JP4723719B2 - Galvano mirror device - Google Patents

Galvano mirror device Download PDF

Info

Publication number
JP4723719B2
JP4723719B2 JP2000365854A JP2000365854A JP4723719B2 JP 4723719 B2 JP4723719 B2 JP 4723719B2 JP 2000365854 A JP2000365854 A JP 2000365854A JP 2000365854 A JP2000365854 A JP 2000365854A JP 4723719 B2 JP4723719 B2 JP 4723719B2
Authority
JP
Japan
Prior art keywords
coil
coils
electromagnetic
axis
mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000365854A
Other languages
Japanese (ja)
Other versions
JP2002169122A5 (en
JP2002169122A (en
Inventor
哲夫 池亀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2000365854A priority Critical patent/JP4723719B2/en
Publication of JP2002169122A publication Critical patent/JP2002169122A/en
Publication of JP2002169122A5 publication Critical patent/JP2002169122A5/ja
Application granted granted Critical
Publication of JP4723719B2 publication Critical patent/JP4723719B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Mechanical Optical Scanning Systems (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Optical Head (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、例えば、光磁気ディスクドライブ、追記型ディスクドライブ、相変化型ディスクドライブ、CD−ROM、DVD、光カード等の光記録媒体に対して情報を記録および/または再生する情報記録再生装置や、光スキャナー、光通信用の光偏向器等の光学装置に使用するガルバノミラー装置に関する。
【0002】
【従来の技術】
光磁気ディスクドライブ、追記型ディスクドライブ、相変化型ディスクドライブ、CD−ROM、DVD、光カード等の光記録媒体に対して情報を記録および/または再生する情報記録再生装置や、光スキャナー、光通信等の光偏光器等の光学装置においては、例えば、光記録媒体に設けられている所定のデータ記録トラックに光束を高精細に投射させるための光束の傾き調整や、光通信で所定の回線に光通信信号を中継するための光通信光束の切替に、反射ミラーの傾きを調整可能とするガルバノミラー装置が使用される。
【0003】
前記情報記録再生装置に用いられる光ピックアップから光記録媒体に投射される光束の傾き調整用のガルバノミラー装置は、例えば、特開平5−12686号公報に開示されている。
【0004】
この特開平5−12686号公報に開示されているガルバノミラー装置を図7を用いて説明する。なお、図7は、ガルバノミラー装置の断面図である。
【0005】
図7に示すガルバノミラー装置は、円形の反射ミラー74の裏面にロの字状に巻回された複数のコイルからなる電磁コイル75が反射ミラー74の中心D1に対して対称に設けられ、この電磁コイル75の短辺は反射ミラー74の側面に折り曲げ固定されている。前記反射ミラー74は、ミラー支持部76の上表面に固定されている。このミラー支持部76は、該支持部76の裏面中央に形成された一体型の支持柱77とベース78を介して、筒状のハウジング71に取り付けられ、前記支持柱77にはヒンジ77aが設けられている。前記反射ミラー74は、前記ヒンジ77aで任意の方向に傾き回動可能に支持されている。
【0006】
前記ハウジング71には、前記反射ミラー74の側面と対向するようにリング状のバックヨーク72が設けられ、このバックヨーク72の内周面に多極着磁マグネット73が設けられている。この多極着磁マグネット73は、その磁極が前記反射ミラー74の側面の設けた電磁コイル75の折り曲げ部と1対1に対応させて設けられている。
【0007】
このようなガルバノミラー装置において、前記電磁コイル75の所望のコイルに電流を供給して、そのコイルの両側で、該コイルと対応する着磁マグネット73と逆向きの磁界を発生させると、前記反射ミラー74は、例えば図中の矢印SとTの方向に左手の法則の電磁作用によって逆向きの力が発生し、中心D1回りの回転トルクを生じさせる。
【0008】
このようにして、前記電磁コイル74の複数のコイルに所定の電流を供給し、その複数のコイルに発生する磁界と、前記着磁マグネット73との電磁作用によって、前記ヒンジ77aを中心に任意の方向に傾き回動させることが可能となる。
【0009】
【発明が解決しようとする課題】
前述の特開平5−12686号公報においては、情報記録再生装置に用いる光ピックアップのガルバノミラー装置は、5つの方向に駆動する為の5個のコイルからなる電磁コイル75の短辺が反射ミラー74とこの反射ミラー74を固定するミラー支持部76の側面を取り囲む様に配置されている。
【0010】
さらに、前記電磁コイル75の短辺の周囲を多極着磁マグネツト73が取り囲むように設けられている。
【0011】
このため、ルバノミラー装置の体形状がきくなる。
【0012】
情報記録再生装置の光ピックアップや光偏光器の小型軽量化が望まれ、かつ、ガルバノミラー装置による高精度の光束の傾き調整が求められているが、前述の従来のガルバノミラー装置はきさが大きくなる課題がある。
【0013】
本発明は、上記課題に鑑み、ミラーの駆動特性が良好で、全体形状が小型化可能ガルバノミラー装置を提供することを目的とする。
【0014】
【課題を解決するための手段】
本発明のガルバノミラー装置は、少なくともミラーを有する可動部と、前記可動部を固定部材に対して第1の軸及び前記第1の軸と垂直な第2の軸回りに傾き可能に支持する支持手段と、前記可動部を前記第1の軸回りに駆動する第1の駆動手段と、前記第2の軸回りに駆動する第2の駆動手段を有するガルバノミラーにおいて、前記可動部の重心は前記第1の軸及び前記第2の軸上に位置し、前記支持手段は前記可動部の前記重心に対して前記第1の軸方向に配置すると共に、前記第1の駆動手段及び前記第2の駆動手段は、前記重心に対して前記第2の軸方向に配置されていることを特徴とする。
【0015】
発明によりルバノミラー装置の小型が実現できる。
【0016】
【発明の実施の形態】
以下、図を用いて本発明の実施形態を説明する。図1は本発明に係るガルバノミラー装置の一実施形態の構成を説明する分解斜視図で、図2は本発明に係るガルバノミラー装置の使用例を説明する説明図で、図3は本発明に係るガルバノミラー装置の一実施形態の組立状態を示す正面図で、図4は本発明に係るガルバノミラー装置の一実施形態の組立状態を示す側面図である。
【0017】
最初に図2を用いて、本発明に係るガルバノミラー装置の使用例を光通信用の光路切替装置に適用した例を用いて説明する。ガルバノミラー装置11は、一本の光ファイバー13の端部から出射した光通信信号伝送用の光を平行光レンズ14で平行光17に変換して、ガルバノミラー装置11の反射ミラー12の反射面に投射させる。この反射ミラー12は、図中第1の回転軸20と第2の回転軸21の軸回りに傾き可能となっている。前記反射ミラー12で反射された反射光18は、この反射光18と略垂直な平面上に3段3列に並べた合計9つの集光レンズ15a〜15iのいずれか一つに前記反射ミラー12の第1と第2の回転軸20,21回りへの傾き調整によって、選択的に入射させる。前記複数の集光レンズ15a〜15iそれぞれには、光ファイバ16a〜16iの端部が接続されている。
【0018】
つまり、前記光ファイバー13から出射され平行レンズ14で変換された平行光17は、前記反射ミラー12で入射される。この反射ミラー12は、第1と第2の回転軸20,21回りに回転駆動させて、前記集光レンズ15a〜15iのいずれかに反射光18を入射させるように選択する。選択された集光レンズ15a〜15iのいずれかに入射された反射光18は、選択された集光レンズ15a〜15iに接続された光ファイバー16a〜16iへと伝送される。
【0019】
また、図2に示したガルバノミラー装置11を情報記録再生装置の光ピックアップに用いたとすると、図示していないが、前記集光レンズ15a〜15iを単一の集光レンズとし、この単一の集光レンズに入射させる光を反射ミラー12を2方向に傾けることにより光記録媒体上の集光レンズの光スポットをトラッキング方向とタンジェンシャル方向に移動させることができる。この光記録媒体に投射する光が光記録媒体に形成されている情報記録トラックに正確に投射させるために、前記反射ミラー12の第1回転軸20と第2回転軸21回りに傾けて調整する。
【0020】
このような光通信の光路切替装置及び情報記録再生装置の光ピックアップに用いる本発明のガルバノミラー装置11の具体的構成について図1、図3,及び図4を用いて説明する。
【0021】
矩形状の反射ミラー12は、可動部30に収納固定される。この可動部30は、前記矩形状の反射ミラー12の外周面を収納固定する箱形状のミラー保持部材31、第1の電磁コイル32a,32b、第2の電磁コイル33a,33b、支持バネ34a〜34dから構成されている。このミラー保持部材31には、前記反射ミラー12を内面に図中第1と第2の回転軸20,21と平行に収納配置されている。前記ミラー保持部材31の図中第1の回転軸20と平行な左右両外側面には、後述する第1の電磁コイル32a,32b及び第2の電磁コイル33a,33bが嵌合される凸部31a,31b,31d,31eが設けられ、かつ、前記凸部31a,31bの間には凹部31c、及び前記凸部31d,31eの間には凹部31fが設けられている。なお、図1には図の関係から凸部31d,31eと凹部31fな図示していない。
【0022】
また、前記ミラー保持部材31の前記第1の回転軸20方向の上側面には、形状が略S字状に成形した一対の支持バネ34a,34bの一端が、下側面には同じ形状の一対の支持バネ34c,34dの一端が植設固定されている。これら各一対の支持バネ34a、34bと34c,34dは、弾性部材で形成され、前記可動部30に収納固定される反射ミラー12の中心を基準に均等位置に植設固定されている。
【0023】
前記第1の電磁コイル32a,32bは、前記可動部30の両側面の凸部31a,31b,31d,31eの外周に嵌合されるように巻回されたコイルで、このコイルに供給する電流の向きと大きさに応じて、異なる方向と大きさの電磁界を発生する電磁コイルである。第1の電磁コイル32a,32bにより回転軸20の回りに回転トルクを生じさせ、そのトルクの中心は回転軸20上の点D1にある。
【0024】
前記第2の電磁コイル33aは、前記凸部31aと31bの外周にそれぞれ嵌合されるように巻回され、かつ、巻線方向の異なるたコイル33c,33dからなり、前記第2の電磁コイル33bは、前記凸部31d,31eの外周にそれぞれ嵌合するように巻回され、かつ、巻線方向の異なるコイル33e,33fからなっている。前記凹部31cには、前記第2の電磁コイルのコイル33c,33dが並設され、かつ、コイル33c,33dは直列接続されている。前記凹部31fには、第2の電磁コイル33bのコイル33e,33fが並設され、かつ、コイル33e、33fは直列接続されている。これらコイル33c〜33fに供給する電流の向きと大きさに応じて、異なる方向と大きさの電磁界を発生する電磁コイルである。第2の電磁コイル33a,33bにより回転軸21の回りに回転トルクを生じさせ、そのトルクの中心は回転軸21上の点D1にある。
【0025】
つまり、前記反射ミラー12を第1の回転軸20と第2の回転軸21に対して平行で、かつ反射面が図1に示すように図中垂直となるように前記ミラー保持部材31に収納固定される。なお、第1の電磁コイル32a,32b又は第2の電磁コイル33a,33bの発生するトルクの中心D1と反射ミラー12、ミラー保持部材31,第1の電磁コイル32a,32b及び第2の電磁コイル33a,33bで構成される可動部30の重心Gは一致している。また、前記反射ミラー12をミラー保持部材31に収納固定する。この反射ミラー12が収納固定されたミラー保持部材31の両側面に前記第1の電磁コイル32a,32bを嵌合固定し、さらに、前記第2の電磁コイル32a,32bを嵌合固定する。
【0026】
このようにミラー保持部材31に前記反射ミラー12、前記第1の電磁コイル32a,32b,及び前記第2の電磁コイル33a,33bが取付固定され、かつ、前記支持バネ34a〜34dが植設固定された可動部30は、固定部材35に前記支持バネ34a〜34dを介して固定される。第1の電磁コイル32a,32bに必要な4つの給電には、4本の支持バネ34a〜34dを用いて給電する。
【0027】
前記固定部材35は、全体形状が略コの字状で、下面部36と上面部37との間で前記可動部30を支持する前記支持バネ34a〜34dの他端がそれぞれ植設固定されるようになっている。前記下面部36と上面部37の両側面には、突堤36a,36b,37a,37bがそれぞれ設けられている。その突堤36aと37aとの間にはマグネット38aとヨーク39aが、前記突堤36bと37bの間にはマグネット38bとヨーク39bが嵌合固定されるようになっている。
【0028】
前記マグネット38a,38bは、図1に示すように磁極面が2極着磁され異極が向かい合い、前記第1の電磁コイル32a,32b及び第2の電磁コイル33a,33bに対して静磁界を与えるものである。前記ヨーク39a,39bは、前記マグネット38a,38bの静磁界を固定部材35の両側外部への漏洩を防止する閉磁路部材である。
【0029】
前記固定部材35に前記支持バネ34a〜34dによって支持固定された前記可動部30の前記第1の電磁コイル32a,32bにある方向の電流を供給すると、この第1の電磁コイル32a,32bで発生する電磁界と前記マグネット38a,38bの静磁界との左手の法則の電磁作用によって、図1の図中の矢印で示す方向に力が発生し、前記可動部30は、支持バネ34a〜34dを変形させて第1の回転軸20回りの図中反時計方向に傾き、また、前記第1の電磁コイル32a,32bへの供給電流の向きを変えると、図中の矢印と逆方向の電磁作用による力が生じて、前記可動部30は、図中時計方向に傾く。
【0030】
一方、前記第2の電磁コイル33a、33bにある方向のそれぞれの電流を供給すると、前記第2の電磁コイル33aのコイル33c,33d及び第2の電磁コイル33bのコイル33e,33fは、巻線方向がそれぞれ異なるために、異なる向きの電磁界が発生する。これらの第2の電磁コイル33a,33bのそれぞれのコイル33c〜33fから生じる電磁界と前記マグネット38a,38bの静磁界との電磁作用によって、図中の矢印で示すように異なる方向の力が発生し、前記可動部30は、前記支持バネ34a〜34dを変形させて、前記第2の回転軸21回りに図中時計方向に傾き、前記第2の電磁コイル33a,33bの供給電流の向きを前述と異なる方向に代えると図中反時計方向に傾く。
【0031】
すなわち、前記第1の電磁コイル32a,32b、前記第2の電磁コイル33a,33b、及びマグネット38a,38bは、第1の回転軸20を含む反射ミラー12の反射面と垂直な平面20aに対して対称に配置され、さらに、平面20aで区切られた空間の両側で、前記平面20aを内部に含まないように配置されている。さらに、前記反射ミラー12と可動部30の第2の回転軸21に平行な方向の両側面(反射ミラー12の反射面と平行で第1の回転軸20に垂直な方向)にのみ前記第1の電磁コイル32a,32b、第2の電磁コイル33a,33b、及びマグネット38a,38bは配置され、この第2の電磁コイル33a,33bは、第2の回転軸21を含む反射ミラー12の反射面に垂直な平面21bに対して対称に配置されているが、前記平面21bを内部に含まないように配置されている。
【0032】
このように配置された前記第1の電磁コイル32a,32bと第2の電磁コイル33a,33bに供給する電流の向きと大きさによって生じる電磁界と、前記マグネット38a,38bの静磁界との電磁作用によって、前記可動部30が第1の回転軸20と第2の回転軸21回りの傾き角度と方向が調整制御可能となり、この可動部30に収納固定されている反射ミラー12の反射面の傾き角度と方向が調整制御される。
【0033】
さらに前記可動部30は、固定部材35に対して、可動部30の第1の回転軸20方向に配置された支持バネ34a〜34dで支持可能となるため、ガルバノミラー装置11の全体形状を小型薄型に形成可能となる。
【0034】
また、前記支持バネ34a〜34dは、可動部30に対して第1の回転軸20と平行方向な側面に配置されているために、第1の電磁コイル32a,32b、第2の電磁コイル33a,33b、及びマグネット38a,38bを第1の回転軸20と垂直な第2の回転軸21と平行方向な側面に配置されている。反射ミラー12の傾き駆動手段である第1の電磁コイル32a,32b、第2の電磁コイル33a,33b、及びマグネット38a,38bと、支持バネ34a〜34dを直交する方向に分けて干渉しないように配置することができる。
【0035】
このため、可動部30の重心Gを支持バネ34a〜34dの支持中心(可動部30を傾けた際の回転中心)とを容易に一致させることができる。
【0036】
また、第1と第2の回転軸20,21に対して前記第1と第2の電磁コイル32a,32b,33a,33bとマグネット38a,38bを完全に対称に配置でき、前記第1と第2の電磁コイル32a,32b,33a,33bに発生する力によるトルクの中心D1を第1と第2の回転軸20,21の可動部30の重心Gに完全に一致させることができるため、可動部30の駆動時の共振が発生しない。
【0037】
さらにまた、前記第1と第2の電磁コイル32a,32b,33a,33bと支持バネ34a〜34dとを反射ミラー12の異なる側面に配置できるので、反射ミラー12の反射面に垂直方向の寸法を小さくできる。
【0038】
なお、図示していないが、マグネットを可動部にコイルを固定部に配置した、所謂ムービングマグネットにすることもできる。可動部30は、前記ミラー保持部材31の両側面に設けた第1の電磁コイル32a,32bと、第2の電磁コイル33a,33bに代えて、前記固定部材35に取付固定したマグネット38a,38bを前記ミラー保持部材31の両側面に取付固定した構成とする。一方、前記固定部材35の両側面の突堤36a,36bと37a、37bの間に前記第1の電磁コイル32a,32bと第2の電磁コイル33a,33bを配置させる。この固定部材35の両側面に設けた第1の電磁コイル32a,32bと第2の電子コイル33a,33bに供給する電流によって生じる電磁界と、前記ミラー保持部材31の両側面に設けたマグネット38a,38bの静磁界との電磁作用によって、前記可動部30を前記第1の回転軸20回り、前記第2の回転軸21回りに傾き制御することも可能である。
【0039】
次に図5と図6を用いて本発明に係るガルバノミラー装置の他の実施形態を説明する。
図5は、本発明の他の実施形態の全体構成を説明する斜視図で、図6は、本発明の他の実施形態の動作を説明する説明図である。なお、図1乃至図4と同一部分は同一符号を付して詳細説明は省略する。
【0040】
本発明の他の実施形態の可動部30’は、前記反射ミラー12の収納固定の形状及び固定方法は前記可動部30と同じであるが、この可動部30’の第1の回転軸20と平行な反射ミラー12の反射面と垂直方向の両側面にそれぞれ2個の電磁コイル51a,51bと52a,52bが配置されている。この電磁コイル51a,51bと52a,52bが配置された可動部30’は、前記固定部材35の下面部36と上面部37に支持バネ53a〜53dで取付支持されている。
【0041】
この支持バネ53a〜53dは、弾性部材を用いて略Ω形状に形成され、基端は前記可動部30’に、他端は前記固定部材35の下面部36と上面部37に植設固定されている。
【0042】
前記可動部30’の電磁コイル51a、51bと平行して2極着磁された2つのマグネット54a,54bを接合した静磁界マグネット54と、電磁コイル52a,52bと平行して2極着磁された2つのマグネット55a,55bを接合した静磁界マグネット55が、前記固定部材35の下面部36と上面部37との間に取付固定されている。つまり、前記静磁界マグネット54,55は、前記電磁コイル51a,51bと52a,52bに静磁界を供給するように配置されている。
【0043】
前記電磁コイル51a,51bと52a,52bには、電磁界発生用電流がそれぞれ個別に供給されるようになっている。
【0044】
このような構成のガルバノミラー装置の動作について、図6を併用して説明する。前記電磁コイル51a,51bには、前記静磁界マグネット54、55からの静磁界に対して、前記可動部30’が電磁作用によって図6(a)の図中N方向に力が発生する電磁界を生じさせる電流を供給し、前記電磁コイル52a,52bには、前記静磁界マグネット54、55からの静磁界に対して、前記可動部30’が電磁作用によって図6(a)の図中L方向に力が発生する電流を供給すると、前記可動部30’は第1の回転軸20を中心として、図中半時計方向に傾き回転する。また、前記電磁コイル51a,51bと52a、52bへの供給電流の向きを代えると、前記可動部30’は、第1の回転軸20を中心に図中時計方向に傾き回転する。
【0045】
次に、前記電磁コイル51aと52aには、前記静磁界マグネット54、55からの静磁界に対して、前記可動部30’が電磁作用によって図6(b)の図中L方向に力が発生する電磁界を生じさせる電流を供給し、前記電磁コイル51bと52bには、前記静磁界マグネット54、55からの静磁界に対して、前記可動部30’が電磁作用によって図6(b)の図中N方向に力が発生する電磁界を生じさせる電流を供給すると、前記可動部30’は第2の回転軸21を中心として、図中半時計方向に傾き回転する。また、前記電磁コイル51a、52a,及び51b,52bへの供給電流の向きを代えると、前記可動部30’は、第2の回転軸21を中心に図中時計方向に傾き回転する。
【0046】
つまり、前記電磁コイル51a,51bと52a,52bの供給電流の向きと値を制御調整することにより、発生する電磁界の向きと大きさが制御でき、この電磁界と前記静磁界マグネット54,55からの静磁界によって、前記可動部30’を第1の回転軸20と第2の回転軸21回りに傾き制御可能となる。
【0047】
これにより、前述の本発明の一実施形態に比して、前記可動部30’に設ける電磁コイル数が削減でき、小型軽量化が一層可能となる。
【0048】
なお、この本発明の他の実施形態において、電磁コイル51a,51dと52a,52b,52を可動部30’に取付固定し、この電磁コイル51a,51bと52a,52bに対して、固定部材35に取付固定された静磁界マグネット54,55から静磁界を与えている。しかし、図示していないが、前記可動部30’に前記静磁界マグネット54,55を取付固定し、前記固定部材35に前記電磁コイル51a,51bと52a,52bを取付固定して、固定部材35に取付固定した電磁コイル51a,51bと52a,52bからの電磁界と可動部30’に取り付けた静磁界マグネット54,55の静磁界との電磁作用で、可動部30’の傾き制御も可能である。
【0049】
本発明の実施形態において、4つの電磁コイル51a,51b,52a,52bへは、それぞれ独立な電流を流す必要がある。合計8本の給電ラインが必要となる。このために4本の支持バネ53a〜53dはベリリウム銅箔とし、その両面にポリイミドの絶縁層と、さらにその上に銅のパターンを形成し合計8本の給電ラインを得ている。前記電磁コイル51a,51bと52a,52bの電流供給路は、前記4本の支持バネ53a〜53dの両表面に絶縁層を設け、その絶縁層に前記電磁コイル51a,51bと52a,52bのコイル端が接続される1つの導電層を積層形成させて、支持バネ53a〜53dの素材と導電層に前記電磁コイル51a,51bと52a,52bのコイル端を接続させる。
【0050】
具体的には、例えば、前記支持バネ53aの導電弾性部材の表面をポリイミド等で絶縁層を形成し、その絶縁層の上に銅箔のメッキ又は印刷で導電層を形成させ、前記支持バネ53aの導電弾性部材に電磁コイル52aの一端を直接接続し、前記導電層に電磁コイル52aの他端を接続する。
【0051】
これにより、電磁界発生電流供給用線路の削減が可能となる。さらに、前記可動部30’と固定部材35をそれぞれ非導電性の絶縁部材で形成することにより、前記支持バネ53a〜53d相互の接触と絶縁が確保可能となる。また、このような給電は支持バネ34a〜34dにも適用できる。
【0052】
また、本発明の他の実施形態の説明において、前記支持バネ53a〜53dの形状は、略Ω字状としたが、前述の本発明の一実施形態の支持バネ34a〜34dの用に略S字状とすることも可能である。すなわち、支持バネ34a〜34d又は53a〜53dは、前記可動部30又は30’を第1の回転軸20方向で固定部材35に支持でき、かつ、前記可動部30又は30’が第1の回転軸20と第2の回転軸21回りに傾き回転した際に、変形復元可能な形状であれば良く、前述の形状に限られるものではない。
【0053】
【発明の効果】
本発明のガルバノミラー装置は、反射ミラーが取付固定された可動部を2方向に駆動させる駆動手段を反射ミラーの一方の両側配置しことによりルバノミラーの小型化が可能となる効果を有している。
【図面の簡単な説明】
【図1】 本発明に係るガルバノミラー装置の一実施形態の構成を説明する分解斜視図。
【図2】 本発明のガルバノミラー装置の使用例を説明する説明図。
【図3】 本発明に係るガルバノミラー装置の一実施形態の組立状態を示す正面図。
【図4】 本発明に係るガルバノミラー装置の一実施形態の組立状態を示す側面図。
【図5】 本発明に係るガルバノミラー装置の他の実施形態の構成を説明する斜視図。
【図6】 本発明に係るガルバノミラー装置の他の実施形態の動作を説明する説明図。
【図7】 従来のガルバノミラー装置を説明する断面図。
【符号の説明】
11…ガルバノミラー
12…反射ミラー
20…第1の軸
21…第2の軸
30…可動部
31…ミラー保持部材
32…第1の電磁コイル
33…第2の電磁コイル
34…支持バネ
35…固定部材
36…下面部
37…上面部
38…マグネット
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an information recording / reproducing apparatus for recording and / or reproducing information with respect to an optical recording medium such as a magneto-optical disk drive, write-once disk drive, phase change disk drive, CD-ROM, DVD, optical card, Further, the present invention relates to a galvanometer mirror device used for an optical device such as an optical scanner or an optical deflector for optical communication.
[0002]
[Prior art]
Information recording / reproducing apparatus for recording and / or reproducing information on optical recording media such as magneto-optical disk drive, write-once disk drive, phase change disk drive, CD-ROM, DVD, optical card, optical scanner, optical In an optical device such as an optical polarizer for communication, for example, the tilt adjustment of the light beam for projecting the light beam on a predetermined data recording track provided on the optical recording medium with high definition, or a predetermined line for optical communication. In order to switch the optical communication light beam for relaying the optical communication signal, a galvanometer mirror device that can adjust the inclination of the reflection mirror is used.
[0003]
A galvanometer mirror device for adjusting the inclination of a light beam projected from an optical pickup used in the information recording / reproducing apparatus onto an optical recording medium is disclosed in, for example, Japanese Patent Laid-Open No. 5-12686.
[0004]
A galvanometer mirror device disclosed in Japanese Patent Laid-Open No. 5-12686 will be described with reference to FIG. FIG. 7 is a cross-sectional view of the galvanometer mirror device.
[0005]
In the galvanomirror device shown in FIG. 7, an electromagnetic coil 75 comprising a plurality of coils wound in a square shape on the back surface of a circular reflecting mirror 74 is provided symmetrically with respect to the center D1 of the reflecting mirror 74. The short side of the electromagnetic coil 75 is bent and fixed to the side surface of the reflection mirror 74. The reflection mirror 74 is fixed to the upper surface of the mirror support portion 76. The mirror support portion 76 is attached to a cylindrical housing 71 via an integrated support column 77 and a base 78 formed at the center of the back surface of the support portion 76. The support column 77 is provided with a hinge 77a. It has been. The reflection mirror 74 is supported by the hinge 77a so as to be tiltable and rotatable in an arbitrary direction.
[0006]
The housing 71 is provided with a ring-shaped back yoke 72 so as to face the side surface of the reflection mirror 74, and a multipolar magnetized magnet 73 is provided on the inner peripheral surface of the back yoke 72. The multipole magnetized magnet 73 is provided such that the magnetic poles thereof are in one-to-one correspondence with the bent portions of the electromagnetic coil 75 provided on the side surface of the reflection mirror 74.
[0007]
In such a galvanomirror device, when a current is supplied to a desired coil of the electromagnetic coil 75 and a magnetic field opposite to the magnetized magnet 73 corresponding to the coil is generated on both sides of the coil, the reflection occurs. The mirror 74 generates a reverse torque by the electromagnetic action of the left-hand rule in the directions of arrows S and T in the figure, for example, and generates a rotational torque around the center D1.
[0008]
In this manner, a predetermined current is supplied to the plurality of coils of the electromagnetic coil 74, and an arbitrary magnetic field generated in the plurality of coils and the electromagnetic action of the magnetized magnet 73 cause an arbitrary centering on the hinge 77a. It becomes possible to tilt and rotate in the direction.
[0009]
[Problems to be solved by the invention]
In the above-mentioned Japanese Patent Laid-Open No. 5-12686, the galvanomirror device of the optical pickup used in the information recording / reproducing apparatus has a short side of the electromagnetic coil 75 composed of five coils for driving in five directions. The mirror support part 76 for fixing the reflection mirror 74 is disposed so as to surround the side surface.
[0010]
Further, a multi-pole magnetized magnet 73 is provided around the short side of the electromagnetic coil 75.
[0011]
For this reason, Ga Of rubano mirror device all Body shape Big I'm angry.
[0012]
Although it is desired to reduce the size and weight of the optical pickup and the optical polarizer of the information recording / reproducing apparatus, and the galvano mirror device is required to adjust the tilt of the light beam with high accuracy, the above-described conventional galvano mirror device is Big There is an issue that increases the flexibility.
[0013]
In view of the above problems, the present invention has good mirror drive characteristics and can be reduced in overall shape. Na An object is to provide a galvanometer mirror device.
[0014]
[Means for Solving the Problems]
The galvanometer mirror device of the present invention includes a movable part having at least a mirror and a support that supports the movable part so as to be tiltable with respect to a fixed member about a first axis and a second axis perpendicular to the first axis. A galvanometer mirror having means, first driving means for driving the movable part around the first axis, and second driving means for driving around the second axis; The center of gravity of the movable part is located on the first axis and the second axis, The support means is provided on the movable part. Above The first drive means and the second drive means are arranged in the second axial direction with respect to the center of gravity while being arranged in the first axial direction with respect to the center of gravity. To do.
[0015]
Book By invention Ga Miniaturization of the rubano mirror device can be realized.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is an exploded perspective view illustrating a configuration of an embodiment of a galvanomirror device according to the present invention, FIG. 2 is an explanatory diagram illustrating an example of use of the galvanomirror device according to the present invention, and FIG. FIG. 4 is a front view showing an assembled state of an embodiment of the galvanomirror device, and FIG. 4 is a side view showing an assembled state of the embodiment of the galvanomirror device according to the present invention.
[0017]
First, referring to FIG. 2, a usage example of the galvanomirror device according to the present invention will be described using an example applied to an optical path switching device for optical communication. The galvanomirror device 11 converts the light for optical communication signal transmission emitted from the end of one optical fiber 13 into parallel light 17 by the parallel light lens 14, and forms the reflection surface of the reflection mirror 12 of the galvanometer mirror device 11. Project. The reflection mirror 12 can be tilted about the first rotation shaft 20 and the second rotation shaft 21 in the drawing. The reflected light 18 reflected by the reflecting mirror 12 is reflected in any one of a total of nine condenser lenses 15 a to 15 i arranged in three rows and three rows on a plane substantially perpendicular to the reflected light 18. The light is selectively incident by adjusting the tilt around the first and second rotary shafts 20 and 21. End portions of optical fibers 16a to 16i are connected to the plurality of condenser lenses 15a to 15i, respectively.
[0018]
That is, the parallel light 17 emitted from the optical fiber 13 and converted by the parallel lens 14 is incident on the reflection mirror 12. The reflecting mirror 12 is selected to rotate around the first and second rotating shafts 20 and 21 so that the reflected light 18 enters one of the condenser lenses 15a to 15i. The reflected light 18 incident on any of the selected condenser lenses 15a to 15i is transmitted to the optical fibers 16a to 16i connected to the selected condenser lenses 15a to 15i.
[0019]
Further, when the galvanomirror device 11 shown in FIG. 2 is used for an optical pickup of an information recording / reproducing apparatus, although not shown, the condensing lenses 15a to 15i are formed as a single condensing lens. By tilting the reflecting mirror 12 in two directions with respect to the light incident on the condenser lens, the light spot of the condenser lens on the optical recording medium can be moved in the tracking direction and the tangential direction. In order to accurately project the light projected on the optical recording medium onto the information recording track formed on the optical recording medium, the reflection mirror 12 is tilted and adjusted around the first rotating shaft 20 and the second rotating shaft 21. .
[0020]
A specific configuration of the galvanomirror device 11 of the present invention used for such an optical path switching device for optical communication and an optical pickup of an information recording / reproducing device will be described with reference to FIGS.
[0021]
The rectangular reflecting mirror 12 is housed and fixed in the movable portion 30. The movable portion 30 includes a box-shaped mirror holding member 31 for storing and fixing the outer peripheral surface of the rectangular reflecting mirror 12, first electromagnetic coils 32a and 32b, second electromagnetic coils 33a and 33b, and support springs 34a to 34a. 34d. In the mirror holding member 31, the reflection mirror 12 is housed and arranged in parallel with the first and second rotary shafts 20 and 21 in the figure with the reflection mirror 12 on the inner surface. On the left and right outer surfaces parallel to the first rotating shaft 20 in the figure of the mirror holding member 31, convex portions into which first electromagnetic coils 32a and 32b and second electromagnetic coils 33a and 33b described later are fitted. 31a, 31b, 31d, 31e are provided, and a recess 31c is provided between the projections 31a, 31b, and a recess 31f is provided between the projections 31d, 31e. In FIG. 1, the convex portions 31d and 31e and the concave portion 31f are not shown because of the relationship in the drawing.
[0022]
Further, one end of a pair of support springs 34a and 34b formed in a substantially S shape is formed on the upper side surface of the mirror holding member 31 in the first rotation axis 20, and a pair of the same shape is formed on the lower side surface. One end of each support spring 34c, 34d is implanted and fixed. Each of the pair of support springs 34 a, 34 b and 34 c, 34 d is formed of an elastic member, and is implanted and fixed at equal positions with respect to the center of the reflection mirror 12 housed and fixed in the movable portion 30.
[0023]
The first electromagnetic coils 32a and 32b are coils wound so as to be fitted to the outer peripheries of the convex portions 31a, 31b, 31d, and 31e on both side surfaces of the movable portion 30, and the current supplied to the coils. The electromagnetic coil generates electromagnetic fields having different directions and sizes in accordance with the direction and size. The first electromagnetic coils 32a and 32b generate a rotational torque around the rotation shaft 20, and the center of the torque is at a point D1 on the rotation shaft 20.
[0024]
The second electromagnetic coil 33a is composed of coils 33c and 33d wound so as to be fitted to the outer peripheries of the convex portions 31a and 31b and having different winding directions. 33b comprises coils 33e and 33f which are wound so as to be fitted to the outer peripheries of the convex portions 31d and 31e, respectively, and have different winding directions. Coils 33c and 33d of the second electromagnetic coil are arranged in parallel in the recess 31c, and the coils 33c and 33d are connected in series. Coils 33e and 33f of the second electromagnetic coil 33b are arranged in parallel in the recess 31f, and the coils 33e and 33f are connected in series. The electromagnetic coils generate electromagnetic fields having different directions and magnitudes according to the direction and magnitude of the current supplied to the coils 33c to 33f. Rotational torque is generated around the rotary shaft 21 by the second electromagnetic coils 33a and 33b, and the center of the torque is at a point D1 on the rotary shaft 21.
[0025]
That is, the reflecting mirror 12 is housed in the mirror holding member 31 so that the reflecting mirror 12 is parallel to the first rotating shaft 20 and the second rotating shaft 21 and the reflecting surface is vertical in the drawing as shown in FIG. Fixed. The center D1 of torque generated by the first electromagnetic coils 32a and 32b or the second electromagnetic coils 33a and 33b, the reflection mirror 12, the mirror holding member 31, the first electromagnetic coils 32a and 32b, and the second electromagnetic coil. The centroids G of the movable parts 30 constituted by 33a and 33b coincide. The reflecting mirror 12 is housed and fixed on the mirror holding member 31. The first electromagnetic coils 32a and 32b are fitted and fixed to both side surfaces of the mirror holding member 31 in which the reflecting mirror 12 is housed and fixed, and the second electromagnetic coils 32a and 32b are fitted and fixed.
[0026]
Thus, the reflection mirror 12, the first electromagnetic coils 32a and 32b, and the second electromagnetic coils 33a and 33b are attached and fixed to the mirror holding member 31, and the support springs 34a to 34d are fixedly implanted. The movable portion 30 thus fixed is fixed to the fixed member 35 via the support springs 34a to 34d. The four power supplies necessary for the first electromagnetic coils 32a and 32b are supplied using four support springs 34a to 34d.
[0027]
The overall shape of the fixing member 35 is substantially U-shaped, and the other ends of the support springs 34a to 34d that support the movable portion 30 are implanted and fixed between a lower surface portion 36 and an upper surface portion 37, respectively. It is like that. On both side surfaces of the lower surface portion 36 and the upper surface portion 37, jetty jets 36a, 36b, 37a, 37b are respectively provided. A magnet 38a and a yoke 39a are fitted and fixed between the jetty 36a and 37a, and a magnet 38b and a yoke 39b are fitted and fixed between the jetty 36b and 37b.
[0028]
As shown in FIG. 1, the magnets 38a and 38b have two magnetic pole surfaces magnetized and opposite poles facing each other, and generate a static magnetic field to the first electromagnetic coils 32a and 32b and the second electromagnetic coils 33a and 33b. To give. The yokes 39a and 39b are closed magnetic path members that prevent the static magnetic field of the magnets 38a and 38b from leaking to the outside on both sides of the fixed member 35.
[0029]
When a current in a direction in the first electromagnetic coils 32a and 32b of the movable portion 30 supported and fixed by the support springs 34a to 34d is supplied to the fixed member 35, the first electromagnetic coils 32a and 32b generate the current. A force is generated in the direction indicated by the arrow in FIG. 1 by the electromagnetic action of the left-hand rule between the electromagnetic field to be generated and the static magnetic field of the magnets 38a and 38b, and the movable portion 30 causes the support springs 34a to 34d to move. When it is deformed and tilted counterclockwise in the drawing around the first rotating shaft 20 and the direction of the current supplied to the first electromagnetic coils 32a and 32b is changed, the electromagnetic action in the direction opposite to the arrow in the drawing is obtained. As a result of this, the movable portion 30 is tilted clockwise in the drawing.
[0030]
On the other hand, when current in each direction is supplied to the second electromagnetic coils 33a and 33b, the coils 33c and 33d of the second electromagnetic coil 33a and the coils 33e and 33f of the second electromagnetic coil 33b are wound. Since the directions are different, electromagnetic fields with different directions are generated. Forces in different directions are generated as indicated by arrows in the figure by the electromagnetic action of the electromagnetic fields generated from the coils 33c to 33f of the second electromagnetic coils 33a and 33b and the static magnetic fields of the magnets 38a and 38b. Then, the movable portion 30 deforms the support springs 34a to 34d, and tilts clockwise around the second rotation shaft 21 in the drawing, and changes the direction of the supply current of the second electromagnetic coils 33a and 33b. If the direction is different from the above, it will tilt counterclockwise in the figure.
[0031]
That is, the first electromagnetic coils 32 a and 32 b, the second electromagnetic coils 33 a and 33 b, and the magnets 38 a and 38 b are in relation to a plane 20 a that is perpendicular to the reflection surface of the reflection mirror 12 including the first rotation shaft 20. Furthermore, they are arranged so as not to include the plane 20a on both sides of the space partitioned by the plane 20a. Furthermore, the first mirror only on both side surfaces (direction parallel to the reflection surface of the reflection mirror 12 and perpendicular to the first rotation axis 20) in a direction parallel to the reflection mirror 12 and the second rotation axis 21 of the movable portion 30. The electromagnetic coils 32a and 32b, the second electromagnetic coils 33a and 33b, and the magnets 38a and 38b are arranged, and the second electromagnetic coils 33a and 33b are reflective surfaces of the reflection mirror 12 including the second rotating shaft 21. Are arranged symmetrically with respect to the plane 21b perpendicular to the plane, but are arranged so as not to include the plane 21b.
[0032]
The electromagnetic field generated by the direction and magnitude of the current supplied to the first electromagnetic coils 32a and 32b and the second electromagnetic coils 33a and 33b and the static magnetic field of the magnets 38a and 38b arranged in this way. As a result, the movable portion 30 can be adjusted and controlled with respect to the tilt angle and direction around the first rotating shaft 20 and the second rotating shaft 21, and the reflecting surface of the reflecting mirror 12 housed and fixed in the movable portion 30 can be controlled. The tilt angle and direction are adjusted and controlled.
[0033]
Furthermore, since the movable part 30 can be supported by the support springs 34a to 34d arranged in the direction of the first rotation axis 20 of the movable part 30 with respect to the fixed member 35, the overall shape of the galvanomirror device 11 is reduced in size. It can be formed thin.
[0034]
Further, since the support springs 34 a to 34 d are arranged on the side surface parallel to the first rotation shaft 20 with respect to the movable portion 30, The first electromagnetic coils 32a and 32b, the second electromagnetic coils 33a and 33b, and the magnets 38a and 38b Parallel to the second rotation axis 21 perpendicular to the first rotation axis 20 direction It is arranged on the side. The first electromagnetic coils 32a and 32b, the second electromagnetic coils 33a and 33b, and the magnets 38a and 38b, which are the tilt driving means of the reflection mirror 12, and the support springs 34a to 34d are divided into orthogonal directions so as not to interfere. Can be arranged.
[0035]
For this reason, the center of gravity G of the movable portion 30 can be easily matched with the support center of the support springs 34a to 34d (the rotation center when the movable portion 30 is tilted).
[0036]
Further, the first and second electromagnetic coils 32a, 32b, 33a, 33b and the magnets 38a, 38b can be arranged completely symmetrically with respect to the first and second rotating shafts 20, 21, and the first and second rotating shafts 20, 21 can be arranged. The center D1 of the torque due to the force generated in the second electromagnetic coils 32a, 32b, 33a, 33b can be made to completely coincide with the center of gravity G of the movable portion 30 of the first and second rotary shafts 20, 21, so that the No resonance occurs when the unit 30 is driven.
[0037]
Furthermore, since the first and second electromagnetic coils 32a, 32b, 33a and 33b and the support springs 34a to 34d can be arranged on different side surfaces of the reflection mirror 12, the dimension perpendicular to the reflection surface of the reflection mirror 12 can be set. Can be small.
[0038]
Although not shown, a so-called moving magnet in which a magnet is arranged in a movable part and a coil is arranged in a fixed part can also be used. The movable portion 30 includes magnets 38a and 38b attached and fixed to the fixing member 35 in place of the first electromagnetic coils 32a and 32b and the second electromagnetic coils 33a and 33b provided on both side surfaces of the mirror holding member 31. Is fixed to both side surfaces of the mirror holding member 31. On the other hand, the first electromagnetic coils 32a, 32b and the second electromagnetic coils 33a, 33b are arranged between the jetty 36a, 36b and 37a, 37b on both sides of the fixing member 35. The electromagnetic field generated by the current supplied to the first electromagnetic coils 32 a and 32 b and the second electronic coils 33 a and 33 b provided on both side surfaces of the fixing member 35, and the magnet 38 a provided on both side surfaces of the mirror holding member 31. , 38b can be tilt-controlled around the first rotating shaft 20 and the second rotating shaft 21 by the electromagnetic action with the static magnetic field.
[0039]
Next, another embodiment of the galvanomirror device according to the present invention will be described with reference to FIGS.
FIG. 5 is a perspective view for explaining the overall configuration of another embodiment of the present invention, and FIG. 6 is an explanatory view for explaining the operation of another embodiment of the present invention. The same parts as those in FIG. 1 to FIG.
[0040]
The movable portion 30 ′ according to another embodiment of the present invention is the same as the movable portion 30 in the shape and method of storing and fixing the reflecting mirror 12, but the first rotating shaft 20 of the movable portion 30 ′ is the same as the movable portion 30 ′. Two electromagnetic coils 51a, 51b and 52a, 52b are disposed on both side surfaces in the direction perpendicular to the reflecting surface of the parallel reflecting mirror 12, respectively. The movable portion 30 ′ in which the electromagnetic coils 51 a, 51 b and 52 a, 52 b are arranged is attached and supported by support springs 53 a to 53 d on the lower surface portion 36 and the upper surface portion 37 of the fixed member 35.
[0041]
The support springs 53a to 53d are formed in an approximately Ω shape using an elastic member, and the base end is implanted and fixed to the movable portion 30 ′, and the other end is implanted and fixed to the lower surface portion 36 and the upper surface portion 37 of the fixing member 35. ing.
[0042]
A static magnetic field magnet 54 in which two magnets 54a and 54b magnetized in parallel with the electromagnetic coils 51a and 51b of the movable part 30 'are joined, and two magnets magnetized in parallel with the electromagnetic coils 52a and 52b. A static magnetic field magnet 55 in which two magnets 55 a and 55 b are joined is attached and fixed between the lower surface portion 36 and the upper surface portion 37 of the fixing member 35. That is, the static magnetic field magnets 54 and 55 are arranged to supply a static magnetic field to the electromagnetic coils 51a and 51b and 52a and 52b.
[0043]
The electromagnetic coils 51a, 51b and 52a, 52b are individually supplied with electromagnetic field generating currents.
[0044]
The operation of the galvanometer mirror device having such a configuration will be described with reference to FIG. In the electromagnetic coils 51a and 51b, an electromagnetic field in which the movable portion 30 ′ generates a force in the N direction in FIG. 6A due to the electromagnetic action with respect to the static magnetic field from the static magnetic field magnets 54 and 55. The movable part 30 'is electromagnetically acted on the electromagnetic coils 52a and 52b by the electromagnetic action against the static magnetic field from the static magnetic field magnets 54 and 55. When a current that generates a force in the direction is supplied, the movable portion 30 ′ rotates about the first rotation shaft 20 in the counterclockwise direction in the figure. Further, when the direction of the current supplied to the electromagnetic coils 51a, 51b and 52a, 52b is changed, the movable portion 30 ′ rotates in the clockwise direction in the drawing around the first rotating shaft 20.
[0045]
Next, in the electromagnetic coils 51a and 52a, a force is generated in the L direction in the drawing of FIG. 6B by the movable portion 30 ′ by the electromagnetic action with respect to the static magnetic field from the static magnetic field magnets 54 and 55. A current that generates an electromagnetic field is supplied to the electromagnetic coils 51b and 52b, and the movable portion 30 'is electromagnetically actuated by the movable portion 30' with respect to the static magnetic field from the static magnetic field magnets 54 and 55 as shown in FIG. When a current that generates an electromagnetic field that generates a force in the N direction in the drawing is supplied, the movable portion 30 ′ rotates around the second rotation shaft 21 in a counterclockwise direction in the drawing. In addition, when the direction of the current supplied to the electromagnetic coils 51a, 52a, 51b, 52b is changed, the movable portion 30 ′ rotates in the clockwise direction in the drawing around the second rotation shaft 21.
[0046]
In other words, the direction and magnitude of the generated electromagnetic field can be controlled by controlling and adjusting the direction and value of the current supplied to the electromagnetic coils 51a, 51b and 52a, 52b, and the electromagnetic field and the static magnetic field magnets 54, 55 can be controlled. It is possible to control the inclination of the movable portion 30 ′ around the first rotating shaft 20 and the second rotating shaft 21 by the static magnetic field from
[0047]
As a result, the number of electromagnetic coils provided in the movable portion 30 ′ can be reduced as compared with the above-described embodiment of the present invention, and the size and weight can be further reduced.
[0048]
In another embodiment of the present invention, the electromagnetic coils 51a, 51d and 52a, 52b, 52 are attached and fixed to the movable portion 30 ', and the fixing member 35 is fixed to the electromagnetic coils 51a, 51b and 52a, 52b. A static magnetic field is applied from static magnetic field magnets 54 and 55 attached and fixed to the magnetic field. However, although not shown, the static magnetic field magnets 54 and 55 are attached and fixed to the movable portion 30 ′, and the electromagnetic coils 51 a and 51 b and 52 a and 52 b are attached and fixed to the fixed member 35. The inclination of the movable part 30 'can be controlled by the electromagnetic action of the electromagnetic field from the electromagnetic coils 51a, 51b and 52a, 52b attached and fixed to the static magnetic field of the static magnetic field magnets 54, 55 attached to the movable part 30'. is there.
[0049]
In the embodiment of the present invention, it is necessary to pass independent currents to the four electromagnetic coils 51a, 51b, 52a, and 52b. A total of eight feed lines are required. For this purpose, the four support springs 53a to 53d are made of beryllium copper foil, a polyimide insulating layer is formed on both sides thereof, and a copper pattern is further formed thereon to obtain a total of eight feed lines. The current supply paths of the electromagnetic coils 51a, 51b and 52a, 52b are provided with insulating layers on both surfaces of the four support springs 53a-53d, and the coils of the electromagnetic coils 51a, 51b and 52a, 52b are provided on the insulating layers. One conductive layer to which the ends are connected is laminated and the coil ends of the electromagnetic coils 51a, 51b and 52a, 52b are connected to the material and the conductive layers of the support springs 53a to 53d.
[0050]
Specifically, for example, an insulating layer is formed of polyimide or the like on the surface of the conductive elastic member of the support spring 53a, a conductive layer is formed on the insulating layer by plating or printing of copper foil, and the support spring 53a. One end of the electromagnetic coil 52a is directly connected to the conductive elastic member, and the other end of the electromagnetic coil 52a is connected to the conductive layer.
[0051]
As a result, the number of electromagnetic field generating current supply lines can be reduced. Further, by forming the movable portion 30 ′ and the fixing member 35 with non-conductive insulating members, it is possible to ensure the contact and insulation between the support springs 53a to 53d. Such power supply can also be applied to the support springs 34a to 34d.
[0052]
In the description of the other embodiments of the present invention, the shape of the support springs 53a to 53d is substantially Ω-shaped. It can also be shaped like a letter. That is, the support springs 34a to 34d or 53a to 53d can support the movable portion 30 or 30 'on the fixed member 35 in the direction of the first rotation axis 20, and the movable portion 30 or 30' is rotated in the first direction. Any shape that can be deformed and restored when tilted and rotated about the shaft 20 and the second rotating shaft 21 is acceptable, and is not limited to the above-described shape.
[0053]
【The invention's effect】
The galvanometer mirror device according to the present invention has a driving means for driving the movable part, to which the reflection mirror is mounted and fixed, in two directions, on both sides of the reflection mirror. In Place The By Ga The effect is that the size of the rubano mirror can be reduced.
[Brief description of the drawings]
FIG. 1 is an exploded perspective view illustrating a configuration of an embodiment of a galvanomirror device according to the present invention.
FIG. 2 is an explanatory diagram for explaining a usage example of the galvanomirror device of the present invention.
FIG. 3 is a front view showing an assembled state of an embodiment of a galvanometer mirror device according to the present invention.
FIG. 4 is a side view showing an assembled state of an embodiment of a galvanometer mirror device according to the present invention.
FIG. 5 is a perspective view illustrating the configuration of another embodiment of the galvanomirror device according to the present invention.
FIG. 6 is an explanatory diagram for explaining the operation of another embodiment of the galvanometer mirror device according to the present invention.
FIG. 7 is a cross-sectional view illustrating a conventional galvanometer mirror device.
[Explanation of symbols]
11 ... Galvano mirror
12 ... Reflection mirror
20 ... 1st axis
21 ... second axis
30 ... Moving part
31 ... Mirror holding member
32. First electromagnetic coil
33 ... second electromagnetic coil
34 ... Support spring
35. Fixing member
36 ... lower surface part
37 ... Upper surface
38 ... Magnet

Claims (7)

少なくともミラーを有する可動部と、前記可動部を固定部材に対して第1の軸及び前記第1の軸と垂直な第2の軸回りに傾き可能に支持する支持手段と、前記可動部を前記第1の軸回りに駆動する第1の駆動手段と、前記第2の軸回りに駆動する第2の駆動手段を有するガルバノミラーにおいて、
前記可動部の重心は前記第1の軸及び前記第2の軸上に位置し、前記支持手段は前記可動部の前記重心に対して前記第1の軸方向に配置すると共に、前記第1の駆動手段及び前記第2の駆動手段は、前記重心に対して前記第2の軸方向に配置されていることを特徴とするガルバノミラー装置。
A movable part having at least a mirror; a support means for supporting the movable part in a tiltable manner with respect to a fixed member around a first axis and a second axis perpendicular to the first axis; and In a galvanomirror having a first driving means for driving around a first axis and a second driving means for driving around the second axis,
Center of gravity of the movable portion is located in the first axis and the second axis, with said support means disposed in said first axial direction relative to the center of gravity of the movable portion, the first The galvanometer mirror device, wherein the driving means and the second driving means are arranged in the second axial direction with respect to the center of gravity.
前記第1の駆動手段と前記第2の駆動手段は前記可動部または前記固定部に配置されたマグネット、第1のコイル及び第2のコイルを有し、前記マグネットは前記第1のコイル及び前記第2のコイルに対向して配置され、前記第1のコイルには前記第1の軸回りの回転トルクが発生し、前記第2のコイルには前記第2の軸回りの回転トルクが発生することを特徴とする請求項1記載のガルバノミラー装置。  The first driving means and the second driving means include a magnet, a first coil, and a second coil disposed on the movable part or the fixed part, and the magnet includes the first coil and the second coil. Arranged opposite the second coil, the first coil generates rotational torque about the first axis, and the second coil generates rotational torque about the second axis. The galvanometer mirror device according to claim 1. 前記第2のコイルは前記第2の回転軸の両側に配置された少なくとも2つのコイルであることを特徴とする請求項2記載のガルバノミラー装置。  The galvanomirror device according to claim 2, wherein the second coil is at least two coils disposed on both sides of the second rotation shaft. 前記第1のコイルと第2のコイルに兼用使用される兼用コイルを有することを特徴とする請求項2記載のガルバノミラー装置。  3. The galvanometer mirror device according to claim 2, further comprising a dual-purpose coil that is used as both the first coil and the second coil. 前記兼用コイルは4つのコイルを有し、前記兼用コイルは前記第1の回転軸の両側に2個ずつ配置されていると共に、前記兼用コイルは前記第2の回転軸の両側に2個ずつ配置されていることを特徴とする請求項4記載のガルバノミラー装置。  The dual-purpose coil has four coils, two dual-purpose coils are arranged on both sides of the first rotary shaft, and two dual-purpose coils are arranged on both sides of the second rotary shaft. The galvanometer mirror device according to claim 4, wherein the galvanometer mirror device is provided. 前記マグネットは、前記第1の駆動手段及び第2の駆動手段に兼用使用されるマグネットを有することを特徴とする請求項2記載のガルバノミラー装置。  3. The galvanometer mirror device according to claim 2, wherein the magnet includes a magnet that is also used as the first driving unit and the second driving unit. 前記支持手段は、前記第1の軸方向に離間して配置されていることを特徴とする請求項1記載のガルバノミラー装置。  The galvanometer mirror device according to claim 1, wherein the support means is arranged to be spaced apart in the first axial direction.
JP2000365854A 2000-11-30 2000-11-30 Galvano mirror device Expired - Fee Related JP4723719B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000365854A JP4723719B2 (en) 2000-11-30 2000-11-30 Galvano mirror device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000365854A JP4723719B2 (en) 2000-11-30 2000-11-30 Galvano mirror device

Publications (3)

Publication Number Publication Date
JP2002169122A JP2002169122A (en) 2002-06-14
JP2002169122A5 JP2002169122A5 (en) 2008-01-31
JP4723719B2 true JP4723719B2 (en) 2011-07-13

Family

ID=18836554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000365854A Expired - Fee Related JP4723719B2 (en) 2000-11-30 2000-11-30 Galvano mirror device

Country Status (1)

Country Link
JP (1) JP4723719B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4681829B2 (en) * 2004-06-16 2011-05-11 オリンパス株式会社 Galvano mirror
WO2007029643A1 (en) 2005-09-07 2007-03-15 Alps Electric Co., Ltd. Actuator and holography device using same
JP2007222203A (en) * 2006-02-21 2007-09-06 Sumida Corporation Mirror driving mechanism and imaging device equipped with mirror driving mechanism
JPWO2014119200A1 (en) * 2013-01-31 2017-01-26 ギガフォトン株式会社 Mirror device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10323059A (en) * 1996-09-27 1998-12-04 Mcnc Microminature electromechanical apparatus containing rotary plate and relevant method
JPH11133343A (en) * 1997-10-31 1999-05-21 Asahi Optical Co Ltd Galvanomirror
JPH11142772A (en) * 1997-11-08 1999-05-28 Asahi Optical Co Ltd Galvano-mirror
JPH11295636A (en) * 1998-04-14 1999-10-29 Asahi Optical Co Ltd Galvanomirror holding structure
JP2000214407A (en) * 1998-11-16 2000-08-04 Victor Co Of Japan Ltd Light deflector and display device using the same
JP2001075042A (en) * 1999-09-01 2001-03-23 Victor Co Of Japan Ltd Optical deflector

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10323059A (en) * 1996-09-27 1998-12-04 Mcnc Microminature electromechanical apparatus containing rotary plate and relevant method
JPH11133343A (en) * 1997-10-31 1999-05-21 Asahi Optical Co Ltd Galvanomirror
JPH11142772A (en) * 1997-11-08 1999-05-28 Asahi Optical Co Ltd Galvano-mirror
JPH11295636A (en) * 1998-04-14 1999-10-29 Asahi Optical Co Ltd Galvanomirror holding structure
JP2000214407A (en) * 1998-11-16 2000-08-04 Victor Co Of Japan Ltd Light deflector and display device using the same
JP2001075042A (en) * 1999-09-01 2001-03-23 Victor Co Of Japan Ltd Optical deflector

Also Published As

Publication number Publication date
JP2002169122A (en) 2002-06-14

Similar Documents

Publication Publication Date Title
US5905255A (en) Objective lens driver
US6744722B2 (en) Optical pickup actuator
JP3890941B2 (en) Objective lens drive
JPWO2005112012A1 (en) Optical pickup and optical disk device
JP4680373B2 (en) Galvano mirror
JP4724308B2 (en) Galvano mirror
JP4723719B2 (en) Galvano mirror device
JP3733183B2 (en) Objective lens drive
JP2004326885A (en) Objective lens driving device of optical head
JP3874680B2 (en) Objective lens drive
JP3625207B2 (en) Optical means driving device
US6917480B2 (en) Apparatus to drive objective lens of an optical pickup
KR20040097352A (en) Read/write head for optical disk drive and optical disk drive comprising such a read/write head
JPH0981947A (en) Objective lens driving device of optical disk device and objective lens
JP3658528B2 (en) Objective lens driving device and optical disk device using the same
JP2002150584A (en) Device for driving object lens
JP2001118265A (en) Lens driving device
JP2001297460A (en) Objective lens driving device
JP4838445B2 (en) Galvano mirror
JP2773626B2 (en) Objective lens drive
JPH0830991A (en) Optical pickup device
JP2000222754A (en) Driving device for objective lens
JP2004013997A (en) Objective lens driving device, optical pickup device, and optical disk device
JPH09198675A (en) Objective lens actuator device
JP3819285B2 (en) Optical pickup device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20001201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071128

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100907

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110228

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110329

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110408

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees