JP4729734B2 - Device for measuring heavy metal ions using a kidney sensor - Google Patents

Device for measuring heavy metal ions using a kidney sensor Download PDF

Info

Publication number
JP4729734B2
JP4729734B2 JP2001146528A JP2001146528A JP4729734B2 JP 4729734 B2 JP4729734 B2 JP 4729734B2 JP 2001146528 A JP2001146528 A JP 2001146528A JP 2001146528 A JP2001146528 A JP 2001146528A JP 4729734 B2 JP4729734 B2 JP 4729734B2
Authority
JP
Japan
Prior art keywords
ions
heavy metal
metal ions
rare earth
earth element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001146528A
Other languages
Japanese (ja)
Other versions
JP2002340801A (en
Inventor
剛 荒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kitakyushu Foundation for Advancement of Industry Science and Technology
Original Assignee
Kitakyushu Foundation for Advancement of Industry Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kitakyushu Foundation for Advancement of Industry Science and Technology filed Critical Kitakyushu Foundation for Advancement of Industry Science and Technology
Priority to JP2001146528A priority Critical patent/JP4729734B2/en
Publication of JP2002340801A publication Critical patent/JP2002340801A/en
Application granted granted Critical
Publication of JP4729734B2 publication Critical patent/JP4729734B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Description

【0001】
【発明が属する技術分野】
本発明は、都市ごみ焼却灰や電子機器類の焼却灰に含まれる鉛、亜鉛、銅、クロム等重金属のイオンによる汚染地域即ち河川、湖沼、土地におけるこれら重金属イオンの迅速かつ簡便な分析方法及び装置に関する。
【0002】
【従来の技術】
河川等における重金属イオンの検出手段として、たとえば特開平3―202754号公報に開示されている原子吸光分光光度計をはじめ、化学試薬分析法、高周波プラズマ発光装置、蛍光X線分析装置などが知られている。
【0003】
【発明が解決しようとする課題】
しかしながら、前記従来技術によるときは、化学試薬分析法は簡便ではなく、分析にはある程度以上の熟練を必要とする。また、原子吸光分光光度計や高周波プラズマ発光装置、蛍光X線分析装置による重金属イオンの分析は、分析自体は比較的簡便であるけれども、分析機器が高価であるのみならず持ち運びに不便であるなどの問題がある。
【0004】
本発明は、重金属イオンによる汚染地域で試料採取したものをその場で分析でき、また、ごみ焼却場や処分場で重金属イオンのモニターもできる重金属イオンの測定装置を提供することを目的とする。
【0005】
【課題を解決するための手段】
上記課題を解決するための請求項1に記載の発明は、重金属イオンの測定装置であって、ナトリウム・カルボキシメチルセルロース水溶液および3価のカチオンである希土類元素イオンと重金属イオンを含む水溶液を混合して得られるセルロース重合膜と重金属イオンが共存するときの前記セルロース重合膜における3価の希土類元素イオンの蛍光強度を測定するための分光蛍光光度計ならびに、 光源としてのレーザ(1)と、試料(2)であるナトリウム・カルボキシメチルセルロース水溶液および3価のカチオンである希土類元素イオンと重金属イオンを含む水溶液を混合して得られるセルロース重合膜を挟持する石英ガラス(3)と、レンズ(4)と、該レンズ(4)によって集光された石英ガラス(3)からの反射光を電気信号に変換する光電子倍増管(5)と、レーザ(1)の発振幅や出力を制御するとともに光電子倍増管(5)からの信号をデジタル化するコントローラ(6)と、データ解析装置(7)からなる蛍光寿命測定装置を有することを特徴とするキドセンサによる重金属イオン測定装置である。
【0006】
請求項2に記載の発明は、希土類元素イオンがEu3+またはTb3+である請求項1に記載のキドセンサによる重金属イオン測定装置である。
【0007】
【発明の実施の形態】
以下、本発明をその好ましい実施形態に則して説明する。
【0008】
発明者は、希土類元素イオンを取り込んだセルロース重合膜の作成とその蛍光特性について検討してきた。その過程において、希土類元素イオンと遷移金属イオンの2成分溶液を用いて重合させたセルロース重合膜中の希土類元素イオンの蛍光特性を調べた結果、Tb3+−Co2+系やEu3+−Cr3+系において、希土類元素イオンの蛍光強度および蛍光寿命が、共存するCo2+イオンやCr3+イオンのような遷移金属イオンによって強く影響されることを知見した。本発明は、この新規な知見に基づいてなされた。
【0009】
水溶液中で希土類元素イオンの蛍光を測定すると、希土類元素イオンに水分子が配位するために、その強度が極端に減少する。これを避けるためには、水分子の配位を妨害する適当な有機分子を配位させる必要がある。しかしながら、有機分子を測定の度毎に一定量加えることは、測定プロセスを複雑にし実際的ではない。
【0010】
発明者は、発明者が新たに見出したナトリウム・カルボキシメチルセルロース(Sodium Carboxymethyl Cellulose)(以下、Na−CMCと略称する。)水溶液が、1価および2価のカチオンを含む水溶液と混合したのでは重合膜を得ることができないけれども、3価のカチオンである希土類元素イオンを含む水溶液と混合すると重合膜が形成されることならびに、他の2価或いは3価の遷移金属イオンが共存しているとき、これらも重合膜に取り込まれることを利用するとともに、この重合膜における希土類元素イオンの蛍光強度および蛍光寿命が共存する他の2価或いは3価の遷移金属イオンに強く影響されるという上記知見に基づいて、環境汚染につながる2価或いは3価の遷移金属イオンを分析する方法および装置を完成した。
【0011】
Na−CMC水溶液を用いてセルロース重合膜を得るには、図1に示すように、蛍光に影響しない、黒い150メッシュのナイロン膜を隔膜として、セルの一方にNa−CMC水溶液を、他方に希土類元素イオンと遷移金属イオンを含む水溶液を入れ、反応容器を反転させて一定時間(約1分間)Na−CMC水溶液と、希土類元素イオンおよび遷移金属イオンを含む水溶液を、ナイロン膜を介して接触させる。こうして得られたセルロース重合膜をナイロン膜ごと取り出し、希土類元素イオンの蛍光強度および蛍光寿命を測定する。
【0012】
【実施例】
実施例1
希土類元素イオンであるEu3+と遷移金属イオン、即ちEu3+−Mn+(Cu2+,Cu,Co2+,Fe3+,Cr3+,Mn2+,Zn2+,Pb2+)系におけるEu3+の蛍光強度について調べた。Eu3+イオンの蛍光強度は、分光蛍光光度計を用いて測定した。図2に、Eu3+を含むセルロース重合膜の蛍光吸収スペクトルを示す。測定範囲内に3本の吸収スペクトルピークが観測された。これらのピーク位置から、何れもEu3+によるものと判断した。これら3本の吸収スペクトルピークは、Eu3+イオンのみの場合に比し、CuイオンやCr3+イオンが共存する場合には、極端に減少する。Eu3+イオンの蛍光強度が最も強い615nmにおける強度を基準にとり、Eu3+イオンのみのときを1とし、遷移金属が共存する系での蛍光強度を相対値で求めたものを表1に示す。
【0013】
【表1】

Figure 0004729734
表1から明らかなように、全ての系で、Eu3+イオンの濃度は殆ど一定であるにも拘わらず、遷移金属の共存によって、Eu3+イオンの蛍光強度が大きく変化している。わけても、Eu3+−Cu系、Eu3+−Cu2+系、Eu3+−Fe3+系、Eu3+−Cr3+系において、Eu3+イオンの蛍光強度の変化が大きい。共存遷移金属イオンが、d軌道が完全に埋まったZn2+(3d10)やPb2+(5d10)の場合は、Eu3+イオンの蛍光強度が半分程度にまで減少する。
しかし、共存遷移金属イオンが、Co2+、Mn2+である場合は、Eu3+イオンの蛍光強度は殆ど変化していない。
【0014】
次に、Eu3+−Mn+(Cu2+,Cu,Co2+,Fe3+,Cr3+,Mn2+,Zn2+,Pb2+)系におけるEu3+の蛍光寿命について調べた。図3に、Eu3+イオンの蛍光寿命を測定するための装置の一例を示す。図3において、1はレーザであって、この実施例においては窒素ガスレーザであり、337nm波長の青色光を発生し試料を照射する。2は試料であり、セルロース重合膜における希土類元素イオンおよび共存する遷移金属イオンである。3は石英ガラスであって、試料2を挟持する。4はレンズである。5は光電子増倍管であり、レンズ4によって集光された石英ガラス3からの反射光を電気信号に変換する。6はコントローラであって、レーザ1の発振幅や出力を制御するとともに光電子増倍管5からの信号をデジタル化する。7はデータ解析装置であり、たとえばEu3+−Cu系の試料におけるEu3+イオンの蛍光寿命を定量的に出力する。
【0015】
上記蛍光寿命測定装置を使っての、Eu3+−Mn+(Cu2+,Cu,Co2+,Fe3+,Cr3+,Mn2+,Zn2+,Pb2+)系におけるEu3+の蛍光寿命の測定結果を、表2に示す。
【0016】
【表2】
Figure 0004729734
表2から明らかなように、蛍光強度の変化が殆ど無かったEu3+−Co2+系、Eu3+−Mn2+系の場合、Eu3+の蛍光寿命は、Eu3+のみの場合と殆ど変わらなかった。また、Eu3+の蛍光強度の減少が見られたEu3+−Cr3+系、Eu3+−Zn2+系、Eu3+−Pb2+系においては、Eu3+の蛍光寿命は大きく変化することがなかった。しかし、Eu3+の蛍光強度が極端に減少したEu3+−Cu系、Eu3+−Cu2+系においては、Eu3+の蛍光寿命は大きく変化し短くなった。
【0017】
一方、Eu3+−Cu系、Eu3+−Cu2+系においては、Eu3+の蛍光寿命は、Cu、Cu2+の濃度の増加に伴って減少することが分かった。この結果を、図4に示す。Eu3+イオンのみの場合の蛍光寿命をτ、Eu3+−Cu系、Eu3+−Cu2+系におけるEu3+の蛍光寿命をτとしてτ/τを縦軸に、Cuイオン、Cu2+イオンの濃度を横軸にとってプロットすると、溶液中のCuイオン、Cu2+イオンの濃度の増加に対し、τ/τの値は線形的に増加することが分かる。また、Cuのτ/τの値はCu2+の2倍の値を示している。この結果から、Eu3+イオンを用いることによって、共存する銅イオンをEu3+イオンの蛍光強度および蛍光寿命を測定することによって、選択的に定性・定量分析を行うことができる。また、Co2+、Mn2+を除いて、遷移金属イオンの定性分析ができる。
【0018】
実施例2
次に、希土類元素イオンとしてTb3+を用いて、Tb3+−Mn+(Cu2+,Cu,Co2+,Fe3+,Cr3+,Mn2+,Zn2+,Pb2+)系におけるTb3+の蛍光強度、蛍光寿命を測定した。
図5に、Tb3+を含むセルロース重合膜の蛍光吸収スペクトルを示す。測定範囲内に4本の吸収スペクトルピークが観測されるが、ピークの位置から、何れもTb3+イオンによるものであると判断した。
Tb3+イオンの吸収スペクトルも、遷移金属イオンが共存すると、蛍光強度の減少する系とそうでない系とに分かれることが分かった。
Tb3+イオンの蛍光強度が著しく減少する系は、Tb3+−Co2+系であった。その他のTb3+−Mn+系におけるTb3+の蛍光強度を、Tb3+イオンのみの場合のものを1として比較した結果を表3に示す。
【0019】
【表3】
Figure 0004729734
この比較においては、Tb3+イオンの蛍光強度の最大値の543nmにおける蛍光強度を基準とした。また、Tb3+−Zn2+系において、Tb3+イオンの蛍光強度が減少するが、Tb3+−Pb2+系においては殆ど変化が認められない。Tb3+−Fe3+系の場合は、Eu3+−Fe3+系の場合と同様に、Tb3+イオンの蛍光強度が減少することが分かった。
【0020】
次に、極端にTb3+イオンの蛍光強度が減少したTb3+−Co2+系について、Co2+のイオン濃度を変化させたときのTb3+の蛍光寿命の測定結果を、図6に示す。Co2+イオン濃度の低い領域では、Eu3+−Cu系、Eu3+−Cu2+系におけると同様に、Co2+の増加に伴ってτ/τの値は直線的に増加する。しかし、Eu3+−Cu系、Eu3+−Cu2+系におけるとは異なり、溶液中のCo2+濃度が増加してくると、Tb3+の蛍光吸収スペクトルにおいて、543nmにおけるスペクトルが観測され得ないほど蛍光強度が減少するため、正確な蛍光寿命を測定できない処から前記直線関係からずれてくる。何れにしても、Co2+濃度の低い所では定量性があり、Tb3+イオンを用いることにより溶液中に共存するCo2+イオンを、Tb3+イオンの蛍光強度・蛍光寿命を測定することによって選択的に定性・定量分析できる。また、Mn2+、Pb2+を除いて、Tb3+イオンの蛍光強度を測定することによって、遷移金属イオンを定性分析することができる。
【0021】
【発明の効果】
本発明によれば、Na−CMC水溶液と希土類元素イオンとによってセルロース重合膜を得ることができることならびに遷移金属元素イオンが共存している場合にはこれらをセルロース重合膜に取り込むことができる特性を用いて、希土類元素イオンの蛍光強度および蛍光寿命を測定することによって重金属イオンによる汚染地域や河川において、試料採取したその場で迅速かつ簡便に分析することができる定性・定量分析装置を提供することができる。
【0022】
請求項2に記載の発明によれば、Cu、Cu2+、或はCo2+について、定性、定量分析を行うことができる。
【0023】
【図面の簡単な説明】
【図1】セルロース重合膜を作成するプロセスを示す図
【図2】セルロース重合膜におけるEu3+イオンの吸収スペクトルを示すグラフ
【図3】希土類元素イオンの蛍光寿命測定装置を示す概略図
【図4】セルロース重合膜におけるCuイオン、Cu2+イオンの濃度と、Eu3+イオンの蛍光寿命の関係を示すグラフ
【図5】セルロース重合膜におけるTb3+イオンの吸収スペクトルを示すグラフ
【図6】セルロース重合膜におけるCo2+イオンの濃度と、Tb3+イオンの蛍光寿命の関係を示すグラフ
【0024】
【符号の説明】
1 レーザ
2 試料
3 石英ガラス
4 レンズ
5 光電子増倍管
6 コントローラ
7 データ解析装置[0001]
[Technical field to which the invention belongs]
The present invention provides a rapid and simple method for analyzing these heavy metal ions in areas contaminated with heavy metal ions such as lead, zinc, copper, chromium, etc. contained in municipal waste incineration ash and incineration ash of electronic equipment, that is, rivers, lakes, and lands. Relates to the device.
[0002]
[Prior art]
As means for detecting heavy metal ions in rivers and the like, for example, an atomic absorption spectrophotometer disclosed in JP-A-3-202754, a chemical reagent analysis method, a high-frequency plasma emission apparatus, a fluorescent X-ray analysis apparatus, and the like are known. ing.
[0003]
[Problems to be solved by the invention]
However, when using the conventional technique, the chemical reagent analysis method is not simple, and a certain level of skill is required for the analysis. In addition, the analysis of heavy metal ions by an atomic absorption spectrophotometer, a high-frequency plasma emission device, or a fluorescent X-ray analyzer is relatively simple, but the analysis equipment is not only expensive but also inconvenient to carry. There is a problem.
[0004]
An object of the present invention is to provide an apparatus for measuring heavy metal ions, which can be analyzed in situ on a sample collected in an area contaminated with heavy metal ions, and can also monitor heavy metal ions at a garbage incineration site or a disposal site.
[0005]
[Means for Solving the Problems]
The invention according to claim 1 for solving the above-mentioned problem is an apparatus for measuring heavy metal ions, comprising mixing an aqueous solution containing sodium / carboxymethylcellulose and a rare earth element ion that is a trivalent cation and heavy metal ions. The obtained cellulose polymer film , a spectrofluorometer for measuring the fluorescence intensity of trivalent rare earth element ions in the cellulose polymer film when heavy metal ions coexist , a laser (1) as a light source, a sample ( 2) quartz glass (3) sandwiching a cellulose polymer film obtained by mixing a sodium carboxymethyl cellulose aqueous solution and a trivalent cation rare earth element ion and an aqueous solution containing heavy metal ions, a lens (4), The reflected light from the quartz glass (3) collected by the lens (4) is converted into an electric signal. A photomultiplier tube (5) to be replaced, a controller (6) for controlling the emission amplitude and output of the laser (1) and digitizing the signal from the photomultiplier tube (5), and a data analysis device (7). It is a heavy metal ion measuring device by a kind sensor characterized by having a fluorescence lifetime measuring device .
[0006]
The invention according to claim 2 is the heavy metal ion measuring apparatus by the kidney sensor according to claim 1 , wherein the rare earth element ions are Eu 3+ or Tb 3+ .
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described according to preferred embodiments thereof.
[0008]
The inventor has studied the preparation of a cellulose polymer film incorporating rare earth element ions and the fluorescence characteristics thereof. In the process, the fluorescence characteristics of the rare earth element ions in the cellulose polymer film polymerized using the binary solution of the rare earth element ions and the transition metal ions were examined. As a result, the Tb 3+ -Co 2+ system and the Eu 3+ -Cr 3+ system were investigated. , It was found that the fluorescence intensity and fluorescence lifetime of rare earth element ions are strongly influenced by coexisting transition metal ions such as Co 2+ ions and Cr 3+ ions. The present invention has been made based on this novel finding.
[0009]
When fluorescence of a rare earth element ion is measured in an aqueous solution, water molecules coordinate with the rare earth element ion, and the intensity thereof is extremely reduced. In order to avoid this, it is necessary to coordinate an appropriate organic molecule that interferes with the coordination of water molecules. However, adding a certain amount of organic molecules for each measurement complicates the measurement process and is not practical.
[0010]
The inventor newly polymerized sodium carboxymethyl cellulose (hereinafter abbreviated as Na-CMC) aqueous solution, which was newly found by the inventor, mixed with an aqueous solution containing monovalent and divalent cations. Although a film cannot be obtained, when mixed with an aqueous solution containing a rare earth element ion that is a trivalent cation, a polymerized film is formed, and when other divalent or trivalent transition metal ions coexist, Based on the above findings that these are also taken into the polymer film, and that the fluorescence intensity and fluorescence lifetime of the rare earth element ions in this polymer film are strongly influenced by other divalent or trivalent transition metal ions. Thus, a method and apparatus for analyzing divalent or trivalent transition metal ions that lead to environmental pollution have been completed.
[0011]
In order to obtain a cellulose polymer film using an aqueous Na-CMC solution, as shown in FIG. 1, a black 150-mesh nylon membrane that does not affect fluorescence is used as a diaphragm, an aqueous Na-CMC solution is applied to one of the cells, and a rare-earth material is applied to the other. An aqueous solution containing element ions and transition metal ions is added, the reaction vessel is inverted, and an aqueous solution containing Na-CMC and an aqueous solution containing rare earth element ions and transition metal ions are brought into contact with each other via a nylon membrane for a predetermined time (about 1 minute). . The cellulose polymer film thus obtained is taken out together with the nylon film, and the fluorescence intensity and fluorescence lifetime of rare earth element ions are measured.
[0012]
【Example】
Example 1
A rare earth element ion Eu 3+ and the transition metal ions, namely Eu 3+ -M n + fluorescence intensity (Cu 2+, Cu +, Co 2+, Fe 3+, Cr 3+, Mn 2+, Zn 2+, Pb 2+) Eu 3+ in system Investigated about. The fluorescence intensity of Eu 3+ ions was measured using a spectrofluorometer. FIG. 2 shows a fluorescence absorption spectrum of a cellulose polymer film containing Eu 3+ . Three absorption spectrum peaks were observed within the measurement range. From these peak positions, all were judged to be due to Eu 3+ . These three absorption spectrum peaks are extremely reduced when Cu + ions and Cr 3+ ions coexist as compared with the case of Eu 3+ ions alone. Table 1 shows the relative intensity of fluorescence intensity in a system in which transition metals coexist, with the intensity at 615 nm at which Eu 3+ ions have the strongest fluorescence intensity being taken as a reference, with 1 being the Eu 3+ ion alone.
[0013]
[Table 1]
Figure 0004729734
As apparent from Table 1, in all systems, the concentration of Eu 3+ ions despite the almost constant, by coexistence of a transition metal, the fluorescence intensity of Eu 3+ ions greatly changes. In particular, the fluorescence intensity of Eu 3+ ions is large in the Eu 3+ -Cu + system, Eu 3+ -Cu 2+ system, Eu 3+ -Fe 3+ system, and Eu 3+ -Cr 3+ system. When the coexisting transition metal ion is Zn 2+ (3d 10 ) or Pb 2+ (5d 10 ) in which the d orbital is completely filled, the fluorescence intensity of the Eu 3+ ion is reduced to about half.
However, when the coexisting transition metal ions are Co 2+ and Mn 2+ , the fluorescence intensity of Eu 3+ ions hardly changes.
[0014]
Next, the fluorescence lifetime of Eu 3+ in the Eu 3+ -M n + (Cu 2+ , Cu + , Co 2+ , Fe 3+ , Cr 3+ , Mn 2+ , Zn 2+ , Pb 2+ ) system was examined. FIG. 3 shows an example of an apparatus for measuring the fluorescence lifetime of Eu 3+ ions. In FIG. 3, reference numeral 1 denotes a laser, which is a nitrogen gas laser in this embodiment, which generates blue light having a wavelength of 337 nm and irradiates the sample. Reference numeral 2 denotes a sample, which is a rare earth element ion and a coexisting transition metal ion in the cellulose polymer film. Reference numeral 3 denotes quartz glass, which sandwiches the sample 2. Reference numeral 4 denotes a lens. A photomultiplier tube 5 converts the reflected light from the quartz glass 3 collected by the lens 4 into an electric signal. A controller 6 controls the emission amplitude and output of the laser 1 and digitizes the signal from the photomultiplier tube 5. Reference numeral 7 denotes a data analysis apparatus that quantitatively outputs the fluorescence lifetime of Eu 3+ ions in, for example, an Eu 3+ -Cu + system sample.
[0015]
The use of the fluorescence lifetime measurement apparatus, Eu 3+ -M n + (Cu 2+, Cu +, Co 2+, Fe 3+, Cr 3+, Mn 2+, Zn 2+, Pb 2+) measurement results of the fluorescence lifetime of Eu 3+ in system Is shown in Table 2.
[0016]
[Table 2]
Figure 0004729734
As apparent from Table 2, Eu 3+ -Co 2+ system the change in fluorescence intensity was little, if the Eu 3+ -Mn 2+ systems, fluorescence lifetime of Eu 3+ was not almost the same as the case of Eu 3+ only. In the Eu 3+ -Cr 3+ system, Eu 3+ -Zn 2+ system, and Eu 3+ -Pb 2+ system in which a decrease in Eu 3+ fluorescence intensity was observed, the fluorescence lifetime of Eu 3+ did not change significantly. However, in the Eu 3+ -Cu + system and Eu 3+ -Cu 2+ system in which the fluorescence intensity of Eu 3+ was extremely reduced, the fluorescence lifetime of Eu 3+ changed greatly and became shorter.
[0017]
On the other hand, in the Eu 3+ -Cu + system and Eu 3+ -Cu 2+ system, it was found that the fluorescence lifetime of Eu 3+ decreases with increasing concentrations of Cu + and Cu 2+ . The result is shown in FIG. The fluorescence lifetime in the case of Eu 3+ ions only tau 0, Eu 3+ -Cu + system, the vertical axis of tau 0 / tau fluorescence lifetime of Eu 3+ as tau in Eu 3+ -Cu 2+ system, Cu + ions, Cu 2+ When the concentration of ions is plotted on the horizontal axis, it can be seen that the value of τ 0 / τ increases linearly with increasing concentrations of Cu + ions and Cu 2+ ions in the solution. The value of Cu + of tau 0 / tau represents twice the value of Cu 2+. This result, by using the Eu 3+ ions, copper ions coexist by measuring the fluorescence intensity and the fluorescence lifetime of Eu 3+ ions, it can be carried out selectively qualitative and quantitative analysis. In addition, qualitative analysis of transition metal ions can be performed except for Co 2+ and Mn 2+ .
[0018]
Example 2
Next, using Tb 3+ as the rare earth element ion, the fluorescence intensity of Tb 3+ in the Tb 3+ -M n + (Cu 2+ , Cu + , Co 2+ , Fe 3+ , Cr 3+ , Mn 2+ , Zn 2+ , Pb 2+ ) system. The fluorescence lifetime was measured.
FIG. 5 shows a fluorescence absorption spectrum of a cellulose polymer film containing Tb 3+ . Although four absorption spectrum peaks are observed within the measurement range, it was determined from the peak positions that all were due to Tb 3+ ions.
It was also found that the absorption spectrum of Tb 3+ ions is divided into a system in which the fluorescence intensity decreases and a system in which the fluorescence intensity does not exist when the transition metal ion coexists.
The system in which the fluorescence intensity of Tb 3+ ions was significantly reduced was the Tb 3+ -Co 2+ system. Table 3 shows the result of comparing the fluorescence intensity of Tb 3+ in other Tb 3+ -M n + systems, assuming that the Tb 3+ ion alone is 1.
[0019]
[Table 3]
Figure 0004729734
In this comparison, the fluorescence intensity at 543 nm, which is the maximum value of the fluorescence intensity of Tb 3+ ions, was used as a reference. Further, the Tb 3+ -Zn 2+ systems, although the fluorescence intensity of Tb 3+ ions is decreased, hardly change was observed in the Tb 3+ -Pb 2+ systems. In the case of the Tb 3+ -Fe 3+ system, it was found that the fluorescence intensity of the Tb 3+ ion decreased as in the case of the Eu 3+ -Fe 3+ system.
[0020]
Next, for the Tb 3+ -Co 2+ system in which the fluorescence intensity of Tb 3+ ions is extremely reduced, the measurement results of the Tb 3+ fluorescence lifetime when the Co 2+ ion concentration is changed are shown in FIG. In the region where the Co 2+ ion concentration is low, the value of τ 0 / τ increases linearly with the increase in Co 2+ , as in the Eu 3+ -Cu + and Eu 3+ -Cu 2+ systems. However, unlike the Eu 3+ -Cu + and Eu 3+ -Cu 2+ systems, when the Co 2+ concentration in the solution increases, the fluorescence absorption spectrum of Tb 3+ cannot be observed at 543 nm. Since the fluorescence intensity decreases, the linear relationship deviates from the point where accurate fluorescence lifetime cannot be measured. In any case, there is quantitativeness at a low Co 2+ concentration, and by using Tb 3+ ions, Co 2+ ions coexisting in the solution are selectively measured by measuring the fluorescence intensity and fluorescence lifetime of Tb 3+ ions. Qualitative and quantitative analysis is possible. Further, the transition metal ions can be qualitatively analyzed by measuring the fluorescence intensity of the Tb 3+ ions except for Mn 2+ and Pb 2+ .
[0021]
【The invention's effect】
According to the present invention, a cellulose polymer film can be obtained with an aqueous Na-CMC solution and a rare earth element ion, and when transition metal element ions coexist, these can be incorporated into the cellulose polymer film. To provide a qualitative / quantitative analyzer that can quickly and easily analyze the sampled spot in a contaminated area or river due to heavy metal ions by measuring the fluorescence intensity and fluorescence lifetime of rare earth ions. it can.
[0022]
According to the invention described in claim 2, Cu +, Cu 2+, or for Co 2+, can be performed qualitatively, quantitatively analyzed.
[0023]
[Brief description of the drawings]
FIG. 1 is a diagram showing a process for producing a cellulose polymer film. FIG. 2 is a graph showing an absorption spectrum of Eu 3+ ions in the cellulose polymer film. FIG. 3 is a schematic diagram showing an apparatus for measuring fluorescence lifetime of rare earth element ions. FIG. 5 is a graph showing the relationship between the concentration of Cu + ions and Cu 2+ ions in the cellulose polymer film and the fluorescence lifetime of Eu 3+ ions. FIG. 5 is a graph showing the absorption spectrum of Tb 3+ ions in the cellulose polymer film. A graph showing the relationship between the concentration of Co 2+ ions in the film and the fluorescence lifetime of Tb 3+ ions
[Explanation of symbols]
1 Laser 2 Sample 3 Quartz Glass 4 Lens 5 Photomultiplier 6 Controller 7 Data Analysis Device

Claims (2)

重金属イオンの測定装置であって、ナトリウム・カルボキシメチルセルロース水溶液および3価のカチオンである希土類元素イオンと重金属イオンを含む水溶液を混合して得られるセルロース重合膜と重金属イオンが共存するときの前記セルロース重合膜における3価の希土類元素イオンの蛍光強度を測定するための分光蛍光光度計ならびに、 光源としてのレーザ(1)と、試料(2)であるナトリウム・カルボキシメチルセルロース水溶液および3価のカチオンである希土類元素イオンと重金属イオンを含む水溶液を混合して得られるセルロース重合膜を挟持する石英ガラス(3)と、レンズ(4)と、該レンズ(4)によって集光された石英ガラス(3)からの反射光を電気信号に変換する光電子倍増管(5)と、レーザ(1)の発振幅や出力を制御するとともに光電子倍増管(5)からの信号をデジタル化するコントローラ(6)と、データ解析装置(7)からなる蛍光寿命測定装置を有することを特徴とするキドセンサによる重金属イオン測定装置。 An apparatus for measuring heavy metal ions, a cellulose polymer film obtained by mixing a sodium / carboxymethylcellulose aqueous solution and a trivalent cation rare earth element ion and an aqueous solution containing heavy metal ions, and the cellulose when heavy metal ions coexist A spectrofluorophotometer for measuring the fluorescence intensity of trivalent rare earth element ions in the polymerized film , a laser (1) as a light source, a sodium carboxymethylcellulose aqueous solution as a sample (2), and a trivalent cation. From quartz glass (3) sandwiching a cellulose polymer film obtained by mixing an aqueous solution containing rare earth element ions and heavy metal ions, a lens (4), and quartz glass (3) condensed by the lens (4) Photomultiplier tube (5) that converts the reflected light into an electric signal and oscillation of the laser (1) Photomultiplier tube controls the or output controller for digitizing the signal from (5) (6), heavy metal ion measuring device according Kidosensa characterized by having a fluorescence lifetime measurement apparatus comprising a data analyzer (7) . 希土類元素イオンがEu3+またはTb3+である請求項1に記載のキドセンサによる重金属イオン測定装置。 The heavy metal ion measuring apparatus using a kidney sensor according to claim 1, wherein the rare earth element ion is Eu 3+ or Tb 3+ .
JP2001146528A 2001-05-16 2001-05-16 Device for measuring heavy metal ions using a kidney sensor Expired - Fee Related JP4729734B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001146528A JP4729734B2 (en) 2001-05-16 2001-05-16 Device for measuring heavy metal ions using a kidney sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001146528A JP4729734B2 (en) 2001-05-16 2001-05-16 Device for measuring heavy metal ions using a kidney sensor

Publications (2)

Publication Number Publication Date
JP2002340801A JP2002340801A (en) 2002-11-27
JP4729734B2 true JP4729734B2 (en) 2011-07-20

Family

ID=18992164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001146528A Expired - Fee Related JP4729734B2 (en) 2001-05-16 2001-05-16 Device for measuring heavy metal ions using a kidney sensor

Country Status (1)

Country Link
JP (1) JP4729734B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110823988A (en) * 2018-08-10 2020-02-21 湖北工业大学 Method for detecting content of heavy metal cadmium and arsenic in construction waste

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03170849A (en) * 1989-11-30 1991-07-24 Rikagaku Kenkyusho Method for measuring humidity
JPH11158148A (en) * 1997-11-28 1999-06-15 Rikagaku Kenkyusho New 5-alkoxy-2-(2-pyridylazo)phenol compound and new photoresponsive lb membrane containing the same compound and its use
WO1999046600A1 (en) * 1998-03-11 1999-09-16 Sensors For Medicine And Science, Inc. Detection of analytes by fluorescent lanthanide chelates

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03170849A (en) * 1989-11-30 1991-07-24 Rikagaku Kenkyusho Method for measuring humidity
JPH11158148A (en) * 1997-11-28 1999-06-15 Rikagaku Kenkyusho New 5-alkoxy-2-(2-pyridylazo)phenol compound and new photoresponsive lb membrane containing the same compound and its use
WO1999046600A1 (en) * 1998-03-11 1999-09-16 Sensors For Medicine And Science, Inc. Detection of analytes by fluorescent lanthanide chelates

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110823988A (en) * 2018-08-10 2020-02-21 湖北工业大学 Method for detecting content of heavy metal cadmium and arsenic in construction waste

Also Published As

Publication number Publication date
JP2002340801A (en) 2002-11-27

Similar Documents

Publication Publication Date Title
Moor et al. Determination of heavy metals in soils, sediments and geological materials by ICP-AES and ICP-MS
Guo et al. Studies on the reaction between cadmium and potassium tetrahydroborate in aqueous solution and its application in atomic fluorescence spectrometry
Xiao-Wei et al. Determination of cadmium at ultratrace levels by cold vapour atomic absorption spectrometry
US8216447B2 (en) Total organic compound (TOC) analyzer
Cheetham et al. X-ray microanalysis of thin crystals in the electron microscope and its application to solid-state chemistry
CN109777408B (en) A kind of high-fluorescence quantum yield N doping carbon dots and its preparation method and application
JPH08136480A (en) Sulfur-in-oil measuring apparatus
Tang et al. Determination of fluorine in copper ore using laser-induced breakdown spectroscopy assisted by the SrF molecular emission band
Moreda-piñeiro et al. Direct determination of arsenic in sea-water by continuous-flow hydride generation atomic fluorescence spectrometry
JP4729734B2 (en) Device for measuring heavy metal ions using a kidney sensor
Wandt et al. Simultaneous determination of major and trace elements in urinary calculi by microwave-assisted digestion and inductively coupled plasma atomic emission spectrometric analysis
Ganjali et al. Design and construction of a novel optical sensor for determination of trace amounts of dysprosium ion
Yang et al. Miniature microplasma carbon optical emission spectrometry for detection of dissolved oxygen in water
Baude et al. Glow discharge atomic spectrometry for the analysis of environmental samples—a review
Vanderborght et al. Water analysis by spark-source mass-spectrometry after preconcentration on activated carbon
Kajič et al. Determination of trace cobalt concentrations in human serum by adsorptive stripping voltammetry
Yousefi et al. On-line determination of ultra-trace of antimony species via hydride generation technique using ultrasonic nebulization system coupled to ICP-OES
Muia et al. Total reflection X-ray fluorescence analysis using an extended focus tube for the determination of dissolved elements in rain water
Dalai et al. Trace determination of strontium and barium in river waters by inductively coupled plasma‐atomic emission spectrometry using an ultrasonic nebulizer
Butcher et al. Diode laser atomic absorption spectrometry as a detector for metal speciation
CN110609023B (en) Preparation method of dopamine-modified molybdenum oxide quantum dot and application of dopamine-modified molybdenum oxide quantum dot in trace uranium detection
Elinder et al. Principles and problems of cadmium analysis
CN1183381C (en) Method and apparatus for quantitative analysis of molybdenate in bittern of absorption refrigerating system
Pu et al. Copper Ion Detection Method Based on a Quantum Dot CdTe Fluorescent Probe.
CN103196877B (en) Method for detecting heavy metal content based on homogeneous time-resolved fluorescence

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080430

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080501

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080430

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100813

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110225

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110330

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees