JP4727603B2 - Wireless communication apparatus and wireless communication system - Google Patents

Wireless communication apparatus and wireless communication system Download PDF

Info

Publication number
JP4727603B2
JP4727603B2 JP2007045728A JP2007045728A JP4727603B2 JP 4727603 B2 JP4727603 B2 JP 4727603B2 JP 2007045728 A JP2007045728 A JP 2007045728A JP 2007045728 A JP2007045728 A JP 2007045728A JP 4727603 B2 JP4727603 B2 JP 4727603B2
Authority
JP
Japan
Prior art keywords
signal
polarization
wireless communication
carrier
control signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007045728A
Other languages
Japanese (ja)
Other versions
JP2008211476A (en
Inventor
史洋 山下
聖 小林
阿部  順一
浩平 大幡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2007045728A priority Critical patent/JP4727603B2/en
Publication of JP2008211476A publication Critical patent/JP2008211476A/en
Application granted granted Critical
Publication of JP4727603B2 publication Critical patent/JP4727603B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Radio Transmission System (AREA)

Description

本発明は2偏波の複数のキャリヤ信号を送受する無線通信装置及び無線通信システムに関し、特に、キャリヤ毎に偏波調整が可能で、片偏波のみを使用している他システムと帯域共用が可能な無線通信装置及び無線通信システムに関する。   The present invention relates to a radio communication apparatus and a radio communication system that transmit and receive a plurality of carrier signals of two polarizations, and in particular, polarization adjustment is possible for each carrier and band sharing with other systems using only one polarization is possible. The present invention relates to a possible wireless communication apparatus and a wireless communication system.

図3(a)に従来のマルチキャリヤ偏波多重信号を伝送する無線通信装置の構成例を、図3(b)に従来のRF偏波制御機構を備えた無線通信装置の構成例をそれぞれ示す。図3(a)は非特許文献1を、図3(b)に非特許文献2の無線通信装置の構成を参考としている。   FIG. 3A shows a configuration example of a wireless communication apparatus that transmits a conventional multicarrier polarization multiplexed signal, and FIG. 3B shows a configuration example of a wireless communication apparatus that includes a conventional RF polarization control mechanism. . FIG. 3A refers to Non-Patent Document 1, and FIG. 3B refers to the configuration of the wireless communication apparatus disclosed in Non-Patent Document 2.

図3(a)の受信系は受信アンテナ21a,21b、受信機27a,27b、周波数分波回路22a,22b、干渉補償回路24、伝搬路行列推定回路23、複数キャリヤ復調回路25a,25b、合成回路26から構成される。一方、送信系は分岐回路28、複数キャリヤ変調回路29a,29b、周波数合波回路210a,210b、送信機211a,211b、送信アンテナ212a,212bから構成される。   The reception system in FIG. 3A includes reception antennas 21a and 21b, receivers 27a and 27b, frequency demultiplexing circuits 22a and 22b, interference compensation circuit 24, propagation path matrix estimation circuit 23, multiple carrier demodulation circuits 25a and 25b, and synthesis. The circuit 26 is configured. On the other hand, the transmission system includes a branch circuit 28, multiple carrier modulation circuits 29a and 29b, frequency multiplexing circuits 210a and 210b, transmitters 211a and 211b, and transmission antennas 212a and 212b.

次に無線通信装置内での信号の流れを説明する。受信アンテナ21aと21bは無線通信装置の2つの偏波受信アンテナである。無線通信装置の2つの偏波面で受信された信号はそれぞれ後段の受信機27a,27bに入力され、そこで、フィルタリング、アンプ処理、周波数変換等がなされる。受信機27a,27bからの出力はそれぞれ周波数分波回路22a,22bに入力され、キャリヤ単位の信号に周波数分波される。周波数分波回路で分波された各キャリヤの信号は、伝搬路行列推定回路23でそれぞれのキャリヤに含まれるトレーニング信号から伝搬路行列Hをキャリヤ毎に推定する。伝搬路行列推定方法は非特許文献4に示す従来技術と同様である。2つの偏波を垂直/水平偏波とすると、送信垂直/水平偏波信号にトレーニング信号を挿入し、受信側で受信垂直/水平偏波信号にトレーニング信号を検出した時にマッチトパルスを出力するマッチトフィルタを適用する。受信垂直偏波信号において、送信垂直偏波のトレーニング信号に対するマッチトパルスをh11とし、受信垂直偏波信号において、送信水平偏波のトレーニング信号に対するマッチトパルスをh12とし、受信水平偏波信号において、送信垂直偏波のトレーニング信号に対するマッチトパルスをh21とし、受信水平偏波信号において、送信水平偏波のトレーニング信号に対するマッチトパルスをh22とし、伝搬路行列の個別要素を推定することができる。   Next, a signal flow in the wireless communication apparatus will be described. The receiving antennas 21a and 21b are two polarization receiving antennas of the wireless communication device. Signals received at two polarization planes of the wireless communication device are respectively input to subsequent receivers 27a and 27b, where filtering, amplifier processing, frequency conversion, and the like are performed. Outputs from the receivers 27a and 27b are input to frequency demultiplexing circuits 22a and 22b, respectively, and are frequency demultiplexed into carrier unit signals. Each carrier signal demultiplexed by the frequency demultiplexing circuit is estimated by the propagation channel matrix estimation circuit 23 for each carrier from the training signal included in each carrier. The propagation path matrix estimation method is the same as that of the prior art shown in Non-Patent Document 4. If the two polarizations are vertical / horizontal polarization, a training signal is inserted into the transmission vertical / horizontal polarization signal, and a matched pulse is output when the reception side detects the training signal in the reception vertical / horizontal polarization signal. Apply a matched filter. In the received vertical polarization signal, the matched pulse for the transmission signal with the transmission vertical polarization is set as h11. In the reception vertical polarization signal, the matched pulse for the training signal with the transmission horizontal polarization is set as h12, and in the received horizontal polarization signal. The matched pulse with respect to the transmission vertical polarization training signal is set as h21, and the received pulse with respect to the transmission horizontal polarization training signal is set as h22 in the received horizontal polarization signal, so that individual elements of the channel matrix can be estimated. .

キャリヤ単位で検出された伝搬路行列Hを用いて受信信号の干渉補償を干渉補償回路24で行う。干渉補償は非特許文献3に説明されている従来技術であるMMSEを適用することで実現できる。干渉補償された信号はそれぞれ複数キャリヤの復調回路25a,25bに入力され、キャリヤ単位で復調処理がなされる。複数キャリヤ復調回路からはマルチキャリヤ信号それぞれの情報信号が独立に出力されるので、合成回路26で1系統の信号に変換し、送信された情報信号を復元する。   The interference compensation circuit 24 performs interference compensation of the received signal using the propagation path matrix H detected in units of carriers. Interference compensation can be realized by applying MMSE which is the conventional technique described in Non-Patent Document 3. The interference-compensated signals are respectively input to a plurality of carrier demodulation circuits 25a and 25b, and demodulated in units of carriers. Since the information signals of the respective multicarrier signals are independently output from the multi-carrier demodulating circuit, the signal is converted into one system signal by the synthesizing circuit 26 and the transmitted information signal is restored.

一方、送信系は送信される情報信号を分岐回路28で2系統の信号に分岐する。それぞれの系統の信号を複数キャリヤ変調回路29a,29bで複数キャリヤの信号に分割し、キャリヤ単位で変調処理を行う。複数キャリヤ変調回路29a,29bで独立に変調された2系統の複数キャリヤの信号はそれぞれ周波数合波回路210a,210bに入力され、周波数多重される。周波数多重処理された信号はそれぞれ送信機211a,211bで独立して周波数変換、増幅がなされ、2つの偏波面を有するアンテナ212a,212bから送信される。   On the other hand, the transmission system branches the information signal to be transmitted into two systems of signals by the branch circuit 28. Each system signal is divided into a plurality of carrier signals by a plurality of carrier modulation circuits 29a and 29b, and a modulation process is performed for each carrier. Signals of two systems of multiple carriers that are independently modulated by the multiple carrier modulation circuits 29a and 29b are input to the frequency multiplexing circuits 210a and 210b, respectively, and are frequency multiplexed. The frequency-multiplexed signals are independently frequency-converted and amplified by transmitters 211a and 211b, respectively, and transmitted from antennas 212a and 212b having two polarization planes.

図3(a)に示す従来の無線通信装置は、RF偏波追尾機能(図3(b)の214a,214b,215)が受信機、送信機に存在しない。その代わり偏波追尾機能はベースバンド受信信号を用いて、伝搬路行列推定回路23で伝搬路行列Hを推定し、干渉補償回路24で偏波間干渉を補償することで実現している。以上が従来の無線通信装置例1である。   In the conventional wireless communication apparatus shown in FIG. 3A, the RF polarization tracking function (214a, 214b, and 215 in FIG. 3B) does not exist in the receiver and the transmitter. Instead, the polarization tracking function is realized by estimating the propagation path matrix H by the propagation path matrix estimation circuit 23 using the baseband received signal and compensating for the inter-polarization interference by the interference compensation circuit 24. The above is the conventional wireless communication apparatus example 1.

また、従来の無線通信装置の別の実施形態として、図3(b)にRF偏波追尾機能を備えた無線通信装置を示す。図3(b)は受信アンテナ213a、偏波制御量設定回路215、偏波制御回路214a,214b、受信機216、復調回路217、変調回路218、送信機219、送信アンテナ213bから構成される。簡単のため無線通信として衛星通信を想定する。Ku帯の衛星通信では一般に両偏波信号が使用されており、無線通信装置の偏波面を衛星中継局の偏波面と一致するように自局の偏波軸を機械的に調整し、通信を開始する。この場合、無線通信装置の偏波制御量設定回路215は別途衛星から受信されるビーコン波や自局の位置データであるGPSデータを元に、自局の無線通信装置の偏波軸と衛星中継局固有の偏波軸の差分を検出し、偏波制御量を決定する。その後、偏波制御回路214aでその偏波制御量だけ偏波面を回転させて自局の偏波面と衛星中継局の偏波面を一致させる。偏波制御された信号は受信機216で増幅、周波数変換、フィルタ処理等が施される。その後、復調回路217で復調され、送信された情報信号を復元する。   As another embodiment of the conventional wireless communication apparatus, FIG. 3B shows a wireless communication apparatus having an RF polarization tracking function. 3B includes a reception antenna 213a, a polarization control amount setting circuit 215, polarization control circuits 214a and 214b, a receiver 216, a demodulation circuit 217, a modulation circuit 218, a transmitter 219, and a transmission antenna 213b. For simplicity, satellite communication is assumed as wireless communication. In Ku-band satellite communications, both polarization signals are generally used. The polarization axis of the wireless communication device is mechanically adjusted so that the polarization plane of the wireless communication device coincides with the polarization plane of the satellite relay station. Start. In this case, the polarization control amount setting circuit 215 of the wireless communication device uses the beacon wave separately received from the satellite and the GPS data which is the position data of the local station, and the polarization axis and satellite relay of the local wireless communication device. The difference of the polarization axis unique to the station is detected, and the polarization control amount is determined. Thereafter, the polarization plane is rotated by the polarization control amount by the polarization control circuit 214a so that the polarization plane of the own station and the polarization plane of the satellite relay station coincide. The polarization-controlled signal is subjected to amplification, frequency conversion, filter processing, and the like by the receiver 216. Thereafter, the information signal demodulated and transmitted by the demodulation circuit 217 is restored.

一方、送信系では情報信号を変調回路218で変調し、送信機220で周波数変換やフィルタ処理、増幅後に出力する。送信機220から出力される信号は偏波制御回路214bで無線通信装置の偏波面と衛星中継器の偏波面が一致するように調節され、送信アンテナ213bから片偏波の信号として出力される。このように、図3(b)に示す従来の無線通信装置はRF系統で送信キャリヤを区別することなく一括して偏波制御を実施することを特徴としている。   On the other hand, in the transmission system, the information signal is modulated by the modulation circuit 218, and output by the transmitter 220 after frequency conversion, filtering, and amplification. The signal output from the transmitter 220 is adjusted by the polarization control circuit 214b so that the polarization plane of the wireless communication device and the polarization plane of the satellite repeater coincide with each other, and output from the transmission antenna 213b as a single polarization signal. As described above, the conventional wireless communication apparatus shown in FIG. 3B is characterized in that the polarization control is collectively performed without distinguishing the transmission carrier in the RF system.

図4に従来のマルチキャリヤ偏波多重信号の無線通信装置を用いた偏波多重通信システム実現時の課題を示す。図4は従来の無線通信装置とそれと通信を行う中継局で構成されるシステムである。この例では衛星通信を想定し、無線通信装置と中継局間の通信例を用いて説明するが、一般的な地上無線通信を想定する場合、中継局の代わりに基地局を用いてもよい。図4は複数キャリヤ変調回路29aと29bから独立した2送信系統で図4(a)に示すようなキャリヤ1、キャリヤ2、キャリヤ3の変調信号が個別に出力され、それらの信号を中継局が受信する状況を表している。   FIG. 4 shows a problem in realizing a polarization multiplexing communication system using a conventional multicarrier polarization multiplexed signal wireless communication apparatus. FIG. 4 shows a system composed of a conventional wireless communication apparatus and a relay station that communicates therewith. In this example, satellite communication is assumed and the communication example between the wireless communication apparatus and the relay station is described. However, when general terrestrial wireless communication is assumed, a base station may be used instead of the relay station. FIG. 4 shows two transmission systems independent of the multi-carrier modulation circuits 29a and 29b, and the modulated signals of the carrier 1, carrier 2 and carrier 3 as shown in FIG. 4 (a) are individually output. Represents the status of reception.

図4においてキャリヤ1は同じ周波数帯域の異なる系統に信号A1とA2がそれぞれ配置されているが、キャリヤ2は送信系統1のB1にのみ、キャリヤ3は送信系統2のC2にのみ信号を配置する。次にこれらの信号は送信系統毎に設けられた周波数合波回路210a,210bで、A1,A2が周波数f1に、B1が周波数f2に、C2が周波数f3となるようにそれぞれ周波数多重され、図4(b)のような2系統の周波数多重信号となる。図4(b)において、キャリヤ2の送信系統2とキャリヤ3の送信系統1にはそれぞれ信号が配置されておらず、送信系統1のf3と送信系統2のf2は空き帯域となる。これらの2系統の周波数多重信号はそれぞれ送信機211a,211bで周波数変換やフィルタ処理、増幅処理がなされ、送信系統毎に設けられたアンテナ212a,212bから中継局に対して送出される。ここでアンテナ212aは送信系統1の信号をこの無線通信装置固有の垂直偏波で送信するアンテナであり、アンテナ212bは送信系統2の信号をこの無線通信装置固有の水平偏波で送信するアンテナである。   4, signals A1 and A2 are arranged in different systems in the same frequency band in carrier 1, but carrier 2 arranges signals only in B1 of transmission system 1, and carrier 3 arranges signals only in C2 of transmission system 2. . Next, these signals are frequency multiplexed by frequency multiplexing circuits 210a and 210b provided for each transmission system so that A1 and A2 are frequency f1, B1 is frequency f2, and C2 is frequency f3, respectively. It becomes a frequency multiplex signal of 2 systems like 4 (b). In FIG. 4B, signals are not arranged in the transmission system 2 of the carrier 2 and the transmission system 1 of the carrier 3, respectively, and f3 of the transmission system 1 and f2 of the transmission system 2 are vacant bands. These two systems of frequency multiplexed signals are subjected to frequency conversion, filter processing, and amplification processing in the transmitters 211a and 211b, respectively, and are transmitted to the relay station from the antennas 212a and 212b provided for each transmission system. Here, the antenna 212a is an antenna that transmits a signal of the transmission system 1 with vertical polarization unique to the wireless communication apparatus, and the antenna 212b is an antenna that transmits a signal of the transmission system 2 with horizontal polarization specific to the wireless communication apparatus. is there.

一方、これらの無線通信装置固有の垂直偏波と水平偏波で送出された送信系統1と送信系統2の信号は、空間伝搬後、中継局214の受信機において中継局固有の垂直偏波アンテナ215a、と中継局固有の水平アンテナ215bで受信される。例えば、図4に示すように中継局の送信機と無線通信装置の受信機の間の伝搬路行列をHとし、伝搬路の相反性が成立すれば、無線通信装置の送信機から中継局の受信機に対する伝搬路行列は理想的にはH(Hの転置行列)となる。 On the other hand, the signals of the transmission system 1 and the transmission system 2 transmitted in the vertical polarization and the horizontal polarization unique to these wireless communication devices are transmitted to the vertical polarization antenna specific to the relay station at the receiver of the relay station 214 after spatial propagation. 215a, and a relay station-specific horizontal antenna 215b. For example, as shown in FIG. 4, if the propagation path matrix between the transmitter of the relay station and the receiver of the wireless communication apparatus is H, and the reciprocity of the propagation paths is established, the transmitter of the wireless communication apparatus The propagation path matrix for the receiver is ideally H T (H transpose matrix).

次に無線通信装置の送信系統1の周波数f2で送出されるB1に着目する。図5に示すように信号B1は無線通信装置固有の水平偏波アンテナで送出される。一方中継局では中継局に備えられている垂直偏波アンテナ215aと水平偏波アンテナ215bでこのB1の信号を受信する。ここで無線通信装置と中継局の偏波面は物理的に互いで独立であるため、通常両者の偏波軸は一致しない。したがって図5に示すようにB1はB1aとB2aにベクトル分解されて中継局で受信される。これを式で表すと

Figure 0004727603
となる。同様に周波数f3の信号C2に着目すると、送信系統2のアンテナ212bから送信された信号C2は伝搬過程で
Figure 0004727603
となる。上式(2)は1系統から送信された信号C2が中継受信局ではC2aとC2bの2系統に分かれて存在することを意味する。 Next, attention is focused on B1 transmitted at the frequency f2 of the transmission system 1 of the wireless communication apparatus. As shown in FIG. 5, the signal B1 is transmitted by a horizontally polarized antenna unique to the wireless communication apparatus. On the other hand, the relay station receives the B1 signal by the vertically polarized antenna 215a and the horizontally polarized antenna 215b provided in the relay station. Here, since the polarization planes of the wireless communication apparatus and the relay station are physically independent from each other, the polarization axes of the two do not usually coincide. Therefore, as shown in FIG. 5, B1 is vector-decomposed into B1a and B2a and received by the relay station. This can be expressed as an expression
Figure 0004727603
It becomes. Similarly, paying attention to the signal C2 of the frequency f3, the signal C2 transmitted from the antenna 212b of the transmission system 2 is in the propagation process.
Figure 0004727603
It becomes. The above equation (2) means that the signal C2 transmitted from one system is divided into two systems C2a and C2b at the relay receiving station.

この場合、2系統の中継局受信系統の周波数多重信号は図4(c)のようになる。周波数f2に関し、無線通信装置はB1を送信1系統(片偏波)で送信したにも関わらず、無線通信装置と中継局の偏波面の不一致に起因して、B1が中継局においてB1aとB1bとして2系統を専有することになり、周波数f2を別ユーザと帯域共有できなかった。   In this case, the frequency multiplexing signals of the two relay station reception systems are as shown in FIG. Regarding the frequency f2, the wireless communication apparatus transmits B1 by one transmission system (single polarization), but B1 is B1a and B1b at the relay station due to the mismatch of the polarization planes of the wireless communication apparatus and the relay station. As a result, the frequency f2 cannot be shared with another user.

同様にf3の周波数に関しても、C2を1系統で送信したにも関わらず、中継局においてC2aとC2bとして中継局受信2系統を専有することになり、周波数f3を別ユーザと帯域共有をすることができなかった。   Similarly, regarding the frequency of f3, although C2 is transmitted by one system, the relay station occupies two relay station reception systems as C2a and C2b, and shares the frequency f3 with another user. I could not.

以上で説明したように、従来の無線通信装置に対して、図4(a)に示すキャリヤ2やキャリヤ3のような送信1系統だけ帯域を利用するような帯域割当てをしても、送受偏波面の不一致により中継局で受信された信号は2系統を1つの信号が分かれて専有する。したがって従来のマルチキャリヤ偏波多重伝送において、1部の伝送キャリヤに送信1系統の割当てを混在させることは周波数利用効率上、望ましくなかった。逆にいえば、マルチキャリヤ偏波多重伝送ユーザに対しては、A1,A2のような同一周波数両偏波信号のキャリヤを対として割当る方が望ましいという帯域割当て制約を意味しており、様々なユーザで1つのシステム帯域を共有する場合に、帯域割当ての柔軟性を確保する観点で問題があった。   As described above, even if a conventional wireless communication apparatus is assigned a band that uses only one transmission system such as the carrier 2 and the carrier 3 shown in FIG. The signals received at the relay station due to the mismatch of the wave fronts are divided into two systems and one signal is occupied. Therefore, in the conventional multicarrier polarization multiplexing transmission, it is not desirable in terms of frequency utilization efficiency to mix the allocation of one transmission system to one transmission carrier. In other words, it means a band allocation constraint that it is desirable to allocate carriers of the same frequency and both polarization signals such as A1 and A2 as a pair to a multicarrier polarization multiplexed transmission user. When a single user shares a single system bandwidth, there is a problem in terms of ensuring flexibility in bandwidth allocation.

たとえば図4(d)に示すように、ユーザDが従来技術を用いて自局の送信系統2を中継局受信系統2に一致するように偏波調整後、信号D2を送信しているとする。一方で図4(e)に示すようにユーザEが従来技術を用いて自局の送信系統1が中継局受信系統1に一致するように偏波調整後、信号E1を送信しているとする。この場合、信号B1bと信号C2aがそれぞれ信号D2と信号E1と同一周波数干渉となるため、ユーザDとEの使用を中止するか、無線通信装置においてB1とC2の使用を中止するかどちらかを選択しなければならなかった。つまり、従来のマルチキャリヤ偏波多重信号の無線通信装置ユーザと既存片偏波ユーザは、周波数帯域を共用することができなかった。   For example, as shown in FIG. 4D, it is assumed that the user D transmits the signal D2 after adjusting the polarization so that the transmission system 2 of the local station matches the relay station reception system 2 using the conventional technique. . On the other hand, as shown in FIG. 4 (e), it is assumed that the user E transmits the signal E1 after adjusting the polarization so that the transmission system 1 of the local station matches the relay station reception system 1 using the conventional technique. . In this case, since the signal B1b and the signal C2a have the same frequency interference as the signal D2 and the signal E1, respectively, either the use of the users D and E is stopped or the use of B1 and C2 is stopped in the wireless communication apparatus. Had to choose. In other words, the conventional multi-carrier polarization multiplexed signal wireless communication device user and the existing single polarization user cannot share the frequency band.

一方、別の従来技術として図3(b)を用いて述べたRF偏波制御機構を有する無線通信装置は、RFでマルチキャリヤ信号を一括して偏波調整するため、キャリヤ単位で偏波調整できない問題があった。また、RFにおける偏波制御は温度特性や経年劣化の影響をうけるため、偏波制御精度を維持するためには調整が必要などの調整性の点で課題があった。   On the other hand, the radio communication apparatus having the RF polarization control mechanism described with reference to FIG. 3B as another conventional technique adjusts the polarization of multicarrier signals in a lump by RF, so that the polarization is adjusted in units of carriers. There was a problem that could not be done. Further, since polarization control in RF is affected by temperature characteristics and aging deterioration, there is a problem in terms of adjustability such as adjustment necessary to maintain polarization control accuracy.

山下他“偏波・周波数分割多重方式(VPFDM)の提案と衛星通信への適用”、電子情報通信学会 信学技報SAT2005−44Yamashita et al. “Proposal of Polarization / Frequency Division Multiplexing (VPFDM) and Application to Satellite Communication”, IEICE Technical Report SAT 2005-44 飯田 尚志、“衛星通信”、オーム社、PP.142Naoshi Iida, “Satellite Communication”, Ohmsha, PP. 142 大鐘他“MIMOチャネルにおける空間分割多重方式とその基本特性”、電子情報通信学会論文誌B Vol.J87−B No.9 pp.1162−1173,2004.9Ogane et al. “Space Division Multiplexing in MIMO Channel and its Basic Characteristics”, IEICE Transactions B Vol. J87-B No. 9 pp. 1162-1173, 20044.9 F.Yamashita,et al,“Variable Polarization/Frequency Division Multiplexing(VPFDM) for satellite communications”, IEEE VTC−FALL international conference 2006, 2P−4F. Yamashita, et al, “Variable Polarization / Frequency Division Multiplexing (VPFDM) for satellite communications”, IEEE VTC-FALL international 200, Reference 2

本発明の目的は、キャリヤ毎に偏波調整が可能で、片偏波のみを使用している他システムと帯域共用が可能な無線通信装置及び無線通信システムを提供することにある。   An object of the present invention is to provide a radio communication apparatus and a radio communication system that can adjust the polarization for each carrier and can share a band with other systems using only one polarization.

本発明による無線通信装置および無線通信システムは1ユーザが2偏波の複数の独立したキャリヤ信号を送受信する無線通信装置において、前記無線通信装置が複数の参照信号を前記ユーザ固有の2偏波面で受信し、前記参照信号から伝搬路状態を推定する伝搬路推定手段と、
送信情報を2送信系統に分岐し、各送信系統の情報を複数のキャリヤに分割し、キャリヤ毎に独立に変調し、2系統の変調信号として出力する変調手段と、
前記2系統の変調信号において、どちらか一方の系統の周波数帯域には変調信号が存在するが、他系統の同じ周波数帯域には信号が存在しない変調信号の少なくとも1つに関して、前記伝搬路推定手段で推定される伝搬路行列に対応した補償行列を乗じる制御手段を備えることを最大の特徴とする。
The wireless communication device and the wireless communication system according to the present invention are wireless communication devices in which one user transmits and receives a plurality of independent carrier signals of two polarizations, and the wireless communication device transmits a plurality of reference signals on two polarization planes specific to the user. Channel estimation means for receiving and estimating a channel state from the reference signal;
Modulation means for branching the transmission information into two transmission systems, dividing the information of each transmission system into a plurality of carriers, independently modulating each carrier, and outputting the modulated signals as two systems;
In the two systems of modulation signals, the propagation path estimation means for at least one of the modulation signals in which the modulation signal exists in the frequency band of one of the systems but does not exist in the same frequency band of the other system And a control means for multiplying a compensation matrix corresponding to the propagation path matrix estimated in (1).

図3(a)に示す従来の無線通信装置および無線通信システムとは複数キャリヤの2送信系統の送信変調信号に対し、どちらか一方の系統の周波数帯域には変調信号が存在するが、他系統の同じ周波数帯域には信号が存在しない変調信号の少なくとも1つに対して、参照信号の受信情報から推定される伝搬路行列に対応した補償行列を乗じる制御手段を備える点が異なる。   The conventional radio communication apparatus and radio communication system shown in FIG. 3 (a) is different from the transmission modulation signal of two transmission systems of a plurality of carriers, in which there is a modulation signal in the frequency band of either system. And a control means for multiplying at least one of the modulated signals having no signal in the same frequency band by a compensation matrix corresponding to the propagation path matrix estimated from the reception information of the reference signal.

また、図3(b)に示す従来の無線通信装置とは送受信の偏波制御をRF回路で送受信帯域一括して行うのではなく、参照信号の受信情報からキャリヤ単位に伝搬路行列を推定し、その情報を元にキャリヤ単位に送信偏波制御を行う点が異なる。   In addition, with the conventional wireless communication apparatus shown in FIG. 3B, transmission / reception polarization control is not performed for the transmission / reception band at the same time by the RF circuit, but the propagation path matrix is estimated for each carrier from the reception information of the reference signal. The difference is that transmission polarization control is performed for each carrier based on the information.

本発明の無線通信装置および無線通信システムによれば、マルチキャリヤ偏波多重信号を送受信するユーザが、一部のキャリヤの送信偏波軸を受信信号から推定される伝搬路行列を用いて制御することで、既存システムで片偏波を使用している別ユーザと帯域共用できるので、結果としてユーザに対する帯域割当ての柔軟性が向上する。   According to the radio communication apparatus and radio communication system of the present invention, a user who transmits and receives a multicarrier polarization multiplexed signal controls the transmission polarization axis of some carriers using a propagation path matrix estimated from the received signal. As a result, it is possible to share the bandwidth with another user who uses unipolarization in the existing system, and as a result, the flexibility of bandwidth allocation to the user is improved.

本発明の無線通信装置および無線通信システムにより、マルチキャリヤ偏波多重信号を送受信するユーザに対する帯域割当ての柔軟性が向上すれば、周波数利用効率が向上するため、1ユーザあたりの伝送速度の高速化もしくは、ユーザ収容者数の増加につながる。   With the wireless communication device and the wireless communication system of the present invention, if the bandwidth allocation flexibility for users who transmit and receive multi-carrier polarization multiplexed signals is improved, the frequency utilization efficiency is improved, so that the transmission rate per user is increased. Or it leads to the increase in the number of user capacity.

図1に本発明の実施形態を示す。   FIG. 1 shows an embodiment of the present invention.

図1の無線通信システムは、参照信号としてトレーニング信号を含む制御信号を送出する制御信号生成回路とマルチキャリヤ偏波多重信号を送受信する無線通信装置と無線通信装置に対して制御信号を送信および、無線通信装置からの信号を受信する中継局から構成される。本発明の実施例は無線通信の1つである衛星通信を想定し、無線通信装置と中継局間の信号の送受信を想定している。一般的な地上の無線通信を想定する場合、本例の中継局を基地局と置き換えて考えることもできる。   The radio communication system of FIG. 1 transmits a control signal to a control signal generation circuit that transmits a control signal including a training signal as a reference signal, a radio communication device that transmits and receives a multicarrier polarization multiplexed signal, and a radio communication device; It is comprised from the relay station which receives the signal from a radio | wireless communication apparatus. The embodiment of the present invention assumes satellite communication, which is one type of wireless communication, and assumes signal transmission / reception between the wireless communication device and the relay station. When assuming general terrestrial wireless communication, the relay station of this example can be replaced with a base station.

制御信号生成回路117はトレーニング信号を含む制御信号を生成し、中継局送信機にその制御信号を受け渡す。ただしこの制御装置と中継局間の信号の受け渡しは有線であっても無線を使っても良い。一般に衛星通信を想定した場合、制御装置は地上の基地局にあるため、制御信号の受け渡しは地上の基地局と、衛星中継局間で無線で行われる。   The control signal generation circuit 117 generates a control signal including a training signal, and transfers the control signal to the relay station transmitter. However, signal transmission between the control device and the relay station may be wired or wireless. In general, assuming satellite communication, since the control device is located on the ground base station, the control signal is transmitted wirelessly between the ground base station and the satellite relay station.

中継局は中継局送信機116と中継局受信機120、中継局送信系統1の信号を送信する中継局送信アンテナ115a、中継局送信系統2の信号を送信する中継送信アンテナ115bから構成される。本発明の実施例では2つのアンテナからそれぞれ中継局の垂直偏波と中継局の水平偏波面で信号を送出することを想定するが、本発明はこの偏波面に限定するものではなく、例えば2つの旋回方向の円偏波も可能である。   The relay station includes a relay station transmitter 116, a relay station receiver 120, a relay station transmission antenna 115a that transmits a signal of the relay station transmission system 1, and a relay transmission antenna 115b that transmits a signal of the relay station transmission system 2. In the embodiment of the present invention, it is assumed that signals are transmitted from the two antennas in the vertical polarization plane of the relay station and the horizontal polarization plane of the relay station, but the present invention is not limited to this polarization plane. Two circularly polarized waves are also possible.

一方、無線通信装置の受信系は受信アンテナ11a,11b、受信機12a,12b、周波数分波回路13a,13b、干渉補償回路14、伝搬路行列推定回路110、複数キャリヤ復調回路15a,15b、合成回路16から構成され、2偏波面の受信信号を受信する。また、送信系は、分岐回路17、複数キャリヤ変調回路18a,18b、偏波制御回路19、偏波制御キャリヤ選別回路111、周波数合波回路112a,112b、送信機113a,113b、送信アンテナ114a,114bから構成され、送信される信号を2偏波面で送信する。   On the other hand, the reception system of the wireless communication apparatus includes reception antennas 11a and 11b, receivers 12a and 12b, frequency demultiplexing circuits 13a and 13b, interference compensation circuit 14, propagation path matrix estimation circuit 110, multiple carrier demodulation circuits 15a and 15b, and synthesis. The circuit 16 is configured to receive a reception signal having two polarization planes. The transmission system includes a branch circuit 17, multiple carrier modulation circuits 18a and 18b, a polarization control circuit 19, a polarization control carrier selection circuit 111, frequency multiplexing circuits 112a and 112b, transmitters 113a and 113b, a transmission antenna 114a, 114b, and transmits a signal to be transmitted on two polarization planes.

次に図1の無線通信装置および無線通信システムにおける信号の流れを説明する。制御信号生成回路117で垂直偏波信号CSCV、水平偏波信号CSCHがそれぞれ生成され、図2(a)に示すように同時に異なる周波数fvとfhで送信されるとする。簡単のため、異なる周波数にこの制御信号、つまり参照信号、を割当てる。ただし、垂直/水平偏波の制御信号に直交符号を適用する場合は、受信回路にて制御信号の符号分離が可能であるため、同一周波数に垂直偏波の制御信号CSCVと水平偏波の制御信号CSCHを割当ててもよい。   Next, the flow of signals in the radio communication apparatus and radio communication system of FIG. 1 will be described. Assume that the control signal generation circuit 117 generates a vertical polarization signal CSCV and a horizontal polarization signal CSCH, respectively, and simultaneously transmits them at different frequencies fv and fh as shown in FIG. For simplicity, this control signal, that is, the reference signal is assigned to different frequencies. However, when an orthogonal code is applied to a vertical / horizontal polarization control signal, since the control signal can be separated by a receiving circuit, the vertical polarization control signal CSCV and the horizontal polarization control at the same frequency are possible. The signal CSCH may be assigned.

一方、無線通信装置は図2(b)に示すように無線通信装置固有の垂直/水平偏波面でCSCV,CSCHの制御信号を同時に受信する。その際、無線通信装置と中継局の偏波面が一致していないため、伝搬過程でCSCV,CSCHに対して伝搬路行列Hが乗じられた形で受信される。この受信状況は以下の式(3)で表現される。   On the other hand, the wireless communication apparatus simultaneously receives CSCV and CSCH control signals on the vertical / horizontal polarization planes inherent to the wireless communication apparatus, as shown in FIG. At this time, since the polarization planes of the radio communication apparatus and the relay station do not match, the CSCV and CSCH are received in the form of the propagation path matrix H multiplied by the propagation process. This reception situation is expressed by the following equation (3).

Figure 0004727603
Figure 0004727603

式(3)の右辺に含まれる行列因子の4成分はそれぞれ異なる独立した信号として受信される。偏波毎に受信機で増幅、周波数変換、フィルタ処理がなされ、偏波毎に備えられた周波数分波回路でキャリヤ単位に周波数分波がなされる。周波数分波された信号のうち、キャリヤ周波数fvとキャリヤ周波数fh相当の制御信号を抽出し、伝搬路行列推定回路110で伝搬路行列Hの個別要素であるh11,h12,h21,h22の成分をそれぞれ抽出する。なお、伝搬路行列の抽出については非特許文献4に示す従来技術と同様である。2つの偏波を垂直/水平偏波とすると、送信垂直/水平偏波信号にトレーニング信号を挿入し、受信側で受信垂直/水平偏波信号にトレーニング信号を検出した時にマッチトパルスを出力するマッチトフィルタを適用する。受信垂直偏波信号において、送信垂直偏波のトレーニング信号に対するマッチトパルスをh11とし、受信垂直偏波信号において、送信水平偏波のトレーニング信号に対するマッチトパルスをh12とし、受信水平偏波信号において、送信垂直偏波のトレーニング信号に対するマッチトパルスをh21とし、受信水平偏波信号において、送信水平偏波のトレーニング信号に対するマッチトパルスをh22とし、伝搬路行列の個別要素を推定することができる。   The four components of the matrix factor included in the right side of Equation (3) are received as different independent signals. Amplification, frequency conversion, and filter processing are performed by the receiver for each polarization, and frequency demultiplexing is performed for each carrier by a frequency demultiplexing circuit provided for each polarization. A control signal corresponding to the carrier frequency fv and the carrier frequency fh is extracted from the frequency-demultiplexed signal, and components of h11, h12, h21, and h22 that are individual elements of the propagation path matrix H are extracted by the propagation path matrix estimation circuit 110. Extract each one. Note that the extraction of the propagation path matrix is the same as in the prior art disclosed in Non-Patent Document 4. If the two polarizations are vertical / horizontal polarization, a training signal is inserted into the transmission vertical / horizontal polarization signal, and a matched pulse is output when the reception side detects the training signal in the reception vertical / horizontal polarization signal. Apply a matched filter. In the received vertical polarization signal, the matched pulse for the transmission signal with the transmission vertical polarization is set as h11. In the reception vertical polarization signal, the matched pulse for the training signal with the transmission horizontal polarization is set as h12, and in the received horizontal polarization signal. The matched pulse with respect to the transmission vertical polarization training signal is set as h21, and the received pulse with respect to the transmission horizontal polarization training signal is set as h22 in the received horizontal polarization signal, so that individual elements of the channel matrix can be estimated. .

一方、図2(a)(b)では説明を割愛しているが、実際の通信では、中継局から送信される信号には制御信号生成回路117から送信される制御キャリヤ以外の帯域には他ユーザと通信している信号がある。これらの信号に対しても制御キャリヤと全く同様に偏波毎に周波数分波がなされ、伝搬路行列推定回路でキャリヤ毎に伝搬路行列Hが推定される。その後、干渉補償回路14で伝搬路行列Hを用いて受信信号における偏波間干渉がキャリヤ毎に補償される。干渉補償アルゴリズムには幾つか存在するが、従来技術と同様にMMSEが適用可能である。MMSEの動作原理に関しては非特許文献3に記載されているので説明を割愛する。   On the other hand, although explanation is omitted in FIGS. 2 (a) and 2 (b), in actual communication, the signal transmitted from the relay station has a band other than the control carrier transmitted from the control signal generation circuit 117. There is a signal communicating with the user. These signals are also subjected to frequency demultiplexing for each polarization in the same manner as the control carrier, and the propagation path matrix estimation circuit estimates the propagation path matrix H for each carrier. Thereafter, the interference compensation circuit 14 uses the propagation path matrix H to compensate for the polarization interference in the received signal for each carrier. Although there are several interference compensation algorithms, MMSE can be applied as in the prior art. Since the operation principle of MMSE is described in Non-Patent Document 3, description thereof will be omitted.

偏波間干渉がキャリヤ毎に補償された信号はそれぞれ、後段の複数キャリヤ復調器に入力され、キャリヤ毎に復調される。キャリヤ毎に復調された信号は合成回路16でそれまでに偏波毎に処理されていた信号が合成され、もとの1系統の情報信号に復元される。   Each signal in which the inter-polarization interference is compensated for each carrier is input to the subsequent multi-carrier demodulator and demodulated for each carrier. The signal demodulated for each carrier is combined with the signal previously processed for each polarization by the combining circuit 16 and restored to the original one-system information signal.

一方、送信系では、送信情報が分岐回路17で2系統の信号(送信系統1、送信系統2)に分岐され、各送信系統の信号は送信系統毎に独立にマルチキャリヤ信号に分割後、キャリヤ毎の変調処理がなされる。一例として従来技術の説明で述べた図4(a)と同様に、キャリヤ1には2つの送信系統で同じ帯域幅の異なる信号A1,A2を配置し、キャリヤ2には送信系統1にのみ信号B1を、キャリヤ3には送信系統2にのみ信号C2を配置する。A1,A2,B1,C2は偏波制御回路19にそれぞれ入力されるが、本発明では偏波制御キャリヤ選別回路111でどちらか一方の送信系統にしか配置されていない信号を判別する。つまり、B1とC2の信号に対し、偏波制御回路19で以下の偏波制御処理を適用する。   On the other hand, in the transmission system, transmission information is branched into two systems of signals (transmission system 1 and transmission system 2) by the branch circuit 17, and each transmission system signal is divided into multi-carrier signals independently for each transmission system, Each modulation process is performed. As an example, as in FIG. 4A described in the description of the prior art, signals A1 and A2 having the same bandwidth in two transmission systems are arranged on the carrier 1, and signals only on the transmission system 1 are arranged on the carrier 2. The signal C2 is arranged only in the transmission system 2 in the carrier 3 and B1. A1, A2, B1, and C2 are respectively input to the polarization control circuit 19. In the present invention, the polarization control carrier selection circuit 111 determines a signal that is arranged only in one of the transmission systems. That is, the polarization control circuit 19 applies the following polarization control processing to the signals B1 and C2.

B1は送信系統1にのみ配置され、送信系統2の同じ周波数には信号が存在しない。したがって、制御信号の受信時に補償行列として、伝搬路行列推定回路110で推定された伝搬路行列Hの転置行列の逆行列をこの入力に対して乗じると偏波制御回路19からの出力は下式(4)で表される。   B1 is arranged only in the transmission system 1, and there is no signal at the same frequency of the transmission system 2. Therefore, when this input is multiplied by the inverse matrix of the transposed matrix of the propagation path matrix H estimated by the propagation path matrix estimation circuit 110 as a compensation matrix when receiving the control signal, the output from the polarization control circuit 19 is expressed by the following equation: It is represented by (4).

即ちB1は送信系統1のB1a’と送信系統2のB1b’の2成分に分かれる。   That is, B1 is divided into two components, B1a 'of the transmission system 1 and B1b' of the transmission system 2.

Figure 0004727603
Figure 0004727603

一方でC2は送信系統2にのみ存在し、送信系統1は信号が存在しない。したがって補償行列として、制御信号より推定された伝搬路行列Hの転置逆行列をこの入力に対して乗じると偏波制御回路19からの出力は下式(5)で表されるように送信系統1ではC2a’と送信系統2ではC2b’に分かれる。   On the other hand, C2 exists only in the transmission system 2, and the transmission system 1 has no signal. Therefore, when this input is multiplied by a transposed inverse matrix of the propagation path matrix H estimated from the control signal as a compensation matrix, the output from the polarization control circuit 19 is expressed by the following equation (5). Then, C2a ′ and transmission system 2 are divided into C2b ′.

Figure 0004727603
Figure 0004727603

一方でA1,A2は両偏波の信号であるため、図1の偏波制御回路19はバイパスし、偏波制御が行われない。以上をまとめると、偏波制御回路からの出力は図2(d)のように表される。それぞれのキャリヤの信号は送信系統毎に独立に備わる周波数合波回路112a,112bで周波数f1,f2,f3の信号として周波数多重される。この時の周波数特性を図2(e)に示す。周波数多重された各送信系統の信号はそれぞれ送信機113a,113bに入力され、周波数変換、増幅、フィルタ処理後にアンテナ114a,114bから送信される。   On the other hand, since A1 and A2 are signals of both polarizations, the polarization control circuit 19 in FIG. 1 is bypassed and polarization control is not performed. In summary, the output from the polarization control circuit is expressed as shown in FIG. The signals of the respective carriers are frequency-multiplexed as signals of frequencies f1, f2, and f3 by frequency multiplexing circuits 112a and 112b provided independently for each transmission system. The frequency characteristics at this time are shown in FIG. Frequency-multiplexed signals of each transmission system are input to transmitters 113a and 113b, respectively, and transmitted from antennas 114a and 114b after frequency conversion, amplification, and filtering.

ここで、制御装置から無線通信装置への伝搬路行列をHに対し、無線通信装置から制御装置の伝搬路に相反性が成立すると仮定すれば、無線通信装置から制御装置への伝搬路行列はHTで表現される。したがって、送信アンテナ114a,114bから送出された信号がHTの伝搬路を介して中継局で受信される周波数f2の信号は式(6)で表現される。 Here, assuming that the propagation path matrix from the control apparatus to the wireless communication apparatus is H, and the reciprocity is established in the propagation path from the wireless communication apparatus to the control apparatus, the propagation path matrix from the wireless communication apparatus to the control apparatus is It is represented by H T. Accordingly, the transmit antenna 114a, signals of frequency f2 signal sent from 114b is received by the relay station via a channel of the H T is expressed by the equation (6).

Figure 0004727603
Figure 0004727603

また中継局で受信される周波数f3の信号は式(7)で表現される。   Further, the signal of frequency f3 received by the relay station is expressed by equation (7).

Figure 0004727603
Figure 0004727603

従って、無線通信装置の送信系統1、送信系統2から送信された2系統の信号が伝搬路を介して中継局で受信された結果、2系統の中継受信系統の周波数特性は図2(f)のようになる。   Therefore, as a result of the two systems of signals transmitted from the transmission system 1 and the transmission system 2 of the wireless communication apparatus being received by the relay station via the propagation path, the frequency characteristics of the two systems of the relay reception system are shown in FIG. become that way.

従来技術ではキャリヤ毎の送信偏波制御をしないため、図4(c)に示すように中継器受信系統1と2の周波数f1,f2では空き帯域は生じず、マルチキャリヤ偏波多重無線通信装置は別ユーザD,Eと帯域を共有することができなかった。   Since the transmission polarization control for each carrier is not performed in the prior art, as shown in FIG. 4 (c), there is no vacant band in the frequencies f1 and f2 of the repeater reception systems 1 and 2, and the multicarrier polarization multiplexed radio communication apparatus Could not share the bandwidth with other users D and E.

しかしながら本発明の技術を適用すると偏波制御回路19で補償行列を用いてキャリヤ毎に送信偏波制御するため、図2(f)に示すように、中継局受信系統において、中継局受信系統2の周波数f2のキャリヤと中継局受信系統1の周波数f3のキャリヤに空き帯域を生成できる。したがって図2(g)に示すようにそれぞれの中継局受信系統の空き帯域を利用して、別ユーザDおよびユーザEが通信可能となる。   However, when the technique of the present invention is applied, the polarization control circuit 19 performs transmission polarization control for each carrier using a compensation matrix. Therefore, in the relay station reception system, as shown in FIG. Vacant band can be generated for the carrier of frequency f2 and the carrier of frequency f3 of the relay station reception system 1. Therefore, as shown in FIG. 2 (g), another user D and user E can communicate with each other using the vacant bandwidth of each relay station reception system.

この場合、本発明によるキャリヤ毎の偏波制御の結果として図2(h)に示すように、周波数f1,f2,f3の3つのキャリヤ信号に対し、無線通信装置からの信号A1a,A1b,B1,C2と別ユーザDからの信号D2、ならびに別ユーザEからの信号E1が併存できる。   In this case, as a result of the polarization control for each carrier according to the present invention, as shown in FIG. 2 (h), signals A1a, A1b, B1 from the wireless communication apparatus are used for three carrier signals of frequencies f1, f2, f3. , C2 and a signal D2 from another user D and a signal E1 from another user E can coexist.

従来は図4(d)を用いて説明したようにD2とE1がB1bとC2aと同一周波数干渉となるため、これらは帯域を共有して同時に通信できなかった。しかしながら本発明技術を用いれば、無線通信装置が送信するマルチキャリヤ偏波多重信号と既存別ユーザのD2とE1が同時に通信可能となり、マルチキャリヤ偏波多重ユーザに対するチャネル割当ての柔軟性が向上する。   Conventionally, since D2 and E1 have the same frequency interference as B1b and C2a as described with reference to FIG. 4 (d), they cannot share at the same time while sharing a band. However, if the technique of the present invention is used, the multicarrier polarization multiplexed signal transmitted by the wireless communication apparatus and the existing different users D2 and E1 can communicate simultaneously, and the flexibility of channel assignment for the multicarrier polarization multiplexed user is improved.

本発明の無線通信装置および無線通信システムの実施例のブロック図である。It is a block diagram of the Example of the radio | wireless communication apparatus and radio | wireless communications system of this invention. 図1の装置における各部のスペクトラムを示す。The spectrum of each part in the apparatus of FIG. 1 is shown. 従来の無線通信装置を示す。1 shows a conventional wireless communication device. 従来のマルチキャリヤ偏波多重信号用無線通信装置およびシステムの問題点を示す図である。It is a figure which shows the problem of the conventional radio | wireless communication apparatus and system for multicarrier polarization multiplexing signals. 送受偏波面不一致による伝搬路行列の発生を示す図である。It is a figure which shows generation | occurrence | production of the propagation path matrix by transmission / reception polarization plane mismatch.

符号の説明Explanation of symbols

11a,11b 受信アンテナ
12a,12b 受信機
13a,13b 周波数分波回路
14 干渉補償回路
15a,15b 複数キャリヤ復調回路
16 合成回路
17 分岐回路
18a,18b 複数キャリヤ変調回路
19 偏波制御回路
111 偏波制御キャリヤ選別回路
112a,112b 周波数合成回路
113a,113b 送信機
114a,114b 送信アンテナ
115a,115b 送信アンテナ
116 中継局送信機
117 制御信号生成回路
119a,119b 受信アンテナ
120 中継局受信機
11a, 11b Receiving antennas 12a, 12b Receivers 13a, 13b Frequency demultiplexing circuit 14 Interference compensation circuits 15a, 15b Multi-carrier demodulation circuit 16 Synthesis circuit 17 Branch circuit 18a, 18b Multi-carrier modulation circuit 19 Polarization control circuit 111 Polarization control Carrier selection circuit 112a, 112b Frequency synthesis circuit 113a, 113b Transmitter 114a, 114b Transmit antenna 115a, 115b Transmit antenna 116 Relay station transmitter 117 Control signal generation circuit 119a, 119b Receive antenna 120 Relay station receiver

Claims (6)

各ユーザが2偏波の複数の独立したキャリヤ信号を送受信する無線通信装置において、
各偏波に対応する2つの受信系統と2つの送信系統を具備し、
前記受信系統が2偏波面で受信した参照信号から伝搬路状態を推定する伝搬路推定手段(110)を有し、
前記送信系統は、
送信される情報信号を2つの送信系統に分岐する分岐回路(17)と、
分岐された各送信系統の情報信号を複数のキャリヤに対応して分割し、各キャリヤ毎に独立に変調して2系統の変調信号として出力する変調手段(18a,18b)と、
前記変調手段から出力された2系統の変調信号から、一方の系統のあるキャリヤの周波数帯域には変調信号が存在するが、他系統の同じキャリヤの周波数帯域には信号が存在しない変調信号を選別する選別手段(111)と、
前記変調手段の出力に接続され、前記選別手段が選別した変調信号に対して、前記伝搬路推定手段で推定される伝搬路行列に対応した補償行列を乗じる偏波制御手段(19)とを備えることを特徴とする無線通信装置。
In a wireless communication device in which each user transmits and receives a plurality of independent carrier signals of two polarizations,
It has two reception systems and two transmission systems corresponding to each polarization,
Propagation path estimating means (110) for estimating a propagation path state from a reference signal received by the reception system at two polarization planes,
The transmission system is
A branch circuit (17) for branching an information signal to be transmitted into two transmission systems;
Modulation means (18a, 18b) that divides the information signal of each branched transmission system corresponding to a plurality of carriers, modulates each carrier independently, and outputs the modulated signals as two systems;
From the two modulation signals output from the modulation means, a modulation signal that has a modulation signal in the frequency band of a carrier in one system but does not exist in the frequency band of the same carrier in another system is selected. Sorting means (111) to perform,
Connected to the output of the modulating means, and against the modulating signal said selecting means has selected, polarization control means for multiplying the compensation matrix corresponding to the channel matrix estimated by the channel estimation means (19) radio communication apparatus characterized by obtaining Bei.
前記補償行列が伝搬路行列の転置逆行列であることを特徴とする請求項1記載の無線通信装置。   The wireless communication apparatus according to claim 1, wherein the compensation matrix is a transposed inverse matrix of a propagation path matrix. 前記参照信号は、前記無線通信装置に情報信号を送信する側において、一方の偏波は第1の制御信号(CSCV)を有し、他方の偏波は第2の制御信号(CSCH)を有する請求項1から請求項2のいずれかに記載の無線通信装置。   In the reference signal, one polarization has a first control signal (CSCV) and the other polarization has a second control signal (CSCH) on the side that transmits the information signal to the wireless communication device. The wireless communication apparatus according to claim 1. 前記第1の制御信号(CSCV)と前記第2の制御信号(CSCH)は、無線通信装置の2偏波で第1の受信制御信号と第2の受信制御信号として受信され、前記第1の受信制御信号と第2の受信制御信号を用いて、伝搬路行列の個別要素の成分を抽出する請求項1から請求項3のいずれかに記載の無線通信装置。   The first control signal (CSCV) and the second control signal (CSCH) are received as a first reception control signal and a second reception control signal with two polarizations of a wireless communication device, and The wireless communication apparatus according to any one of claims 1 to 3, wherein a component of an individual element of the channel matrix is extracted using the reception control signal and the second reception control signal. 各ユーザが2偏波の複数の独立したキャリヤ信号を送受信する無線通信装置と、制御信号を送出する制御装置とを備える無線通信システムにおいて、
前記制御装置は、一方の偏波に第1の制御信号(CSCV)を有し、他方の偏波に第2の制御信号(CSCH)を有する制御信号を送信し、
前記無線通信装置は、
各ユーザが2偏波の複数の独立したキャリヤ信号を送受信し、各偏波に対応する2つの受信系統と2つの送信系統を具備し、
前記受信系統が2偏波面で受信した参照信号から伝搬路状態を推定する伝搬路推定手段(110)を有し、
前記送信系統は、
送信される情報信号を2つの送信系統に分岐する分岐回路(17)と、
分岐された各送信系統の情報信号を複数のキャリヤに対応して分割し、各キャリヤ毎に独立に変調して2系統の変調信号として出力する変調手段(18a,18b)と、
前記変調手段から出力された2系統の変調信号から、一方の系統のあるキャリヤの周波数帯域には変調信号が存在するが、他系統の同じキャリヤの周波数帯域には信号が存在しない変調信号を選別する選別手段(111)と、
前記変調手段の出力に接続され、前記選別手段が選別した変調信号に対して、前記伝搬路推定手段で推定される伝搬路行列に対応した補償行列を乗じる偏波制御手段(19)とを備えることを特徴とする無線通信システム。
In a wireless communication system including a wireless communication device in which each user transmits and receives a plurality of independent carrier signals of two polarizations, and a control device that transmits a control signal ,
The control device transmits a control signal having a first control signal (CSCV) in one polarization and a second control signal (CSCH) in the other polarization,
The wireless communication device
Each user transmits and receives a plurality of independent carrier signals of two polarizations, and has two reception systems and two transmission systems corresponding to each polarization,
Propagation path estimating means (110) for estimating a propagation path state from a reference signal received by the reception system at two polarization planes,
The transmission system is
A branch circuit (17) for branching an information signal to be transmitted into two transmission systems;
Modulation means (18a, 18b) that divides the information signal of each branched transmission system corresponding to a plurality of carriers, modulates each carrier independently, and outputs the modulated signals as two systems;
From the two modulation signals output from the modulation means, a modulation signal that has a modulation signal in the frequency band of a carrier in one system but does not exist in the frequency band of the same carrier in another system is selected. Sorting means (111) to perform,
Connected to the output of the modulating means, and against the modulating signal said selecting means has selected, polarization control means for multiplying the compensation matrix corresponding to the channel matrix estimated by the channel estimation means (19) wireless communication system, wherein the obtaining Bei.
前記補償行列が伝搬路行列の転置逆行列であることを特徴とする請求項5記載の無線通信システム。   6. The wireless communication system according to claim 5, wherein the compensation matrix is a transposed inverse matrix of a propagation path matrix.
JP2007045728A 2007-02-26 2007-02-26 Wireless communication apparatus and wireless communication system Active JP4727603B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007045728A JP4727603B2 (en) 2007-02-26 2007-02-26 Wireless communication apparatus and wireless communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007045728A JP4727603B2 (en) 2007-02-26 2007-02-26 Wireless communication apparatus and wireless communication system

Publications (2)

Publication Number Publication Date
JP2008211476A JP2008211476A (en) 2008-09-11
JP4727603B2 true JP4727603B2 (en) 2011-07-20

Family

ID=39787412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007045728A Active JP4727603B2 (en) 2007-02-26 2007-02-26 Wireless communication apparatus and wireless communication system

Country Status (1)

Country Link
JP (1) JP4727603B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8737509B2 (en) 2009-01-07 2014-05-27 Panasonic Corporation Wireless communication apparatus, wireless communication system and wireless communication method
JP5347755B2 (en) * 2009-06-24 2013-11-20 富士通株式会社 Relay device, communication system, and communication method
JP5555558B2 (en) * 2010-07-02 2014-07-23 日本放送協会 Transmitting antenna device, transmitting device, and polarization MIMO transmission system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002374224A (en) * 2001-04-09 2002-12-26 Nippon Telegr & Teleph Corp <Ntt> Ofdm signal communication system, ofdm signal transmitting device and ofdm signal receiving device
JP2006180339A (en) * 2004-12-24 2006-07-06 Nippon Telegr & Teleph Corp <Ntt> Transmitting method and transmitting device for spatial multiplex transmission

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002374224A (en) * 2001-04-09 2002-12-26 Nippon Telegr & Teleph Corp <Ntt> Ofdm signal communication system, ofdm signal transmitting device and ofdm signal receiving device
JP2006180339A (en) * 2004-12-24 2006-07-06 Nippon Telegr & Teleph Corp <Ntt> Transmitting method and transmitting device for spatial multiplex transmission

Also Published As

Publication number Publication date
JP2008211476A (en) 2008-09-11

Similar Documents

Publication Publication Date Title
US9979443B2 (en) Distributed antenna system for MIMO signals
US10171160B2 (en) Accessing LP transponders with CP terminals via wavefront multiplexing techniques
US10097257B2 (en) Wireless communications network using frequency conversion of MIMO signals
JP2022188254A (en) End-to-end beamforming system and satellite
JP3992489B2 (en) Wireless communication method and apparatus
US11700053B2 (en) Repeater system and method for high-performance communication
EP3167554B1 (en) Dual-mode radio system having a full-duplex mode and a half-duplex mode
US10116409B2 (en) Polarization diversity with portable devices via wavefront muxing techniques
EP3220553A1 (en) Antenna and active antenna system
US9584198B1 (en) Reciprocity calibration for multiple-input multiple-output systems
CN110677186B (en) Satellite communication anti-interference method based on carrier splitting
JP4727603B2 (en) Wireless communication apparatus and wireless communication system
KR20140037227A (en) System, device, and method for transmitting multi-input-multi-output signals
EP3111583B1 (en) Method and apparatus for high data rate communication
JP5394994B2 (en) Wireless communication system and wireless base station
EP2512038B1 (en) Radio communication apparatus
JP5770699B2 (en) Terminal apparatus, base station apparatus, radio communication method, and radio communication system
KR101022271B1 (en) Repeater
JP2006148483A (en) Method and system for radio relay transmission, receiver and transmitter
JP5923192B2 (en) Terminal apparatus, base station apparatus, radio communication method, and radio communication system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090113

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100831

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110412

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110413

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350