JP4729070B2 - Aluminum alloy substrate for magnetic disk and die for punching press of aluminum alloy substrate for magnetic disk - Google Patents

Aluminum alloy substrate for magnetic disk and die for punching press of aluminum alloy substrate for magnetic disk Download PDF

Info

Publication number
JP4729070B2
JP4729070B2 JP2008117924A JP2008117924A JP4729070B2 JP 4729070 B2 JP4729070 B2 JP 4729070B2 JP 2008117924 A JP2008117924 A JP 2008117924A JP 2008117924 A JP2008117924 A JP 2008117924A JP 4729070 B2 JP4729070 B2 JP 4729070B2
Authority
JP
Japan
Prior art keywords
die
aluminum alloy
substrate
punching
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008117924A
Other languages
Japanese (ja)
Other versions
JP2008269777A (en
Inventor
英希 高橋
高志 森
泰之 大関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2008117924A priority Critical patent/JP4729070B2/en
Publication of JP2008269777A publication Critical patent/JP2008269777A/en
Application granted granted Critical
Publication of JP4729070B2 publication Critical patent/JP4729070B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Punching Or Piercing (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Description

本発明は、磁気ディスク用アルミニウム合金基板(以下この明細書では「ブランク材」の意味で使用する。)及び磁気ディスク用アルミニウム合金基板の打抜きプレス用金型に関するものである。 The present invention (hereinafter this specification means used to. The "blank") aluminum alloy substrate for a magnetic disk relates stamping press die for an aluminum alloy substrate for beauty magnetic disk.

磁気ディスク用基板(以下単に「基板」と言う。)の打抜きプレス用金型(プッシュバック方式)は、図1でその概略を示すように、アルミニウム合金素条1をドーナツ状に打抜くために上下に対向配置された下型2と上型3とから構成されている。
下型2は外周のダイス20と中央のホールパンチ21とを備え、上型3はダイス20とホールパンチ21との間に下降するように配置されたパンチ30と、その外周へダイス20と相対するように配置されたストリッパ31とを備えている。なお、図1ではパンチ4と相対する下型2のノックアウトは省略されている。
As shown schematically in FIG. 1, a punching die (pushback method) for a magnetic disk substrate (hereinafter simply referred to as “substrate”) is used to punch an aluminum alloy strip 1 into a donut shape. It consists of a lower mold 2 and an upper mold 3 that are arranged opposite to each other in the vertical direction.
The lower die 2 is provided with an outer peripheral die 20 and a central hole punch 21, and the upper die 3 is a punch 30 disposed so as to descend between the die 20 and the hole punch 21, and the die 20 relative to the outer periphery thereof. And a stripper 31 arranged to do so. In FIG. 1, the knockout of the lower mold 2 facing the punch 4 is omitted.

基板は以下のように製造される。
下型2と上型3の間にアルミニウム合金素条1を矢印方向に供給し、ダイス20とストリッパ31により素条1を挟んで保持し、パンチ30を所定の圧力でダイス20とホールパンチ21の間に先端部が突入するように下降させ、ダイス20とパンチ30により外縁が規定され、ホールパンチ21とパンチ30により内縁が規定されたドーナツ状の基板を打抜く。
製品基板よりやや大きな寸法に打抜かれた基板は、打抜きによる歪みを除くため加圧焼鈍を行った後、サブストレート加工(内外周部の研削、表面研削)⇒メッキ加工⇒研磨加工による仕上げの工程をへて製品基板とされる。
The substrate is manufactured as follows.
The aluminum alloy strip 1 is supplied between the lower die 2 and the upper die 3 in the direction of the arrow, and the die 1 is held between the die 20 and the stripper 31, and the punch 30 is held at a predetermined pressure with the die 20 and the hole punch 21. Then, the tip is lowered so as to enter, and the doughnut-shaped substrate whose outer edge is defined by the die 20 and the punch 30 and whose inner edge is defined by the hole punch 21 and the punch 30 is punched out.
Substrate punched to a size slightly larger than the product substrate is subjected to pressure annealing to remove distortion caused by punching, and then substrate processing (inner and outer peripheral grinding, surface grinding) ⇒ plating processing ⇒ finishing process by polishing processing The product substrate is passed through.

パンチ30の外径とダイス20の内径との差及びパンチ30の内径とホールパンチ21の外径との差(打抜き上必要なクリアランス)により、図9で示すように、基板10には打抜き加工時に上面外縁部にバリ10bが形成され、下面外縁部にダレ(端面ダレ)10aが形成される。バリ及び端面ダレは内縁部にも形成される。基板10の半径方向のダレ10aの大きさwはダレ幅であり、厚み方向の大きさhはダレ深さである。打抜き時の外径側のクリアランスは、内径側のクリアランスより設計上大きくする必要があり、外縁部の端面ダレの方が内縁部のそれよりも大きくなるので、加工上外縁部の端面ダレが問題となる。   Due to the difference between the outer diameter of the punch 30 and the inner diameter of the die 20 and the difference between the inner diameter of the punch 30 and the outer diameter of the hole punch 21 (clearance necessary for punching), as shown in FIG. Occasionally, a burr 10b is formed on the outer edge of the upper surface, and a sag (end surface sag) 10a is formed on the outer edge of the lower surface. Burrs and end sagging are also formed on the inner edge. The size w of the sag 10a in the radial direction of the substrate 10 is the sag width, and the size h in the thickness direction is the sag depth. The clearance on the outer diameter side at the time of punching needs to be larger than the inner diameter side by design, and the end face sag at the outer edge is larger than that at the inner edge. It becomes.

すなわち、一定寸法下で製品基板の記憶密度の向上と記憶領域の拡大を図るには、基板10は製品基板の寸法に見合うサブストレート11(図9)を加工するのに許容されるダレ深さhの限度で、ダレ幅wの部分を研削により除去する必要がある。したがって、基板の端面ダレ(特にダレ深さh)が大きければ大きいほど、サブストレート加工時の研削代を大きく設計する必要があり、研削時間の長時間化と研削量の増大により製造コストが上昇する。近時は記憶密度の向上によって基板の厚肉化(例えば厚み1.3mm前後から1.8mm強に)が要請されており、素条が厚いほど端面ダレが大きくなる傾向がある。
このような端面ダレを小さくするために、基板の外縁を打抜くためのダイスの打抜き面に、刃先に連続して外周方向に下り傾斜する傾斜部(傾斜角度0.1〜15°)を形成することが提案されている(後記特許文献1を参照)。
しかしながら、ダイスの刃先に連続して外周方向に下り傾斜する傾斜部を形成すると、基板外縁部のダレ幅をある程度小さくすることはできるが、ダレ深さの改善にはあまり効果がなく、しかも金型寿命を低下させる。
また、クリアランスを小さくして端面ダレを改善することはできるが、金型の寿命に悪影響を与えるので量産性に適しない。
特開2003−223714号公報
That is, in order to improve the storage density of the product substrate and expand the storage area under a certain size, the substrate 10 has a sagging depth that is allowed to process the substrate 11 (FIG. 9) that matches the size of the product substrate. In the limit of h, it is necessary to remove the sagging width w by grinding. Therefore, the larger the end sag of the substrate (especially the sag depth h), the larger the grinding allowance during substrate processing must be designed, and the longer the grinding time and the greater the amount of grinding, the higher the manufacturing cost To do. Recently, there has been a demand for increasing the thickness of a substrate (for example, from about 1.3 mm to a little over 1.8 mm) by improving the memory density.
In order to reduce the edge sag, an inclined portion (inclination angle of 0.1 to 15 °) is formed on the die punching surface for punching the outer edge of the substrate. Has been proposed (see Patent Document 1 below).
However, if an inclined part that is continuously inclined downward in the outer peripheral direction is formed on the edge of the die, the sagging width of the outer edge of the substrate can be reduced to some extent, but it is not very effective in improving the sagging depth, and the gold Reduce mold life.
In addition, although the clearance can be reduced to improve the end face sagging, it adversely affects the life of the mold and is not suitable for mass production.
JP 2003-223714 A

本発明が解決しようとする課題は、まず端面ダレが小さく、サブストレート加工時の研削代が少なく、生産性に優れた磁気ディスク用アルミニウム合金基板を提供することにあり、そのために、打抜き時に基板外縁部の端面ダレ(特にダレ深さ)を一層小さくすることができる磁気ディスク用アルミニウム合金基板の製造方法、及び当該製造方法を円滑かつ確実に実施することができる打抜きプレス用金型を提供することにある。   The problem to be solved by the present invention is to provide an aluminum alloy substrate for a magnetic disk having a small end face sagging, a small grinding allowance at the time of substrate processing, and excellent in productivity. Provided is a method for manufacturing an aluminum alloy substrate for a magnetic disk capable of further reducing end face sagging (especially sagging depth) of an outer edge portion, and a punching press die capable of smoothly and reliably carrying out the manufacturing method. There is.

本発明に係る磁気ディスク用アルミニウム合金基板の打抜きプレス用金型は、第1に前記課題を解決するため、厚さ1.292から1.84mmまでのアルミニウム合金素条をドーナツ状に打抜くためのダイス,パンチ及びストリッパを備えたプレス用金型であって、ダイスの打抜き面に内縁が刃先を構成する所定幅aが0.01mmよりも大きい平坦部を有する凸条部を形成し、前記凸条部の外周部は先下がり傾斜した傾斜部を含む凸条部の幅bは0.2mmよりも大きく10mm以下であることを特徴としている。
第2に前記凸条部の高さcは0.05mmよりも大きくアルミニウム合金素条の厚みtの1/2以下であることを特徴としている。
A die for punching press of an aluminum alloy substrate for a magnetic disk according to the present invention is to first punch an aluminum alloy strip having a thickness of 1.292 to 1.84 mm into a donut shape in order to solve the above problems. A die for punching comprising a die, a punch, and a stripper, wherein a protruding portion having a flat portion having a predetermined width a larger than 0.01 mm having an inner edge constituting a cutting edge is formed on a die punching surface, The width b of the ridge portion including the inclined portion inclined downward from the outer peripheral portion of the ridge portion is greater than 0.2 mm and 10 mm or less.
Second, the height c of the ridges is greater than 0.05 mm and is ½ or less of the thickness t of the aluminum alloy strip.

本発明によれば、アルミニウム合金素条をドーナツ状に打抜く過程において、スケルトンのダイスとの接触面の内縁部にストリッパの方向に所定量窪んだ所定幅a1の平坦部を形成する(前記ダイスの刃先凸条部の平坦部により形成される)ことにより、打抜き時に前記平坦部に隣接する基板外縁部の端面ダレの形成が抑制され、特にダレ深さが小さくなる。 By the present invention lever, in the process of punching an aluminum alloy Motojo in a donut shape, forming the flat portion of a predetermined width a1 recessed a predetermined amount in the direction of the stripper to the inner edge of the contact surface of the die of the skeleton (the (Formed by the flat portion of the ridge of the cutting edge of the die), the formation of edge sag at the outer edge of the substrate adjacent to the flat portion during punching is suppressed, and the sag depth is particularly reduced.

本発明に係る磁気ディスク用アルミニウム合金基板の打抜きプレス用金型によれば、ダイスの打抜き面に内縁が刃先を構成する所定幅aの平坦部を有する凸条部が形成してあるので、アルミニウム合金素条をドーナツ状に打抜く時に、スケルトンのダイスとの接触面には、内縁部に連続してダイスの平坦部と対応するようにストリッパ方向に窪んだ所定幅の平坦部が形成され、スケルトンの前記平坦部形成部分は他の部分より肉厚方向に圧縮される。この圧縮により当該圧縮部分の素条の材料は、その一部が打抜かれつつある基板の方向(図3の矢印dの方向)に流れて、形成されつつある基板外縁部が内縁方向に圧迫されるため、基板の端面ダレの形成が抑制され、これにより特にダレ深さが小さくなる。したがって、前記本発明に係る製造方法を円滑かつ確実に実施することができる。   According to the die for punching press of an aluminum alloy substrate for a magnetic disk according to the present invention, a convex strip having a flat portion with a predetermined width a whose inner edge constitutes the cutting edge is formed on the die punching surface. When the alloy strip is punched into a donut shape, a flat portion having a predetermined width is formed on the contact surface of the skeleton with the die so as to be continuous with the inner edge portion and correspond to the flat portion of the die. The flat part forming part of the skeleton is compressed in the thickness direction more than the other part. By this compression, the material of the strip of the compressed portion flows in the direction of the substrate being punched (direction of arrow d in FIG. 3), and the outer edge of the substrate being formed is pressed toward the inner edge. Therefore, the formation of the end face sagging of the substrate is suppressed, and in particular, the sagging depth is reduced. Therefore, the manufacturing method according to the present invention can be carried out smoothly and reliably.

以下図面を参照しながら、本発明に係る製造方法と打抜きプレス用金型の最良実施形態を説明する。
第1実施形態
図1は本発明に係る打抜きプレス用金型の第1実施形態を示す概断面略図、図2は図1の金型のC部の拡大断面図、図3は図2の金型を用いて素条を打抜く時の部分拡大断面図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of a manufacturing method and a punching press die according to the present invention will be described below with reference to the drawings.
First Embodiment FIG. 1 is a schematic sectional view showing a first embodiment of a punching press die according to the present invention, FIG. 2 is an enlarged sectional view of a portion C of the die of FIG. 1, and FIG. 3 is a die of FIG. It is a partial expanded sectional view at the time of punching a strip using a type | mold.

金型の基本構造は前述したので、特徴を有するダイスの具体的形態について以下説明する。
上型3と相対配置される下型2のダイス20には、その打抜き面(ストリッパ31と相対する面)の内縁側に内縁が刃先部20aを構成する所定幅aの平坦部を有する高さcの凸条部20bが形成されている。この凸条部20bの外周部(外周壁)は垂直であり、凸条部20bの外周方向の打抜き面は凸条部20bの高さcだけ窪んだ逃げ部20dとなっている。
下型2と上型3の材質には、冷間金型用の合金工具鋼(SKD)、高速度工具鋼(SKH)その他の通常使用される金型材料が使用される。
Since the basic structure of the mold has been described above, a specific form of a die having characteristics will be described below.
The die 20 of the lower mold 2 that is disposed relative to the upper mold 3 has a height having a flat portion with a predetermined width a on the inner edge side of the punching surface (surface facing the stripper 31), the inner edge constituting the blade edge portion 20a. A convex ridge portion 20b of c is formed. The outer peripheral portion (outer peripheral wall) of the ridge portion 20b is vertical, and the punching surface in the outer peripheral direction of the ridge portion 20b is a relief portion 20d that is recessed by the height c of the ridge portion 20b.
As the material of the lower mold 2 and the upper mold 3, alloy tool steel (SKD) for cold mold, high-speed tool steel (SKH) and other commonly used mold materials are used.

図3を参照しながら、第1実施形態の金型の作用とアルミニウム合金基板の製造方法の実施形態について説明する。
下型2と上型3の間にはアルミニウム合金素条1が間欠的に供給される。供給された素条1をダイス20とストリッパ31で挟んで固定し、パンチ30を所定の圧力で下降させて打抜いた後元のレベルに上昇させ、打抜かれた基板10をノックアウト22等により金型外にノックアウトする。
With reference to FIG. 3, an embodiment of a mold operation and an aluminum alloy substrate manufacturing method of the first embodiment will be described.
An aluminum alloy strip 1 is intermittently supplied between the lower mold 2 and the upper mold 3. The supplied strip 1 is fixed by being sandwiched between a die 20 and a stripper 31, and the punch 30 is lowered by a predetermined pressure to be punched and then raised to the original level, and the punched substrate 10 is made gold by a knockout 22 or the like. Knock out of the mold.

図3で示す上記打抜きの過程においては、素条1のスケルトン12のダイス20との接触面の内縁部に、ダイス20の前記凸条部20bが打抜き圧力によりストリッパ31の方向にめり込み、スケルトン12の当該部分に窪んだ平坦部12aが形成される。
この平坦部12aが形成されるとき素条1の当該部分は板厚方向に圧縮され、当該部分の材料の一部が同図矢印dのように打抜かれつつある基板10の方向に流れる。このとき、基板10の外縁部はその内縁部の方向に強く圧迫されるので、基板10の下面外縁部における端面ダレ10aの形成が抑制され、形成される端面ダレ10aはダレ幅及びダレ深さともに小さくなる。実験によれば、素条1が厚肉であるほどダレ深さが抑制される傾向を示した。
このように基板10の端面ダレ(特にダレ深さ)が小さくなるため、サブストレート加工時の半径方向の必要研削量が小さくなり、研削時間も短くなるので製品基板をより低コストで製造することができる。
なお、スケルトン12の下面内縁部に窪んだ平坦部12aが形成されるとき、素条1の当該部分の材料の他の一部は逃げ部20dの方向に流れる。
In the punching process shown in FIG. 3, the protruding portion 20 b of the die 20 is sunk in the direction of the stripper 31 by the punching pressure at the inner edge portion of the contact surface of the skeleton 12 of the strip 1 with the die 20. The flat part 12a which became depressed in the said part is formed.
When the flat portion 12a is formed, the portion of the strip 1 is compressed in the plate thickness direction, and a part of the material of the portion flows in the direction of the substrate 10 being punched out as indicated by an arrow d in the figure. At this time, since the outer edge portion of the substrate 10 is strongly pressed in the direction of the inner edge portion, the formation of the end surface sag 10a at the outer surface of the lower surface of the substrate 10 is suppressed, and the formed end surface sag 10a has a sag width and a sag depth. Both become smaller. According to the experiment, the sagging depth tends to be suppressed as the strip 1 is thicker.
Thus, since the end face sag (particularly the sag depth) of the substrate 10 is reduced, the required amount of grinding in the radial direction during the substrate processing is reduced, and the grinding time is shortened, so that the product substrate can be manufactured at a lower cost. Can do.
In addition, when the flat part 12a hollow in the lower surface inner edge part of the skeleton 12 is formed, the other part of the material of the said part of the strip 1 flows in the direction of the escape part 20d.

図4はダイス20の打抜き面全面が平坦である金型を使用した打抜き状態を比較例的に示した拡大断面図であるが、ダイス20の打抜き面が平坦であると、同図で示すように打抜き時に基板10側の外縁部が内縁方向に圧迫されないか、あるいは圧迫されてもその力が小さいため、端面ダレ10aの形成は抑制されず、端面ダレ10aはダレ幅及びダレ深さともに大きくなる。   FIG. 4 is an enlarged cross-sectional view showing, as a comparative example, a punching state using a mold in which the entire punching surface of the die 20 is flat. As shown in FIG. 4, the punching surface of the die 20 is flat. Since the outer edge on the substrate 10 side is not pressed in the inner edge direction at the time of punching or the force is small even when pressed, the formation of the end face sag 10a is not suppressed, and the end sag 10a has a large sag width and sag depth. Become.

凸条部20bの頂部である平坦部の幅aが小さ過ぎると、凸条部20bの破損や急速な磨耗等により金型寿命が低下し(短くなり)、その幅aが10mmを超えると素条1の次に打抜かれる部分(次ワーク)に変形や損傷等を生じ易くなる。したがって、凸条部20bの上面の幅aは0.01mm〜10mmであるのが好ましい。
凸条部20bの高さ(逃げ部20dの深さ)cが小さ過ぎると前記のような端面ダレ抑制の効果が小さくなり、その高さcが素条1の板厚tの1/2を越えると金型寿命が低下する。したがって、凸条部20bの高さcは0.05mm〜素条1の板厚t×1/2以下であるのが好ましい。
If the width a of the flat portion, which is the top of the ridge portion 20b, is too small, the mold life will be shortened (shortened) due to damage or rapid wear of the ridge portion 20b, and if the width a exceeds 10 mm, Deformation, damage, and the like are likely to occur in a portion (next workpiece) to be punched next to the strip 1. Therefore, it is preferable that the width a of the upper surface of the ridge portion 20b is 0.01 mm to 10 mm.
If the height (the depth of the relief portion 20d) c of the ridge portion 20b is too small, the effect of suppressing the end face sag as described above is reduced, and the height c is ½ of the thickness t of the strip 1. If exceeded, the mold life will be reduced. Therefore, it is preferable that the height c of the protruding portion 20b is 0.05 mm to a plate thickness t × 1/2 or less of the strip 1.

第2実施形態
図5は本発明に係る打抜きプレス用金型の第2実施形態を示す部分拡大断面図であり、ダイス20における凸条部20bの外周部(外周壁)は外周方向へ先下がり状の傾斜部20cに形成されている。このように、凸条部20bの外周部を傾斜部20cとすることにより、打抜き時にスケルトン側の内縁部分の材料の逃げ部20d方向への流れが円滑になり、金型寿命に好影響を与える(寿命が長くなる)。
凸条部20bの傾斜部20cを含む幅bは、当該傾斜部20cの傾斜角度θ(平面の幅a)の大きさにもよるが、概ね10mm以下であるのが好ましく、10mmを超えると直後の後続ワークに悪影響(変形や破損)を与える可能性が大きくなる。
傾斜部20cの傾斜角度θは特に限定されない。
この実施形態の金型の他の構成や作用効果は、第1実施形態の金型と同様であるのでそれらの説明は省略する。
Second Embodiment FIG. 5 is a partially enlarged cross-sectional view showing a second embodiment of a die for punching press according to the present invention, and the outer peripheral portion (outer peripheral wall) of the ridge portion 20b of the die 20 is first lowered in the outer peripheral direction. It is formed in the inclined part 20c. Thus, by making the outer peripheral part of the ridge part 20b into the inclined part 20c, the flow of the material of the inner edge part on the skeleton side toward the escape part 20d becomes smooth at the time of punching, which has a positive effect on the mold life. (Long life)
The width b including the inclined portion 20c of the ridge portion 20b is preferably approximately 10 mm or less, although it depends on the inclination angle θ (plane width a) of the inclined portion 20c, and immediately after exceeding 10 mm. The possibility of adverse effects (deformation and damage) on subsequent workpieces increases.
The inclination angle θ of the inclined portion 20c is not particularly limited.
Since the other structure and effect of the metal mold | die of this embodiment are the same as that of the metal mold | die of 1st Embodiment, those description is abbreviate | omitted.

第3実施形態
図6は本発明に係る打抜きプレス用金型の第3実施形態を示す部分拡大断面図であり、第2実施形態の金型と同様な目的でダイス20における凸条部20bの外周の傾斜部20cを断面凹円弧状に形成したものである。
この実施形態においても、凸条部20bの傾斜部20cを含む幅bは、概ね10mm以下であるのが第2実施形態と同様な意味で好ましい。
凹円弧状の傾斜部20cの円弧の大きさである半径Rは特に限定されないが、次の式で求められる値の範囲内であるのが好ましい。
式:R={(b−a)2+c2}/(2c)
この実施形態の金型の他の構成や作用効果は、第2実施形態の金型と同様であるのでそれらの説明は省略する。
Third Embodiment FIG. 6 is a partially enlarged cross-sectional view showing a third embodiment of a die for punching press according to the present invention. For the same purpose as the die of the second embodiment, the projection 20b of the die 20 is shown. The outer peripheral inclined portion 20c is formed in a concave arc shape in cross section.
Also in this embodiment, the width b including the inclined portion 20c of the ridge portion 20b is preferably about 10 mm or less in the same meaning as in the second embodiment.
The radius R, which is the size of the arc of the concave arcuate inclined portion 20c, is not particularly limited, but is preferably within the range of values obtained by the following equation.
Formula: R = {(ba) 2 + c2} / (2c)
Since the other structure and effect of the metal mold | die of this embodiment are the same as that of the metal mold | die of 2nd Embodiment, those description is abbreviate | omitted.

第4実施形態
図7は本発明に係る打抜きプレス用金型の第4実施形態を示す概断面略図であり、ホールパンチ21の打抜き面に以下の特徴を有する。
ホールパンチ21の打抜き面には、刃先21aを構成する外縁側に所定幅a’の平坦部を有する高さc’の凸条部21bが形成されている。この凸条部21bの内周部(内周壁)は垂直であり、凸条部21bよりも内周方向の打抜き面は凸条部21bの高さc’だけ窪んだ逃げ部21dとなっている。
Fourth Embodiment FIG. 7 is a schematic sectional view showing a fourth embodiment of a punching press die according to the present invention. The punching surface of the hole punch 21 has the following characteristics.
On the punching surface of the hole punch 21, a protruding strip portion 21 b having a height c ′ having a flat portion having a predetermined width a ′ is formed on the outer edge side constituting the cutting edge 21 a. The inner peripheral portion (inner peripheral wall) of the ridge portion 21b is vertical, and the punched surface in the inner peripheral direction of the ridge portion 21b is a relief portion 21d that is recessed by the height c ′ of the ridge portion 21b. .

ホールパンチ21の打抜き面の外縁側に前記のような凸条部21bを形成すると、パンチ30が下降して素条(図示しない)を打抜くとき、素条の当該部分の材料の一部が打ち抜かれつつある基板の方向(外周方向)に流れ、当該基板の内縁部はその外縁方向に強く圧迫されるので、基板の下面内縁部における端面ダレの形成が抑制され、形成される端面ダレはダレ幅及びダレ深さともに小さくなる。特にダレ深さが小さくなり、その傾向は素条の肉厚が厚いほど顕著にあらわれる。   If the above-mentioned convex strip portion 21b is formed on the outer edge side of the punching surface of the hole punch 21, when the punch 30 descends and punches the strip (not shown), a part of the material of the portion of the strip is made. Flowing in the direction of the substrate being punched (peripheral direction), the inner edge of the substrate is strongly pressed in the direction of the outer edge, so that the formation of the end surface sag at the inner surface of the lower surface of the substrate is suppressed. Both sagging width and sagging depth become smaller. In particular, the sagging depth decreases, and this tendency becomes more prominent as the thickness of the strip increases.

前記凸条部21bの内周部は、同図の二点鎖線で示されているように先下がり状の傾斜部21cに形成するのが、金型寿命に好影響を与えるので好ましい。
幅a’,傾斜部21cを含めた凸条部21bの幅b’、及び凸条部21bの高さc’の好ましい値は、同様な理由でダイスにおける凸条部20bにおける幅a,b及び高さcの好ましい値とほぼ同様である。
It is preferable to form the inner peripheral part of the protruding line part 21b in the inclined part 21c having a downward-falling shape as shown by a two-dot chain line in FIG.
For the same reason, preferable values for the width a ′, the width b ′ of the ridge portion 21b including the inclined portion 21c, and the height c ′ of the ridge portion 21b are the widths a and b of the ridge portion 20b in the die. It is almost the same as the preferred value of the height c.

第1実施形態〜第3実施形態の金型(ダイス)であって、ダイス20における凸条部20bの平坦部の幅a,傾斜部20cを含む凸条部20bの幅b,高さcを種々変化させた各実施例のダイス、及び図4(凸形状なし)並びに図8(刃先の傾斜部の角度θ=14°、平坦部幅a=0)の形態の各比較例のダイスを試作し、3.5インチサイズ用のアルミニウム合金基板を打抜き、それらの基板の端面ダレ(ダレ幅w及びダレ深さh)のサイズを測定した。それらの測定結果を表1に示した。
なお、実施例8と実施例16のダイスは、凸条部20bにおける傾斜部20cが先下がり状でなく、その傾斜角度θが90°を超えている例である。
また、各ダイスについて金型寿命の評価を行うとともに次のワークへの影響を調べた。金型寿命の評価は、図4の形態のダイスを使用した金型の通常の打抜き回数(500万回)を基準として基準以上を○、基準未満を×と表示し、次のワークへの影響は、変形や損傷が発生しなかった場合を○、発生した場合を×と表示した。
It is a metal mold | die (die | dye) of 1st Embodiment-3rd Embodiment, Comprising: The width | variety b of the flat part of the convex part 20b in the die | dye 20, and the width | variety b and height c of the convex part 20b containing the inclination part 20c are set. Various dice of each embodiment and various comparative dice in the form of FIG. 4 (no convex shape) and FIG. 8 (angle θ = 14 ° of the inclined portion of the cutting edge, flat portion width a = 0) are manufactured as prototypes. Then, 3.5-inch size aluminum alloy substrates were punched, and the size of the end face sag (sag width w and sag depth h) of these substrates was measured. The measurement results are shown in Table 1.
In addition, the dice | dies of Example 8 and Example 16 are examples in which the inclination part 20c in the protruding item | line part 20b is not a tip-down shape, and the inclination angle (theta) exceeds 90 degrees.
In addition, the die life of each die was evaluated and the influence on the next workpiece was investigated. Evaluation of mold life is based on the normal number of punches (5 million times) of the mold using the die shown in Fig. 4 as the standard, with ○ exceeding the standard and x indicating less than the standard. Indicates a case where no deformation or damage occurred, and a case where such deformation occurred.

金型寸法,素条,打抜条件やダレの測定方法等の条件は次のとおりである。
金型寸法
ダイス内径: 96.0mm
パンチ外径: 95.8mm
ノックアウト外径:95.8mm
ストリッパ内径: 96.4mm
アルミニウム合金素条
材質:JIS5086
板厚t:1.84mm、1.292mm
打抜条件
プッシュバック方式による連続打抜
200tonプレス
ダレ測定方法
測定器:輪郭形状測定器(フォームコーダ EF−12),株式会社小坂研究所
触針先端の曲率半径:25μm
印加荷重:30mN
走査速度:0.05mm/s
ダレ幅w及びダレ深さh:図9のように、水平姿勢の基板裏面にダレ幅の二倍以上の距離間隔で基準点A,Bを設定し、基準点A,Bを結んだ外周方向への延長線を水平基準線とし、基板外周縁の突端であるダレ深さ開始点から下方ヘの垂直な延長線を垂直基準線とする。基板下面の水平基準線から離れ始めるダレ幅開始点から両基準線の交点までをダレ幅wとし、ダレ深さ開始点から両基準線の交点までをダレ深さhとした。表1におけるダレ幅w及びダレ深さhの数値は、基板50枚につき各1箇所(基板周方向でダレが最大の箇所)でそれぞれダレ幅とダレ深さとを測定した測定値の平均値である。
なお、表1には素条板厚tに対する平均ダレ幅w及び平均ダレ深さhの比(w/t,h/t)を併せて示した。
Conditions such as mold dimensions, strips, punching conditions and sagging measurement methods are as follows.
Mold dimensions Die inner diameter: 96.0mm
Punch outer diameter: 95.8mm
Knockout outer diameter: 95.8mm
Stripper inner diameter: 96.4mm
Aluminum alloy strip Material: JIS5086
Thickness t: 1.84mm, 1.292mm
Punching conditions Continuous punching by pushback method 200ton press sag measurement method Measuring instrument: Contour shape measuring instrument (Form coder EF-12), Kosaka Laboratory Ltd.
Radius of curvature of stylus tip: 25 μm
Applied load: 30mN
Scanning speed: 0.05mm / s
Sagging width w and sagging depth h: As shown in FIG. 9, the reference points A and B are set on the back surface of the substrate in the horizontal posture at a distance interval more than twice the sagging width, and the outer peripheral direction connecting the reference points A and B An extension line extending to the horizontal reference line is defined as a vertical reference line and a vertical extension line extending downward from a sag depth starting point, which is a protruding end of the outer peripheral edge of the substrate. The sagging width w is defined as the sagging width start point from the starting point of the sagging width starting from the horizontal reference line on the lower surface of the substrate, and the sagging depth h is defined as the sagging depth h from the sagging depth starting point to the intersecting point of the two reference lines. The values of the sagging width w and sagging depth h in Table 1 are average values of measured values obtained by measuring the sagging width and sagging depth at one place (the place where the sagging is maximum in the circumferential direction of the board) for each of the 50 substrates. is there.
Table 1 also shows the ratio (w / t, h / t) of the average sag width w and the average sag depth h to the strip thickness t.

Figure 0004729070
Figure 0004729070

表1で示された結果によれば、素条板厚1.84mmのケースにおける実施例1〜8は、比較例1,2に対して平均ダレ幅w平均ダレ深さhともに小さく、十分な有意差を示した。
板厚1.292mmのケースにおける実施例9〜16は、比較例3,4に対して平均ダレ幅w及び平均ダレ深さhともに実施例12,15のダレ幅(比較例4の550.7μmに対してそれぞれ551.2μm,556.4μm)を除いていずれも小さく、特にダレ深さについて有意差を示した。
以上のように、ダイスの刃先部に連続して所定幅aの平坦部を有する凸条部20bを形成した効果は、特にダレ深さの抑制について顕著である。さらに、素条板厚が厚いほどダレ深さ改善の効果は一層顕著である。
なお、基板の端面ダレのサイズは素条板厚に比例して小さくなるので、ダイスの打抜き面に前述のような凸条部20bを形成した場合のダレ深さhを抑制する効果は、製品板厚が50ミル(1.27mm。1ミル=1インチ/1000≒0.0254mm。通常、板厚1.292mmの基板を板厚50ミルの製品に仕上げる。)以上の場合には顕著であるが、製品板厚が50ミル未満と小さくなればなるほど有意差はなくなる。すなわち、例えば31.5ミルや40ミルのように薄い板厚の製品基板を製造する場合は、素条板厚も薄いので、本発明に係る打抜きプレス用金型の効果はほとんどなくなる。
上記によれば、本発明に係る磁気ディスク用アルミニウム合金基板は、ダイス,パンチ及びストリッパを備えたプレス用金型によりドーナツ状に打抜かれた磁気ディスク用アルミニウム合金基板において、先端の曲率半径が25μmの触針を用い、印加荷重30mN,走査速度0.05mm/sの条件で測定した外周端面の平均ダレ深さが150μm以下であることを特徴としている。
なお、前記の平均ダレ深さとは、多数の基板につき各1箇所(基板周方向でダレが最大の箇所)で測定したダレ深さの平均値である。
According to the results shown in Table 1, Examples 1 to 8 in the case where the strip thickness is 1.84 mm are smaller than both the average sag width w and the average sag depth h as compared with Comparative Examples 1 and 2, and are sufficient. Significant difference was shown.
In Examples 9 to 16 in the case of a plate thickness of 1.292 mm, the sagging width of Examples 12 and 15 (550.7 μm of Comparative Example 4) is compared with Comparative Examples 3 and 4 in both the average sagging width w and the average sagging depth h. , Except for 551.2 [mu] m and 556.4 [mu] m), respectively, and showed a significant difference in sagging depth.
As described above, the effect of forming the ridge portion 20b having a flat portion having a predetermined width a continuously from the cutting edge portion of the die is particularly remarkable in suppressing the sagging depth. Furthermore, the effect of the sagging depth improvement becomes more remarkable as the strip thickness increases.
In addition, since the size of the end face sagging of the substrate becomes smaller in proportion to the thickness of the raw strip, the effect of suppressing the sagging depth h when the above-described convex strip portion 20b is formed on the die punching surface is It is remarkable when the plate thickness is 50 mil (1.27 mm. 1 mil = 1 inch / 1000≈0.0254 mm. Normally, a substrate with a plate thickness of 1.292 mm is finished into a product with a plate thickness of 50 mil). However, the smaller the product plate thickness is less than 50 mil, the more significant difference disappears. That is, when manufacturing a thin product substrate such as 31.5 mil or 40 mil, for example, the strip plate thickness is also thin, so the effect of the punching press die according to the present invention is almost eliminated.
According to the above, the aluminum alloy substrate for a magnetic disk according to the present invention is an aluminum alloy substrate for a magnetic disk punched into a donut shape by a press die having a die, a punch, and a stripper. The average sag depth of the outer peripheral end face measured under the conditions of an applied load of 30 mN and a scanning speed of 0.05 mm / s is 150 μm or less.
The average sag depth is an average value of sag depths measured at one location (a location where sag is maximum in the circumferential direction of the substrate) for each of a large number of substrates.

また、実施例1〜5と実施例6〜8との比較、及び実施例9〜13と実施例14〜16との比較によれば、凸条部20bの平面の幅aは10mm以下、凸条部20bの高さcは0.05〜素条1の板厚の1/2、凸条部20bの傾斜部20cを含む幅bは概ね10mm以下であるのが、それぞれ好ましいことが判る。
さらに、凸条部20bの傾斜部20cが先下がり状でなくその傾斜角度θが90°を5.7°上回っており、かつ平坦部の幅aが10mmを超えている実施例8,16の例では、金型寿命及び次ワークに対して悪影響を与えている。したがって、傾斜部20cは先下がり状であるのが好ましい。
Moreover, according to the comparison with Examples 1-5 and Examples 6-8, and the comparison with Examples 9-13 and Examples 14-16, the width | variety a of the plane of the protruding item | line part 20b is 10 mm or less, convex It can be seen that the height c of the strip portion 20b is preferably 0.05 to 1/2 of the plate thickness of the strip 1, and the width b including the inclined portion 20c of the convex strip portion 20b is approximately 10 mm or less.
Furthermore, the inclined portion 20c of the ridge portion 20b is not a tip-down shape, and the inclination angle θ is 5.7 ° higher than 90 °, and the width a of the flat portion exceeds 10 mm. In the example, the mold life and the subsequent workpiece are adversely affected. Therefore, it is preferable that the inclined portion 20c has a tip-down shape.

本発明はプッシュバック方式の金型のほか、ダイスを使用する他の方式の打抜きプレス用金型のダイスにも実施することができる。   The present invention can be applied not only to a push-back type die but also to other types of punching press die that use a die.

本発明の第1実施例の打抜きプレス用金型の概略を示す断面図である。It is sectional drawing which shows the outline of the metal mold | die for punching presses of 1st Example of this invention. 図1の金型のC部の拡大断面図である。It is an expanded sectional view of the C section of the metal mold | die of FIG. 第1実施形態の金型により素条を打ち抜いている状態を示す部分拡大断面図である。It is a partial expanded sectional view which shows the state which has punched the strip by the metal mold | die of 1st Embodiment. ダイスの打抜き面全面が平坦である金型を使用した打抜き状態を比較例的に示した拡大断面図である。It is the expanded sectional view which showed in a comparative example the punching state using the metal mold | die with which the punching surface whole surface of die | dye is flat. 第2実施形態の金型のダイスの部分拡大断面図である。It is a partial expanded sectional view of the die | dye of the metal mold | die of 2nd Embodiment. 第3実施形態の金型のダイスの部分拡大断面図である。It is a partial expanded sectional view of the die | dye of the metal mold | die of 3rd Embodiment. 第4実施形態の金型のパンチとホールパンチの部分拡大断面図である。It is a partial expanded sectional view of the punch of a metal mold | die of 4th Embodiment, and a hole punch. 比較例2,4の金型におけるダイスの部分拡大断面図である。It is a partial expanded sectional view of the die | dye in the metal mold | die of the comparative examples 2 and 4. FIG. 打抜かれた基板の部分拡大断面図である。It is a partial expanded sectional view of the pierced substrate.

1 アルミニウム合金素条
10 基板
11 サブストレート
12 スケルトン
2 下型
20 ダイス
20a,21a 刃先部
20b,21b 凸条部
20c,21c 傾斜部
20d,21d 逃げ部
21 ホールパンチ
22 ノックアウト
3 上型
30 パンチ
31 ストリッパ
a,a’ 凸条部の平坦部の幅
b,b’ 傾斜部を含む凸条部の幅
c,c’ 凸条部の高さ
DESCRIPTION OF SYMBOLS 1 Aluminum alloy strip 10 Board | substrate 11 Substrate 12 Skeleton 2 Lower mold | type 20 Dies 20a, 21a Blade edge part 20b, 21b Projection part 20c, 21c Inclined part 20d, 21d Escape part 21 Hole punch 22 Knockout 3 Upper mold | type 30 Punch 31 Stripper a, a 'Width of the flat portion of the ridge portion b, b' Width of the ridge portion including the inclined portion c, c 'Height of the ridge portion

Claims (2)

厚さ1.292から1.84mmまでのアルミニウム合金素条をドーナツ状に打抜くためのダイス,パンチ及びストリッパを備えたプレス用金型であって、ダイスの打抜き面に内縁が刃先を構成する所定幅aが0.01mmよりも大きい平坦部を有する凸条部を形成し、前記凸条部の外周部は先下がり傾斜した傾斜部を含む凸条部の幅bは0.2mmよりも大きく10mm以下であることを特徴とする、磁気ディスク用アルミニウム合金基板の打抜きプレス用金型。   A press die having a die, a punch and a stripper for punching an aluminum alloy strip having a thickness of 1.292 to 1.84 mm into a donut shape, and an inner edge forms a cutting edge on the die punching surface A ridge having a flat portion having a predetermined width a larger than 0.01 mm is formed, and the width b of the ridge including an inclined portion inclined downwardly from the outer periphery of the ridge is larger than 0.2 mm. A die for punching and pressing an aluminum alloy substrate for a magnetic disk, characterized by being 10 mm or less. 前記凸条部の高さcは0.05mmよりも大きくアルミニウム合金素条の厚みtの1/2以下である、請求項1に記載の磁気ディスク用アルミニウム合金基板の打抜きプレス用金型。   The die for punching press of the aluminum alloy substrate for magnetic discs of Claim 1 whose height c of the said protruding item | line part is 0.05 mm or less and is 1/2 or less of the thickness t of an aluminum alloy strip.
JP2008117924A 2008-04-28 2008-04-28 Aluminum alloy substrate for magnetic disk and die for punching press of aluminum alloy substrate for magnetic disk Active JP4729070B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008117924A JP4729070B2 (en) 2008-04-28 2008-04-28 Aluminum alloy substrate for magnetic disk and die for punching press of aluminum alloy substrate for magnetic disk

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008117924A JP4729070B2 (en) 2008-04-28 2008-04-28 Aluminum alloy substrate for magnetic disk and die for punching press of aluminum alloy substrate for magnetic disk

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004227304A Division JP2006048817A (en) 2004-08-03 2004-08-03 Aluminum alloy substrate for magnetic disk, its manufacturing method and die for punch-pressing aluminum alloy substrate for magnetic disk

Publications (2)

Publication Number Publication Date
JP2008269777A JP2008269777A (en) 2008-11-06
JP4729070B2 true JP4729070B2 (en) 2011-07-20

Family

ID=40049059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008117924A Active JP4729070B2 (en) 2008-04-28 2008-04-28 Aluminum alloy substrate for magnetic disk and die for punching press of aluminum alloy substrate for magnetic disk

Country Status (1)

Country Link
JP (1) JP4729070B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014073508A (en) * 2012-10-03 2014-04-24 Laser Focus Co Ltd Method of cutting metal plate material and die device for the same
CN109500234B (en) * 2018-12-20 2023-12-22 中铝东南材料院(福建)科技有限公司 Aluminum alloy substrate stamping production line for mechanical hard disk and working method thereof
CN110014068B (en) * 2019-03-18 2020-10-30 华中科技大学 Electromagnetic blanking device and method based on magnetic collector
CN114147084B (en) * 2021-11-09 2024-04-30 湖北塑金复合材料有限责任公司 Gluing and punching aluminum strip for composite pipe and preparation method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5065988A (en) * 1973-10-17 1975-06-03
JPS62151028U (en) * 1986-03-19 1987-09-25
JPH0376621U (en) * 1989-11-21 1991-07-31
JPH03275224A (en) * 1990-03-23 1991-12-05 Hitachi Cable Ltd Method for blanking lead frame by progressive dies
JPH04123821A (en) * 1990-09-13 1992-04-23 Toyota Motor Corp Method for shearing metal plate preventing sagging and step difference thereof
JPH08112628A (en) * 1994-08-25 1996-05-07 Furukawa Electric Co Ltd:The Punching punch of base board for magnetic disk and punched base board with this
JPH11207418A (en) * 1998-01-22 1999-08-03 Yukio Hirano Press working free from burr
JP2003223714A (en) * 2002-01-28 2003-08-08 Kobe Steel Ltd Stamping die set of aluminum alloy plate for magnetic recording disc, aluminum alloy plate for magnetic disc and its manufacturing method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6272438A (en) * 1985-09-25 1987-04-03 Hitachi Ltd Working device for punching plate material
JPS62151028A (en) * 1985-12-25 1987-07-06 Nec Corp Data converting device
JPH0376621A (en) * 1989-08-21 1991-04-02 Mitsubishi Heavy Ind Ltd Thickness controlling die

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5065988A (en) * 1973-10-17 1975-06-03
JPS62151028U (en) * 1986-03-19 1987-09-25
JPH0376621U (en) * 1989-11-21 1991-07-31
JPH03275224A (en) * 1990-03-23 1991-12-05 Hitachi Cable Ltd Method for blanking lead frame by progressive dies
JPH04123821A (en) * 1990-09-13 1992-04-23 Toyota Motor Corp Method for shearing metal plate preventing sagging and step difference thereof
JPH08112628A (en) * 1994-08-25 1996-05-07 Furukawa Electric Co Ltd:The Punching punch of base board for magnetic disk and punched base board with this
JPH11207418A (en) * 1998-01-22 1999-08-03 Yukio Hirano Press working free from burr
JP2003223714A (en) * 2002-01-28 2003-08-08 Kobe Steel Ltd Stamping die set of aluminum alloy plate for magnetic recording disc, aluminum alloy plate for magnetic disc and its manufacturing method

Also Published As

Publication number Publication date
JP2008269777A (en) 2008-11-06

Similar Documents

Publication Publication Date Title
JP4729070B2 (en) Aluminum alloy substrate for magnetic disk and die for punching press of aluminum alloy substrate for magnetic disk
JP6472190B2 (en) Method for the manufacture of tools and stamped parts
JP2008517776A (en) Apparatus and method for punching and deburring clutch plate and resulting clutch plate
JP4884915B2 (en) Circular substrate punching press mold and magnetic alloy aluminum alloy substrate manufacturing apparatus
JP2021178339A (en) Method of manufacturing press-formed article
JP2006048817A (en) Aluminum alloy substrate for magnetic disk, its manufacturing method and die for punch-pressing aluminum alloy substrate for magnetic disk
JP3836029B2 (en) Die for punching press of aluminum alloy substrate for magnetic disk, aluminum alloy substrate for magnetic disk and manufacturing method thereof
JP2006272398A (en) Mold for punching press for aluminum alloy substrate for magnetic disc, aluminum alloy substrate for magnetic disc and method for manufacturing the same
JPH07227627A (en) Method of press blanking work
JP3485684B2 (en) Punching punch for magnetic disk substrate and substrate punched thereby
JP4604552B2 (en) Die for press
US6948350B2 (en) Wave-processing method and wave-processing die for core metal of wet friction material
JP2000033429A (en) Method for forming recessed part in metal plate
JP2956389B2 (en) Deformed hole punching method and apparatus
JP2002001449A (en) Sprocket made of steel plate and its manufacturing method
CN110153287A (en) A kind of sheet metal component stamping flanging die of Simple And Practical
KR101569353B1 (en) A method for press forming
JP2007136476A (en) Cold-press forming method
JPH0957363A (en) Precise press die
JPH08164428A (en) Production of engine manifold flange
JP7129048B1 (en) Shear processing method for amorphous alloy foil
CN211888626U (en) Needle bearing M-shaped retainer window punching die
WO2019188850A1 (en) Press forming device and method of manufacturing press-formed article
CN108906971B (en) Concave-convex wheel production process
JP2011016137A (en) Burr reduction press device

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090213

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100720

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101208

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20101220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110415

R151 Written notification of patent or utility model registration

Ref document number: 4729070

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350