JP4730285B2 - Method for firing honeycomb formed body - Google Patents

Method for firing honeycomb formed body Download PDF

Info

Publication number
JP4730285B2
JP4730285B2 JP2006309641A JP2006309641A JP4730285B2 JP 4730285 B2 JP4730285 B2 JP 4730285B2 JP 2006309641 A JP2006309641 A JP 2006309641A JP 2006309641 A JP2006309641 A JP 2006309641A JP 4730285 B2 JP4730285 B2 JP 4730285B2
Authority
JP
Japan
Prior art keywords
temperature
furnace
formed body
firing
honeycomb formed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006309641A
Other languages
Japanese (ja)
Other versions
JP2008120657A (en
Inventor
欣二 宝平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2006309641A priority Critical patent/JP4730285B2/en
Publication of JP2008120657A publication Critical patent/JP2008120657A/en
Application granted granted Critical
Publication of JP4730285B2 publication Critical patent/JP4730285B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、セラミック材料を押出成形することによって成形されたハニカム成形体を焼成する方法に関する。   The present invention relates to a method for firing a honeycomb formed body formed by extruding a ceramic material.

従来から、コーディエライト等のセラミックからなるハニカム構造体は、内燃機関より排出される排ガスの浄化を行う排ガス浄化フィルタ等として用いられている。
ハニカム構造体は、粘土質のセラミック材料を押出成形してハニカム成形体を作製し、そのハニカム成形体を乾燥させた後、焼成することによって製造される(特許文献1参照)。
Conventionally, a honeycomb structure made of a ceramic such as cordierite has been used as an exhaust gas purification filter for purifying exhaust gas discharged from an internal combustion engine.
The honeycomb structure is manufactured by extruding a clay-like ceramic material to prepare a honeycomb formed body, drying the honeycomb formed body, and firing the honeycomb formed body (see Patent Document 1).

また、ハニカム構造体は、例えばディーゼルエンジン用排ガス浄化フィルタ(DPF)として適用される場合には、排ガス中のパティキュレートを捕集するために高い気孔率が要求される。そのため、造孔材としてのカーボンを添加したセラミック材料を押出成形してハニカム成形体を作製し、焼成時にカーボンを焼失させることによって高い気孔率を得ていた。   In addition, when the honeycomb structure is applied as an exhaust gas purification filter (DPF) for a diesel engine, for example, a high porosity is required to collect particulates in the exhaust gas. Therefore, a ceramic material added with carbon as a pore forming material is extruded to produce a honeycomb formed body, and high porosity is obtained by burning out carbon during firing.

しかしながら、ハニカム成形体を焼成する際に焼成温度まで一気に昇温させると、ハニカム成形体に含まれるカーボンが急激に燃焼して、ハニカム成形体の割れの原因となっていた。すなわち、カーボンの燃焼によって急激に燃焼熱が発生するため、ハニカム成形体の中心部と外周部との間に大きな温度差が生じる。これにより、ハニカム成形体内に熱応力が生じ、割れが発生していた。   However, when the honeycomb formed body is fired, if the temperature is raised to the firing temperature all at once, carbon contained in the honeycomb formed body burns rapidly, causing cracks in the honeycomb formed body. That is, since combustion heat is suddenly generated by the combustion of carbon, a large temperature difference is generated between the central portion and the outer peripheral portion of the honeycomb formed body. Thereby, thermal stress was generated in the honeycomb formed body, and cracks were generated.

そこで、従来は、焼成温度まで一気に昇温させるのではなく、一旦カーボンが燃焼する温度で炉内温度を保持し、ゆっくりとカーボンを燃焼させていた。そして、カーボンの燃焼が完了し、ハニカム成形体全体の温度と炉内温度とがほぼ同じ温度になってから再び昇温させていた。ところが、このような焼成方法では、トータルの焼成時間が長時間となり、生産性の低下を招くことになる。   Therefore, conventionally, the temperature inside the furnace is maintained at a temperature at which carbon is once burned, and the carbon is burned slowly instead of raising the temperature to the firing temperature all at once. Then, after the combustion of carbon was completed and the temperature of the entire honeycomb molded body and the furnace temperature became substantially the same temperature, the temperature was raised again. However, in such a baking method, the total baking time becomes long, and the productivity is lowered.

よって、焼成時間を短縮することができ、生産性の向上を図ることができると共に、焼成時の割れを抑制することができるハニカム成形体の焼成方法が望まれている。   Therefore, there is a demand for a method for firing a honeycomb formed body that can shorten the firing time, improve productivity, and suppress cracking during firing.

特開平8−73274号公報JP-A-8-73274

本発明は、かかる従来の問題点を鑑みてなされたものであり、焼成時間を短縮することができ、生産性の向上を図ることができると共に、焼成時の割れを抑制することができるハニカム成形体の焼成方法を提供しようとするものである。   The present invention has been made in view of such conventional problems, and is capable of reducing the firing time, improving the productivity, and suppressing the cracking during firing. An object is to provide a method for firing a body.

本発明は、コーディエライト原料にカーボンが添加されたセラミック材料を押出成形することによって成形された、隔壁をハニカム状に配して多数のセルを設けてなるハニカム成形体を焼成する方法において、
上記ハニカム成形体を炉内に収納し、炉内温度を焼成温度まで昇温させた後、上記ハニカム成形体を上記焼成温度で保持することによって焼成するに当たり、
上記炉内温度を上記焼成温度まで昇温させる途中において、上記炉内温度を上記カーボンの燃焼が可能な温度であるカーボン燃焼温度に一旦保持し、上記ハニカム成形体に含有される上記カーボンを燃焼させ、
該カーボンの燃焼により、上記ハニカム成形体の外周部の温度が上昇して上記炉内温度よりも高くなり、最大となった後、下降する過程において、上記外周部の温度が最大となる外周ピーク時における上記外周部の温度と上記炉内温度との温度差をAとした場合、上記外周ピーク時以降に上記温度差が0.5Aとなった時から0となる前までの間に、上記炉内温度の昇温を再び開始することを特徴とするハニカム成形体の焼成方法にある(請求項1)。
The present invention is a method for firing a honeycomb formed body formed by extruding a ceramic material in which carbon is added to a cordierite raw material, the partition walls being arranged in a honeycomb shape and providing a large number of cells.
When the honeycomb formed body is housed in a furnace and the furnace temperature is raised to the firing temperature, and then fired by holding the honeycomb formed body at the firing temperature,
In the middle of raising the furnace temperature to the firing temperature, the furnace temperature is temporarily held at a carbon combustion temperature that is a temperature at which the carbon can be burned, and the carbon contained in the honeycomb formed body is burned. Let
Due to the combustion of the carbon, the temperature at the outer peripheral portion of the honeycomb formed body rises to be higher than the furnace temperature, reaches a maximum, and then decreases in the outer peripheral peak where the temperature at the outer peripheral portion becomes maximum in the process of descending. When the temperature difference between the temperature of the outer peripheral portion and the furnace temperature at the time is A, the time difference between the time when the temperature difference becomes 0.5 A after the outer peripheral peak and before it becomes 0 The method for firing a honeycomb formed body is characterized in that the temperature rise in the furnace is started again (Claim 1).

本発明のハニカム成形体の焼成方法は、上記炉内温度を上記焼成温度まで昇温させる途中において、上記炉内温度を上記カーボン燃焼温度に一旦保持し、上記ハニカム成形体に含有されるカーボンを燃焼させる。そして、このカーボンの燃焼により、上記ハニカム成形体の外周部の温度が上昇して最大となり、その後下降する過程において、上記外周部の温度が最大となる外周ピーク時における上記外周部の温度と上記炉内温度との温度差をAとした場合、上記外周ピーク時以降に上記温度差が0.5Aとなった時から0となる前までの間のタイミングで、上記炉内温度の昇温を再び開始する。   In the firing method of the honeycomb formed body of the present invention, the furnace temperature is temporarily maintained at the carbon combustion temperature in the course of raising the furnace temperature to the firing temperature, and the carbon contained in the honeycomb formed body is reduced. Burn. And, due to the combustion of the carbon, the temperature of the outer peripheral portion of the honeycomb molded body is increased and maximized, and in the process of descending thereafter, the temperature of the outer peripheral portion at the time of the outer peripheral peak at which the temperature of the outer peripheral portion becomes maximum and the above When the temperature difference from the furnace temperature is A, the temperature inside the furnace is increased at a timing between the time when the temperature difference becomes 0.5 A after the outer peripheral peak and before it becomes 0. Start again.

すなわち、本発明では、上記ハニカム成形体に含まれるカーボンの燃焼が完了する前の上記タイミングで、上記カーボン燃焼温度に保持していた上記炉内温度を再び昇温させる。そのため、従来のようにカーボンの燃焼が完了し、上記ハニカム成形体全体の温度と上記炉内温度とがほぼ同じになってから上記炉内温度の昇温を再び開始する場合に比べて、上記炉内温度を上記カーボン燃焼温度に保持してから再び昇温させるまでの時間を短縮することができる。これにより、上記ハニカム成形体の焼成に要するトータルの焼成時間を短縮することができ、生産性の向上を図ることができる。   That is, in the present invention, the furnace temperature that has been held at the carbon combustion temperature is raised again at the timing before the combustion of the carbon contained in the honeycomb formed body is completed. Therefore, compared with the case where the combustion of carbon is completed as in the prior art, and the temperature rise in the furnace temperature is restarted after the temperature of the entire honeycomb formed body and the furnace temperature are substantially the same, The time from when the furnace temperature is maintained at the above-mentioned carbon combustion temperature to when the temperature is raised again can be shortened. Thereby, the total firing time required for firing the honeycomb formed body can be shortened, and productivity can be improved.

また、上記タイミングで上記炉内温度の昇温を再び開始しても、上記ハニカム成形体に割れ等の不具合が発生するおそれもない。すなわち、上記タイミングの時点では、上記ハニカム成形体に含有されるカーボンがある程度燃焼しているため、昇温を開始しても急激な燃焼熱が発生するおそれはなく、また上記ハニカム成形体の中心部と外周部との温度差(以下、適宜、内外温度差という)が急激に大きくなることもない。よって、割れ等の不具合を発生させずに、確実に焼成時間の短縮及び生産性の向上を図ることができる。   Further, even if the temperature rise in the furnace is started again at the above timing, there is no possibility that a defect such as a crack occurs in the honeycomb formed body. That is, since the carbon contained in the honeycomb molded body has burned to some extent at the time of the timing, there is no risk of sudden combustion heat being generated even when the temperature rise is started. The temperature difference between the portion and the outer peripheral portion (hereinafter, appropriately referred to as “internal / external temperature difference”) does not increase rapidly. Therefore, it is possible to reliably shorten the firing time and improve the productivity without causing defects such as cracks.

また、上述したように、上記ハニカム成形体に含有されるカーボンを燃焼させるために、上記炉内温度を上記焼成温度まで昇温させる途中において、上記炉内温度を上記カーボン燃焼温度に一旦保持する。そのため、上記ハニカム成形体に含有されるカーボンをゆっくりと燃焼させることができ、急激な燃焼熱の発生を抑制することができる。これにより、上記ハニカム成形体の内外温度差が急激に大きくなることを防ぐことができ、割れの発生を抑制することができる。   Further, as described above, in order to burn the carbon contained in the honeycomb formed body, the furnace temperature is temporarily held at the carbon combustion temperature in the course of raising the furnace temperature to the firing temperature. . Therefore, carbon contained in the honeycomb formed body can be burned slowly, and generation of rapid combustion heat can be suppressed. Thereby, it is possible to prevent a sudden increase in the temperature difference between the inside and outside of the honeycomb formed body, and to suppress the occurrence of cracks.

このように、本発明のハニカム成形体の焼成方法によれば、焼成時間を短縮することができ、生産性の向上を図ることができると共に、焼成時の割れを抑制することができる。   Thus, according to the method for firing a honeycomb formed body of the present invention, the firing time can be shortened, productivity can be improved, and cracking during firing can be suppressed.

本発明において、上記外周ピーク時以降における上記温度差が0.5Aとなる前に上記炉内温度の昇温を再び開始した場合には、上記ハニカム成形体に含まれるカーボンが充分に燃焼されていないおそれがある。そのため、このような時点で昇温を開始すると、カーボンの燃焼によって上記ハニカム成形体の内外温度差が急激に大きくなり、割れが発生するおそれがある。一方、上記温度差が0となった後に上記炉内温度の昇温を再び開始した場合には、焼成時間の短縮及び生産性の向上を図ることができない。   In the present invention, when the temperature rise in the furnace temperature is restarted before the temperature difference after the outer peripheral peak reaches 0.5 A, the carbon contained in the honeycomb formed body is sufficiently burned. There is a risk of not. For this reason, when the temperature rise is started at such a point, the difference in temperature between the inside and outside of the honeycomb formed body suddenly increases due to the combustion of carbon, and there is a possibility that cracking may occur. On the other hand, when the temperature rise in the furnace is restarted after the temperature difference becomes 0, the firing time cannot be shortened and the productivity cannot be improved.

また、上記外周ピーク時以降における上記温度差が0.5Aとなった時から0.25Aとなる時までの間に、上記炉内温度の昇温を再び開始することが好ましい(請求項2)。
この場合には、割れ等の不具合を発生させずに、焼成時間の短縮及び生産性の向上を確実に図ることができる。
Further, it is preferable that the temperature increase in the furnace is started again between the time when the temperature difference after the outer peripheral peak is 0.5 A and the time when the temperature difference is 0.25 A. (Claim 2) .
In this case, it is possible to reliably reduce the firing time and improve the productivity without causing defects such as cracks.

また、上記炉内温度の昇温を再び開始した後は、上記ハニカム成形体の中心部と外周部との温度差が100℃以内となるように、上記炉内温度を昇温させることが好ましい(請求項3)。
この場合には、上記ハニカム成形体の内外温度差によって生じる熱応力を低減し、焼成時における上記ハニカム成形体の割れを抑制することができる。
Moreover, after the temperature rise in the furnace is started again, the furnace temperature is preferably raised so that the temperature difference between the central portion and the outer peripheral portion of the honeycomb formed body is within 100 ° C. (Claim 3).
In this case, the thermal stress caused by the temperature difference between the inside and outside of the honeycomb formed body can be reduced, and cracking of the honeycomb formed body during firing can be suppressed.

また、上記カーボン燃焼温度は、500℃以上であることが好ましい(請求項4)。
この場合には、上記ハニカム成形体に含まれるカーボンを充分かつ確実に燃焼させることができる。
Moreover, it is preferable that the said carbon combustion temperature is 500 degreeC or more (Claim 4).
In this case, the carbon contained in the honeycomb formed body can be burned sufficiently and reliably.

本発明の実施例につき、図1〜図6を用いて説明する。
本例においては、図1、図2に示すごとく、ハニカム状の隔壁11に囲まれた多数のセル12と外周側面を覆う筒状の外周壁13とを有するハニカム成形体1を焼成した。
ハニカム成形体1は、コーディエライトを主成分とするセラミックより構成されており、円筒形状を呈している。また、セル12は、断面形状が四角形である。
An embodiment of the present invention will be described with reference to FIGS.
In this example, as shown in FIGS. 1 and 2, a honeycomb formed body 1 having a large number of cells 12 surrounded by a honeycomb-shaped partition wall 11 and a cylindrical outer peripheral wall 13 covering the outer peripheral side surface was fired.
The honeycomb formed body 1 is made of a ceramic mainly composed of cordierite, and has a cylindrical shape. The cell 12 has a quadrangular cross-sectional shape.

本例のハニカム成形体は、粘土質のセラミック材料を押出成形機等により押出成形し、所望の長さで切断した後、乾燥させて作製したものである。ハニカム成形体のサイズは、直径160mm、長さ100mm、隔壁の厚み0.3mm、外周壁の厚み0.5mm、セル数300cpiメッシュである。なお、このサイズは一例を示したものであり、用途に応じてその他のサイズを採用することもできる。   The honeycomb formed body of this example is manufactured by extruding a clay-like ceramic material with an extruder, cutting it to a desired length, and then drying it. The size of the honeycomb formed body is a diameter of 160 mm, a length of 100 mm, a partition wall thickness of 0.3 mm, an outer peripheral wall thickness of 0.5 mm, and a cell count of 300 cpi mesh. This size is just an example, and other sizes can be adopted depending on the application.

また、上記セラミック材料としては、カオリン、溶融シリカ、水酸化アルミニウム、アルミナ、タルク等を含有し、化学組成が最終的にコーディエライトを主成分とする組成となるように調整したコーディエライト化原料を水に混合し、有機バインダ、造孔材としてのカーボン等を加えて混練したものを用いた。なお、セラミック材料も、用途に応じて含有する材料を変更することができる。   In addition, the above ceramic material contains kaolin, fused silica, aluminum hydroxide, alumina, talc, etc., and the cordierite is adjusted so that the chemical composition is finally composed mainly of cordierite. The raw material was mixed with water, and an organic binder, carbon as a pore former, etc. were added and kneaded. In addition, the ceramic material can also change the material contained according to a use.

次に、ハニカム成形体の具体的な焼成方法について説明する。
本例では、ハニカム成形体及び焼成炉内に熱電対を取り付け、ハニカム成形体の中心部の温度(中心温度T1)、外周壁の温度(外周温度T2)及び炉内雰囲気の温度(炉内温度T3)を測定しながら焼成を行った。
Next, a specific firing method of the honeycomb formed body will be described.
In this example, a thermocouple is mounted in the honeycomb formed body and the firing furnace, the temperature of the central portion of the honeycomb formed body (center temperature T 1 ), the temperature of the outer peripheral wall (outer peripheral temperature T 2 ), and the temperature of the furnace atmosphere (furnace Firing was carried out while measuring the internal temperature T 3 ).

なお、以下の焼成方法の説明においては、実際に設定した焼成炉における炉内温度T3の制御パターン(焼成パターン)を示した図3と、実際に測定した中心温度T1、外周温度T2及び炉内温度T3の結果を示した図4とを用いて説明する。また、図3の焼成パターンと図4の実際の炉内温度T3との間には、タイムラグや温度差が生じている。 In the following description of the firing method, FIG. 3 showing a control pattern (firing pattern) of the furnace temperature T 3 in the actually set firing furnace, the actually measured center temperature T 1 , and outer peripheral temperature T 2. and it will be described with reference to FIGS. 4 shows the results of the in-furnace temperature T 3. Further, a time lag or a temperature difference is generated between the firing pattern of FIG. 3 and the actual furnace temperature T 3 of FIG.

まず、ハニカム成形体を焼成炉内に収納し、図3に示すごとく、炉内温度T3を室温から350℃まで昇温させる(第1昇温工程S1)。
次いで、炉内温度T3を350℃からハニカム成形体に含有されるカーボンの燃焼が可能なカーボン燃焼温度TCまで昇温させる(第2昇温工程S2)。本例では、カーボン燃焼温度TCを600℃とした。
First, the honeycomb formed body is housed in a firing furnace, and the furnace temperature T 3 is raised from room temperature to 350 ° C. as shown in FIG. 3 (first temperature raising step S1).
Next, the furnace temperature T 3 is raised from 350 ° C. to the carbon combustion temperature T C at which carbon contained in the honeycomb formed body can be burned (second temperature raising step S2). In this example, the carbon combustion temperature T C was set to 600 ° C.

次いで、図3に示すごとく、炉内温度T3をカーボン燃焼温度TCである600℃で保持し、ハニカム成形体に含有されるカーボンを燃焼させる(カーボン燃焼工程S3)。なお、図4に示すごとく、カーボンの燃焼は、実際には550℃付近から始まっている。このとき、カーボンの燃焼による燃焼熱の発生により、中心温度T1及び外周温度T2は上昇し始めている。 Next, as shown in FIG. 3, the furnace temperature T 3 is maintained at 600 ° C., which is the carbon combustion temperature T C , and the carbon contained in the honeycomb formed body is combusted (carbon combustion step S3). In addition, as shown in FIG. 4, the combustion of carbon actually starts from around 550 ° C. At this time, due to the generation of combustion heat due to the combustion of carbon, the center temperature T 1 and the outer peripheral temperature T 2 are starting to rise.

そして、カーボン燃焼工程S3では、図4に示すごとく、カーボンの燃焼熱により中心温度T1及び外周温度T2は上昇し、炉内温度T3よりも高くなる。そして、外周ピークP時において外周温度T2が最大となる。このとき、外周温度T2は750℃、炉内温度T3は600℃であり、外周温度T2と炉内温度T3との温度差Aは150℃である。 Then, the carbon burning step S3, as shown in FIG. 4, center temperature T 1 and the outer peripheral temperature T 2 is increased by the carbon combustion heat is higher than the furnace temperature T 3. Then, the outer peripheral temperature T 2 becomes maximum at the time the outer peripheral peak P. At this time, the outer peripheral temperature T 2 is 750 ° C., the furnace temperature T 3 is 600 ° C., and the temperature difference A between the outer peripheral temperature T 2 and the furnace temperature T 3 is 150 ° C.

さらに、外周ピークP時以降、中心部に比べてカーボンが燃焼し易い外周部の外周温度T2はゆっくりと下降し始める。一方、中心温度T1は、外周温度T2から少し遅れて最大となり、その後ゆっくりと下降し始める。そして、本例では、外周ピークP時以降における外周温度T2と炉内温度T3との温度差が外周ピークP時の温度差A(150℃)の半分、つまり0.5A(75℃)となった時を昇温タイミングQとし、この昇温タイミングQにおいて炉内温度T3の昇温を再び開始した。 Further, after the outer peripheral peak P, the outer peripheral temperature T 2 of the outer peripheral portion where carbon is more easily combusted than the central portion starts to slowly decrease. On the other hand, the center temperature T 1 reaches a maximum with a slight delay from the outer peripheral temperature T 2 , and then begins to fall slowly. In this example, the temperature difference between the outer peripheral temperature T 2 and the furnace temperature T 3 after the outer peripheral peak P is half of the temperature difference A (150 ° C.) at the outer peripheral peak P, that is, 0.5 A (75 ° C.). The temperature rise timing Q was set, and at this temperature rise timing Q, the temperature rise in the furnace temperature T 3 was started again.

次いで、図3に示すごとく、炉内温度T3をカーボン燃焼温度TCである600℃から1400℃まで昇温させる(第3昇温工程S4)。
次いで、炉内温度T3を1400℃で25時間保持し、ハニカム成形体を焼成する(焼成工程S5)。
次いで、炉内温度T3を1400℃から室温まで冷却する(冷却工程S6)。
以上により、ハニカム成形体の焼成を完了した。
Next, as shown in FIG. 3, the furnace temperature T 3 is raised from 600 ° C. which is the carbon combustion temperature T C to 1400 ° C. (third temperature raising step S4).
Next, the furnace temperature T 3 is maintained at 1400 ° C. for 25 hours, and the honeycomb formed body is fired (firing step S5).
Next, the furnace temperature T 3 is cooled from 1400 ° C. to room temperature (cooling step S6).
Thus, firing of the honeycomb formed body was completed.

次に、比較例として、カーボン燃焼工程S3において、炉内温度T3の昇温を再び開始する昇温タイミングQが異なる従来の焼成方法によってハニカム成形体を焼成した。
なお、実際に設定した焼成パターンを図5に、実際に測定した中心温度T1、外周温度T2及び炉内温度T3の結果を図6に示した。
Next, as a comparative example, in the carbon burning step S3, firing the honeycomb formed body by conventional baking methods heating time Q to start raising the temperature in the furnace temperature T 3 again differ.
The actually set firing pattern is shown in FIG. 5, and the results of the actually measured center temperature T 1 , outer peripheral temperature T 2 and furnace temperature T 3 are shown in FIG.

比較例では、図5に示すごとく、カーボン燃焼工程S3において、外周ピークP時以降における中心温度T1、外周温度T2及び炉内温度T3が同じとなった時を昇温タイミングQとした。そして、この昇温タイミングQにおいて炉内温度T3の昇温を再び開始した。
その他の工程は、上記と同様である。
In the comparative example, as shown in FIG. 5, when the center temperature T 1 , the outer temperature T 2, and the furnace temperature T 3 after the time of the outer peripheral peak P become the same in the carbon combustion step S 3 , the temperature rising timing Q is set. . Then, at this temperature rise timing Q, the temperature rise in the furnace temperature T 3 was started again.
Other steps are the same as above.

次に、本例のハニカム成形体の焼成方法における作用効果について、比較例と比較して説明する。
比較例は、図6から知られるように、カーボン燃焼工程S3において、中心温度T1、外周温度T2及び炉内温度T3が同じになってから炉内温度T3の昇温を開始する従来の焼成方法を用いている。そのため、炉内温度T3をカーボン燃焼温度TCに保持してから再び昇温させる昇温タイミングQまで時間がかかり、カーボン燃焼工程S3に要する時間も長くなっている。そして、トータルの焼成時間は90時間となった。
Next, the effect of the firing method of the honeycomb formed body of this example will be described in comparison with the comparative example.
As is known from FIG. 6, in the comparative example, in the carbon combustion step S3, the temperature rise in the furnace temperature T 3 is started after the center temperature T 1 , the outer peripheral temperature T 2 and the furnace temperature T 3 become the same. A conventional firing method is used. Therefore, it takes time until the temperature rise timing Q when the furnace temperature T 3 is maintained at the carbon combustion temperature T C and then the temperature is raised again, and the time required for the carbon combustion step S 3 is also increased. The total firing time was 90 hours.

一方、本例は、図4から知られるように、カーボン燃焼工程S3において、外周ピークP時以降における外周温度T2と炉内温度T3との温度差が外周ピークP時の温度差Aの半分(0.5A)となった時、つまりハニカム成形体に含まれるカーボンの燃焼が完了する前に、炉内温度T3の昇温を開始する。そのため、昇温タイミングQまでの時間が短くなり、カーボン燃焼工程S3に要する時間が短縮されている。そして、トータルの焼成時間は80時間となり、比較例に比べて約10時間短縮されている。 On the other hand, as is known from FIG. 4, in this example, in the carbon combustion step S3, the temperature difference between the outer peripheral temperature T 2 and the furnace temperature T 3 after the outer peripheral peak P is the temperature difference A at the outer peripheral peak P. When the temperature reaches half (0.5 A), that is, before the combustion of the carbon contained in the honeycomb formed body is completed, the temperature rise in the furnace temperature T 3 is started. Therefore, the time until the temperature raising timing Q is shortened, and the time required for the carbon combustion step S3 is shortened. The total firing time is 80 hours, which is about 10 hours shorter than that of the comparative example.

また、本例では、ハニカム成形体に含まれるカーボンの燃焼が完了する前に炉内温度T3の昇温を開始しているが、ハニカム成形体に割れ等の不具合の発生は見られなかった。これは、昇温タイミングQの時点では、ハニカム成形体に含有されるカーボンがある程度燃焼しているため、昇温を開始しても急激な燃焼熱が発生しないからである。また、外周温度T2が下降して中心温度T1との温度差が開き始めたところで昇温を開始しているため、ハニカム成形体の内外温度差が大きくなることを抑制する効果も得られた。 Further, in this example, the temperature rise in the furnace temperature T 3 was started before the combustion of the carbon contained in the honeycomb molded body was completed, but no defects such as cracks were found in the honeycomb molded body. . This is because, at the time of the temperature rise timing Q, the carbon contained in the honeycomb molded body is burned to some extent, so that sudden combustion heat is not generated even when the temperature rise is started. In addition, since the temperature rise is started when the outer peripheral temperature T 2 decreases and the temperature difference from the center temperature T 1 begins to open, an effect of suppressing an increase in the inner and outer temperature difference of the honeycomb formed body can be obtained. It was.

また、本例は、比較例と同様に、炉内温度T3を焼成温度まで昇温させる途中において、炉内温度T3をカーボン燃焼温度TCに一旦保持し、ハニカム成形体に含有されるカーボンを燃焼させるカーボン燃焼工程を行う。そのため、カーボンをゆっくりと燃焼させることができ、急激な燃焼熱の発生を抑制することができる。これにより、ハニカム成形体の内外温度差が急激に大きくなることを防ぐことができ、割れの発生を抑制することができる。 Further, in the present example, similarly to the comparative example, the furnace temperature T 3 is temporarily held at the carbon combustion temperature T C during the course of raising the furnace temperature T 3 to the firing temperature, and is contained in the honeycomb formed body. A carbon combustion process for burning carbon is performed. Therefore, carbon can be burned slowly, and generation of rapid combustion heat can be suppressed. As a result, it is possible to prevent the temperature difference between the inside and outside of the honeycomb formed body from becoming abruptly large, and to suppress the occurrence of cracks.

以上により、本例のハニカム成形体の焼成方法によれば、焼成時間を短縮することができ、生産性の向上を図ることができると共に、焼成時の割れを抑制することができることがわかる。   From the above, it can be seen that according to the method for firing a honeycomb formed body of this example, the firing time can be shortened, productivity can be improved, and cracks during firing can be suppressed.

実施例における、ハニカム成形体を示す斜視図。The perspective view which shows the honeycomb molded object in an Example. 実施例における、ハニカム成形体を示す断面説明図。Cross-sectional explanatory drawing which shows the honeycomb molded object in an Example. 実施例における、焼成パターンを示す説明図。Explanatory drawing which shows the baking pattern in an Example. 実施例における、ハニカム成形体及び炉内の温度測定結果を示す説明図。Explanatory drawing which shows the temperature measurement result in a honeycomb molded object and a furnace in an Example. 比較例における、焼成パターンを示す説明図。Explanatory drawing which shows the baking pattern in a comparative example. 比較例における、ハニカム成形体及び炉内の温度測定結果を示す説明図。Explanatory drawing which shows the temperature measurement result in a honeycomb molded object and a furnace in a comparative example.

符号の説明Explanation of symbols

1 ハニカム成形体
11 隔壁
12 セル
13 外周壁
P 外周ピーク
Q 昇温タイミング
1 中心温度
2 外周温度
3 炉内温度
C カーボン燃焼温度
1 honeycomb formed body 11 partition wall 12 cells 13 outer peripheral wall P periphery peak Q heating timing T 1 center temperature T 2 outer circumferential temperature T 3 furnace temperature T C carbon combustion temperature

Claims (4)

コーディエライト原料にカーボンが添加されたセラミック材料を押出成形することによって成形された、隔壁をハニカム状に配して多数のセルを設けてなるハニカム成形体を焼成する方法において、
上記ハニカム成形体を炉内に収納し、炉内雰囲気の温度(以下、炉内温度という)を焼成温度まで昇温させた後、上記ハニカム成形体を上記焼成温度で保持することによって焼成するに当たり、
上記炉内温度を上記焼成温度まで昇温させる途中において、上記炉内温度を上記カーボンの燃焼が可能な温度であるカーボン燃焼温度に一旦保持し、上記ハニカム成形体に含有される上記カーボンを燃焼させ、
該カーボンの燃焼により、上記ハニカム成形体の外周部の温度が上昇して上記炉内温度よりも高くなり、最大となった後、下降する過程において、上記外周部の温度が最大となる外周ピーク時における上記外周部の温度と上記炉内温度との温度差をAとした場合、上記外周ピーク時以降に上記温度差が0.5Aとなった時から0となる前までの間に、上記炉内温度の昇温を再び開始することを特徴とするハニカム成形体の焼成方法。
In a method of firing a honeycomb formed body formed by extruding a ceramic material in which carbon is added to a cordierite raw material, in which partition walls are arranged in a honeycomb shape and a large number of cells are provided,
When the honeycomb formed body is housed in a furnace, the temperature of the furnace atmosphere (hereinafter referred to as the furnace temperature) is raised to the firing temperature, and then the honeycomb formed body is held at the firing temperature for firing. ,
In the middle of raising the furnace temperature to the firing temperature, the furnace temperature is temporarily held at a carbon combustion temperature that is a temperature at which the carbon can be burned, and the carbon contained in the honeycomb formed body is burned. Let
Due to the combustion of the carbon, the temperature at the outer peripheral portion of the honeycomb formed body rises to be higher than the furnace temperature, reaches a maximum, and then decreases in the outer peripheral peak where the temperature at the outer peripheral portion becomes maximum in the process of descending. When the temperature difference between the temperature of the outer peripheral portion and the furnace temperature at the time is A, the time difference between the time when the temperature difference becomes 0.5 A after the outer peripheral peak and before it becomes 0 A method for firing a honeycomb formed article, wherein the temperature rise in the furnace is started again.
請求項1において、上記外周ピーク時以降に上記温度差が0.5Aとなった時から0.25Aとなる時までの間に、上記炉内温度の昇温を再び開始することを特徴とするハニカム成形体の焼成方法。   2. The temperature increase in the furnace is restarted between the time when the temperature difference becomes 0.5A and the time when the temperature difference becomes 0.25A after the peak of the outer circumference. A method for firing a honeycomb formed body. 請求項1又は2において、上記炉内温度の昇温を再び開始した後は、上記ハニカム成形体の中心部と外周部との温度差が100℃以内となるように、上記炉内温度を昇温させることを特徴とするハニカム成形体の焼成方法。   In Claim 1 or 2, after the temperature rise in the furnace is started again, the furnace temperature is increased so that the temperature difference between the central portion and the outer peripheral portion of the honeycomb formed body is within 100 ° C. A method for firing a honeycomb formed body, characterized by heating. 請求項1〜3のいずれか1項において、上記カーボン燃焼温度は、500℃以上であることを特徴とするハニカム成形体の焼成方法。   The method for firing a honeycomb formed body according to any one of claims 1 to 3, wherein the carbon combustion temperature is 500 ° C or higher.
JP2006309641A 2006-11-15 2006-11-15 Method for firing honeycomb formed body Expired - Fee Related JP4730285B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006309641A JP4730285B2 (en) 2006-11-15 2006-11-15 Method for firing honeycomb formed body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006309641A JP4730285B2 (en) 2006-11-15 2006-11-15 Method for firing honeycomb formed body

Publications (2)

Publication Number Publication Date
JP2008120657A JP2008120657A (en) 2008-05-29
JP4730285B2 true JP4730285B2 (en) 2011-07-20

Family

ID=39505813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006309641A Expired - Fee Related JP4730285B2 (en) 2006-11-15 2006-11-15 Method for firing honeycomb formed body

Country Status (1)

Country Link
JP (1) JP4730285B2 (en)

Also Published As

Publication number Publication date
JP2008120657A (en) 2008-05-29

Similar Documents

Publication Publication Date Title
JP5957110B2 (en) Ceramic structure and method for manufacturing ceramic structure
US9221192B2 (en) Ceramic processing firing
JP2006239603A (en) Honeycomb structural body
JP2003212672A (en) Process for manufacturing porous ceramic structure
US20110127699A1 (en) Method And Apparatus For Thermally Debindering A Cellular Ceramic Green Body
JP4311609B2 (en) Method for producing porous ceramic body
JP4826439B2 (en) Method for firing ceramic honeycomb formed body
US20180272328A1 (en) Plugged honeycomb structure
KR20090125033A (en) Plugged honeycomb structure
JP2008110896A (en) Method of manufacturing ceramic honeycomb structure
JP5082398B2 (en) Manufacturing method of exhaust gas purification filter
US11136272B2 (en) Method of producing fired ceramic article and method of firing ceramic green body
US11285468B2 (en) Honeycomb structure
JP4730285B2 (en) Method for firing honeycomb formed body
US20150050609A1 (en) Method and apparatus for thermally debindering a cellular ceramic green body
JP2008100408A (en) Ceramic honeycomb structure
JP6295111B2 (en) Plugged honeycomb structure
JP2008169081A (en) Method for repairing and producing honeycomb structure
JP2008104944A (en) Honeycomb filter
JP2002234780A (en) Method for producing porous ceramic honeycomb structure
US10633293B2 (en) Honeycomb structure
KR101807833B1 (en) A process for the preparation of ceramic honeycomb catalyst supporter having a low coefficient of expansion and the ceramic honeycomb catalyst supporter prepared therefrom
JP2006188404A (en) Ceramic monolith carrier and its producing method
JP4699885B2 (en) Manufacturing method of honeycomb structure
JP2008136981A (en) Honeycomb structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110311

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110404

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees