JP4730591B2 - Laser processing apparatus and laser processing method - Google Patents

Laser processing apparatus and laser processing method Download PDF

Info

Publication number
JP4730591B2
JP4730591B2 JP2005199271A JP2005199271A JP4730591B2 JP 4730591 B2 JP4730591 B2 JP 4730591B2 JP 2005199271 A JP2005199271 A JP 2005199271A JP 2005199271 A JP2005199271 A JP 2005199271A JP 4730591 B2 JP4730591 B2 JP 4730591B2
Authority
JP
Japan
Prior art keywords
optical element
diffractive optical
workpiece
laser processing
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005199271A
Other languages
Japanese (ja)
Other versions
JP2007014989A (en
Inventor
淳 尼子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2005199271A priority Critical patent/JP4730591B2/en
Publication of JP2007014989A publication Critical patent/JP2007014989A/en
Application granted granted Critical
Publication of JP4730591B2 publication Critical patent/JP4730591B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laser Beam Processing (AREA)

Description

本発明は、レーザ加工装置およびレーザ加工方法に関する。   The present invention relates to a laser processing apparatus and a laser processing method.

レーザ加工装置としては、CO2レーザを使った金属板の切断・穴あけ加工や、YAGレーザによる金属薄板の精密加工が広く知られている。とくに、小型でメンテナンス性が良く、直径数10μmの集光スポットが容易に得られるという理由から、YAGレーザは各種の精密加工に適している。さらに、YAGレーザでは第2高調波(波長532nm)が得られるので、アブレーション効果を利用した微細な薄膜加工へも応用できる。レーザアブレーションとは、高分子材料にエキシマレーザやYAG高調波などの短波長・短パルスレーザを照射した時に、瞬時に分解・気化・飛散が起こり、局所的に材料が除去される現象のことである。事実、半導体製造用マスクの欠陥修正、薄膜センサの検出部のパターンニング、液晶パネルの電極パターンニング等に、QスイッチYAGレーザが利用され始めた。Qスイッチを用いる理由は、パルス幅が短くピークパワーが大きいビームを利用することにより、被加工部材への熱的損傷がない高品質な加工が実現できるからである。 As a laser processing apparatus, cutting and drilling of a metal plate using a CO 2 laser and precision processing of a metal thin plate using a YAG laser are widely known. In particular, the YAG laser is suitable for various types of precision processing because it is small in size, has good maintainability, and can easily obtain a focused spot having a diameter of several tens of μm. Furthermore, since the second harmonic (wavelength of 532 nm) can be obtained with a YAG laser, it can be applied to fine thin film processing utilizing the ablation effect. Laser ablation is a phenomenon in which when a polymer material is irradiated with a short wavelength / short pulse laser such as an excimer laser or a YAG harmonic, the material is instantly decomposed, vaporized and scattered, and the material is locally removed. is there. In fact, Q-switched YAG lasers have begun to be used for defect correction of semiconductor manufacturing masks, patterning of detection portions of thin film sensors, electrode patterning of liquid crystal panels, and the like. The reason why the Q switch is used is that high-quality machining without thermal damage to the workpiece can be realized by using a beam having a short pulse width and a high peak power.

液晶パネルの電極のパターンニングは、一般には、透光性導電膜が被着した基板をレーザビームに対して移動させながら、導電膜を所定の間隔で切断することにより行う。この時の加工品質すなわち導電膜の電気特性は、QスイッチYAGレーザの特性(主にピークパワー)から決まる。そして、レーザの特性はQスイッチ周波数に左右される。すなわち、Qスイッチ周波数を低くすると、パルス幅が狭くなり、ピークパワーは大きくなる。逆に、Qスイッチ周波数を高くすると、パルス幅が広がり、ピークパワーは小さくなる。 In general, the patterning of the electrodes of the liquid crystal panel is performed by cutting the conductive film at a predetermined interval while moving the substrate on which the light-transmitting conductive film is deposited with respect to the laser beam. The processing quality at this time, that is, the electrical characteristics of the conductive film is determined by the characteristics (mainly peak power) of the Q-switched YAG laser. The characteristics of the laser depend on the Q switch frequency. That is, when the Q switch frequency is lowered, the pulse width is narrowed and the peak power is increased. Conversely, when the Q switch frequency is increased, the pulse width is increased and the peak power is decreased.

加工品質の観点からは、Qスイッチ周波数を低くして、ビームのピーク強度を高めることが望ましい。こうすると、アブレーション効果を介して、瞬間的に加工部位を除去することができ、加工部近傍や膜基板へ熱的損傷を与えることがない。   From the viewpoint of processing quality, it is desirable to increase the peak intensity of the beam by lowering the Q switch frequency. If it carries out like this, a process site | part can be removed instantaneously via an ablation effect, and a thermal damage will not be carried out to the process part vicinity or a film | membrane board | substrate.

しかし、これらの加工方法には、生産性の点に問題がある。なぜならば、Qスイッチ周波数を下げることは、そのぶんだけ、ステージの送り速度を遅らせることにつながり、その結果として加工速度が著しく低下するからである。   However, these processing methods have a problem in productivity. This is because lowering the Q switch frequency leads to a delay in the feed rate of the stage, and as a result, the machining speed is significantly reduced.

他方、加工速度の観点からは、Qスイッチ周波数を高くしてステージをすばやく移動させることが望ましい。しかし、Qスイッチ周波数を高くすると、ピークパワーが低下し、パルス幅が広がる。このために、液晶パネルの電極をパターンニングする時に、電極基板であるガラスに熱的損傷を与え、微小なクラックやくぼみを発生させる。このクラックやくぼみは、液晶パネルの表示品質を損ねる要因となる。また、ガラスに微小量含まれているアルカリ金属イオンがクラック及びくぼみから液晶中に溶出し、このことが液晶パネルの表示不良の原因となる。   On the other hand, from the viewpoint of processing speed, it is desirable to move the stage quickly by increasing the Q switch frequency. However, when the Q switch frequency is increased, the peak power is reduced and the pulse width is increased. For this reason, when the electrodes of the liquid crystal panel are patterned, the glass which is the electrode substrate is thermally damaged, and minute cracks and dents are generated. This crack or dent becomes a factor that impairs the display quality of the liquid crystal panel. In addition, alkali metal ions contained in minute amounts in the glass are eluted from the cracks and dents into the liquid crystal, which causes a display defect of the liquid crystal panel.

この問題を解決するため、特許文献1に開示されたレーザ加工装置では、位相変調作用を有する回折光学素子でレーザ発振器からのビームを複数本に分岐し、被加工物表面の複数部位を同時に加工することで加工能力を大きく向上させている。すなわち、ビーム分岐数をNとすると、1本のビームで加工した場合に比べN倍の加工能力を達成することができる。特許文献1では、回折光学素子には、ほぼ矩形の断面形状を有する表面凹凸型2値位相格子を用いている。
特許第3293136号公報
In order to solve this problem, the laser processing apparatus disclosed in Patent Document 1 branches a beam from a laser oscillator into a plurality of beams by a diffractive optical element having a phase modulation action, and simultaneously processes a plurality of parts on the surface of the workpiece. By doing so, the processing ability is greatly improved. That is, assuming that the number of beam branches is N, it is possible to achieve a processing capability that is N times that of processing with a single beam. In Patent Document 1, a concavo-convex binary phase grating having a substantially rectangular cross-sectional shape is used as a diffractive optical element.
Japanese Patent No. 3293136

しかし、2値位相格子を用いてレーザビームを分岐すると、高次回折光へのエネルギー漏れが多くなる。加工に不要な高次回折光が被加工物に照射されると、被加工物の表面にダメージを与える場合がある。このため、従来は不要なビームを遮るための遮光マスクを設けていた。しかし、加工中に発生する除去物が遮光マスクのへりに堆積し、加工用ビームの光路を遮ってビームの強度分布を乱したり、堆積した除去物が被加工物の表面に落下して被加工物を汚染したりする場合があった。このような弊害を回避するためには加工の途中で遮光マスクを交換する必要があるが、この作業にはレーザ光学系の調整が伴うため多くの時間とコストを要していた。また、レーザ光学系の調整のために装置の稼動を停止することは加工能力の低下につながる。   However, when a laser beam is split using a binary phase grating, energy leakage into high-order diffracted light increases. When high-order diffracted light unnecessary for processing is irradiated on the workpiece, the surface of the workpiece may be damaged. For this reason, conventionally, a light shielding mask for shielding unnecessary beams has been provided. However, the removal material generated during processing accumulates on the edge of the light shielding mask, obstructs the optical path of the processing beam and disturbs the intensity distribution of the beam, or the accumulated removal material falls onto the surface of the workpiece and covers the surface. In some cases, the workpiece was contaminated. In order to avoid such an adverse effect, it is necessary to replace the light-shielding mask in the middle of processing. However, since this operation involves adjustment of the laser optical system, much time and cost are required. Further, stopping the operation of the apparatus for adjusting the laser optical system leads to a decrease in processing capability.

本発明の目的は、加工能力が高く、かつ加工品質にも優れたレーザ加工装置、レーザ加工方法を得ることである。   An object of the present invention is to obtain a laser processing apparatus and a laser processing method having high processing capability and excellent processing quality.

本発明のレーザ加工装置は、レーザ発振器と、上記レーザ発振器から出射されるビームを複数ビームに分岐して、被加工物に照射する回折光学素子を備え、上記回折光学素子は、上記被加工物の加工に不要な高次回折光の発生を抑制するように設計された凹凸形状を表面に有し、前記凹凸形状の断面形状は三角関数の重ね合わせにより表現されるいたるところで連続的な滑らかな形状である
いたるところで連続的な断面形状を持つ回折光学素子を用いると、高次回折光へのエネルギー漏れが少ないため、加工に不要なビームによる弊害を回避できる。これにより、加工能力が高く、かつ加工品質にも優れたレーザ加工装置を得ることができる。
また、上記回折光学素子によって分岐された複数ビームをそれぞれ集光し、被加工物に照射する集光レンズを備えるようにしてもよい。
The laser processing apparatus of the present invention includes a laser oscillator and a diffractive optical element that divides a beam emitted from the laser oscillator into a plurality of beams and irradiates the workpiece, and the diffractive optical element includes the workpiece. The surface has a concavo-convex shape designed to suppress the generation of high-order diffracted light that is not necessary for processing, and the cross-sectional shape of the concavo-convex shape is a continuous smooth shape everywhere expressed by superposition of trigonometric functions It is .
When a diffractive optical element having a continuous cross-sectional shape is used everywhere, there is little energy leakage to higher-order diffracted light, so that it is possible to avoid the harmful effects caused by a beam unnecessary for processing. Thereby, the laser processing apparatus with high processing capability and excellent processing quality can be obtained.
Moreover, you may make it provide the condensing lens which each condenses the several beam branched by the said diffractive optical element, and irradiates a workpiece.

また、上記回折光学素子から生じる回折ビームのうち加工へ用いる複数の回折ビームの最大回折次数がNであるとき、上記回折光学素子の凹凸形状が有する空間周波数νが、
ν≦2NΔ/λf (Δはビーム分岐ピッチ、λはビーム波長、fは回折光学素子から被加工物までの距離)を満たすように設計することにより、高次回折光の発生を抑える回折光学素子を得ることができる。
Further, when the maximum diffraction order of a plurality of diffracted beams used for processing among the diffracted beams generated from the diffractive optical element is N, the spatial frequency ν of the concavo-convex shape of the diffractive optical element is
A diffractive optical element that suppresses the generation of high-order diffracted light is designed by satisfying ν ≦ 2NΔ / λf (Δ is the beam branching pitch, λ is the beam wavelength, and f is the distance from the diffractive optical element to the workpiece). Obtainable.

本発明のレーザ加工方法は、レーザ発振器からビームを出射する工程と、断面形状が三角関数の重ね合わせにより表現されるいたるところで連続的な滑らかな形状である凹凸形状を表面に有する回折光学素子によって、被加工物の加工に不要な高次回折光の発生を抑制しながら上記ビームを複数ビームに分岐する工程を有する。
いたるところで連続的な断面形状を持つ回折光学素子を用いると、高次回折光へのエネルギー漏れが少ないため、加工に不要なビームによる弊害を回避できる。これにより、加工能力が高く、かつ加工品質にも優れたレーザ加工装置を得ることができる。
また、各々の複数ビームを集光レンズによって集光し、上記被加工物に照射する工程を有するようにしてもよい。
The laser processing method of the present invention includes a step of emitting a beam from a laser oscillator, and a diffractive optical element having a concavo-convex shape that is a continuous smooth shape everywhere expressed by superposition of trigonometric functions on the surface. And a step of branching the beam into a plurality of beams while suppressing generation of high-order diffracted light unnecessary for processing the workpiece.
When a diffractive optical element having a continuous cross-sectional shape is used everywhere, there is little energy leakage to higher-order diffracted light, so that it is possible to avoid the harmful effects caused by a beam unnecessary for processing. Thereby, the laser processing apparatus with high processing capability and excellent processing quality can be obtained.
Moreover, you may make it have the process of condensing each multiple beam with a condensing lens, and irradiating the said to-be-processed object.

また、上記回折光学素子から生じる回折ビームのうち加工へ用いる複数の回折ビームの最大回折次数がNであるとき、上記回折光学素子の凹凸形状が有する空間周波数νが、
ν≦2NΔ/λf (Δはビーム分岐ピッチ、λはビーム波長、fは回折光学素子から被加工物までの距離)を満たすように設計することにより、高次回折光の発生を抑える回折光学素子を得ることができる。
Further, when the maximum diffraction order of a plurality of diffracted beams used for processing among the diffracted beams generated from the diffractive optical element is N, the spatial frequency ν of the concavo-convex shape of the diffractive optical element is
A diffractive optical element that suppresses the generation of high-order diffracted light is designed by satisfying ν ≦ 2NΔ / λf (Δ is the beam branching pitch, λ is the beam wavelength, and f is the distance from the diffractive optical element to the workpiece). Obtainable.

以下、本発明の実施例について図面を参照して説明する。
本発明のレーザ加工装置の構成を図1に示す。レーザ発振器1101はQスイッチYAGレーザであり、直線偏光のTEM00モードを出射する。レーザ発振器1101のQスイッチ周波数は、Qスイッチドライバ1102により制御される。
エクスパンダコリメータ1104によりレーザ発振器1101から出射されるビーム1103を拡大し、光路折り曲げミラー1105でビーム1103の光路を折り曲げる。波長板1106によりビームの偏光を楕円偏光にした後に、ビームを位相格子1107へ入射させる。位相格子1107は、1本の入射ビームを複数の回折ビームに分岐する作用を有する。位相格子1107から出射された複数のビームは、集光レンズ1108を介して、精密ステージ1110の上に保持された被加工物に照射される。ここでは、透光性導電膜(ITO膜)基板1109の表面に複数の集光スポット1111を等しい間隔で形成し、精密ステージ1110を移動することにより、直線状あるいは曲線状にITO膜を切断する。
Embodiments of the present invention will be described below with reference to the drawings.
The configuration of the laser processing apparatus of the present invention is shown in FIG. The laser oscillator 1101 is a Q-switched YAG laser and emits a linearly polarized TEM 00 mode. The Q switch frequency of the laser oscillator 1101 is controlled by the Q switch driver 1102.
The expander collimator 1104 expands the beam 1103 emitted from the laser oscillator 1101, and the optical path bending mirror 1105 folds the optical path of the beam 1103. After the polarization of the beam is changed to elliptical polarization by the wave plate 1106, the beam is incident on the phase grating 1107. The phase grating 1107 has a function of branching one incident beam into a plurality of diffraction beams. A plurality of beams emitted from the phase grating 1107 are irradiated onto the workpiece held on the precision stage 1110 via the condenser lens 1108. Here, a plurality of condensing spots 1111 are formed at equal intervals on the surface of a translucent conductive film (ITO film) substrate 1109, and the precision stage 1110 is moved to cut the ITO film in a straight line or a curved line. .

図2は、本発明のレーザ加工装置による切断加工を模式的に示した図である。図に示すように、位相格子1107で分岐された複数のビーム(ここでは13本)が集光レンズ1108でそれぞれ集光され、透光性導電膜基板1109上に、図中の挿入図Aに示すような13個の集光スポットを形成する。精密ステージ1110を図中の矢印方向に移動させることにより、13箇所同時に切断することができる。   FIG. 2 is a diagram schematically showing cutting processing by the laser processing apparatus of the present invention. As shown in the drawing, a plurality of beams (here, 13 beams) branched by the phase grating 1107 are collected by the condenser lens 1108, and are shown on the translucent conductive film substrate 1109 in the inset A in the figure. 13 condensing spots as shown are formed. By moving the precision stage 1110 in the direction of the arrow in the figure, 13 places can be cut simultaneously.

位相格子1107は1次元の表面凹凸型位相格子である。位相格子1107の主要な設計事項は、1周期の長さ、全体の大きさ、1周期内の位相分布の3つである。1周期の長さは加工形状によって決まる。すなわち、ここではITO膜上に形成する開溝の間隔から決まる。全体の大きさは入射ビーム径から決まる。1周期内の位相分布は、所要のビーム分岐数及び所要のビーム強度の均一性から決まる。   The phase grating 1107 is a one-dimensional surface uneven phase grating. There are three main design items of the phase grating 1107: the length of one period, the overall size, and the phase distribution within one period. The length of one cycle is determined by the machining shape. That is, here, it is determined from the interval between the open grooves formed on the ITO film. The overall size is determined by the incident beam diameter. The phase distribution within one period is determined by the required number of beam branches and the required uniformity of beam intensity.

回折理論から、位相格子の周期pは次式で与えられる。
p=mλf/Δ (1)
ただし、m=1(ビーム分岐数が奇数の時)、m=2(ビームの分岐数が偶数の時)、λはビーム波長(532nm)、fは集光レンズ1110の焦点距離、Δはビーム分岐ピッチ(開溝の間隔)である。例えば、分岐数を偶数として、f=100mm、Δ=200μmとすると、p=532μmとなる。
From the diffraction theory, the period p of the phase grating is given by the following equation.
p = mλf / Δ (1)
Where m = 1 (when the number of beam branches is an odd number), m = 2 (when the number of beam branches is an even number), λ is the beam wavelength (532 nm), f is the focal length of the condenser lens 1110, and Δ is the beam This is the branch pitch (interval of the groove). For example, assuming that the number of branches is an even number and f = 100 mm and Δ = 200 μm, p = 532 μm.

位相格子の全体の大きさDは、波動光学の理論から次式の条件を満たす必要がある。
D>d=2f・tan[sin-1(2λ/πw)] (2)
ただし、dは入射ビーム径(l/e2)、wは所要の集光スポット径(l/e2)である。例えば、f=100mm、w=10μmとすると、D>d=4mmとなる。
The total size D of the phase grating needs to satisfy the following condition from the theory of wave optics.
D> d = 2f · tan [sin −1 (2λ / πw)] (2)
Here, d is the incident beam diameter (l / e 2 ), and w is the required focused spot diameter (l / e 2 ). For example, when f = 100 mm and w = 10 μm, D> d = 4 mm.

位相格子の位相分布の計算には、例えばシミュレーテッドアニーリング法(Science 220,671−680(1983)、以後、SA法と略す)を用いることができる。SA法の運用に必要なルールの構築には経験が必要であり、このルールの出来不出来により位相格子の光学性能が決まる。   For the calculation of the phase distribution of the phase grating, for example, a simulated annealing method (Science 220, 671-680 (1983), hereinafter abbreviated as SA method) can be used. The construction of the rules necessary for the operation of the SA method requires experience, and the optical performance of the phase grating is determined by the failure of the rules.

SA法を用いて位相格子を設計するには、少なくとも評価関数の定義と重みの設定、温度スケジューリング、平衡状態の判定について、運用のルールを定めなければならない。なお、評価関数とは位相格子の性能に関する推定値と目標値の差に対応する量であり、この関数値が最も小さくなる時の解が最適解である。本実施例で用いる位相格子1107に要求される光学性能は、レーザ発振器の出力、加工閾値、要求される加工均一性に基づいて決定され、例えば以下のようになる。
(1)光利用効率が80%以上であること。
(2)分岐後のビーム強度均一性が0.90以上であること。
ここで、光利用効率とは、所要の回折次数のビームに供給し得る光エネルギーの割合を意味する。また、ビーム強度均一性とは、分岐された複数の回折ビームにおける強度の最小と最大の比を意味する。
In order to design a phase grating using the SA method, it is necessary to define operational rules for at least the evaluation function definition and weight setting, temperature scheduling, and equilibrium state determination. The evaluation function is an amount corresponding to the difference between the estimated value regarding the performance of the phase grating and the target value, and the solution when the function value is the smallest is the optimal solution. The optical performance required for the phase grating 1107 used in this embodiment is determined based on the output of the laser oscillator, the processing threshold, and the required processing uniformity, and is as follows, for example.
(1) The light utilization efficiency is 80% or more.
(2) The beam intensity uniformity after branching is 0.90 or more.
Here, the light utilization efficiency means a ratio of light energy that can be supplied to a beam having a required diffraction order. Further, the beam intensity uniformity means a ratio between the minimum and maximum intensity of a plurality of branched diffraction beams.

実際の計算では、(1)と(2)の条件を評価関数の中に取り入れ、(1)と(2)の条件を満足する解の中から、位相格子の作製に使用するフォトマスク描画装置、露光・現像装置、及びエッチング装置の各装置のパターン転写能力を考慮して決められる。   In actual calculation, the conditions of (1) and (2) are taken into the evaluation function, and the photomask drawing apparatus used for producing the phase grating from the solutions satisfying the conditions of (1) and (2) The pattern transfer capability of each of the exposure / development apparatus and the etching apparatus is determined.

図3は、上記の方法で設計した位相格子1107の位相分布(1周期分)を模式的に示した図であり、位相格子1107の断面形状を示している。図に示すように、位相格子1107の断面形状は滑らかな形状を有しており、いたるところで連続的になっている。   FIG. 3 is a diagram schematically showing the phase distribution (for one period) of the phase grating 1107 designed by the above method, and shows the cross-sectional shape of the phase grating 1107. As shown in the figure, the cross-sectional shape of the phase grating 1107 has a smooth shape and is continuous everywhere.

位相格子1107の断面形状は三角関数の重ね合わせにより表現される。位相格子1107による最大回折次数をNとすると、位相格子1107の空間周波数νは、概ね以下の条件を満たしている。
ν≦2NΔ/λf (3)
ただし、ここでΔはビーム分岐ピッチ、λはビーム波長、fは回折光学素子から被加工物までの距離である。
The cross-sectional shape of the phase grating 1107 is expressed by superposing trigonometric functions. When the maximum diffraction order by the phase grating 1107 is N, the spatial frequency ν of the phase grating 1107 generally satisfies the following conditions.
ν ≦ 2NΔ / λf (3)
Where Δ is the beam branch pitch, λ is the beam wavelength, and f is the distance from the diffractive optical element to the workpiece.

また、図4は、上記の方法で設計した、比較例による1次元の表面凹凸型2値位相格子の鳥瞰図である。比較例の位相格子の断面形状はほぼ矩形であり、いわゆる2値位相格子として分類されるものである。   FIG. 4 is a bird's-eye view of a one-dimensional surface concavo-convex binary phase grating designed by the above method according to a comparative example. The cross-sectional shape of the phase grating of the comparative example is almost rectangular and is classified as a so-called binary phase grating.

図5(a)、(b)は、位相格子1107により再生される回折光の強度分布を示した図である。また、図6(a)、(b)は、上記の比較例の位相格子により再生される回折光の強度分布を示した図である。
図から分かるように、比較例の2値位相格子では、加工に必要な13本のビームの外側に、高次回折光のピークが現れている。一方、位相格子1107では、加工に必要な13本のビームの外側に、高次回折光のピークが現れていない。両者の光学性能を比べてみると、比較例の2値位相格子では光利用効率78%、分岐均一性0.95、位相格子1107では光利用効率97%、分岐均一性0.99となっており、2値位相格子は光利用効率が低い。すなわち、位相格子1107ではわずか3%のエネルギーが高次回折光へ漏れているのに対し、2値位相格子では22%のエネルギーが高次回折光へ漏れている。このため、加工に用いる分岐光と不要な高次回折光の強度比を表すSN比が、2値位相格子では高々5程度であるのに対し、位相格子1107では40近くまで向上している。
FIGS. 5A and 5B are diagrams showing the intensity distribution of the diffracted light reproduced by the phase grating 1107. FIG. FIGS. 6A and 6B are diagrams showing the intensity distribution of diffracted light reproduced by the phase grating of the above comparative example.
As can be seen from the figure, in the binary phase grating of the comparative example, peaks of high-order diffracted light appear outside the 13 beams necessary for processing. On the other hand, in the phase grating 1107, the peak of high-order diffracted light does not appear outside the 13 beams necessary for processing. Comparing both optical performances, the binary phase grating of the comparative example has a light utilization efficiency of 78% and a branching uniformity of 0.95, and the phase grating 1107 has a light utilization efficiency of 97% and a branching uniformity of 0.99. In addition, the binary phase grating has low light utilization efficiency. That is, only 3% of energy leaks to the high-order diffracted light in the phase grating 1107, whereas 22% of energy leaks to the high-order diffracted light in the binary phase grating. For this reason, the S / N ratio representing the intensity ratio between the branched light used for processing and the unnecessary high-order diffracted light is at most about 5 in the binary phase grating, but is improved to nearly 40 in the phase grating 1107.

上記の2値位相格子を用いた場合、高次回折光が被加工物にダメージを与える場合がある。図7は、高次回折光によって被加工物に与えられるダメージを説明する図である。図に示すように、所要の切断溝の外側に高次回折光に起因する不要な切断溝が生じてしまう場合がある。   When the above binary phase grating is used, high-order diffracted light may damage the workpiece. FIG. 7 is a diagram for explaining damage caused to a workpiece by high-order diffracted light. As shown in the figure, an unnecessary cutting groove due to high-order diffracted light may be generated outside the required cutting groove.

これを回避するため、2値位相格子を用いる場合には、図8(a)に示すように、被加工物の表面上に遮光マスクを設けて、高次回折光が被加工物を照射するのを防ぐ必要がある。しかし、各回折光の間隔は100〜200μm程であるため、高次回折光を遮断するためには遮光マスクを加工領域のごく近傍に配置しなければならない。
このため、加工が進むにつれ、加工により発生する除去物が遮光マスクのエッジ8001に堆積し、図8(b)に示すように、堆積物が加工用回折光の光路を遮って強度分布を乱すことが起こりうる。また、堆積物が被加工物上に落下し、被加工物を汚染することも起こりうる。
In order to avoid this, when a binary phase grating is used, as shown in FIG. 8A, a light shielding mask is provided on the surface of the workpiece, and the higher-order diffracted light irradiates the workpiece. Need to prevent. However, since the interval between each diffracted light is about 100 to 200 μm, a light-shielding mask must be disposed very close to the processing region in order to block high-order diffracted light.
For this reason, as the processing progresses, the removed material generated by the processing accumulates on the edge 8001 of the light shielding mask, and as shown in FIG. 8B, the deposit blocks the optical path of the processing diffracted light and disturbs the intensity distribution. Can happen. In addition, deposits may fall on the workpiece and contaminate the workpiece.

一方、滑らかな断面形状を持つ位相格子1107を用いる場合には、高次回折光へ漏れるエネルギーが小さく、高次回折光によるダメージを考慮する必要が無いので遮光マスクを設ける必要がない。また、光利用効率が向上するのでビーム分岐数を増やすことができ、加工スループットを高めることができる。   On the other hand, when the phase grating 1107 having a smooth cross-sectional shape is used, the energy leaked to the high-order diffracted light is small and there is no need to consider the damage due to the high-order diffracted light, so there is no need to provide a light shielding mask. In addition, since the light utilization efficiency is improved, the number of beam branches can be increased, and the processing throughput can be increased.

本発明のレーザ加工装置は、例えば、インクジェットヘッドの製造におけるインクキャビティの形成や、液晶パネルの製造における帯電防止用導電膜の切断分離に利用することができる。
これらの加工用途においては、装置の構成上の制約から、遮光マスクを設けることが困難な場合があるが、上記のレーザ加工装置を用いることにより、高次回折光によるダメージを抑制することができることから、高い加工能力で、高品質な、インクキャビティや液晶パネル等を得ることができる。
The laser processing apparatus of the present invention can be used, for example, for forming ink cavities in the manufacture of inkjet heads, and for cutting and separating antistatic conductive films in the manufacture of liquid crystal panels.
In these processing applications, it may be difficult to provide a light-shielding mask due to restrictions on the configuration of the apparatus, but damage due to higher-order diffracted light can be suppressed by using the above laser processing apparatus. High-quality ink cavities and liquid crystal panels can be obtained with high processing capability.

本発明のレーザ加工装置の構成を示す図である。It is a figure which shows the structure of the laser processing apparatus of this invention. 本発明のレーザ加工装置による切断加工を模式的に示した図である。It is the figure which showed typically the cutting process by the laser processing apparatus of this invention. 本発明の位相格子の位相分布を模式的に示した図である。It is the figure which showed typically the phase distribution of the phase grating of this invention. 比較例の2値位相格子の鳥瞰図である。It is a bird's-eye view of the binary phase grating of a comparative example. (a)、(b)は、連続的な断面形状を持つ位相格子により再生される回折光の強度分布を示した図である。(A), (b) is the figure which showed intensity distribution of the diffracted light reproduced | regenerated with the phase grating which has a continuous cross-sectional shape. (a)、(b)は、上記の比較例により再生される回折光の強度分布を示した図である。(A), (b) is the figure which showed intensity distribution of the diffracted light reproduced | regenerated by said comparative example. 高次回折光によって被加工物に与えられるダメージを説明する図である。It is a figure explaining the damage given to a workpiece by high order diffracted light. (a)、(b)は、遮光マスクを設けて加工する方法を説明する図である。(A), (b) is a figure explaining the method of providing a light-shielding mask and processing.

符号の説明Explanation of symbols

1101 レーザ発振器、1102 Qスイッチドライバ、1103 ビーム、1104 エクスパンダコリメータ、1105 光路折り曲げミラー、1106 波長板、1107 位相格子(回折光学素子)、1108 集光レンズ、1109 透光性導電膜基板(被加工物)、1110 精密ステージ、1111 集光スポット   1101 Laser oscillator, 1102 Q switch driver, 1103 beam, 1104 expander collimator, 1105 optical path bending mirror, 1106 wave plate, 1107 phase grating (diffractive optical element), 1108 condenser lens, 1109 translucent conductive film substrate (processed) ) 1110 Precision stage, 1111 Condensing spot

Claims (6)

レーザ発振器と、
前記レーザ発振器から出射されるビームを複数ビームに分岐して、被加工物に照射する回折光学素子を備え、
前記回折光学素子は、前記被加工物の加工に不要な高次回折光の発生を抑制するように設計された凹凸形状を表面に有し、前記凹凸形状の断面形状は三角関数の重ね合わせにより表現されるいたるところで連続的な滑らかな形状であるレーザ加工装置。
A laser oscillator;
A diffractive optical element that divides a beam emitted from the laser oscillator into a plurality of beams and irradiates a workpiece,
The diffractive optical element has a concavo-convex shape designed so as to suppress generation of high-order diffracted light unnecessary for processing the workpiece, and the cross-sectional shape of the concavo-convex shape is expressed by superposition of trigonometric functions. Laser processing equipment that has a continuous and smooth shape everywhere .
前記回折光学素子によって分岐された複数ビームをそれぞれ集光し、被加工物に照射する集光レンズを備えた請求項1記載のレーザ加工装置。   The laser processing apparatus according to claim 1, further comprising a condensing lens that condenses each of the plurality of beams branched by the diffractive optical element and irradiates the workpiece. 前記回折光学素子から生じる回折ビームのうち加工へ用いる複数の回折ビームの最大回折次数がNであるとき、前記回折光学素子の凹凸形状が有する空間周波数νが、
ν≦2NΔ/λf (Δはビーム分岐ピッチ、λはビーム波長、fは回折光学素子から被加工物までの距離)
を満たす請求項1または請求項2記載のレーザ加工装置。
When the maximum diffraction order of a plurality of diffracted beams used for processing among the diffracted beams generated from the diffractive optical element is N, the spatial frequency ν of the concavo-convex shape of the diffractive optical element is:
ν ≦ 2NΔ / λf (Δ is the beam branching pitch, λ is the beam wavelength, and f is the distance from the diffractive optical element to the workpiece)
The laser processing apparatus according to claim 1 or 2, wherein
レーザ発振器からビームを出射する工程と、
断面形状が三角関数の重ね合わせにより表現されるいたるところで連続的な滑らかな形状である凹凸形状を表面に有する回折光学素子によって、被加工物の加工に不要な高次回折光の発生を抑制しながら前記ビームを複数ビームに分岐する工程を有するレーザ加工方法。
Emitting a beam from a laser oscillator;
While suppressing the generation of high-order diffracted light, which is unnecessary for processing the workpiece, by using a diffractive optical element that has a concavo-convex shape that is a continuous and smooth shape everywhere expressed by superposition of trigonometric functions. A laser processing method comprising a step of branching the beam into a plurality of beams.
各々の複数ビームを集光レンズによって集光し、前記被加工物に照射する工程を有する請求項4記載のレーザ加工方法。   The laser processing method according to claim 4, further comprising a step of condensing each of the plurality of beams with a condensing lens and irradiating the workpiece. 前記回折光学素子から生じる回折ビームのうち加工へ用いる複数の回折ビームの最大回折次数がNであるとき、前記回折光学素子の凹凸形状が有する空間周波数νが、
ν≦2NΔ/λf (Δはビーム分岐ピッチ、λはビーム波長、fは回折光学素子から被加工物までの距離)
を満たす請求項4または請求項5記載のレーザ加工方法。
When the maximum diffraction order of a plurality of diffracted beams used for processing among the diffracted beams generated from the diffractive optical element is N, the spatial frequency ν of the concavo-convex shape of the diffractive optical element is:
ν ≦ 2NΔ / λf (Δ is the beam branching pitch, λ is the beam wavelength, and f is the distance from the diffractive optical element to the workpiece)
The laser processing method according to claim 4 or 5, which satisfies the following conditions.
JP2005199271A 2005-06-08 2005-07-07 Laser processing apparatus and laser processing method Expired - Fee Related JP4730591B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005199271A JP4730591B2 (en) 2005-06-08 2005-07-07 Laser processing apparatus and laser processing method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005168740 2005-06-08
JP2005168740 2005-06-08
JP2005199271A JP4730591B2 (en) 2005-06-08 2005-07-07 Laser processing apparatus and laser processing method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010254536A Division JP2011079057A (en) 2005-06-08 2010-11-15 Laser beam machining apparatus, and laser beam machining method

Publications (2)

Publication Number Publication Date
JP2007014989A JP2007014989A (en) 2007-01-25
JP4730591B2 true JP4730591B2 (en) 2011-07-20

Family

ID=37752586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005199271A Expired - Fee Related JP4730591B2 (en) 2005-06-08 2005-07-07 Laser processing apparatus and laser processing method

Country Status (1)

Country Link
JP (1) JP4730591B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230390864A1 (en) * 2020-10-28 2023-12-07 Nikon Corporation Optical processing apparatus
WO2024121955A1 (en) * 2022-12-06 2024-06-13 ギガフォトン株式会社 Laser machining system, laser machining method, and method for manufacturing electronic device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02117791A (en) * 1988-09-17 1990-05-02 Philips Gloeilampenfab:Nv Laser light working apparatus
JP2000343714A (en) * 1999-04-02 2000-12-12 Seiko Epson Corp Quartz hole processing method and production of ink-jet recording head
JP2002113711A (en) * 2000-10-11 2002-04-16 Murata Mfg Co Ltd Method for processing ceramic green sheet and apparatus for laser processing used in the method
JP2002263876A (en) * 1993-06-04 2002-09-17 Seiko Epson Corp Equipment and method for laser machining

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02117791A (en) * 1988-09-17 1990-05-02 Philips Gloeilampenfab:Nv Laser light working apparatus
JP2002263876A (en) * 1993-06-04 2002-09-17 Seiko Epson Corp Equipment and method for laser machining
JP2000343714A (en) * 1999-04-02 2000-12-12 Seiko Epson Corp Quartz hole processing method and production of ink-jet recording head
JP2002113711A (en) * 2000-10-11 2002-04-16 Murata Mfg Co Ltd Method for processing ceramic green sheet and apparatus for laser processing used in the method

Also Published As

Publication number Publication date
JP2007014989A (en) 2007-01-25

Similar Documents

Publication Publication Date Title
JP3293136B2 (en) Laser processing apparatus and laser processing method
TWI508155B (en) Wafer dicing using hybrid split-beam laser scribing process with plasma etch
US7893384B2 (en) Systems and methods for laser material manipulation
US7880117B2 (en) Method and apparatus of drilling high density submicron cavities using parallel laser beams
Rung et al. Laserscribing of thin films using top-hat laser beam profiles
JP6321021B2 (en) Diffractive optical element and method for patterning thin film electrochemical devices
JP2004528991A5 (en)
JP2007069257A (en) Device and method for laser beam machining, and mechanism and method for recovering debris
JPH07308788A (en) Optical machining method and production of photovoltaic power device
JP2007296533A (en) Laser beam machining method and apparatus
JP4498309B2 (en) Processing method using laser interference, diffraction grating processed by the processing method, and antireflection structure
JP4730591B2 (en) Laser processing apparatus and laser processing method
JP2009056467A (en) Apparatus and method for laser beam machining
JP3371304B2 (en) Laser processing apparatus, laser processing method, and liquid crystal panel
JP2011079057A (en) Laser beam machining apparatus, and laser beam machining method
JP5383342B2 (en) Processing method
Venkatakrishnan et al. Fabrication of planar gratings by direct ablation using an ultrashort pulse laser in a common optical path configuration
Amako et al. Beam delivery system with a non-digitized diffractive beam splitter for laser-drilling of silicon
KR101200484B1 (en) Mask for projection ablation and manufacturing method thereof
JP2002263876A (en) Equipment and method for laser machining
JP2006320938A (en) Apparatus and method for laser beam machining
KR100766300B1 (en) Laser slit and laser machining apparatus
JPH08112682A (en) Optical processing method
JP2002196347A (en) Liquid crystal panel and method for producing liquid crystal panel
Okamoto et al. Femtosecond laser ablation of Cr-SiO2 binary mask

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100916

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110406

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4730591

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees