JP4723859B2 - Agricultural microcapsule preparation by drying method in Oil / Oil liquid and method for producing the same - Google Patents

Agricultural microcapsule preparation by drying method in Oil / Oil liquid and method for producing the same Download PDF

Info

Publication number
JP4723859B2
JP4723859B2 JP2004556909A JP2004556909A JP4723859B2 JP 4723859 B2 JP4723859 B2 JP 4723859B2 JP 2004556909 A JP2004556909 A JP 2004556909A JP 2004556909 A JP2004556909 A JP 2004556909A JP 4723859 B2 JP4723859 B2 JP 4723859B2
Authority
JP
Japan
Prior art keywords
solvent
acetamiprid
microcapsule
added
active ingredient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004556909A
Other languages
Japanese (ja)
Other versions
JPWO2004049801A1 (en
Inventor
昌弘 吉田
泰雄 幡手
恵宣 河野
芳三 上村
晶巳 水野
雅博 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Soda Co Ltd
Original Assignee
Nippon Soda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soda Co Ltd filed Critical Nippon Soda Co Ltd
Priority to JP2004556909A priority Critical patent/JP4723859B2/en
Publication of JPWO2004049801A1 publication Critical patent/JPWO2004049801A1/en
Application granted granted Critical
Publication of JP4723859B2 publication Critical patent/JP4723859B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/26Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests in coated particulate form
    • A01N25/28Microcapsules or nanocapsules

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Agronomy & Crop Science (AREA)
  • Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Manufacturing Of Micro-Capsules (AREA)

Description

【技術分野】
本発明は、簡便に製造でき、回収率、マイクロカプセル化率の高い、農薬のマイクロカプセル製剤の製造方法および該方法により得られたマイクロカプセル製剤に関する。
【背景技術】
農薬マイクロカプセル製剤は従来より、噴霧乾燥法、界面重合法、液中乾燥法等の方法で製造されてきた。(例えば、非特許文献1、特許文献1、特許文献2参照)
液中乾燥法によるマイクロカプセル化は、芯物質が乳化または分散されている膜形成ポリマー溶液を、水または油の媒体中に分散し、攪拌しながら加温または減圧によって、膜形成ポリマーを溶解している溶媒を留去し、カプセル皮膜を形成させる方法であるが、媒体としては何れかに水を用いる方法が一般的である。(非特許文献1、特許文献4参照)
最も一般的な農薬のマイクロカプセルの製造方法として知られている噴霧乾燥法は生産性が悪く製造コストが高くなるという欠点が有り、また、界面重合法では、マイクロカプセル製剤中の農薬活性成分含量の高い製剤が得られ難く、散布効率が悪くなるという欠点があった。(特許文献2、特許文献3参照)
本発明と同様のネオニコチノイド系殺虫剤のマイクロカプセル製剤については、特許文献3には界面重合法によりアセタミプリドを1%含有するマイクロカプセルを製造している。また、特許文献4には、O/W型乳化物を液中乾燥法によりマイクロカプセル化する方法が記載されているが、洗浄処理を行って測定したマイクロカプセルへの取り込み率は36.3%と低いものである。
また、水溶性物質の液中乾燥法によるマイクロカプセルの製造方法が知られている。(特許文献5参照)
非特許文献1:「造粒の基礎造粒の基礎と工学」、「造粒ハンドブック」(1991年)、日本粉体工業技術協会編(株)オーム社発行60〜64ページ
特許文献1:特許第2848173号明細書
特許文献2:特表2002−523338号公報
特許文献3:特開2000−95621号公報
特許文献4:特開平6−316504号公報
特許文献5:特開平6−65064号公報
【発明の開示】
本発明の課題は、簡便に製造でき、回収率、マイクロカプセル化率の高い、農薬のマイクロカプセル製剤の製造方法およびマイクロカプセル製剤、特に、水溶性が高くマイクロカプセル化が困難であったネオニコチノイド系殺虫剤のマイクロカプセル化方法およびマイクロカプセル製剤を提供することである。
本発明は、第1に、以下の工程からなることを特徴とするマイクロカプセルの製造方法である。
(1)1種または2種以上の農薬活性成分と皮膜形成ポリマー混合物を、それらを溶解しうる非水溶媒Aに溶かす工程。
(2)該溶媒A溶液を、溶媒Aに相溶しない非水溶媒Bに加え乳化・分散させる工程。
(3)乳化・分散させた溶液中の溶媒Aを加温および/または減圧により蒸散させて農薬活性成分およびポリマーを結晶化させる工程。
(4)デカンテーションおよび/または遠心分離により固形化した複合マイクロカプセル製剤を得る工程。
第2に上記製造方法により得られるマイクロカプセル製剤である。
本発明の製造方法の好ましい態様は、皮膜形成ポリマーが、スチレン−ジビニルベンゼン共重合体、ポリイプシロンカプロラクタム、ポリ乳酸、ポリ乳酸とグリコール酸の共重合体から選ばれる1種あるいは2種以上のポリマーである製造方法、および、
非水溶媒Aが、非水溶媒Bの沸点より少なくとも10°C低い沸点を有するものである製造方法、である。
【図面の簡単な説明】
図1は、試験例5の結果を示したグラフである。
【発明を実施するための最良の形態】
本発明に用いられる農薬活性成分とは,溶媒Aへの溶解度が高い固体農薬あるいは常温で液体の農薬で、溶媒Bに難溶性、好ましくは溶媒Bに対する溶解度が10000ppm以下のものであれば特に制限はなく、2種類以上を併用することもできる。例えば、アセタミプリド等のネオニコチノイド系化合物、フルアクリピリム等のピリミジニルオキシ系化合物、セトキシジム等のシクロヘキサンジオン系化合物、アレスリン等のピレスロイド系化合物、ベンフラカルブ等のカーバメート系化合物、フェニトロチオン等の有機リン系化合物、ジフルベンズロン等のウレア系化合物等があり、これらの1種あるいは2種以上を混合して用いることもできる。本発明の方法は、水溶性が高くマイクロカプセル化が困難であったネオニコチノイド系殺虫剤のマイクロカプセル化に特に適している。
本発明に用いる溶媒Aとは、溶媒Bに対して沸点が低く、溶媒Bと相溶しなければ特に制限は無く、メタノール、エタノール、アセトニトリル、アセトン、エチルエーテル、イソプロピルアルコール、メチルエチルケトン、メチレンクロライド、ベンゼン、ヘキサン、クロロホルム、ジクロロメタン、ジクロロエタン、酢酸エチル、キシレン、トルエン、ジメチルスルホキシド、ジメチルホルムアミド、テトラヒドロフラン等があり、これらの1種あるいは2種以上を混合して用いることもできる。
本発明に用いる溶媒Bとは、溶媒Aに対して沸点が高く、溶媒Aと相溶しなければ特に制限は無く、重質ナフサ、メチルイソブチルケトン、ジクロロペンタジェン、シリコンオイル、ミネラルスピリット、石油系芳香属炭化水素、シクロヘキサノン、イソホロン、セルソルブ、ブチルセルソルブ、エチルカルビロール、ブチルカルビトール、セロソルブアセテート、ブチルセルソルブアセテート、アルビトールアセテート、テトラデセニルアセテート、ケロシン、重油、軽油、オクタン、イソオクタン、ノナン等があり、これらの1種あるいは2種以上を混合して用いることもできる。
液中乾燥を効率的に行うためには、溶媒Aと溶媒Bの沸点は、少なくとも10°C離れていることが好ましい。
本発明に用いるポリマーとは、農薬活性成分を包み込む物質であり、スチレン−ジビニルベンゼン共重合体、ポリイプシロンカプロラクタム、ポリ乳酸、ポリ乳酸とグリコール酸の共重合体であれば分子量、構造等の制限は特に無く、これらの1種あるいは2種以上を混合して用いることもできる。
本発明方法において、水溶性高分子化合物を溶媒Aに溶かして用いることにより、農薬活性成分の溶出性を制御することができる。水溶性高分子化合物としては、溶媒Aに溶ける水溶性高分子化合物であれば特に制限は無く、ポリエチレングリコール、ポリオキシエチレンが付加したジグリコール酸、ポリオキシエチレンが付加したジプロピルアミン等が挙げられ、1種または2種以上を混合して用いることができる。
また、本発明方法において、農薬活性成分及びポリマーが溶解した溶媒Aの溶媒B中への乳化・分散を助けるため、乳化・分散剤を溶媒Aおよび/または溶媒Bに添加することができる。乳化・分散剤としては、例えば、ポリオキシエチレンが付加したトリあるいはジスチリルフェニルエーテル、ポリオキシエチレンが付加したアルコールエーテル、ポリオキシエチレンが付加したソルビタンオレエート等のツイーン系界面活性剤、ソルビタンオレエート等のスパン系界面活性剤、アルキルナフタレンスルホン酸ナトリウム、ラウリル硫酸ナトリウム、ドデシル硫酸ナトリウム、リグニンスルホン酸ナトリウム、アルキルナフタレンスルホン酸ナトリウムのホルムアルデヒド縮合物、フェノールスルホン酸ナトリウムのホルムアルデヒド縮合物、イソブチレンー無水マレイン酸の共重合体やポリカルボン酸ナトリウム、アルキルナフタレンスルホン酸ナトリウム及びアルキルベンゼンスルホン酸ナトリウム等、ポリグリセノール縮合リシノレイン酸エステル、モノラウリン酸デカグリセリン、ゼラチン、アラビアゴム、カゼイン、デキストリン、ペクチン、アルギン酸ナトリウム、メチルセルロース、エチルセルロース、ポリビニルアルコール、ポリビニルピロリドン等が挙げられ、1種または2種以上を混合して用いることができる。
本発明のマイクロカプセル製剤製造に於いて使用される各成分の量は、農薬活性成分の種類によって異なるが、通常、全体に対する比率として、農薬活性成分は0.01〜60重量%、好ましくは0.01〜40重量%、農薬活性成分を包み込むためのポリマーは0.005〜80重量%、好ましくは0.005〜50重量%、農薬活性成分及びポリマーを溶かす溶媒Aは0.1〜60重量%、好ましくは0.1〜50重量%、溶媒Bは30〜99重量%、好ましくは50〜99重量%、水溶性高分子化合物は1〜50重量%、好ましくは5〜50重量%、乳化・分散用界面活性剤は0〜30重量%、好ましくは0〜20重量%である。
本発明の実施にあたっては、農薬活性成分の1種あるいは2種以上と、スチレン−ジビニルベンゼン共重合体、ポリイプシロンカプロラクタム、ポリ乳酸、ポリ乳酸とグリコール酸の共重合体から選ばれる1種あるいは2種以上のポリマー混合物を、それらを溶解しうる溶媒Aに溶かし、溶媒Aに相溶しない溶媒Bに加え乳化・分散させる。このとき、農薬活性成分の溶出性制御のために水溶性高分子化合物を溶媒Aに添加してもよく、また、乳化・分散剤を溶媒AまたはBに添加してもよい。次いで、乳化・分散させた溶液中の溶媒Aを加温・減圧により蒸散させ、農薬活性成分およびポリマーを結晶化させる。次いで、懸濁剤から溶媒Bをデカンテーション、遠心分離等により取り除くことにより、マイクロカプセル中の農薬活性成分濃度が高いマイクロカプセル製剤を、低い製造コストで、製造効率良く得ることができる。又、微細構造制御は、溶媒Aを加温・減圧により蒸散させる過程において、カプセル材質の微細構造は、0.05nmから10μmの範囲で自由に制御可能であり、乳化・分散の際の攪拌条件を変化させる事により、カプセルの大きさを10nm〜1000μmと自由に制御できる。
【実施例】
次に実施例を挙げ,本発明を更に詳しく説明するが,本発明はこれに何ら限定されるものではない。
【実施例1】
アセタミプリド1g、ポリ乳酸2gをアセトニトリル20gに溶かし、シリコンオイル200gに加えミキサーで1時間乳化する(液温25℃、ミキサー回転速度500rpm)。次いで、ミキサー回転数を500rpmのまま液温を75℃に上げ700mmHgで3時間減圧乾燥することによりアセトニトリルを完全に蒸発させアセタミプリドをポリ乳酸でカプセル化する。この懸濁剤からデカンテーションで固形成分のみを取り出しアセタミプリド含量約30%のマイクロカプセル製剤を製造した。
このマイクロカプセル製剤の組成は、アセタミプリド1g、ポリ乳酸2gであり、アセタミプリド含量は約30%になる。
【実施例2】
アセタミプリド1g、ポリイプシロンカプロラクタム2gを酢酸エチル50gに溶かし、シリコンオイル200gに加えミキサーで1時間乳化する(液温25℃、ミキサー回転速度500rpm)。ミキサー回転数を500rpmのまま液温を75℃に上げ700mmHgで2時間減圧乾燥することにより酢酸エチルを完全に蒸発させアセタミプリドをポリイプシロンカプロラクタムでカプセル化する。この懸濁剤からデカンテーションで固形成分のみを取り出しアセタミプリド含量約30%のマイクロカプセル製剤を製造した。
このマイクロカプセル製剤の組成は、アセタミプリド1g、ポリイプシロンカプロラクタム2gであり、アセタミプリド含量は約30%になる。
比較例1
アセタミプリド1g、ポリ乳酸2g、POEトリスチリルフェニルエーテル1g、ジクロロエタン50gに溶かし有機相を製造する。次に、ポリビニルアルコール4g、モノラウリン酸デカグリセリン1gを水500gに溶かし水相を製造する。水相に有機相を加えミキサーで5分間乳化し(液温40℃、ミキサー回転速度500rpm)、ミキサー回転数を5000rpmにして40℃、700mmHgで3時間減圧乾燥することによりジクロロエタンを完全に蒸発させアセタミプリドをポリ乳酸でカプセル化する。この懸濁剤からデカンテーションで固形成分のみを取り出しマイクロカプセル製剤を製造した。
比較例2
アセタミプリド1g、ポリ乳酸2g、POEトリスチリルフェニルエーテル1g、ジクロロエタン50gに溶かし有機相を製造する。次に、ポリビニルアルコール4g、モノラウリン酸デカグリセリン1gを水500gに溶かし水相を製造する。水相に有機相を加えホモジナイザーで5分間乳化し(液温40℃、ホモジナイザー回転速度500rpm)、得られた懸濁液をスプレードライヤー装置(大河原化工機株式会社製L−8型)を用いて乾燥温度100℃で噴霧乾燥し、アセタミプリドがポリ乳酸でカプセル化した固形製剤を製造した。
比較例3
アセタミプリド1g、保護コロイド剤 スチレン無水マレイン酸コポリマーNa塩0.5gを溶媒SAS−296 8gに加熱溶解し、尿素が2.5g溶けている水86.5g(尿素2.5g+水84g)に添加し10%クエン酸水でpHを3に調整した後、ホモジナイザー5000rpmで10分間乳化させる。この乳濁液に37%のホルマリン水を6.8g(ホルマリン2.5g)を加え、液温を70〜75℃に上げホモジナイザー10000rpmで2時間 尿素−ホルマリン樹脂を乳化粒子表面で生成させる。反応後液温を40℃に下げ28%アンモニア水でpH7.5に調整する。この懸濁剤からデカンテーションで固形成分のみを取り出しアセタミプリドのマイクロカプセル製剤を製造した。
試験例1:マイクロカプセル化製剤収率の測定
マイクロカプセル製剤製造において100%回収された場合の仕込み量(A)と実際の製造において回収された量(B)より収率を算出した。
収率(%)=B/A×100
試験例2:マイクロカプセル中の農薬活性成分含量測定
製造したマイクロカプセル化固形製剤10gをメタノール100mlに浸漬し、アセタミプリドをマイクロカプセル中から超音波で30分間抽出する。抽出されたアセタミプリドをHPLCで分析し、マイクロカプセル中のアセタミプリド含量を算出した。
試験例3:マイクロカプセル化率の測定
製造したマイクロカプセル化固形製剤10gをヘキサン100ml中に浸漬し約30秒間スパチュラで緩く攪拌する。攪拌後5分間静置しマイクロカプセル剤が沈降したのを確認した後上澄みをHPLCで分析し、ヘキサン中に溶け込んだ原体量を測定し、マイクロカプセル化率を算出した。
マイクロカプセル化率(%)=(マイクロカプセル製剤中の原体量−ヘキサン中に溶け込んだ原体量)/マイクロカプセル製剤中の原体量×100
試験例4:製剤希釈物性の測定
リグニンスルホン酸Na10g、アルキルナフタレンスルホン酸Na塩のホルムアルデヒド縮合物5g、アルキルナフタレンスルホン酸Na2gとクレー73gの混合物とジェットミル粉砕し紛体径7ミクロン程度の水和剤ベースを製造する。実施例及び比較例で製造したマイクロカプセル化固形製剤10gと水和剤ベース90gを乳鉢で混合し水和剤を製造する。この水和剤を水道水で1000倍希釈し、希釈物性(測定項目;自己分散性、初期分散性、懸濁安定性、起泡性)について測定した。
〈評価方法〉
・自己分散性;200mlの水道水(250mlメスシリンダー)に水和剤を0.25g投下した時の薬剤の分散状態。 雲状に分散 ◎>○>△>× 全く分散しない
・初期分散性;薬剤投下30秒後にメスシリンダーを倒立させ、完全に薬剤が分散するのに必要な倒立回数。
・懸濁安定性;メスシリンダー30回倒立後の径時的な沈降量(ml)。
・起泡性;メスシリンダー30回倒立1分後の泡高(ml)。
試験例5:溶出速度の測定
実施例1で調製したアセタミプリド内包マイクロカプセル0.1gを500mlの蒸留水(マイクロカプセルの分散性向上のために分散剤ポリオキシエチレン(20)ソルビタンモノステアレートを0.1wt%添加)に添加し、これを恒温槽30℃下、60rpmで振盪させた。これを一定時間ごとに採取しメンブレンフィルター(細孔径0.2μm)でろ過した後、徐放したアセタミプリドの濃度をUV/VIS分光光度計で測定した。測定波長は244.6nm、多点検量線法を用いて測定を行った。徐放率を以下に示す式にて算出した。徐放率(%)={(マイクロカプセルから徐放したアセタミプリドの濃度)/(マイクロカプセルに内包したアセタミプリドの濃度)}×100
上記試験例1〜4の結果を下記表1に示す。
試験結果

Figure 0004723859
また、試験例5の結果を図1に示す。図1から本発明のマイクロカプセルはアセタミプリドの溶出率を制御していることが分かる。
【産業上の利用可能性】
本発明により、希釈物性の良い農薬活性成分のマイクロカプセル化製剤を簡便な方法で効率良く製造することができる。【Technical field】
The present invention relates to a method for producing an agrochemical microcapsule formulation that can be easily produced and has a high recovery rate and microencapsulation rate, and a microcapsule formulation obtained by the method.
[Background]
Agrochemical microcapsule preparations have been conventionally produced by methods such as spray drying, interfacial polymerization, and in-liquid drying. (For example, see Non-Patent Document 1, Patent Document 1, and Patent Document 2)
Microencapsulation by the in-liquid drying method involves dispersing a film-forming polymer solution in which a core material is emulsified or dispersed in a water or oil medium, and dissolving the film-forming polymer by heating or reducing pressure while stirring. The solvent is distilled off to form a capsule film, and as a medium, water is generally used as a medium. (See Non-Patent Document 1 and Patent Document 4)
The spray drying method, which is known as the most common method for producing microcapsules of agricultural chemicals, has the disadvantage of poor productivity and high manufacturing costs. In the interfacial polymerization method, the content of agricultural chemical active ingredients in the microcapsule formulation is low. High formulation is difficult to obtain, and the spraying efficiency is poor. (See Patent Document 2 and Patent Document 3)
Regarding a microcapsule formulation of neonicotinoid insecticide similar to the present invention, Patent Document 3 manufactures a microcapsule containing 1% of acetamiprid by an interfacial polymerization method. Patent Document 4 describes a method of microencapsulating an O / W emulsion by a submerged drying method. The uptake rate into a microcapsule measured by washing treatment is 36.3%. And low.
In addition, a method for producing microcapsules by a method of drying a water-soluble substance in a liquid is known. (See Patent Document 5)
Non-Patent Document 1: “Basic Granulation and Engineering of Granulation”, “Granulation Handbook” (1991), edited by Japan Powder Industrial Technology Association, Ohm Co., Ltd., pages 60-64 Patent Document 1: Patent Patent No. 2848173 Patent Document 2: Japanese Translation of PCT International Publication No. 2002-523338 Patent Document 3: JP 2000-95621 A Patent Document 4: JP 6-316504 A Patent Document 5: JP 6-65064 A DISCLOSURE OF THE INVENTION
The object of the present invention is to produce a microcapsule formulation for agricultural chemicals and a microcapsule formulation which can be easily produced, have a high recovery rate and a high microencapsulation rate, and in particular, Neonicochi, which is highly water-soluble and difficult to encapsulate. It is to provide a microencapsulation method and a microcapsule preparation of a noidic insecticide.
A first aspect of the present invention is a method for producing a microcapsule comprising the following steps.
(1) A step of dissolving one or more pesticidal active ingredients and a film-forming polymer mixture in a non-aqueous solvent A that can dissolve them.
(2) A step of emulsifying and dispersing the solvent A solution in a non-aqueous solvent B that is incompatible with the solvent A.
(3) A step of crystallizing the agrochemical active ingredient and the polymer by evaporating the solvent A in the emulsified and dispersed solution by heating and / or reducing pressure.
(4) A step of obtaining a composite microcapsule preparation solidified by decantation and / or centrifugation.
The second is a microcapsule preparation obtained by the above production method.
In a preferred embodiment of the production method of the present invention, the film-forming polymer is one or more polymers selected from styrene-divinylbenzene copolymer, polyepsilon caprolactam, polylactic acid, and a copolymer of polylactic acid and glycolic acid. A manufacturing method, and
The non-aqueous solvent A has a boiling point that is at least 10 ° C. lower than the boiling point of the non-aqueous solvent B.
[Brief description of the drawings]
FIG. 1 is a graph showing the results of Test Example 5.
BEST MODE FOR CARRYING OUT THE INVENTION
The agrochemical active ingredient used in the present invention is a solid agrochemical having high solubility in the solvent A or a pesticide that is liquid at room temperature, and is particularly limited if it is poorly soluble in the solvent B and preferably has a solubility in the solvent B of 10,000 ppm or less. No, two or more types can be used in combination. For example, neonicotinoid compounds such as acetamiprid, pyrimidinyloxy compounds such as fluacrylpyrim, cyclohexanedione compounds such as cetoxidim, pyrethroid compounds such as aresulin, carbamate compounds such as benfuracarb, organophosphorus compounds such as fenitrothion, diflubenzuron There can be used urea-based compounds such as these, and these can be used alone or in combination. The method of the present invention is particularly suitable for microencapsulation of neonicotinoid insecticides, which are highly water soluble and difficult to encapsulate.
Solvent A used in the present invention has a low boiling point with respect to solvent B and is not particularly limited as long as it is not compatible with solvent B. Methanol, ethanol, acetonitrile, acetone, ethyl ether, isopropyl alcohol, methyl ethyl ketone, methylene chloride, There are benzene, hexane, chloroform, dichloromethane, dichloroethane, ethyl acetate, xylene, toluene, dimethyl sulfoxide, dimethylformamide, tetrahydrofuran, and the like. These can be used alone or in combination.
The solvent B used in the present invention has a high boiling point with respect to the solvent A and is not particularly limited as long as it is not compatible with the solvent A. Heavy naphtha, methyl isobutyl ketone, dichloropentagen, silicon oil, mineral spirit, petroleum Aromatic hydrocarbons, cyclohexanone, isophorone, cellosolve, butylcellosolve, ethylcarbylol, butylcarbitol, cellosolve acetate, butylcellosolve acetate, arbitol acetate, tetradecenyl acetate, kerosene, heavy oil, light oil, octane, There are isooctane, nonane, etc., and one or more of these may be used in combination.
In order to efficiently dry in the liquid, it is preferable that the boiling points of the solvent A and the solvent B are at least 10 ° C. apart.
The polymer used in the present invention is a substance that envelops an agrochemical active ingredient, and is limited in terms of molecular weight, structure, etc. if it is a styrene-divinylbenzene copolymer, polyepsilon caprolactam, polylactic acid, or a copolymer of polylactic acid and glycolic acid. There is no particular limitation, and one or more of these may be used in combination.
In the method of the present invention, by dissolving the water-soluble polymer compound in the solvent A and using it, the elution of the agrochemical active ingredient can be controlled. The water-soluble polymer compound is not particularly limited as long as it is a water-soluble polymer compound that is soluble in the solvent A, and examples thereof include polyethylene glycol, diglycolic acid added with polyoxyethylene, and dipropylamine added with polyoxyethylene. 1 type or 2 or more types can be mixed and used.
In the method of the present invention, an emulsifying / dispersing agent can be added to the solvent A and / or the solvent B in order to assist emulsification / dispersion of the solvent A in which the pesticidal active ingredient and the polymer are dissolved in the solvent B. Examples of the emulsifier / dispersant include tri- or distyryl phenyl ether added with polyoxyethylene, alcohol ether added with polyoxyethylene, tween surfactant such as sorbitan oleate added with polyoxyethylene, and sorbitan oleate. Spun surfactants such as ate, sodium alkylnaphthalene sulfonate, sodium lauryl sulfate, sodium dodecyl sulfate, sodium lignin sulfonate, formaldehyde condensate of sodium alkyl naphthalene sulfonate, formaldehyde condensate of sodium phenol sulfonate, isobutylene-anhydrous malein Polyglycenol such as acid copolymer, sodium polycarboxylate, sodium alkylnaphthalene sulfonate and sodium alkylbenzene sulfonate Examples include synthetic ricinoleate, decaglyceryl monolaurate, gelatin, gum arabic, casein, dextrin, pectin, sodium alginate, methylcellulose, ethylcellulose, polyvinyl alcohol, polyvinylpyrrolidone, etc. Can do.
The amount of each component used in the production of the microcapsule preparation of the present invention varies depending on the type of the pesticidal active ingredient, but usually, the pesticidal active ingredient is 0.01 to 60% by weight, preferably 0 as a ratio to the whole. 0.01 to 40% by weight, the polymer for wrapping the pesticidal active ingredient is 0.005 to 80% by weight, preferably 0.005 to 50% by weight, and the solvent A for dissolving the pesticidal active ingredient and the polymer is 0.1 to 60% by weight. %, Preferably 0.1 to 50% by weight, solvent B 30 to 99% by weight, preferably 50 to 99% by weight, water-soluble polymer compound 1 to 50% by weight, preferably 5 to 50% by weight, emulsified -The surfactant for dispersion is 0 to 30% by weight, preferably 0 to 20% by weight.
In practicing the present invention, one or two or more kinds of pesticidal active ingredients and one or two selected from styrene-divinylbenzene copolymer, polyepsilon caprolactam, polylactic acid, and a copolymer of polylactic acid and glycolic acid. A polymer mixture of seeds or more is dissolved in a solvent A that can dissolve them, and added to a solvent B that is incompatible with the solvent A and emulsified and dispersed. At this time, a water-soluble polymer compound may be added to the solvent A in order to control the dissolution property of the pesticidal active ingredient, and an emulsifying / dispersing agent may be added to the solvent A or B. Next, the solvent A in the emulsified and dispersed solution is evaporated by heating and decompression to crystallize the pesticidal active ingredient and the polymer. Next, by removing the solvent B from the suspension by decantation, centrifugation, or the like, a microcapsule preparation having a high concentration of the pesticidal active ingredient in the microcapsules can be obtained with low production cost and high production efficiency. In addition, the fine structure control can be freely controlled in the range of 0.05 nm to 10 μm in the process of evaporating the solvent A by heating / depressurization, and the stirring conditions during emulsification / dispersion. By changing the size, the size of the capsule can be freely controlled to 10 nm to 1000 μm.
【Example】
EXAMPLES Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these.
[Example 1]
1 g of acetamiprid and 2 g of polylactic acid are dissolved in 20 g of acetonitrile, added to 200 g of silicon oil, and emulsified with a mixer for 1 hour (liquid temperature 25 ° C., mixer rotation speed 500 rpm). Next, the temperature of the mixer is kept at 500 rpm, the liquid temperature is raised to 75 ° C., and dried under reduced pressure at 700 mmHg for 3 hours to completely evaporate acetonitrile and encapsulate acetamiprid with polylactic acid. Only the solid component was removed from the suspension by decantation to produce a microcapsule preparation having an acetamiprid content of about 30%.
The composition of this microcapsule formulation is 1 g of acetamiprid and 2 g of polylactic acid, and the acetamiprid content is about 30%.
[Example 2]
1 g of acetamiprid and 2 g of polyepsilon caprolactam are dissolved in 50 g of ethyl acetate, added to 200 g of silicon oil, and emulsified with a mixer for 1 hour (liquid temperature 25 ° C., mixer rotation speed 500 rpm). The temperature of the mixer is kept at 500 rpm, the liquid temperature is raised to 75 ° C., and dried under reduced pressure at 700 mmHg for 2 hours to completely evaporate ethyl acetate and encapsulate acetamiprid with polyepsilon caprolactam. Only the solid component was removed from the suspension by decantation to produce a microcapsule preparation having an acetamiprid content of about 30%.
The composition of this microcapsule formulation is 1 g of acetamiprid and 2 g of polyepsilon caprolactam, and the acetamiprid content is about 30%.
Comparative Example 1
An organic phase is produced by dissolving in 1 g of acetamiprid, 2 g of polylactic acid, 1 g of POE tristyryl phenyl ether and 50 g of dichloroethane. Next, 4 g of polyvinyl alcohol and 1 g of decaglyceryl monolaurate are dissolved in 500 g of water to produce an aqueous phase. The organic phase is added to the aqueous phase and emulsified with a mixer for 5 minutes (liquid temperature: 40 ° C., mixer rotation speed: 500 rpm). Acetamiprid is encapsulated with polylactic acid. Only the solid component was taken out from this suspension by decantation to produce a microcapsule preparation.
Comparative Example 2
An organic phase is produced by dissolving in 1 g of acetamiprid, 2 g of polylactic acid, 1 g of POE tristyryl phenyl ether and 50 g of dichloroethane. Next, 4 g of polyvinyl alcohol and 1 g of decaglyceryl monolaurate are dissolved in 500 g of water to produce an aqueous phase. The organic phase is added to the aqueous phase and emulsified with a homogenizer for 5 minutes (liquid temperature: 40 ° C., homogenizer rotation speed: 500 rpm), and the resulting suspension is sprayed using a spray dryer device (L-8 type, manufactured by Okawara Koki Co., Ltd.). It was spray-dried at a drying temperature of 100 ° C. to produce a solid preparation in which acetamiprid was encapsulated with polylactic acid.
Comparative Example 3
1 g of acetamiprid, 0.5 g of protective colloid agent, styrene maleic anhydride copolymer Na salt are dissolved in 8 g of solvent SAS-296 by heating and added to 86.5 g of water in which 2.5 g of urea is dissolved (2.5 g of urea + 84 g of water). After adjusting the pH to 3 with 10% aqueous citric acid, the mixture is emulsified with a homogenizer at 5000 rpm for 10 minutes. To this emulsion, 6.8 g of 37% formalin water (2.5 g of formalin) is added, the liquid temperature is raised to 70 to 75 ° C., and a urea-formalin resin is produced on the surface of the emulsified particles at a homogenizer of 10,000 rpm for 2 hours. After the reaction, the liquid temperature is lowered to 40 ° C. and adjusted to pH 7.5 with 28% aqueous ammonia. From this suspension, only the solid component was removed by decantation to produce an acetamiprid microcapsule preparation.
Test Example 1: Measurement of yield of microencapsulated preparation The yield was calculated from the charged amount (A) when 100% was recovered in the production of microcapsule preparation and the amount (B) recovered in actual production.
Yield (%) = B / A × 100
Test Example 2: Measurement of Agrochemical Active Ingredient Content in Microcapsule 10 g of the prepared microencapsulated solid preparation was immersed in 100 ml of methanol, and acetamiprid was extracted from the microcapsule with ultrasound for 30 minutes. The extracted acetamiprid was analyzed by HPLC, and the acetamiprid content in the microcapsules was calculated.
Test Example 3: Measurement of microencapsulation rate 10 g of the prepared microencapsulated solid preparation is immersed in 100 ml of hexane and gently stirred with a spatula for about 30 seconds. After stirring, the mixture was allowed to stand for 5 minutes, and after confirming that the microcapsule had settled, the supernatant was analyzed by HPLC, the amount of the active ingredient dissolved in hexane was measured, and the microencapsulation rate was calculated.
Microencapsulation rate (%) = (Amount of drug substance in microcapsule preparation−Amount of drug substance dissolved in hexane) / Amount of drug substance in microcapsule preparation × 100
Test Example 4: Measurement of formulation dilution properties 10 g of lignin sulfonic acid Na, 5 g of formaldehyde condensate of alkyl naphthalene sulfonic acid Na salt, a mixture of 2 g of alkyl naphthalene sulfonic acid Na and clay 73 g and a wet milling powder having a powder size of about 7 microns by jet milling. Manufacture base. 10 g of the microencapsulated solid preparation produced in Examples and Comparative Examples and 90 g of a wettable powder base are mixed in a mortar to produce a wettable powder. This wettable powder was diluted 1000 times with tap water and measured for dilution properties (measurement items; self-dispersibility, initial dispersibility, suspension stability, foamability).
<Evaluation methods>
Self-dispersibility: Dispersed state of drug when 0.25 g of wettable powder was dropped into 200 ml of tap water (250 ml graduated cylinder). Dispersed in a cloud shape ◎>○>△> × Not dispersible at all / Initial dispersibility: The number of inversions required to completely disperse the drug by inverting the graduated cylinder 30 seconds after dropping the drug.
Suspension stability: Amount of sediment over time after inverting the graduated cylinder 30 times (ml).
-Foaming property: Foam height (ml) after 30 minutes of inversion of graduated cylinder.
Test Example 5: Measurement of dissolution rate 0.1 g of acetamiprid-encapsulated microcapsules prepared in Example 1 was added to 500 ml of distilled water (dispersing agent polyoxyethylene (20) sorbitan monostearate was added to improve microcapsule dispersibility). .1 wt% addition), and this was shaken at 60 rpm in a thermostatic bath at 30 ° C. This was collected at regular intervals, filtered through a membrane filter (pore size 0.2 μm), and then the concentration of acetamiprid released slowly was measured with a UV / VIS spectrophotometer. The measurement wavelength was 244.6 nm, and measurement was performed using the multi-inspection quantity curve method. The sustained release rate was calculated by the following formula. Controlled release rate (%) = {(concentration of acetamiprid released from microcapsule) / (concentration of acetamiprid contained in microcapsule)} × 100
The results of Test Examples 1 to 4 are shown in Table 1 below.
Test results
Figure 0004723859
The results of Test Example 5 are shown in FIG. 1 that the microcapsules of the present invention control the dissolution rate of acetamiprid.
[Industrial applicability]
According to the present invention, a microencapsulated preparation of an agrochemical active ingredient with good dilution properties can be efficiently produced by a simple method.

Claims (3)

以下の工程:
(1)アセタミプリドである農薬活性成分と、ポリイプシロンカプロラクタム、ポリ乳酸、ポリ乳酸とグリコール酸の共重合体の1種あるいは2種以上から選択される皮膜形成ポリマーの混合物を、アセトニトリルおよび/または酢酸エチルである溶媒Aに溶かす工程
(2)該溶媒A溶液を、シリコンオイルに加え乳化・分散させる工程
(3)乳化・分散させた溶液中の溶媒Aを加温および/または減圧により蒸散させて農薬活性成分およびポリマーを結晶化させる工程
(4)デカンテーションおよび/または遠心分離により固形化したマイクロカプセル製剤を得る工程
からなる、マイクロカプセルの製造方法。
The following steps:
(1) A mixture of an agrochemical active ingredient that is acetamiprid and a film-forming polymer selected from one or more of polyepsilon caprolactam, polylactic acid, and a copolymer of polylactic acid and glycolic acid, and acetonitrile and / or acetic acid Dissolving in solvent A , which is ethyl ;
(2) Step of emulsifying and dispersing the solvent A solution in addition to silicone oil ;
(3) a step of crystallizing the pesticidal active ingredient and the polymer by evaporating the solvent A in the emulsified and dispersed solution by heating and / or reducing pressure ;
(4) A step of obtaining a microcapsule preparation solidified by decantation and / or centrifugation ;
A method for producing microcapsules, comprising:
溶媒Aが、ポリエチレングリコール、ポリオキシエチレンが付加したジグリコール酸、ポリオキシエチレンが付加したジプロピルアミンから選ばれる水溶性高分子化合物を含む、請求項1に記載の製造方法。 The production method according to claim 1, wherein the solvent A contains a water-soluble polymer compound selected from polyethylene glycol, diglycolic acid to which polyoxyethylene is added, and dipropylamine to which polyoxyethylene is added. 前記1または2に記載の製造方法で製造されたマイクロカプセル製剤。 3. A microcapsule preparation produced by the production method according to 1 or 2 above .
JP2004556909A 2002-12-04 2003-12-04 Agricultural microcapsule preparation by drying method in Oil / Oil liquid and method for producing the same Expired - Lifetime JP4723859B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004556909A JP4723859B2 (en) 2002-12-04 2003-12-04 Agricultural microcapsule preparation by drying method in Oil / Oil liquid and method for producing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002352572 2002-12-04
JP2002352572 2002-12-04
JP2004556909A JP4723859B2 (en) 2002-12-04 2003-12-04 Agricultural microcapsule preparation by drying method in Oil / Oil liquid and method for producing the same
PCT/JP2003/015537 WO2004049801A1 (en) 2002-12-04 2003-12-04 Agricultural-chemical microcapsule preparation made by oil/oil liquid drying and process for producing the same

Publications (2)

Publication Number Publication Date
JPWO2004049801A1 JPWO2004049801A1 (en) 2006-03-30
JP4723859B2 true JP4723859B2 (en) 2011-07-13

Family

ID=32463236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004556909A Expired - Lifetime JP4723859B2 (en) 2002-12-04 2003-12-04 Agricultural microcapsule preparation by drying method in Oil / Oil liquid and method for producing the same

Country Status (3)

Country Link
JP (1) JP4723859B2 (en)
AU (1) AU2003289178A1 (en)
WO (1) WO2004049801A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2640723T3 (en) * 2006-02-06 2017-11-06 Nippon Soda Co., Ltd. Resin compositions containing a pesticide with controlled dissolution, process for its production and pesticide preparations
CN102388865A (en) * 2011-09-28 2012-03-28 北京化工大学 Melamino-formaldehyde resin encapsulated acetamiprid microcapsule, and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01216918A (en) * 1988-02-24 1989-08-30 Bio Material Yunibaasu:Kk Polylactic acid particles containing physiologically active substance and its production
JPH09183859A (en) * 1995-12-28 1997-07-15 Nippon Paint Co Ltd Production of resin particle
JP2000095621A (en) * 1998-07-23 2000-04-04 Sumitomo Chem Co Ltd Harmful pest controlling composition
JP2001520186A (en) * 1997-10-23 2001-10-30 ビオグラン・セラピューティクス・アクチエボラーグ Encapsulation method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IE960308A1 (en) * 1996-04-23 1997-11-05 Kinerton Ltd Sustained release ionic conjugate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01216918A (en) * 1988-02-24 1989-08-30 Bio Material Yunibaasu:Kk Polylactic acid particles containing physiologically active substance and its production
JPH09183859A (en) * 1995-12-28 1997-07-15 Nippon Paint Co Ltd Production of resin particle
JP2001520186A (en) * 1997-10-23 2001-10-30 ビオグラン・セラピューティクス・アクチエボラーグ Encapsulation method
JP2000095621A (en) * 1998-07-23 2000-04-04 Sumitomo Chem Co Ltd Harmful pest controlling composition

Also Published As

Publication number Publication date
JPWO2004049801A1 (en) 2006-03-30
AU2003289178A1 (en) 2004-06-23
WO2004049801A1 (en) 2004-06-17
WO2004049801A9 (en) 2004-08-19

Similar Documents

Publication Publication Date Title
RU2150832C1 (en) Microsphere for agriculturally active compounds and method of their producing
US4808408A (en) Microcapsules prepared by coacervation
JP3848676B2 (en) Microcapsules containing suspensions of biologically active compounds
US8039015B2 (en) Microencapsulation product and process
PL184931B1 (en) Mirocapsules containing solutions of biologically active compounds and agents protecting against ultraviolet radiation
CS197280B2 (en) Method of making ammeliorated polyurea microcapsules
JP4619535B2 (en) Acid-induced release microcapsules
JPH05201803A (en) Agent for killing harmful organism
JP2003531156A (en) Biocidal composition comprising foamed gel containing hydrophobic silica
CN104519990A (en) Microcapsule-manufacturing process and microcapsules
WO1997046092A1 (en) Agricultural chemical composition with improved raindrop resistance
US8034325B2 (en) Powder formed of particles of biliquid foam entrapped within polymeric matrix
JP4723859B2 (en) Agricultural microcapsule preparation by drying method in Oil / Oil liquid and method for producing the same
JPH0899805A (en) Production of agrochemical made into microcapsule
KR900006515B1 (en) Microen capsulated agent of ethoprophos
JP4723864B2 (en) Agricultural microcapsule formulation by oil / water drying method and method for producing the same
JP2004196718A (en) Microencapsulated agrochemical preparation and method for producing the same
EP0731635B1 (en) Water emusifiable granules, preparation process and application as pesticides
HUT77646A (en) Microencapsulation process and product
WO1995017954A1 (en) Process for producing microcapsule of hydrophobic drug
EP0126583B1 (en) Coacervation process for microencapsulation and microcapsules prepared by such coacervation process
JP4272372B2 (en) Microcapsule and manufacturing method thereof
AP1263A (en) Endosulfan microcapsule dispersion.
JPS614527A (en) Microcapsule manufactured by coacervation method
JP2007223907A (en) Microcapsule formulation and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110404

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110408

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250