【0001】
【発明の属する技術分野】
本発明は光学活性ビナフトール誘導体及び光学活性リン酸エステル誘導体、並びにそれらの用途に関する。本発明の光学活性ビナフトール誘導体及び光学活性リン酸エステル誘導体は、各種不斉合成触媒の合成中間体等として有望であり、また本発明の光学活性リン酸エステル誘導体はそれ自体、高い不斉識別能を有する有用な化合物である。
【0002】
【従来の技術】
本発明の光学活性ビナフトール誘導体、及びそれから誘導される光学活性リン酸エステル誘導体は従来知られておらず、新規な化合物である。
【0003】
不斉識別剤としてはEu−DPM、Eu−PTA、Eu(hfc)、Eu(Tfc)等のユーロピウムを中心金属とする錯体や、(R)−(+)−2−メトキシ−2−(トリフルオロメチル)フェニル酢酸等が市販されている。
【0004】
また、不斉合成触媒素子として有用な1,1’−ビナフチル−2,2’−ジオールが光学分割剤として有用であることが知られている(Toda,F.,et.al.,Chem. Lett.,131(1988)等)。
【0005】
さらに、不斉識別素子として3,3’−(3,5−ジフェニルフェニル)−1,1’−ビナフチル−2,2’−ジイルリン酸が知られている(日本化学会第76春季年会,1999年,3C1 05)。
【0006】
【発明が解決しようとする課題】
従来の市販されているユーロピウム等の金属錯体を用いた剤は、不斉識別に具する化合物によっては反応するものもあり、適用範囲が限定される。また(R)−(+)−2−メトキシ−2−(トリフルオロメチル)フェニル酢酸等は核磁気共鳴スペクトル分析(以下、NMRと略す)において、sp3炭素に結合した水素を有するため、不斉識別に具する化合物の種類によっては、ケミカルシフトが重なり判定できない場合がある。
【0007】
一方、1,1’−ビナフチル−2,2’−ジオール不斉識別に具する化合物と比較的反応性が低い優れた剤であるが、不斉識別に具する化合物の相互作用が低く、多量の使用が必要で、また不斉識別能は満足のいくものと言えない。
【0008】
さらに、3,3’−(3,5−ジフェニルフェニル)−1,1’−ビナフチル−2,2’−ジイルリン酸は、不斉識別剤として、優れた性能を有するものの、その能力は不完全で、さらなる高性能な剤の開発が望まれていた。
【0009】
【課題を解決するための手段】
本発明者らは、上記の課題を解決するため、より不斉識別能の高い化合物の創製を目指し鋭意検討した結果、中間体として新規なビナフトール誘導体及び不斉識別剤として新規な光学活性リン酸エステル誘導体を見出し、本発明を完成させるに至った。
【0010】
すなわち本発明は、
下記式(1)又は下記式(2)で示される光学活性ビナフトール誘導体、
【0011】
【化5】
【化6】
9−アントリルホウ酸と(R)又は(S)−3,3’−ジヨウド−1,1’−ビナフチル−2,2’−ジイル ビス(メトキシメチルエーテル)を反応させ、次いで加水分解することを特徴とする請求項1記載の光学活性ビナフトール誘導体の製造方法、
下記式(3)又は下記式(4)で示される光学活性リン酸エステル誘導体、
【0012】
【化7】
【化8】
上記式(1)又は式(2)で示される光学活性ビナフトール誘導体とオキシ塩化リンを反応させ、次いで加水分解することを特徴とする上記式(3)又は式(4)に記載のリン酸エステル誘導体の製造方法、並びに
上記式(3)又は式(4)のリン酸エステル誘導体からなる不斉識別剤
である。
【0013】
本発明を以下に詳細に説明する。
【0014】
本発明の上記式(1)又は式(2)で示されるビナフトール誘導体は、市販の光学活性な(R)又は(S)の1,1’−ビナフチル−2,2’−ジオールを原料とし、文献既知の方法で得られる3,3’−ジヨウド−1,1’−ビナフチル−2,2’−ジイル ビス(メトキシメチル)エーテルと、同じく文献既知の方法で得られる9−アントリルホウ酸を反応させ、次いで加水分解し、脱保護することにより調製することができる。得られた上記式(1)又は式(2)のビナフトール誘導体は、次いでオキシ塩化リンと反応させた後、加水分解することにより上記式(3)又は式(4)の光学活性リン酸エステル誘導体とすることができる。
【0015】
本発明の上記式(1)又は式(2)の化合物の製造条件としては、特に限定するものではないが、例えば、1,2−ジメトキシエタン溶剤中、触媒としてテトラキス(トリフェニルフォスフィン)パラジウム(0)、及び塩基として水酸化バリウム存在下、(R)又は(S)の3,3’−ジヨウド−1,1’−ビナフチル−2,2’−ジイル ビス(メトキシメチル)エーテルと、9−アントリルホウ酸を加熱条件下、24時間程度反応させ、3,3’−ビス(9−アントリル)−1,1’−ビナフチル−2,2’−ジイル ビス(メトキシメチル)エーテルを得、次いでトルエン−メタノール−塩酸水溶液中、加熱条件下、1日程度反応させることにより目的物が得られる。
【0016】
本発明の上記式(3)又は式(4)のリン酸エステル誘導体の製造条件としては、特に限定するものではないが、例えば、上記式(1)又は式(2)のビナフトール誘導体とオキシ塩化リンを、ジクロロメタン溶媒中、トリエチルアミン存在下、室温で12時間程度反応させた後、次いで炭酸ナトリウム存在下、テトラハイドロフラン(以下、THFと略す)−水溶媒中、加熱条件下、12時間程度反応させ、さらに塩酸水溶液中12時間程度加熱することにより目的物が得られる。
【0017】
本発明の製法において、試薬の量比、溶媒量、温度、時間等、特に規定はない。
【0018】
本発明の上記式(1)〜式(4)の化合物は、用途として不斉合成触媒のための不斉素子、光学分割剤、光学活性カラム充填材、並びにNMR測定における不斉識別剤等として用いることが可能である。
【0019】
以下、NMR測定における不斉識別剤としての用途について説明する。
【0020】
本発明の光学活性リン酸エステル誘導体は、sp3炭素を有さないため、NMR測定において、不斉識別に具する化合物とケミカルシフトが重なることがない。
【0021】
本発明のリン酸エステル誘導体のNMR測定における不斉識別剤としての具体的な使用法としては、不斉識別に具する化合物と本発明のリン酸エステル誘導体を所定量混合し、重クロロフォルム、重ベンゼン等のNMR測定用溶剤に溶解させプロトンNMR又はカーボンNMRでのケミカルシフトの測定を行う。
【0022】
本発明のリン酸エステル誘導体が不斉識別剤として適用可能な化合物としては特に規定はないが、不斉を有するアルコール類、アミン類、カルボン酸類、スルホキシド類等に対して不斉識別能を発現する。
【0023】
本発明のリン酸エステル誘導体の不斉識別剤としての使用量は、配位を形成する光学異性体に対して、理論的には当モル量で充分であり、また高い識別能も発揮するが、必要に応じて2モル量程度使用することによりさらに識別能が拡大する場合がある。具体的にはラセミ体のアルコール類の不斉識別を行う場合、0.5モル量の本発明のリン酸エステル誘導体の添加で、充分不斉識別能が発現する。
通常、上記式(3)の(R)−3,3’−ビス(9−アントリル)−1,1’−ビナフチル−2,2’−ジイルリン酸を用い、ラセミ体のアルコール類を不斉識別に具した場合、水酸基の結合した炭素上及び水酸基が結合した炭素の隣の炭素と結合した水素のケミカルシフトS体がR体に比較しより高磁場側へシフトする。
【0024】
【発明の効果】
本発明の新規な光学活性ビナフトール及び光学活性リン酸エステル誘導体は、医薬又はその合成中間体、農薬又はその合成中間体、電子材料等の機能材料又はその合成中間体、不斉合成触媒の不斉素子、光学分割剤、光学活性カラム充填材、並びにNMR測定における不斉識別剤等として有用な化合物である。
【0025】
また、本発明のリン酸エステル誘導体を、NMR測定における不斉識別剤として用いた場合、高い不斉識別能を発揮し、簡便な光学純度の測定法が提案できた。
【0026】
【実施例】
以下、実施例により本発明を具体的に説明するが、本発明はこれら実施例のみに限定されるものではない。
(旋光度の測定)
HORIBA製SEPA−300を使用。
(融点測定)
ヤナコ(株)製MP−500Dを使用。
(1H−NMR、13C−NMRの測定)
JEOL製JNM−EX400を使用(400MHz)。
(HRFABMASSの測定)
JEOL製JMS−HX100Aを使用。
(IR測定)
JEOL製JIR−WINSPEC50を使用。
(元素分析)
九州大学中央分析センターへ依頼。
【0027】
実施例1 (R)−3,3’−ビス(9−アントリル)−1,1’−ビナフチル−2,2’−ジオールの調製
還流コンデンサー、セプタムキャップ及びマグネット攪拌子を備えた200mlのナス型3口フラスコに、テトラキス(トリフェニルフォスフィン)パラジウム(0)134mg(0.12mmol)、9−アントリルホウ酸2.8g(12.8mmol)及び水酸化バリウム・8水和物5.5g(19.0mmol)を仕込んだ。次いで系内をアルゴン置換した後、1,2−ジメトキシエタン50mlに(R)−3,3’−ジヨウド−1,1’−ビナフチル−2,2’−ジイルビス(メトキシメチル)エーテル3.64g(5.8mmol)を溶解した溶液を50mlのシリンジを用いセプタムを通して系内に注入し、さらに水10mlを添加した。
【0028】
得られた混合物を攪拌しながらオイルバス上で80℃に加熱し、同温度で24時間反応を行った。
【0029】
反応終了後、室温まで冷却し、次いで酢酸エチルで抽出、飽和食塩水で洗浄、硫酸マグネシウム上で乾燥、濃縮、シリカゲルカラムクロマトグラフィー(へキサン/酢酸エチル=20/1)で精製することにより(R)−3,3’−ビス(9−アントリル)−1,1’−ビナフチル−2,2’−ジイル ビス(メトキシメチル)エーテル2.97g淡黄色固体として得た(収率:70%)。
<分析結果>
融点 263−265℃
旋光度 [α]D 17.7 +236.3°(c=1.00 THF)
1H−NMR(CDCl3)δ8.53(s,2H,aromatic),8.07−7.88(m,10H,aromatic),7.78(d,2H,J=8.79Hz,aromatic),7.64−7.62(m,2H,aromatic),7.50−7.37(m,10H,aromatic),7.22−7.19(m,2H,aromatic),4.25(dd,4H,J=5.38,18.58Hz,OCH2O),1.86(s,6H,OCH3)
13C−NMR(CDCl3)δ152.58,134.11,133.35,133.03,132.38,131.35,131.28,130.79,130.71,130.68,128.43,128.19,128.01,127.02,126.73,126.60,126.36,125.81,125.63,125.35,125.15,125.12,98.21,55.37IR(KBr,ν cm-1)3051,2995,2964,2823,1622,1492,1444,1429,1389,1346,1320,1232,1203,1160,1094,1071,1032,976,921,890,844,791,739,618,538,511,476,418
HRFABMASS m/z 測定値 726.2770(M)+,
(計算値 C52H38O4:726.2770)
還流コンデンサー及びマグネット攪拌子を備えた50mlのナス型フラスコに(R)−3,3’−ビス(9−アントリル)−1,1’−ビナフチル−2,2’−ジイル ビス(メトキシメチル)エーテル558mg(0.77mmol)、トルエン6ml及びメタノール3mlを仕込み溶解させた後、これに12N塩酸5滴を添加、次いで80℃に加熱し、24時間反応を行った。
【0030】
反応終了後、エーテルで抽出、飽和食塩水で洗浄、硫酸マグネシウム上で乾燥、濃縮、次いでシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=20/1)で精製することにより目的物(R)−3,3’−ビス(9−アントリル)−1,1’−ビナフチル−2,2’−ジオールを1水和物の白色固体450mgとして得た(収率:89%)。
<分析結果>
融点 300−302℃
旋光度:[α]D 17.4 +198.65°(c=1.00,THF)
1H−NMR(CDCl3)δ8.58(s,2H,aromatic),8.11−8.04(m,4H,aromatic),8.02(s,2H,aromatic),7.94−7.23(m,20H,aromatic),5.08(s,2H,−OH)
13C−NMR(CDCl3)δ150.98,133.88,133.03,131.46,131.39,130.80,130.73,129.24,128.66,128.52,128.44,127.75,127.37,127.11,126.14,125.31,124.82,124.24,114.49
IR(KBr,ν cm-1)3533,3051,2924,2854,1929,1803,1715,1624,1497,1442,1405,1383,1354,1257,1208,1147,1093,1013,950,889,845,795,738,614,541,516,468
HRFABMASS m/z 測定値 638.2200(M)+,
(計算値 C48H30O2:638.2246)
元素分析(%) 測定値 C,87.92;H,4.98
(計算値C48H32O3:C,87.78;H,4.91)
実施例2 (R)−3,3’−ビス(9−アントリル)−1,1’−ビナフチル−2,2’−ジイルリン酸の調製
マグネット攪拌子を入れた10mlの丸底フラスコにアルゴン気流下、(R)−3,3’−ビス(9−アントリル)−1,1’−ビナフチル−2,2’−ジオール76.6mg(0.12mmol)、ジクロロメタン1ml及びオキシ塩化リン0.18ml(1.96mmol)仕込み、攪拌しながら0℃に冷却の後、これにトリエチルアミン0.41ml(2.94mmol)を滴下した。滴下終了後、室温に戻し、12時間反応を行った。
【0031】
反応終了後、水を添加、ジクロロメタンで抽出、水洗、硫酸マグネシウム上で乾燥、次いで濃縮することにより粗製(R)−3,3’−ビス(9−アントリル)−1,1’−ビナフチル−2,2’−ジイルリン酸クロライドを得、精製することなく次反応に用いた。
【0032】
マグネット攪拌子を入れた10mlの丸底フラスコに、得られた粗製(R)−3,3’−ビス(9−アントリル)−1,1’−ビナフチル−2,2’−ジイルリン酸クロライド全量、THF8ml及び2%炭酸ナトリウム水溶液1mlを仕込み、攪拌しながら加熱し、70℃で12時間反応を行った。反応終了後、反応生成物を減圧下濃縮し、次いで得られた残査を2%の炭酸ナトリウム水溶液で洗浄した。
【0033】
得られた残査はさらに水8ml及び6N塩酸6mlに溶解させ、攪拌しながら80℃で12時間反応させた。次いで得られた反応混合物を0℃に冷却し、析出物をろ集、次いで減圧下100℃で乾燥することにより目的物の(R)−3,3’−ビス(9−アントリル)−1,1’−ビナフチル−2,2’−ジイルリン酸58.8mgを黄色固体として得た(収率70%)。
<分析結果>
旋光度:[α]D 16.6 −12.10°(c=1.00,EtOH)
1H−NMR(CDCl3)δ8.19(s,2H,aromatic),8.00(s,2H,aromatic),7.92(dd,4H,J=8.30,48.34Hz,aromatic),7.71−7.11(m,20H,aromatic)
13C−NMR(CDCl3)δ146.48,146.39,133.80,132.63,131.33,131.17,130.88,130.80,130.71,130.64,130.24,128.46,127.82,127.42,127.33,126.87,126.09,126.01,125.79,124.95,124.79,122.32
HRFABMASS m/z 測定値 701.1884(M+H)+,
(計算値 C48H30O4P:701.1882)
実施例3〜実施例7
NMR測定チューブに、表1中に示した化合物2〜5mg及び重クロロホルム0.6mlを入れ、これに表1中に示した化合物に対して実施例2で調製した(R)−3,3’−ビス(9−アントリル)−1,1’−ビナフチル−2,2’−ジイルリン酸を0.5モル量又は1.0モル量添加し測定を行った。表1中に結果を示した。
【0034】
比較例1〜比較例2
(R)−3,3’−ビス(9−アントリル)−1,1’−ビナフチル−2,2’−ジイルリン酸を1,1’−ビナフチル−2,2’−ジオールに替えた、表1中に示した条件下、測定を行った。結果を表1中に示した。
【0035】
比較例3〜比較例4
(R)−3,3’−ビス(9−アントリル)−1,1’−ビナフチル−2,2’−ジイルリン酸を(R)−3,3’−ビス(3,5−ジフェニルフェニル)−1,1’−ビナフチル−2,2’−ジイルリン酸に替えた、表1中に示した条件下、測定を行った。結果を表1中に示した。
【0036】
【表1】
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to optically active binaphthol derivatives and optically active phosphate derivatives, and uses thereof. The optically active binaphthol derivative and optically active phosphate ester derivative of the present invention are promising as synthesis intermediates of various asymmetric synthesis catalysts, and the optically active phosphate ester derivative of the present invention itself has high asymmetric discrimination ability. It is a useful compound having
[0002]
[Prior art]
The optically active binaphthol derivative of the present invention and the optically active phosphate derivative derived therefrom are not known so far and are novel compounds.
[0003]
As asymmetric identifiers, europium-based complexes such as Eu-DPM, Eu-PTA, Eu (hfc), Eu (Tfc), and (R)-(+)-2-methoxy-2- (tri Fluoromethyl) phenylacetic acid and the like are commercially available.
[0004]
Moreover, it is known that 1,1′-binaphthyl-2,2′-diol useful as an asymmetric synthesis catalyst element is useful as an optical resolution agent (Toda, F., et. Al., Chem. Lett., 131 (1988) etc.).
[0005]
Furthermore, 3,3 ′-(3,5-diphenylphenyl) -1,1′-binaphthyl-2,2′-diyl phosphate is known as an asymmetric identification element (The 76th Annual Meeting of the Chemical Society of Japan, 1999, 3C1 05).
[0006]
[Problems to be solved by the invention]
Conventional agents using a metal complex such as europium that are commercially available may react depending on the compound used for asymmetric identification, and the application range is limited. In addition, (R)-(+)-2-methoxy-2- (trifluoromethyl) phenylacetic acid and the like have a hydrogen bonded to the sp3 carbon in nuclear magnetic resonance spectrum analysis (hereinafter abbreviated as NMR), and therefore are asymmetric. Depending on the type of compound used for identification, chemical shifts may not be determined in an overlapping manner.
[0007]
On the other hand, 1,1'-binaphthyl-2,2'-diol is an excellent agent having relatively low reactivity with a compound for asymmetric identification, but the compound for asymmetric identification has a low interaction and a large amount Must be used, and the asymmetric discrimination ability is not satisfactory.
[0008]
Furthermore, 3,3 ′-(3,5-diphenylphenyl) -1,1′-binaphthyl-2,2′-diyl phosphate has excellent performance as an asymmetric identifier, but its ability is incomplete. Therefore, the development of a higher performance agent has been desired.
[0009]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present inventors diligently studied to create a compound having higher asymmetric discrimination ability, and as a result, a novel binaphthol derivative as an intermediate and a novel optically active phosphoric acid as an asymmetric discrimination agent The present inventors have found an ester derivative and have completed the present invention.
[0010]
That is, the present invention
An optically active binaphthol derivative represented by the following formula (1) or the following formula (2):
[0011]
[Chemical formula 5]
[Chemical 6]
9-anthrylboric acid and (R) or (S) -3,3′-diiodo-1,1′-binaphthyl-2,2′-diyl bis (methoxymethyl ether) are reacted and then hydrolyzed A process for producing the optically active binaphthol derivative according to claim 1,
An optically active phosphate derivative represented by the following formula (3) or the following formula (4):
[0012]
[Chemical 7]
[Chemical 8]
The phosphoric acid ester according to the above formula (3) or formula (4), wherein the optically active binaphthol derivative represented by the above formula (1) or formula (2) is reacted with phosphorus oxychloride and then hydrolyzed. A method for producing a derivative, and an asymmetric discriminating agent comprising a phosphate ester derivative of the above formula (3) or formula (4).
[0013]
The present invention is described in detail below.
[0014]
The binaphthol derivative represented by the above formula (1) or formula (2) of the present invention is based on 1,1′-binaphthyl-2,2′-diol of commercially available optically active (R) or (S), Reaction of 3,3′-diiodo-1,1′-binaphthyl-2,2′-diyl bis (methoxymethyl) ether obtained by a method known from the literature with 9-anthrylboric acid obtained by a method known from the literature Can then be prepared by hydrolysis and deprotection. The obtained binaphthol derivative of the above formula (1) or formula (2) is then reacted with phosphorus oxychloride and then hydrolyzed so as to hydrolyze the optically active phosphate ester derivative of the above formula (3) or formula (4) It can be.
[0015]
The production conditions for the compound of the above formula (1) or formula (2) of the present invention are not particularly limited. For example, tetrakis (triphenylphosphine) palladium as a catalyst in a 1,2-dimethoxyethane solvent. (0) and 3,3′-diiodo-1,1′-binaphthyl-2,2′-diyl bis (methoxymethyl) ether of (R) or (S) in the presence of barium hydroxide as a base, 9 -Anthryl boric acid is reacted under heating conditions for about 24 hours to obtain 3,3'-bis (9-anthryl) -1,1'-binaphthyl-2,2'-diyl bis (methoxymethyl) ether, and then toluene -The target compound is obtained by reacting in an aqueous methanol-hydrochloric acid solution for about 1 day under heating.
[0016]
The production conditions of the phosphoric acid ester derivative of the above formula (3) or formula (4) of the present invention are not particularly limited. For example, the binaphthol derivative of the above formula (1) or formula (2) and oxychloride Phosphorus was reacted in a dichloromethane solvent in the presence of triethylamine at room temperature for about 12 hours, and then in the presence of sodium carbonate in a tetrahydrofuran (hereinafter abbreviated as THF) -water solvent for about 12 hours under heating conditions. Further, the desired product is obtained by heating in an aqueous hydrochloric acid solution for about 12 hours.
[0017]
In the production method of the present invention, there are no particular restrictions on the amount ratio of reagents, the amount of solvent, temperature, time, and the like.
[0018]
The compounds of the above formulas (1) to (4) of the present invention can be used as asymmetric elements for asymmetric synthesis catalysts, optical resolution agents, optically active column fillers, asymmetric identifiers in NMR measurement, and the like. It is possible to use.
[0019]
Hereinafter, the use as an asymmetric identifier in NMR measurement will be described.
[0020]
Since the optically active phosphate ester derivative of the present invention does not have sp3 carbon, the chemical shift does not overlap with the compound provided for asymmetric identification in NMR measurement.
[0021]
A specific method of using the phosphate ester derivative of the present invention as an asymmetric identifier in NMR measurement is to mix a predetermined amount of a compound provided for asymmetric discrimination with the phosphate ester derivative of the present invention, The chemical shift is measured by proton NMR or carbon NMR after being dissolved in a solvent for NMR measurement such as benzene.
[0022]
The phosphoric acid ester derivative of the present invention is not particularly limited as a compound applicable as an asymmetric identifier, but exhibits an asymmetric discrimination ability for alcohols, amines, carboxylic acids, sulfoxides and the like having asymmetry. To do.
[0023]
The amount of the phosphoric acid ester derivative of the present invention used as an asymmetric identifier is theoretically an equimolar amount with respect to the optical isomer forming the coordination, and also exhibits high discrimination ability. If necessary, the discriminating ability may be further expanded by using about 2 mole amount. Specifically, when performing asymmetric identification of racemic alcohols, the addition of 0.5 mol of the phosphoric acid ester derivative of the present invention exhibits sufficient asymmetric identification ability.
Usually, (R) -3,3′-bis (9-anthryl) -1,1′-binaphthyl-2,2′-diylphosphoric acid of the above formula (3) is used for asymmetric identification of racemic alcohols. The chemical shift S body of hydrogen bonded to the carbon adjacent to the hydroxyl group-bonded carbon and the carbon adjacent to the hydroxyl group bonded shifts to a higher magnetic field side than the R body.
[0024]
【The invention's effect】
The novel optically active binaphthol and optically active phosphate ester derivative of the present invention are a pharmaceutical or a synthetic intermediate thereof, an agrochemical or a synthetic intermediate thereof, a functional material such as an electronic material or a synthetic intermediate thereof, and an asymmetric synthetic catalyst. It is a compound useful as an element, an optical resolving agent, an optically active column filler, an asymmetric identifier in NMR measurement, and the like.
[0025]
Moreover, when the phosphate ester derivative of the present invention was used as an asymmetric discriminating agent in NMR measurement, a high optical discriminating ability was exhibited and a simple optical purity measuring method could be proposed.
[0026]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited only to these Examples.
(Measurement of optical rotation)
Use SEPA-300 manufactured by HORIBA.
(Melting point measurement)
MP-500D manufactured by Yanaco Co., Ltd. is used.
(Measurement of 1 H-NMR and 13 C-NMR)
Use JNM JNM-EX400 (400MHz).
(Measurement of HRFBAMASS)
Use JMS-HX100A manufactured by JEOL.
(IR measurement)
JIROL JIR-WINSPEC50 is used.
(Elemental analysis)
Requested to Kyushu University Central Analysis Center.
[0027]
Example 1 Preparation of (R) -3,3′-bis (9-anthryl) -1,1′-binaphthyl-2,2′-diol 200 ml eggplant type equipped with reflux condenser, septum cap and magnet stirrer In a three-necked flask, 134 mg (0.12 mmol) of tetrakis (triphenylphosphine) palladium (0), 2.8 g (12.8 mmol) of 9-anthrylboric acid and 5.5 g of barium hydroxide octahydrate (19. 0 mmol) was charged. Next, the system was purged with argon, and then (R) -3,3′-diiodo-1,1′-binaphthyl-2,2′-diylbis (methoxymethyl) ether (3.64 g) was added to 50 ml of 1,2-dimethoxyethane. The solution in which 5.8 mmol) was dissolved was injected into the system through a septum using a 50 ml syringe, and 10 ml of water was further added.
[0028]
The resulting mixture was heated to 80 ° C. on an oil bath while stirring, and reacted at the same temperature for 24 hours.
[0029]
After completion of the reaction, the reaction mixture was cooled to room temperature, extracted with ethyl acetate, washed with saturated brine, dried over magnesium sulfate, concentrated, and purified by silica gel column chromatography (hexane / ethyl acetate = 20/1). R) -3,3′-bis (9-anthryl) -1,1′-binaphthyl-2,2′-diyl bis (methoxymethyl) ether 2.97 g was obtained as a pale yellow solid (yield: 70%). .
<Analysis results>
Melting point: 263-265 ° C
Optical rotation [α] D 17.7 + 236.3 ° (c = 1.00 THF)
1 H-NMR (CDCl 3 ) δ 8.53 (s, 2H, aromatic), 8.07-7.88 (m, 10H, aromatic), 7.78 (d, 2H, J = 8.79 Hz, aromatic) 7.64-7.62 (m, 2H, aromatic), 7.50-7.37 (m, 10H, aromatic), 7.22-7.19 (m, 2H, aromatic), 4.25 ( dd, 4H, J = 5.38, 18.58 Hz, OCH 2 O), 1.86 (s, 6H, OCH 3 )
13 C-NMR (CDCl 3 ) δ 152.58, 134.11, 133.35, 133.03, 132.38, 131.35, 131.28, 130.79, 130.71, 130.68, 128. 43, 128.19, 128.01, 127.02, 126.73, 126.60, 126.36, 125.81, 125.63, 125.35, 125.15, 125.12, 98.21, 55.37 IR (KBr, ν cm −1 ) 3051, 2995, 2964, 2823, 1622, 1492, 1444, 1429, 1389, 1346, 1320, 1232, 1203, 1160, 1094, 1071, 1032, 976, 921, 890 844, 791, 739, 618, 538, 511, 476, 418
HRFBAMASS m / z measured value 727.2770 (M) + ,
(Calculated value C 52 H 38 O 4 : 726.2770)
(R) -3,3′-bis (9-anthryl) -1,1′-binaphthyl-2,2′-diyl bis (methoxymethyl) ether was added to a 50 ml eggplant-shaped flask equipped with a reflux condenser and a magnetic stirring bar. After 558 mg (0.77 mmol), 6 ml of toluene and 3 ml of methanol were charged and dissolved, 5 drops of 12N hydrochloric acid was added thereto, followed by heating to 80 ° C. and reaction for 24 hours.
[0030]
After completion of the reaction, extraction with ether, washing with saturated brine, drying over magnesium sulfate, concentration, and purification by silica gel column chromatography (hexane / ethyl acetate = 20/1) gave the desired product (R) -3, 3′-bis (9-anthryl) -1,1′-binaphthyl-2,2′-diol was obtained as 450 mg of a monohydrate white solid (yield: 89%).
<Analysis results>
Melting point 300-302 ° C
Optical rotation: [α] D 17.4 + 198.65 ° (c = 1.00, THF)
1 H-NMR (CDCl 3 ) δ 8.58 (s, 2H, aromatic), 8.11-8.04 (m, 4H, aromatic), 8.02 (s, 2H, aromatic), 7.94-7 .23 (m, 20H, aromatic), 5.08 (s, 2H, -OH)
13 C-NMR (CDCl 3 ) δ 150.98, 133.88, 133.03, 131.46, 131.39, 130.80, 130.73, 129.24, 128.66, 128.52, 128. 44, 127.75, 127.37, 127.11, 126.14, 125.31, 124.82, 124.24, 114.49
IR (KBr, ν cm −1 ) 3533, 3051, 2924, 2854, 1929, 1803, 1715, 1624, 1497, 1442, 1405, 1383, 1354, 1257, 1208, 1147, 1093, 1013, 950, 889, 845 , 795, 738, 614, 541, 516, 468
HRFBAMASS m / z measured value 638.2200 (M) + ,
(Calcd C 48 H 30 O 2: 638.2246 )
Elemental analysis (%) Measured value C, 87.92; H, 4.98
(Calcd C 48 H 32 O 3: C , 87.78; H, 4.91)
Example 2 Preparation of (R) -3,3′-bis (9-anthryl) -1,1′-binaphthyl-2,2′-diylphosphoric acid in a 10 ml round bottom flask containing a magnetic stir bar under an argon stream , (R) -3,3′-bis (9-anthryl) -1,1′-binaphthyl-2,2′-diol 76.6 mg (0.12 mmol), dichloromethane 1 ml and phosphorus oxychloride 0.18 ml (1 .96 mmol) was charged and cooled to 0 ° C. with stirring, and 0.41 ml (2.94 mmol) of triethylamine was added dropwise thereto. After completion of the dropping, the temperature was returned to room temperature and the reaction was performed for 12 hours.
[0031]
After completion of the reaction, water was added, extracted with dichloromethane, washed with water, dried over magnesium sulfate, and then concentrated to give crude (R) -3,3′-bis (9-anthryl) -1,1′-binaphthyl-2. , 2′-Diyl phosphate chloride was obtained and used in the next reaction without purification.
[0032]
In a 10 ml round bottom flask containing a magnetic stir bar, the total amount of crude (R) -3,3′-bis (9-anthryl) -1,1′-binaphthyl-2,2′-diyl phosphate chloride obtained, 8 ml of THF and 1 ml of 2% aqueous sodium carbonate solution were charged, heated with stirring, and reacted at 70 ° C. for 12 hours. After completion of the reaction, the reaction product was concentrated under reduced pressure, and then the resulting residue was washed with 2% aqueous sodium carbonate solution.
[0033]
The obtained residue was further dissolved in 8 ml of water and 6 ml of 6N hydrochloric acid, and reacted at 80 ° C. for 12 hours with stirring. Next, the obtained reaction mixture was cooled to 0 ° C., and the precipitate was collected by filtration and then dried at 100 ° C. under reduced pressure to obtain (R) -3,3′-bis (9-anthryl) -1, 58.8 mg of 1′-binaphthyl-2,2′-diylphosphoric acid was obtained as a yellow solid (yield 70%).
<Analysis results>
Optical rotation: [α] D 16.6 -12.10 ° (c = 1.00, EtOH)
1 H-NMR (CDCl 3 ) δ 8.19 (s, 2H, aromatic), 8.00 (s, 2H, aromatic), 7.92 (dd, 4H, J = 8.30, 48.34 Hz, aromatic) , 7.71-7.11 (m, 20H, aromatic)
13 C-NMR (CDCl 3 ) δ 146.48, 146.39, 133.80, 132.63, 131.33, 131.17, 130.88, 130.80, 130.71, 130.64, 130. 24, 128.46, 127.82, 127.42, 127.33, 126.87, 126.09, 126.01, 125.79, 124.95, 124.79, 122.32
HRFBAMASS m / z measured value 701.1884 (M + H) + ,
(Calcd C 48 H 30 O 4 P: 701.1882)
Example 3 to Example 7
An NMR measurement tube was charged with 2 to 5 mg of the compound shown in Table 1 and 0.6 ml of deuterated chloroform, and the compound shown in Table 1 was prepared in Example 2 (R) -3,3 ′. Measurement was performed by adding 0.5 mol amount or 1.0 mol amount of bis (9-anthryl) -1,1′-binaphthyl-2,2′-diylphosphoric acid. The results are shown in Table 1.
[0034]
Comparative Example 1 to Comparative Example 2
(R) -3,3′-bis (9-anthryl) -1,1′-binaphthyl-2,2′-diyl phosphate was replaced with 1,1′-binaphthyl-2,2′-diol, Table 1 The measurement was performed under the conditions indicated in the figure. The results are shown in Table 1.
[0035]
Comparative Example 3 to Comparative Example 4
(R) -3,3′-bis (9-anthryl) -1,1′-binaphthyl-2,2′-diylphosphate is converted to (R) -3,3′-bis (3,5-diphenylphenyl)- The measurement was performed under the conditions shown in Table 1 in place of 1,1′-binaphthyl-2,2′-diylphosphoric acid. The results are shown in Table 1.
[0036]
[Table 1]