱することを特徴とする請求項1記載のSiO固体の製造方法。 A raw material containing a raw material and Si containing SiO 2 was heated under reduced pressure, to generate SiO gas, the SiO gas is cooled to a method of making the SiO solid by precipitating the SiO solid, the reaction raw material container 2. The method for producing an SiO solid according to claim 1 , wherein the raw material containing SiO2 is laminated as a lower layer and the raw material containing Si is laminated as an upper layer, followed by heating. SiOを含む原料及びSiを含む原料を減圧下で加熱し、SiO気体を発生させ、該SiO気体を冷却し、SiO固体を析出させることでSiO固体を製造する方法であって、前記Siを含む原料を融液状態に加熱してから、SiOを含む原料と接触させて反応させることを特徴とする請求項1記載のSiO固体の製造方法。 A method for producing a SiO solid by heating a raw material containing SiO 2 and a raw material containing Si under reduced pressure, generating SiO gas, cooling the SiO gas, and precipitating SiO solid, The method for producing an SiO solid according to claim 1, wherein the raw material containing the mixture is heated to a melt state and then brought into contact with the raw material containing SiO 2 for reaction. 前記SiOを含む原料が0.5〜100mmの粒度範囲である請求項1〜3のいずれかに記載のSiO固体の製造方法。 The method for producing a SiO solid according to any one of claims 1 to 3, wherein the raw material containing SiO 2 has a particle size range of 0.5 to 100 mm. 前記SiOを含む原料を1420〜1800℃に加熱する請求項1〜3のいずれかに記載のSiO固体の製造方法。 SiO solid production method according to any one of claims 1 to 3 for heating a raw material containing the SiO 2 to 1420-1,800 ° C.. 前記Siを含む原料が、SiOを含む原料との接触反応時に流動している請求項1〜3のいずれかに記載のSiO固体の製造方法。 The method for producing a SiO solid according to any one of claims 1 to 3, wherein the raw material containing Si flows during a contact reaction with a raw material containing SiO 2 . 前記Siを含む原料とSiOを含む原料との接触反応において、Siを含む原料の投入量の少なくとも5質量%を反応残渣として反応系外に排出する請求項1〜3のいずれかに記載のSiO固体の製造方法。 In the contact reaction between the raw materials including a raw material and SiO 2 containing the Si, according to claim 1 to 3 for discharging at least 5 wt% of the input amount of raw material including Si out of the reaction system as a reaction residue of any one A method for producing a SiO solid. 前記SiOを固体析出させる温度が450〜1000℃である請求項1〜3のいずれかに記載のSiO固体の製造方法。 The method for producing an SiO solid according to any one of claims 1 to 3, wherein a temperature at which the SiO is solid-deposited is 450 to 1000 ° C. SiO を含む原料及びSiを含む原料を減圧下で加熱し、SiO気体を発生させ、該SiO気体を冷却し、SiO固体を析出させることでSiO固体を製造する方法に用いる装置であって、真空ポンプを備えた減圧容器内に、Siを含む原料とSiOを含む原料を収容する反応原料容器及び該容器中のSiO を含む原料の上部にSiを含む原料を収容するSi原料容器を配置し、前記反応原料容器の加熱手段と、Siを含む原料とSiOを含む原料から生成するSiO気体を冷却固化するSiO析出部を少なくとも備えることを特徴とするSiO固体の製造装置。 An apparatus used in a method for producing a SiO solid by heating a raw material containing SiO 2 and a raw material containing Si under reduced pressure, generating SiO gas, cooling the SiO gas, and precipitating the SiO solid, A reaction raw material container containing a raw material containing Si and a raw material containing SiO 2 in a vacuum container equipped with a vacuum pump, and an Si raw material container containing a raw material containing Si on the upper part of the raw material containing SiO 2 in the container arrangement, and the heating means of the reaction raw material vessel, SiO solid production device characterized by at least including a SiO deposit part of cooling and solidifying the SiO gas generated from the raw material containing the raw material and SiO 2 containing S i. 前記反応原料容器内のSiを含む原料の流動手段を備えることを特徴とする請求項9記載のSiO固体の製造装置。The apparatus for producing a SiO solid according to claim 9, further comprising a raw material flow means containing Si in the reaction raw material container. 前記Si原料容器の加熱手段を備えることを特徴とする請求項9記載のSiO固体の製造装置。 Manufacturing apparatus according to claim 9, wherein the SiO solid, characterized in that it comprises a heating hand stage of the Si raw material container. 前記Siを含む原料を収容するSi原料容器からSiOを含む原料を収容する反応原料容器へSiを含む原料を移動させる手段を備える請求項11記載のSiO固体の製造装置。 SiO solid production apparatus according to claim 11, further comprising a means for moving the raw material containing Si from the Si raw material container into the reaction feedstock vessel containing a raw material containing SiO 2 containing ingredients comprising the Si. さらに、反応残渣分離手段及び反応残渣回収手段を備える請求項〜1のいずれか1項に記載のSiO固体の製造装置。 Further, reaction residue separating means and SiO solid production apparatus according to any one of claims 9-1 2 comprising a reaction residue recovery means.
JP2004034204A 2004-02-10 2004-02-10 Method and apparatus for producing high-purity SiO solid Expired - Fee Related JP4731818B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004034204A JP4731818B2 (en) 2004-02-10 2004-02-10 Method and apparatus for producing high-purity SiO solid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004034204A JP4731818B2 (en) 2004-02-10 2004-02-10 Method and apparatus for producing high-purity SiO solid

Publications (2)

Publication Number Publication Date
JP2005225691A JP2005225691A (en) 2005-08-25
JP4731818B2 true JP4731818B2 (en) 2011-07-27

Family

ID=35000701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004034204A Expired - Fee Related JP4731818B2 (en) 2004-02-10 2004-02-10 Method and apparatus for producing high-purity SiO solid

Country Status (1)

Country Link
JP (1) JP4731818B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4966151B2 (en) * 2007-03-15 2012-07-04 新日鉄マテリアルズ株式会社 Method and apparatus for manufacturing silicon monoxide vapor deposition material
KR101612104B1 (en) * 2013-05-16 2016-04-14 주식회사 엘지화학 Apparatus and method for manufacturing SiO
CA2835583A1 (en) * 2013-11-28 2015-05-28 Hydro-Quebec Preparation method for an siox nano-structure and its use as anode for a lithium-ion battery
CN103896283B (en) * 2014-02-19 2016-03-30 上海璞泰来新能源科技股份有限公司 A kind of manufacture method of SiO powder and manufacturing installation
CN111889031B (en) * 2020-07-29 2022-04-22 常州华芯装备工程有限公司 Production device for preparing SiO powder
TWI798699B (en) * 2021-05-19 2023-04-11 中美矽晶製品股份有限公司 Silicon oxide preparation device
CN116161667A (en) * 2022-09-08 2023-05-26 安徽科达新材料有限公司 Method for preparing silicon monoxide by adding fluxing agent

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6395249B1 (en) * 1997-12-25 2002-05-28 Nippon Steel Corporation Production process and apparatus for high purity silicon

Also Published As

Publication number Publication date
JP2005225691A (en) 2005-08-25

Similar Documents

Publication Publication Date Title
JP3865033B2 (en) Continuous production method and continuous production apparatus for silicon oxide powder
CN100438965C (en) Process for the synthesis, separation and purification of powder materials
JP3325900B2 (en) Method and apparatus for producing polycrystalline silicon, and method for producing silicon substrate for solar cell
JP5886831B2 (en) Generation of single crystal semiconductor materials
TW200914371A (en) Processing of fine silicon powder to produce bulk silicon
WO1998016466A1 (en) Process and apparatus for preparing polycrystalline silicon and process for preparing silicon substrate for solar cell
JP2010001563A (en) Process to make core-shell structured nanoparticle
JP4731818B2 (en) Method and apparatus for producing high-purity SiO solid
JP4741860B2 (en) Method for producing high purity silicon
TW202014258A (en) Granulation method and device
JP2011520760A (en) Skull reactor
WO2012086544A1 (en) Silicon preparation method and preparation apparatus, silicon wafer, and solar cell panel
JP2013249235A (en) Method for producing fluoride salts, and fluoride salts, and method for producing silicon using the fluoride salts
EP2201076B1 (en) Method of production of solid and porous films from particulate materials by high heat flux source
KR101739370B1 (en) Method of preparing feed seed for granular polycrystalline polysilicon preparation
JP4817307B2 (en) Granular semiconductor manufacturing method and manufacturing apparatus
Li et al. Purification of metallurgical-grade silicon combining Sn–Si solvent refining with gas pressure filtration
JP2006219313A (en) Silicon solidifying and refining apparatus and method
JP5574295B2 (en) High purity silicon fine powder production equipment
JP2005298273A (en) METHOD AND APPARATUS FOR MANUFACTURING HIGH PURITY SiO SOLID
JP3820198B2 (en) Production equipment for purified silicon
JP2009078949A (en) Manufacturing method and manufacturing apparatus for sio powder
CN110589836B (en) Method and system for removing boron in industrial silicon refining
JP2013212962A (en) Method for producing silicon, silicon wafer and panel for solar cell
JPH03503158A (en) Method and apparatus for producing boron carbide crystals

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061019

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070119

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100309

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110420

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees