JP4724880B2 - Plasma medium battery - Google Patents
Plasma medium battery Download PDFInfo
- Publication number
- JP4724880B2 JP4724880B2 JP2005058672A JP2005058672A JP4724880B2 JP 4724880 B2 JP4724880 B2 JP 4724880B2 JP 2005058672 A JP2005058672 A JP 2005058672A JP 2005058672 A JP2005058672 A JP 2005058672A JP 4724880 B2 JP4724880 B2 JP 4724880B2
- Authority
- JP
- Japan
- Prior art keywords
- plasma
- electrode
- members
- medium battery
- electrode members
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/10—Nuclear fusion reactors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
Description
本発明は、プラズマ媒質電池に係り、特に、従来の電池に用いられている電池内の媒質(溶液や固体)に代わり、プラズマを媒質として、プラズマと電極との相互作用により電極間に生じる電荷発生量の差を利用して電力を取り出すプラズマ媒質電池に関する。 The present invention relates to a plasma medium battery, and in particular, charges generated between electrodes due to the interaction between plasma and electrodes using plasma as a medium instead of the medium (solution or solid) in the battery used in conventional batteries. The present invention relates to a plasma medium battery that takes out electric power by using a difference in generation amount.
一般に、荷電粒子の集合体であるプラズマは、半導体生成用装置等で広く用いられている他に、宇宙空間プラズマや現在実験段階であるが将来の実用化が期待されている磁場閉じ込め核融合装置の大型空間に閉じ込められているもの等がある。 In general, plasma, which is an aggregate of charged particles, is widely used in semiconductor production equipment, etc., and is also used for space plasma and magnetically confined fusion devices that are currently in the experimental stage but are expected to be put to practical use in the future. There are things that are confined in a large space.
これらのプラズマからのエネルギーを抽出する手段としては、核融合発電装置にあっては核融合反応による主たるエネルギー生成方法以外に、プラズマの発光を太陽電池で電気エネルギーに変換したり、プラズマ閉じ込め容器壁の壁温度を利用した熱電変換により電気エネルギーを取り出すことが提案されている。 As a means of extracting energy from these plasmas, in addition to the main energy generation method by the fusion reaction in the fusion power generation device, the light emission of the plasma is converted into electric energy by a solar cell, or the plasma confinement vessel wall It has been proposed to extract electrical energy by thermoelectric conversion using the wall temperature of the wall.
また、プラズマを用いる電池に関しては特表2002-519827号公報に開示されたものがある。 Further, regarding batteries using plasma, there is one disclosed in JP-T-2002-519827.
しかしながら、上記のプラズマの発光を太陽電池で電気エネルギーに変換する方法では、使用可能な発光波長に制約があり、またプラズマ閉じ込め容器壁の壁温度を利用した熱電変換により電気エネルギーを取り出す方法では、容器に閉じ込められたプラズマで容器壁温度が十分高温にならないと実現できないという問題がある。しかも両方法とも、半導体素子を用いるため、システムが複雑・高価になり、特に、核融合装置においては中性子等の放射線による素子の損傷による特性の劣化の問題がある。 However, in the method of converting the light emission of the plasma into electric energy with a solar cell, there are restrictions on the usable emission wavelength, and in the method of extracting electric energy by thermoelectric conversion using the wall temperature of the plasma confinement vessel wall, There is a problem that it cannot be realized unless the temperature of the container wall becomes sufficiently high by the plasma confined in the container. In addition, both methods use a semiconductor element, which makes the system complicated and expensive. In particular, in a fusion apparatus, there is a problem of deterioration of characteristics due to element damage caused by radiation such as neutrons.
また、上記公報に開示されたものは、複数の磁石やイオン加速用の電気ポテンシャルソースが必要であり、構造が複雑であった。 Further, the one disclosed in the above publication requires a plurality of magnets and an electric potential source for accelerating ions, and has a complicated structure.
本発明の目的は、上記の従来の問題点に鑑み、電池の媒質としてプラズマ(不完全電離プラズマと中性ガスとの混合状態のプラズマを含む)を用い、プラズマと電極との相互作用による電荷集電量の差を利用して複数の電極間から電力を取り出すプラズマ媒質電池を提供することにある。 In view of the above-described conventional problems, the object of the present invention is to use plasma (including plasma in a mixed state of incompletely ionized plasma and neutral gas) as a battery medium, and charge due to the interaction between the plasma and the electrode. It is an object of the present invention to provide a plasma medium battery that takes out power from a plurality of electrodes by utilizing the difference in the amount of collected current.
本発明は、上記の課題を解決するために下記の手段を採用した。
第1の手段は、プラズマ発生装置で発生させたプラズマ中に各々の表面積および/または材料の異なる複数の電極部材を挿入すること、あるいは、プラズマ発生装置で発生させた異なる性質を有する複数のプラズマ領域中のそれぞれに複数の電極部材を挿入することにより、前記複数の電極部材間に生じる電荷発生量の差を利用して、前記プラズマ発生装置の外部において前記複数の電極部材間に接続した負荷から電力を取り出すことを特徴とするプラズマ媒質電池である。
The present invention employs the following means in order to solve the above problems.
The first means is to insert a plurality of electrode members having different surface areas and / or materials into the plasma generated by the plasma generator, or a plurality of plasmas having different properties generated by the plasma generator. A load connected between the plurality of electrode members outside the plasma generator by using a difference in the amount of charge generated between the plurality of electrode members by inserting a plurality of electrode members into each region. It is a plasma medium battery characterized by taking out electric power from.
第2の手段は、第1の手段において、前記複数の電極部材が、離間して前記プラズマ内に挿入されていることを特徴とする請求項1に記載のプラズマ媒質電池である。
2. The plasma medium battery according to claim 1, wherein the second means is the plasma medium battery according to claim 1, wherein the plurality of electrode members are inserted into the plasma at a distance from each other.
第3の手段は、第1の手段において、前記複数の電極部材は、一方の電極部材が前記プラズマ内に挿入され、他方の電極部材が前記プラズマを閉じ込める金属容器で構成されていることを特徴とするプラズマ媒質電池である。
Third means, in the first means, the plurality of electrode members, characterized in that the one electrode member is inserted into the plasma, and a metallic container and the other electrode member confining the plasma Is a plasma medium battery.
第4の手段は、第1の手段において、前記プラズマが磁場閉じ込め核融合装置のトーラス型容器に閉じ込められたプラズマであって、前記複数の電極部材は、核融合反応生成粒子を廃棄するための互いに異種部材で構成されたダイバータの一部から構成されていることを特徴とするプラズマ媒質電池である。 A fourth means is the plasma according to the first means, wherein the plasma is confined in a torus container of a magnetic field confinement fusion apparatus, and the plurality of electrode members are for discarding the fusion reaction product particles. a plasma medium battery characterized by being composed of a part of a diverter configured with different members together.
請求項1に記載の発明によれば、プラズマと複数の電極との相互作用により該複数の電極間に生じる電荷発生量の差を利用して該複数の電極間から電力を取り出すようにしたので、電池の媒質としてプラズマを利用して、極めて簡便な構成によりプラズマ媒質電池を実現することができる。 According to the first aspect of the present invention, power is taken out between the plurality of electrodes by utilizing the difference in the amount of charge generated between the plurality of electrodes due to the interaction between the plasma and the plurality of electrodes. By using plasma as the battery medium, a plasma medium battery can be realized with a very simple configuration.
請求項2に記載の発明によれば、前記複数の電極が、それぞれの一端が前記プラズマ内に挿入され、それぞれの他端から電力を取り出すように構成されているので、プラズマ媒質電池を極めて簡単な構成で実現することができる。 According to the invention of claim 2, the plurality of electrodes are configured such that one end of each of the plurality of electrodes is inserted into the plasma and power is taken out from the other end. Can be realized with a simple configuration.
請求項3に記載の発明によれば、前記複数の電極は、一方の電極の一端が前記プラズマ内に挿入され、他方の電極が前記プラズマを閉じ込める金属容器で構成され、前記一方の電極の他端と前記金属容器間から電力を取り出すように構成されているので、プラズマ閉じ込め金属容器を電極の一方として利用することができるので、電極構成を簡便化したプラズマ媒質電池を実現することができる。 According to the invention of claim 3, the plurality of electrodes are configured by a metal container in which one end of one electrode is inserted into the plasma and the other electrode confines the plasma, and the other electrode Since the electric power is extracted from between the end and the metal container, the plasma confined metal container can be used as one of the electrodes, so that a plasma medium battery with a simplified electrode configuration can be realized.
請求項4に記載の発明によれば、前記プラズマが磁場閉じ込め核融合装置のトーラス型容器に閉じ込められたプラズマであって、前記複数の電極は、それぞれの一端が核融合反応生成粒子を廃棄するための互いに異種部材で構成されたダイバータの一部から構成され、それぞれの他端から電力を取り出すようにしたので、ダイバータを電極の一部として利用することができ、電極構造を簡便化することができる。 According to the invention of claim 4, the plasma is a plasma confined in a torus container of a magnetic field confinement fusion device, and each of the plurality of electrodes discards fusion reaction product particles at one end. Because it is composed of a part of diverter composed of different members for each other and power is taken out from the other end of each, the diverter can be used as part of the electrode, and the electrode structure can be simplified Can do.
本発明のプラズマ媒質電池は、電池媒質としてプラズマ状態(不完全電離プラズマと中性ガスとの混合状態を含む)を用い、プラズマと電極との相互作用による電荷集電量の差を利用して電極間から電力を取り出すものである。 The plasma medium battery of the present invention uses a plasma state (including a mixed state of incompletely ionized plasma and neutral gas) as the battery medium, and utilizes the difference in charge collection due to the interaction between the plasma and the electrode. Electric power is taken out from the space.
プラズマ内に挿入された電極に流入するプラズマ構成荷電粒子(電子及びイオン)は、プラズマの電子温度、イオン温度、電子密度、イオン種(イオン質量)、電極材質、電極面積、電極の形状に応じて異なる。 Plasma charged particles (electrons and ions) flowing into the electrode inserted in the plasma depend on the plasma electron temperature, ion temperature, electron density, ion species (ion mass), electrode material, electrode area, and electrode shape. Different.
図1はプラズマ中に挿入された電極におけるプラズマと電極との相互作用を説明するための図である。同図に示すように、電子の方がイオンより質量が軽いため、同じ温度では、電子流の方がイオン電流よりも多く集まる。電子温度が高い程電子密度の高い程電子電流は大きくなる。 FIG. 1 is a diagram for explaining the interaction between plasma and an electrode in an electrode inserted into the plasma. As shown in the figure, since electrons have a lighter mass than ions, the electron current collects more than the ion current at the same temperature. The electron current increases as the electron temperature increases and the electron density increases.
また、電極によっては、プラズマ中の電子が電極に入射する際、その入射エネルギー及び電極材質に応じて2次電子が放出する。プラズマと電極の相互作用が電子の流入と2次電子の放出のみである場合は、2次電子放出率が1を超える場合は、電極に電流が流入し、2次電子放出率が1未満の場合は電極から電流が放出される。
また、複数の電極を用いた場合、電極間で2次電子放出率の差が大きい金属又は化合物を用いることにより、又は複数の電極を同一の電極材料を用いる場合でも、電極面積の差や電極の設置場所周辺のプラズマの性質(電子温度、イオン温度、電子密度、イオン種)の違えることにより電極間に電位差を生じさせ、プラズマ発生装置外部において電極間に接続した負荷から電力を取り出すことができる。
Depending on the electrode, when electrons in the plasma are incident on the electrode, secondary electrons are emitted according to the incident energy and the electrode material. When the interaction between plasma and electrode is only inflow of electrons and emission of secondary electrons, if the secondary electron emission rate exceeds 1, current flows into the electrode and the secondary electron emission rate is less than 1. In some cases, current is released from the electrodes.
In addition, when using a plurality of electrodes, the difference in electrode area or the electrode can be obtained by using a metal or a compound having a large difference in secondary electron emission rate between the electrodes, or even when using the same electrode material for the plurality of electrodes. The potential difference between the electrodes can be caused by the difference in the plasma properties (electron temperature, ion temperature, electron density, ion species) around the installation location, and power can be taken out from the load connected between the electrodes outside the plasma generator it can.
換言すると、本発明のプラズマ媒質電池は、プラズマの諸性質及び電極材質・形状によって多様な選択可能な条件下において、プラズマ発生装置中に、プラズマ発生容器と電気的に絶縁した電極を、電極とプラズマとの相互作用が十分有効に現れる程度に挿入し接触させるものであり、挿入された2本若しくは複数の電極間、または挿入された1本の電極とプラズマ閉じ込め金属容器間において、上述したようなプラズマと電極間の相互作用の差による各電極間における集電量の差を利用して、プラズマ閉じ込め容器外部において、電極間又は電極とプラズマ閉じ込め金属容器間に接続した負荷に電流を流すことにより、電力を取り出すことができるものである。 In other words, the plasma medium battery of the present invention comprises an electrode electrically insulated from the plasma generation vessel in the plasma generator under various selectable conditions depending on various properties of the plasma and the electrode material and shape. It is inserted and brought into contact to such an extent that the interaction with the plasma appears sufficiently effectively, and as described above, between the inserted two or more electrodes, or between the inserted one electrode and the plasma confinement metal container. By using the difference in the amount of current collected between each electrode due to the difference in the interaction between the plasma and the electrode, current is passed through the load connected between the electrodes or between the electrode and the plasma confined metal container outside the plasma confinement container. The power can be taken out.
ここで、プラズマ発生容器外部において、一方の電極をA、他方の電極をBとして、電極ABの各一端をプラズマ中に挿入し、電極ABの他端間に抵抗負荷Rを接続したとき、負荷Rに流れる電流I (= (iA+ - iA-) = -(iB+ - iB-))と、電極AB間の電位差V (= VA - VB)は、以下の2つの方程式の解として求まる。
F(I,V) = 0 (1)
V=IR (2)
式(1)は、電極A及び電極Bにそれぞれに流入する、電子電流(iA-、iB-)とイオン電流(iA+、iB+)を計算し、電極ABがプラズマ発生容器から浮遊している条件、即ち、電極ABに入る電子電流の和とイオン電流の和が等しい条件、
(iA- + iB-) = (iA+ + iB+) (3)
を使って求めることができる。
一般に、式(1)はIがVの指数関数を含む形になり、各電極周辺プラズマの電子温度Teが、TeA>> TeBの場合は、
F(I, V) = (iA+ - I) - CAB (iB+ + I)(TeA/TeB) exp(eV/kTeA) (4)
と近似的に表される。ここで、
CAB = [(SA jrA) (1 - γA)] / [(SB jrB) (1 - γB)] (TeA/TeB) (5)
jr = (1/4) e ne ve = (1/2) e ne(2 kTe/ πme)1/2 (6)
i+ = S (1/4) e ne Cs =S (1/4) e ne [k(Ti + Te)]/mi]1/2 (7)
である。S、neは、それぞれ、電極面積と電子密度である。
以上より、各電極A,Bにおける、電極面積、2次電子放出率、電子温度、イオン温度、電子密度を与えると、関数Fの定数が求まり、負荷抵抗Rを与えれば、式(1)、(2)を実際に解くことができる。(1)と(2)の解は、Vの関数であるIに関する2つのグラフの交点から求められる。電極面積S及び動作点電圧Vを十分大きくとることにより、大電流を取り出すことが可能である。
Here, outside the plasma generation container, when one electrode is A and the other electrode is B, one end of the electrode AB is inserted into the plasma, and a resistance load R is connected between the other ends of the electrode AB, the load The current I flowing through R (= (i A + -i A- ) =-(i B + -i B- )) and the potential difference V (= V A -V B ) between the electrodes AB are expressed by the following two equations: It is obtained as a solution.
F (I, V) = 0 (1)
V = IR (2)
Equation (1) calculates the electron current (i A- , i B- ) and ion current (i A + , i B + ) flowing into electrode A and electrode B, respectively, and electrode AB floats from the plasma generation vessel. That is, the condition that the sum of the electron current and the sum of the ion current entering the electrode AB are equal,
(i A- + i B- ) = (i A + + i B + ) (3)
Can be obtained using.
In general, equation (1) becomes a form containing an exponential function of I is V, the electron temperature T e of each electrode near the plasma, in the case of T eA >> T eB,
F (I, V) = (i A + -I)-C AB (i B + + I) (TeA / TeB) exp (eV / kT eA ) (4)
It is expressed approximately. here,
C AB = [(S A j rA ) (1-γ A )] / [(S B j rB ) (1-γ B )] (TeA / TeB) (5)
j r = (1/4) en e v e = (1/2) en e (2 kT e / πm e ) 1/2 (6)
i + = S (1/4) en e C s = S (1/4) en e [k (T i + T e )] / m i ] 1/2 (7)
It is. S, n e, respectively, is the electrode area and the electron density.
From the above, given the electrode area, secondary electron emission rate, electron temperature, ion temperature, electron density in each electrode A, B, the constant of the function F is obtained, and if the load resistance R is given, the equation (1), (2) can actually be solved. The solutions of (1) and (2) are obtained from the intersection of two graphs related to I, which is a function of V. By making the electrode area S and the operating point voltage V sufficiently large, a large current can be taken out.
次に、本発明の第1の実施形態を図2を用いて説明する。
図2は、本実施形態の発明に係るプラズマ媒質電池の構成を示す図である。
同図において、1はプラズマCVD装置や磁場閉じ込め核融合実験装置等のプラズマ発生装置、2はプラズマ発生装置1によって発生されたプラズマ、3はプラズマ2を閉じ込めるプラズマ発生用容器、4はプラズマ発生装置1に取り付けられた一方の電極、41は、プラズマ発生用容器3と電気的に絶縁され、プラズマ2から導入された電流を流す電極4の一部を構成する電流導入端子、42は、電極4の一部を構成し電流導入端子41の一端に結合され、プラズマ2内に挿入されて、プラズマ構成荷電粒子(電子及びイオン)が流入する電極部材、5はプラズマ発生装置1に取り付けられた他方の電極、51は、プラズマ発生用容器3と電気的に絶縁され、プラズマ2から導入された電流を流す電極5の一部を構成する電流導入端子、52は、電極5の一部を構成し電流導入端子51の一端に結合され、プラズマ2内に挿入されて、プラズマ構成荷電粒子(電子及びイオン)が流入する電極部材、6は電極4の電流導入端子41及び電極5の電流導入端子51の他端間に接続された負荷である。
Next, a first embodiment of the present invention will be described with reference to FIG.
FIG. 2 is a diagram showing the configuration of the plasma medium battery according to the invention of the present embodiment.
In the figure, 1 is a plasma generator such as a plasma CVD apparatus or a magnetic confinement fusion experimental apparatus, 2 is a plasma generated by the plasma generator 1, 3 is a plasma generating container for confining plasma 2, and 4 is a plasma generator. One electrode attached to 1, 41 is a current introduction terminal that constitutes part of the electrode 4 that is electrically insulated from the plasma generating container 3 and flows current introduced from the plasma 2, 42 is the electrode 4 The electrode member 5 is connected to one end of the current introduction terminal 41 and inserted into the plasma 2 and into which the plasma constituting charged particles (electrons and ions) flow, and 5 is the other attached to the plasma generator 1 The electrode 51, which is electrically insulated from the plasma generating vessel 3, and constitutes a part of the electrode 5 through which the current introduced from the plasma 2 flows, 52 is a part of the electrode 5. Current introduction terminal 51 An electrode member that is coupled to the end and inserted into the plasma 2 and into which the plasma charged particles (electrons and ions) flow, 6 is between the current introduction terminal 41 of the electrode 4 and the current introduction terminal 51 of the electrode 5 Connected load.
同図に示すように、電極4と電極5はプラズマ発生容器3に一定の距離(例えば、数cm〜数m)離して設置され、電流導入端子41及び電流導入端子51のそれぞれの先端に取り付けられる電極部材42としては、例えば、タングステンを用い、電極部材52としては、例えば、チタンを用いる。 As shown in the figure, the electrode 4 and the electrode 5 are installed at a certain distance (for example, several centimeters to several meters) apart from the plasma generation container 3 and are attached to the respective leading ends of the current introduction terminal 41 and the current introduction terminal 51. For example, tungsten is used as the electrode member 42, and titanium is used as the electrode member 52, for example.
ここで、電極部材42及び電極部材52として、タングステン及びチタンを用いたのは、高温の磁場閉じ込め核融合プラズマ実験装置で耐磨耗性に優れた金属として使用実績(プラズマ中のイオンによるスパッタリング率が低い)があり、又、2次電子放出率の概略値が、タングステンの場合は0.7、チタンの場合は0.4であり、両者の2次電子放出率の概略値の差が大きいことによるものである。 Here, as the electrode member 42 and the electrode member 52, tungsten and titanium are used as a metal having excellent wear resistance in a high-temperature magnetic confinement fusion plasma experimental apparatus (sputtering rate by ions in plasma). The approximate value of the secondary electron emission rate is 0.7 for tungsten and 0.4 for titanium, which is due to the large difference in the approximate value of the secondary electron emission rate. is there.
また、各電流導入端子41,51としては、例えば、銅製の棒状体を使用し、電極部材42,52としては、円盤形状等の平面状体を使用する。電極部材42,52に平面状体を使用するのは、電極部材42,52をプラズマ2中に深く挿入しなくてもプラズマ2との相互作用面積を大きく取ることが可能となるためである。さらに、プラズマ2と電極部材42,52との相互作用の差を大きく取るために両者の面積に差を設ける。例えば、電極部材42,52の面積をそれぞれ半径10cm、半径1cmの円盤とすることにより、電極部材42,52の面積をそれぞれ314cm2、3.14cm2とすることができる。 Further, as each of the current introduction terminals 41 and 51, for example, a copper rod-shaped body is used, and as the electrode members 42 and 52, a planar body such as a disk shape is used. The reason why the planar members are used for the electrode members 42 and 52 is that an area of interaction with the plasma 2 can be increased without inserting the electrode members 42 and 52 into the plasma 2 deeply. Further, in order to obtain a large difference in the interaction between the plasma 2 and the electrode members 42 and 52, a difference is provided in the areas of the two. For example, each of radius 10cm the area of the electrode members 42 and 52, by a disk of radius 1 cm, can be the area of the electrode members 42, 52 respectively 314 cm 2, and 3.14 cm 2.
また、図示していないが、電流導入端子41,51には、プラズマ2との距離を調節する機能を付けておく。このように構成することにより、電極部材42,52をプラズマ2中への接触状態を調節したり、プラズマ2から飛来する荷電粒子(電子とイオン)が十分受けられ、かつプラズマ2の性質を劣化させない程度の適切な位置を調節することができる。 Although not shown, the current introduction terminals 41 and 51 have a function of adjusting the distance from the plasma 2. With this configuration, the contact state of the electrode members 42 and 52 with the plasma 2 is adjusted, charged particles (electrons and ions) flying from the plasma 2 are sufficiently received, and the properties of the plasma 2 are deteriorated. It is possible to adjust an appropriate position so that it does not occur.
このような状態でプラズマを生成しプラズマ条件(電子温度、電子密度、イオン温度、イオン種等)を定め、電極4及び電極5間での電気出力をできるだけ大きくとるために、電極部材42周辺の電子温度を電極52周辺の電子温度に対して10倍程度になるようにプラズマ発生装置を運転する。例えば、電極部材42及び電極部材52周辺の電子温度は、それぞれ100eV,10eVとする。この値は磁場閉じ込め核融合プラズマ実験装置では容易に実現可能な値である。これにより、電極4は電極5に対して、相対的に負の電位差を持たせることができる。
電極4の電流導入端子41の他端及び電極5の電流導入端子51の他端を給電線を取り付け負荷6を取り付けることにより、負荷6から電力を取り出すことができる。
In order to generate plasma in such a state, determine plasma conditions (electron temperature, electron density, ion temperature, ion species, etc.), and maximize the electrical output between the electrode 4 and the electrode 5, The plasma generator is operated so that the electron temperature is about 10 times the electron temperature around the electrode 52. For example, the electron temperatures around the electrode member 42 and the electrode member 52 are 100 eV and 10 eV, respectively. This value is easily realizable in the magnetic confinement fusion plasma experimental apparatus. Thereby, the electrode 4 can have a relatively negative potential difference with respect to the electrode 5.
Electric power can be taken out from the load 6 by attaching a power supply line to the other end of the current introduction terminal 41 of the electrode 4 and the other end of the current introduction terminal 51 of the electrode 5 and attaching the load 6.
本実施形態のプラズマ媒質電池において、イオン温度10eVの水素プラズマを用いた場合、負荷6を接続しない場合は、電極4の電位はプラズマ発生用容器(金属とする)3に対して約200V程度負になる、一方、電極5の電位はプラズマ発生用容器3に対して約20V程度負になる。電極4及び電極5間に負荷6として抵抗負荷R=20mΩを接続した場合、|I|(電流の絶対値)≒5kA、|V|(電圧の絶対値) ≒100V、出力500kW程度の電力が得られると試算される。 In the plasma medium battery of the present embodiment, when hydrogen plasma with an ion temperature of 10 eV is used, the potential of the electrode 4 is about 200 V negative with respect to the plasma generation vessel (metal) 3 when the load 6 is not connected. On the other hand, the potential of the electrode 5 is about 20 V negative with respect to the plasma generating container 3. When a resistive load R = 20mΩ is connected between electrode 4 and electrode 5 as load 6, | I | (absolute value of current) ≒ 5kA, | V | (absolute value of voltage) ≒ 100V, output power of about 500kW When it is obtained, it is estimated.
次に、本発明の第2の実施形態を図3を用いて説明する。
図3は、本実施形態の発明に係るプラズマ媒質電池の構成を示す図である。
同図において、7は、例えばステンレススチールからなるプラズマ閉じ込め金属容器であり、その他の構成は図1に示した同符号の構成と同様に構成するので説明を省略する。
Next, a second embodiment of the present invention will be described with reference to FIG.
FIG. 3 is a diagram showing the configuration of the plasma medium battery according to the invention of this embodiment.
In the figure, reference numeral 7 denotes a plasma confinement metal container made of, for example, stainless steel, and the other configurations are the same as those shown in FIG.
このような状態でプラズマを生成しプラズマ条件(電子温度、電子密度、イオン温度、イオン種等)を定めプラズマ発生装置を運転する。ここで、電極部材42の半径は10cmであり、電極部材42周辺の電子温度は10eVである。これにより、電極4はプラズマ閉じ込め金属容器7に対して相対的に負の電位差を持たせることができる。
電極4の電流導入端子41の他端とプラズマ閉じ込め金属容器7の外壁面間に給電線を取り付け負荷6を取り付けることにより、負荷6から電力を取り出すことができる。
Plasma is generated in such a state, plasma conditions (electron temperature, electron density, ion temperature, ion species, etc.) are determined, and the plasma generator is operated. Here, the radius of the electrode member 42 is 10 cm, and the electron temperature around the electrode member 42 is 10 eV. As a result, the electrode 4 can have a negative potential difference relative to the plasma confinement metal container 7.
Electric power can be taken out from the load 6 by attaching a power supply line between the other end of the current introduction terminal 41 of the electrode 4 and the outer wall surface of the plasma confining metal container 7 and attaching the load 6.
本実施形態のプラズマ媒質電池において、イオン温度10eVの水素プラズマを用いた場合、電極4の電位は、プラズマ閉じ込め金属容器7に対して約20V程度負になる。電極4の電流導入端子41とプラズマ閉じ込め金属容器7間に抵抗6として抵抗負荷R=2mΩを接続した場合、|I|≒3kA、|V|≒7V、出力≒20 kWの電力が得られると計算される。 In the plasma medium battery of this embodiment, when hydrogen plasma having an ion temperature of 10 eV is used, the potential of the electrode 4 is about 20 V negative with respect to the plasma confining metal container 7. When a resistance load R = 2mΩ is connected as a resistor 6 between the current introduction terminal 41 of the electrode 4 and the plasma confinement metal container 7, if | I | ≒ 3kA, | V | ≒ 7V, and output ≒ 20 kW is obtained Calculated.
次に、本発明の第3の実施形態を図4を用いて説明する。
図4は、本実施形態の発明に係るプラズマ媒質電池の構成を示す図である。
同図において、8は磁場閉じ込め核融合装置、9は磁気閉じ込め核融合プラズマ、10はトーラス型容器、11は核融合反応生成粒子であるヘリウムを廃棄するために磁力線をトーラス容器10の壁面まで引き出す機能を有する特殊耐熱材料で構成されるダイバータである。
Next, a third embodiment of the present invention will be described with reference to FIG.
FIG. 4 is a diagram showing the configuration of the plasma medium battery according to the invention of the present embodiment.
In the figure, 8 is a magnetic confinement fusion device, 9 is a magnetic confinement fusion plasma, 10 is a torus-type vessel, 11 is a magnetic field line to the wall of the torus vessel 10 in order to discard the fusion reaction product particles helium. It is a diverter composed of a special heat-resistant material having a function.
ここで、ダイバータ11は、トーラス型容器10の上部又は下部(あるいは両方)に磁力線を引き出し、磁力線がダイバータにある角度をもって貫入するように構成されている。これにより、磁力線に沿ってプラズマ中心部分から外部に出てくるイオンがダイバータ11に衝突することによって中性化され、図示されていない近くの真空排気ポンプで排気される仕組みになっている。ダイバータ11を構成する板材は熱負荷が集中する(1m2当たり10MW以上)ため、材料として、グラファイトやタングステン等の耐熱性の高い素材をダイバータの熱負荷に応じて使い分けて用いる。 Here, the diverter 11 is configured to draw magnetic lines of force to the upper part or the lower part (or both) of the torus container 10 so that the magnetic lines of force penetrate at a certain angle in the diverter. As a result, ions coming out from the plasma center portion along the magnetic field lines are neutralized by colliding with the diverter 11, and are exhausted by a nearby vacuum pump not shown. Plate material constituting the diverter 11 heat load is concentrated (1 m 2 per 10MW or higher) for the material as is used having high heat resistance such as graphite or tungsten materials are used for different purposes depending on the thermal load of the diverter.
また、電極4の電極部材42及び電極5の電極部材52は、ダイバータを兼用して用い、互いに異種材料、異種面積、異種形状部材(以下、総じてダイバータ部異種部材と称する)から構成される。これらをトーラス型容器10から電気的に絶縁して設置し、トーラス型容器10外部に設けた電極4の電流導入端子41と電極5の電流導入端子51との間に接続した負荷6から電力を取り出す。 The electrode member 42 of the electrode 4 and the electrode member 52 of the electrode 5 are also used as a diverter, and are composed of different materials, different areas, and different shape members (hereinafter collectively referred to as diverter part different members). These are electrically insulated from the torus type container 10 and installed, and power is supplied from the load 6 connected between the current introduction terminal 41 of the electrode 4 and the current introduction terminal 51 of the electrode 5 provided outside the torus type container 10. Take out.
本実施形態のプラズマ媒質電池において、磁場閉じ込め核融合装置にダイバータ11の一部を電極4の電極部材42及び電極5の電極部材52として用いた理由は、ダイバータ11の材料として設置位置に応じて異種金属を用いることが想定されている上に、プラズマ本体から比較的距離が離れているため、トーラス型容器10の他の部分で実施する場合に比べて、プラズマ本体の核融合反応への影響を小さくすることが可能であるためである。
例えば、一方のダイバータ部材(電極部材42)にタングステン、他方のダイバータ部材(電極部材52)にグラファイトを用いる。タングステンとグラファイトの使用時における2次電子放出率はそれぞれおよそ0.7と0.5と異なっている。両ダイバータ部材は、トーラス型容器10の下部又は上部にタイル状部材が円周状に貼り巡らされて構成されており、面積は20m2程度の大面積を有し、両ダイバータ部材の面積は互いに数倍程度異なっている。
In the plasma medium battery according to the present embodiment, the reason why a part of the diverter 11 is used as the electrode member 42 of the electrode 4 and the electrode member 52 of the electrode 5 in the magnetic field confinement fusion apparatus depends on the installation position as the material of the diverter 11. In addition to the use of dissimilar metals, the plasma body is relatively far away from the plasma body, so the effect of the plasma body on the fusion reaction compared to the other parts of the torus vessel 10 It is because it is possible to make small.
For example, tungsten is used for one diverter member (electrode member 42), and graphite is used for the other diverter member (electrode member 52). The secondary electron emission rate when using tungsten and graphite is different from about 0.7 and 0.5 respectively. Both diverter members are constructed by circularly attaching tile-shaped members to the lower or upper portion of the torus container 10 and have a large area of about 20 m 2. It is different by several times.
ここで、一方のダイバータ部材(電極部材42)の面積は、他方のダイバータ部材(電極部材52)の面積の2倍大きいとすると、ダイバータ部材(電極部材42,52)のプラズマ特性は電子温度、イオン温度が10〜100eV程度、電子密度1m3当り1019−20個程度である。電子温度は一方のダイバータ部材(電極部材42)で100eV、他方のダイバータ部材(電極部材52)で10eVとする。
両ダイバータ部材は、共に高熱負荷に曝されるダイバータ専用部材として選択されたものであり、これらの部材そのものが核融合プラズマの発電自体に及ぼす影響(不純物の混入等)はないと想定される。
Here, if the area of one diverter member (electrode member 42) is twice as large as the area of the other diverter member (electrode member 52), the plasma characteristics of the diverter member (electrode members 42, 52) are the electron temperature, about ion temperature 10~100EV, an electron density 1 m 3 per 10 19-20 or so. The electron temperature is 100 eV for one diverter member (electrode member 42) and 10 eV for the other diverter member (electrode member 52).
Both diverter members are selected as members dedicated to diverters that are exposed to a high heat load, and it is assumed that these members themselves have no influence (mixing of impurities, etc.) on the power generation itself of the fusion plasma.
本実施形態のプラズマ媒質電池において、イオン温度10eVの水素プラズマの場合は、電極4及び電極5の電流導入端子41,51間に負荷6が接続されていないときは、電極4の電位はトーラス型容器10(金属とする)に対して約200V程度負になり、電極5の電位はトーラス型容器10に対して約20V程度負になる。電流導入端子41,51間に抵抗負荷 R=0.2mΩを接続した場合、|I| ≒500kA、|V| ≒100V、出力50MW程度と試算できる。
また、本実施形態のプラズマ媒質電池では、電極面積が大きいため、取り出せる電流も大きくなる。他の例においても、出力は数10kWから数10MWまで広範囲に取り出せることができる。また、負荷抵抗はmΩ程度の小さいものを用いることにより、大きな電力を取り出すことができる。使い方によっては、低電流、高電圧の方が望ましい場合には、負荷抵抗を大きくすればよい。
In the plasma medium battery of the present embodiment, in the case of hydrogen plasma having an ion temperature of 10 eV, when the load 6 is not connected between the current introduction terminals 41 and 51 of the electrode 4 and the electrode 5, the potential of the electrode 4 is a torus type. About 200V is negative with respect to the container 10 (assumed to be metal), and the potential of the electrode 5 is about 20V negative with respect to the torus type container 10. When a resistive load R = 0.2 mΩ is connected between the current introduction terminals 41 and 51, it can be estimated that | I | ≈ 500 kA, | V | ≈ 100 V, and output 50 MW.
Further, in the plasma medium battery of the present embodiment, since the electrode area is large, the current that can be taken out also becomes large. In another example, the output can be taken in a wide range from several tens of kW to several tens of MW. Moreover, a large electric power can be taken out by using a load resistance as small as about mΩ. Depending on how it is used, if low current and high voltage are desired, the load resistance may be increased.
1 プラズマ発生装置
2 プラズマ
3 プラズマ発生用容器
4 一方の電極
41 電流導入端子
42 電極部材
5 他方の電極
51 電流導入端子
52 電極部材
6 負荷
7 プラズマ閉じ込め金属容器
8 磁場閉じ込め核融合装置
9 磁気閉じ込め核融合プラズマ
10 トーラス型容器
11 ダイバータ
1 Plasma generator
2 Plasma
3 Plasma generation vessel
4 One electrode
41 Current introduction terminal
42 Electrode member
5 The other electrode
51 Current introduction terminal
52 Electrode member
6 Load
7 Plasma confined metal container
8 Magnetically confined fusion device
9 Magnetically confined fusion plasma
10 Torus container
11 Diverter
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005058672A JP4724880B2 (en) | 2005-03-03 | 2005-03-03 | Plasma medium battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005058672A JP4724880B2 (en) | 2005-03-03 | 2005-03-03 | Plasma medium battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006244849A JP2006244849A (en) | 2006-09-14 |
JP4724880B2 true JP4724880B2 (en) | 2011-07-13 |
Family
ID=37051060
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005058672A Expired - Fee Related JP4724880B2 (en) | 2005-03-03 | 2005-03-03 | Plasma medium battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4724880B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106414312B (en) * | 2013-11-20 | 2018-10-12 | 辉光能源公司 | Power generation system and method related with the system |
JP7281168B2 (en) * | 2018-12-21 | 2023-05-25 | 学校法人大阪産業大学 | charge generator |
JP6827254B2 (en) * | 2019-01-04 | 2021-02-10 | ブリリアント ライト パワー インコーポレーティド | Power generation system and methods related to the system |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000000741A1 (en) * | 1998-06-29 | 2000-01-06 | Tokyo Electron Limited | Plasma vacuum pumping cell |
-
2005
- 2005-03-03 JP JP2005058672A patent/JP4724880B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000000741A1 (en) * | 1998-06-29 | 2000-01-06 | Tokyo Electron Limited | Plasma vacuum pumping cell |
Also Published As
Publication number | Publication date |
---|---|
JP2006244849A (en) | 2006-09-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Go et al. | Thermionic energy conversion in the twenty-first century: advances and opportunities for space and terrestrial applications | |
Meir et al. | Highly-efficient thermoelectronic conversion of solar energy and heat into electric power | |
EA200601606A1 (en) | SYSTEM PLASMA ELECTRIC GENERATION OF ENERGY | |
Smirnov et al. | Enhanced ionization in the cylindrical Hall thruster | |
Stirling et al. | Magnetic multipole line‐cusp plasma generator for neutral beam injectors | |
KR102438987B1 (en) | Systems, apparatus and methods for generating electrical power through the conversion of water to hydrogen and oxygen | |
CA2963282C (en) | Simultaneous generation of electricity and chemicals using a renewable primary energy source | |
KR20160054463A (en) | High reliability, long lifetime, negative ion source | |
JP4724880B2 (en) | Plasma medium battery | |
WO2015173561A1 (en) | An energy conversion system | |
US8635850B1 (en) | Ion electric propulsion unit | |
US20090174282A1 (en) | Linear Acceleration Electricity Generating Apparatus | |
Hosseinzadeh et al. | Numerical simulation for optimization of multipole permanent magnets of multicusp ion source | |
JP2011034888A (en) | Ion source | |
US20140070701A1 (en) | Advanced penning ion source | |
Kumar et al. | Development of cold cathode arc discharge filament based multi-cusp H− ion source | |
Hu et al. | Experimental and simulation studies of a 1-m-long magnetically insulated transmission line with 2-cm anode–cathode gap | |
Ito et al. | Further development of a micro Hall thruster | |
Stoner et al. | A bipolar vacuum microelectronic device | |
Lovtsov et al. | A high-current plasma generator based on a hollow cathode for high-power electric propulsions | |
WO2015049533A1 (en) | Fuel cell | |
Gorchakov et al. | Nonequilibrium arc model for the description of arcelectrode interaction | |
Nakamoto et al. | Enhanced energy recovery in a secondary electron direct energy converter through reduction of the magnetic mirror effect | |
Ivanov et al. | Ion sources with arc-discharge plasma box driven by directly heated LaB6 electron emitter or cold cathode | |
Ovsyannikov et al. | Universal main magnetic focus ion source: A new tool for laboratory research of astrophysics and Tokamak microplasma |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070807 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080528 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100727 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100922 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101214 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110117 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110322 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110325 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140422 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140422 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |