JP4721922B2 - Power generation / air conditioning system - Google Patents

Power generation / air conditioning system Download PDF

Info

Publication number
JP4721922B2
JP4721922B2 JP2006022714A JP2006022714A JP4721922B2 JP 4721922 B2 JP4721922 B2 JP 4721922B2 JP 2006022714 A JP2006022714 A JP 2006022714A JP 2006022714 A JP2006022714 A JP 2006022714A JP 4721922 B2 JP4721922 B2 JP 4721922B2
Authority
JP
Japan
Prior art keywords
power
amount
power amount
power generation
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006022714A
Other languages
Japanese (ja)
Other versions
JP2007209081A (en
Inventor
寿成 酒井
和哉 今井
裕二 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2006022714A priority Critical patent/JP4721922B2/en
Publication of JP2007209081A publication Critical patent/JP2007209081A/en
Application granted granted Critical
Publication of JP4721922B2 publication Critical patent/JP4721922B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Description

本発明は、エンジンに発電機および圧縮機を連動連結した複数台の発電機能付きエンジン駆動式ヒートポンプ装置と、膨張弁と室内側熱交換器とを備えて圧縮機に接続される冷媒回路と、商用電源に接続される電力負荷とを備え、発電機の発電電力を電力負荷に供給可能に構成した発電・空調システムに関する。   The present invention includes a plurality of engine-driven heat pump devices with a power generation function in which a generator and a compressor are linked to an engine, a refrigerant circuit that includes an expansion valve and an indoor heat exchanger, and is connected to the compressor. The present invention relates to a power generation / air conditioning system including a power load connected to a commercial power source and configured to be able to supply power generated by a generator to the power load.

一般に、オフィスビルやスーパーや店舗ビルなどの大口需要家では、30分間などの一定時間内の使用電力である課金用受電電力量、いわゆるデマンドに基づいて1年間の基本料金が決定される。   In general, a large-scale consumer such as an office building, a supermarket, or a store building determines a basic charge for one year based on the amount of power received for billing, which is power used within a certain period of time such as 30 minutes, so-called demand.

このような事情から、従来、デマンドを超えないように種々の対策が講じられている。
商用電源から受ける受電電力量の経時的変化に基づいて、次の受電電力量を算出予測し、その算出予測された受電電力量と、設定電力量とを比較して予測受電電力量が設定電力量を超えると判断したときに、発電機能付きエンジン駆動式ヒートポンプ装置に起動信号を出力し、予測受電電力量が設定電力量を超えないように発電機を駆動するようにしている。
Under these circumstances, various measures have been taken so as not to exceed demand.
Based on the change over time in the amount of received power received from the commercial power source, the next received power amount is calculated and predicted, and the predicted received power amount is compared with the calculated received power amount and the set power amount. When it is determined that the amount exceeds the amount, an activation signal is output to the engine-driven heat pump device with a power generation function, and the generator is driven so that the predicted received power amount does not exceed the set power amount.

また、例えば、一定時間内での使用電力量を検出し、この使用電力量が所定の使用電力量レベルを越えたりあるいは一定時間後の使用積算電力量が所定のレベルを超えることが予測されるときにデマンド警報信号を出力し、モータコンプレッサを選択的にアンロードまたは停止させてエンジンコンプレッサを始動させ、その後もデマンド警報信号の発生が継続しているときには、別のモータコンプレッサを順次選択的にアンロードまたは停止させて別のエンジンコンプレッサを始動させ、圧縮空気が不足して作業効率が低下するといったことなく、使用電力のピークカットを効果的に行い、契約電力値を下げ、安価な電力料金で作業場全体の操業コストを低減できるようにしている(特許文献1参照)。   Further, for example, the amount of power used within a predetermined time is detected, and it is predicted that the amount of power used exceeds a predetermined level of power consumption or that the amount of accumulated power used after a predetermined time exceeds a predetermined level. Sometimes a demand warning signal is output, the motor compressor is selectively unloaded or stopped to start the engine compressor, and when the demand warning signal continues to be generated, another motor compressor is selectively Unload or stop to start another engine compressor, effectively cut peak power usage, reduce contract power value, and reduce electricity costs without running out of compressed air and reducing work efficiency Therefore, the operation cost of the entire workplace can be reduced (see Patent Document 1).

また、電力需要が小さい時間帯に二次電池に対する充電を行い、電力需要が大きい時間帯に二次電池からの放電電力を電気機器に供給する場合において、インバータ装置によって双方向コンバータ装置からの直流電力を交流電力に変換して外部に供給し、電力負荷を平準化できるようにしたものもある(特許文献2参照)。
特許2679058号公報 特許3417365号公報
In addition, when the secondary battery is charged during a time period when the power demand is small and the discharge power from the secondary battery is supplied to the electrical equipment during a time period when the power demand is large, a direct current from the bidirectional converter device is obtained by the inverter device. There is also one in which power is converted into AC power and supplied to the outside so that the power load can be leveled (see Patent Document 2).
Japanese Patent No. 2679058 Japanese Patent No. 3417365

しかしながら、発電機能付きエンジン駆動式ヒートポンプ装置のみによるような場合、発電機のみでデマンドを超えないように制御するもので、電力負荷と発電機とを組み合わせた制御をしておらず、発電機の発電能力を超える場合には対応できない欠点があった。
また、従来例においてデマンドを決定する場合、前年度の実際の受電電力量のデータを検討し、その最大受電電力量を基に、所定の値を人為的に決めている。
また、デマンドを決定した後に、デマンド警報信号を出力するかどうかの目標値となる設定電力量を決めている。このように、デマンドや目標値となる設定電力量の決定に際して、毎年多量のデータの検討を行わなければならず、手間を要する欠点があった。
更に、人的な決定によるために、目標値となる設定電力量が、デマンドから一定の値を一律に減算することによって決定され、目標値となる設定電力量を不測に大きな値に設定してしまい、デマンドを頻繁に超えて必要以上に割高な電力料金を支払うこととなって不経済になる欠点があった。また、デマンドを必要以上に大きな値に決定して、支払う電力料金が高くなって不経済になる欠点があった。
However, in the case of using only an engine-driven heat pump device with a power generation function, control is performed so that the demand is not exceeded only with the generator, and the combination of the power load and the generator is not controlled. There was a disadvantage that could not be handled when the power generation capacity was exceeded.
Also, when determining the demand in the conventional example, the actual received power amount data of the previous year is examined, and a predetermined value is artificially determined based on the maximum received power amount.
In addition, after the demand is determined, a set power amount that is a target value for whether to output a demand warning signal is determined. As described above, when determining the amount of power to be set as a demand or a target value, a large amount of data has to be examined every year, and there is a drawback that it takes time.
Furthermore, because of the human decision, the set power amount that becomes the target value is determined by uniformly subtracting a certain value from the demand, and the set power amount that becomes the target value is set to an unexpectedly large value. In other words, there is a drawback that it becomes uneconomical because it frequently exceeds demand and pays a higher electricity charge than necessary. In addition, the demand is determined to be larger than necessary, and there is a disadvantage that the power charge to be paid becomes high and becomes uneconomical.

本発明は、このような事情に鑑みてなされたものであって、請求項1に係る発明は、目標値となる設定電力量を適切かつ容易に設定し、受電電力量の増加を抑えて経済性を向上できるようにすることを目的とし、請求項に係る発明は、ランニングコストを低減して経済性を一層向上できるようにすることを目的とする。 The present invention was made in view of such circumstances, the invention according to claim 1 sets the set power amount of the eye Shirubechi appropriately and easily, while suppressing the increase in the received power amount An object of the present invention is to improve economy, and an object of the invention according to claim 2 is to reduce running costs and further improve economy.

請求項に係る発明は、上述のような目的を達成するために、
エンジンに発電機および圧縮機を連動連結した発電機能付きエンジン駆動式ヒートポンプ装置と、
膨張弁と室内側熱交換器とを備えて前記圧縮機に接続される冷媒回路と、
商用電源に接続されるとともに前記発電機の発電電力を供給可能な電力負荷と、
前記商用電源から受ける電力を計測する受電電力計測手段と、
前記受電電力計測手段で計測された電力を所定時間分積算して受電電力量を算出する受電電力量算出手段と、
前記受電電力量算出手段で算出された受電電力量の経時的変化に基づいて、次の受電電力量を算出予測する受電電力量予測手段と、
前記受電電力量予測手段で算出予測された受電電力量と、設定電力量とを比較して予測受電電力量が設定電力量を超えると判断したときにデマンド信号を出力する電力量比較手段と、
前記電力量比較手段からのデマンド信号に応答して、発電機能付きエンジン駆動式ヒートポンプ装置に起動信号を出力して発電機を駆動する発電制御手段と、
を備えた発電・空調システムにおいて、
前記受電電力量算出手段で算出された受電電力量の経時的変化を記憶する受電電力量記憶手段と、
(1)式に基づいて、目標設定電力量Psを自動的に算出して前記電力量比較手段における設定電力量に置換する設定電力量算出手段と、
を備えたことを特徴とする発電・空調システム。
Ps=Pmin+(Pmax−Pmin)×k ……(1)
Pmax:前記受電電力量記憶手段で記憶された課金対象期間内の最大受電電力量にそのときの発電量合計値を加えた値
Pmin:Pmaxから発電機を最大能力で発電したと仮定した場合の発電電力量を減じた値
係数kは、過去の運転実績に基づいた値、あるいは、0.8≧k≧0.5の範囲で設定される値
過去の運転実績に基づいた値としては、これまでの全運転時間中の平均発電電力量を発電機の最大能力の合計値で除した値を用いることが例として挙げられる。全運転時間を受電電力量が一般に最大となる夏期の数ヶ月の間の時間としても良い。また、kについて0.8≧k≧0.5の範囲で設定するのは、0.8を超える値に設定すると、受電電力量の急激な増加の際に、課金用受電電力量を超えやすくなる不都合があり、一方、0.5未満の値に設定すると、発電電力量が増加し、発電機の駆動頻度が高くなって発電機能付きエンジン駆動式ヒートポンプ装置の耐久性が低下しやすくなるからである。
In order to achieve the above-described object, the invention according to claim 1
An engine-driven heat pump device with a power generation function in which a generator and a compressor are linked to the engine;
A refrigerant circuit comprising an expansion valve and an indoor heat exchanger and connected to the compressor;
A power load connected to a commercial power source and capable of supplying power generated by the generator;
Received power measuring means for measuring power received from the commercial power source;
Received power amount calculating means for calculating the received power amount by integrating the power measured by the received power measuring means for a predetermined time;
A received power amount predicting means for calculating and predicting a next received power amount based on a temporal change in the received power amount calculated by the received power amount calculating means;
A power amount comparing means for outputting a demand signal when it is determined that the predicted received power amount exceeds the set power amount by comparing the received power amount calculated and predicted by the received power amount predicting unit; and
In response to a demand signal from the power amount comparison means, a power generation control means for driving the generator by outputting a start signal to the engine-driven heat pump device with a power generation function;
In the power generation and air conditioning system with
Received power amount storage means for storing a change over time of the received power amount calculated by the received power amount calculation means;
A set power amount calculating means for automatically calculating a target set power amount Ps based on the equation (1) and replacing it with the set power amount in the power amount comparing means;
Power generation and air conditioning system characterized by
Ps = Pmin + (Pmax−Pmin) × k (1)
Pmax: value obtained by adding the total amount of power generation at that time to the maximum amount of power received within the chargeable period stored in the power reception amount storage means. Pmin: when assuming that the generator is generated with maximum capacity from Pmax. Value obtained by subtracting the amount of generated power The coefficient k is a value based on past operating results, or a value set in the range of 0.8 ≧ k ≧ 0.5. As an example, the value obtained by dividing the average amount of generated power during the entire operation time up to the total value of the maximum capacity of the generator can be used. The total operation time may be the time during the summer months when the amount of received power is generally maximum. In addition, k is set in the range of 0.8 ≧ k ≧ 0.5. If it is set to a value exceeding 0.8, it is easy to exceed the amount of billing power when the amount of power received increases rapidly. On the other hand, if it is set to a value less than 0.5, the amount of generated power increases, the frequency of driving the generator increases, and the durability of the engine-driven heat pump device with a power generation function tends to decrease. It is.

(作用・効果)
請求項に係る発明の発電・空調システムの構成によれば、商用電源から受ける受電電力量が増加して設定電力量を超えると予測される場合に、発電機能付きエンジン駆動式ヒートポンプ装置を起動して発電機を駆動し、受電電力量の増加を抑える。
また、受電電力量記憶手段で記憶された課金対象期間内の最大受電電力量に基づいて、目標値となる設定電力量を自動的に設定することができる。
したがって、発電機能付きエンジン駆動式ヒートポンプ装置において、その内部に備えられている発電機を利用し、その発電機で発電電力を得て受電電力量の増加を抑えるから、経済的に受電電力量の増加を抑えることができる。
しかも、目標値となる設定電力量を、実測値である課金対象期間内の最大受電電力量とそのときの発電量合計値とに基づいて自動的に設定するから、設定を容易に行うことができる。また、kの設定を適切に行うことにより、全体として、目標値となる設定電力量を適切かつ容易に設定し、必要以上に発電機を駆動して耐久性を低下することを抑制でき、経済的に受電電力量の増加を抑えることができる。
(Action / Effect)
According to the configuration of the power generation / air conditioning system of the invention according to claim 1 , when it is predicted that the amount of received power received from the commercial power source will increase and exceed the set power amount, the engine-driven heat pump device with a power generation function is started. Then, the generator is driven to suppress the increase in the amount of received power.
In addition, the set power amount serving as the target value can be automatically set based on the maximum received power amount within the charging target period stored in the received power amount storage means.
Therefore, in an engine-driven heat pump device with a power generation function, a generator provided inside the engine is used, and the generated power is obtained by the generator to suppress an increase in the received power amount. The increase can be suppressed.
Moreover, since the set power amount that is the target value is automatically set based on the maximum received power amount within the billing target period that is the actual value and the total power generation amount at that time , the setting can be easily performed. it can. In addition, by appropriately setting k, it is possible to appropriately and easily set the set power amount as a target value as a whole, and to suppress the deterioration of durability by driving the generator more than necessary. Therefore, an increase in the amount of received power can be suppressed.

請求項に係る発明は、上述のような目的を達成するために、
請求項に記載の発電・空調システムにおいて、
発電機能付きエンジン駆動式ヒートポンプ装置のうち運転停止状態にあるものを判別する運転停止状態判別手段と、
各発電機能付きエンジン駆動式ヒートポンプ装置に設けられて総運転時間を計測する総運転時間計測手段と、
運転停止状態判別手段で判別された運転停止状態の発電機能付きエンジン駆動式ヒートポンプ装置が複数有るときに、前記総運転時間計測手段で計測された総運転時間の少ないものを優先して選択する総運転時間選択手段とを備え、
発電制御手段を、デマンド信号に応答して前記総運転時間選択手段で選択された前記発電機能付きエンジン駆動式ヒートポンプ装置に起動信号を出力して発電機を駆動するように構成する。
In order to achieve the above object, the invention according to claim 2
The power generation / air conditioning system according to claim 1 ,
An operation stop state determination means for determining an engine drive type heat pump device with a power generation function that is in an operation stop state,
A total operation time measuring means provided in each engine-driven heat pump device with a power generation function for measuring the total operation time;
When there are a plurality of engine-driven heat pump devices with a power generation function determined by the operation stop state determination unit, the total operation time selected by the total operation time measurement unit is selected with priority. Operating time selection means,
The power generation control means is configured to output a start signal to the engine-driven heat pump device with a power generation function selected by the total operation time selection means in response to a demand signal to drive the generator.

(作用・効果)
請求項に係る発明の発電・空調システムの構成によれば、運転停止状態の発電機能付きエンジン駆動式ヒートポンプ装置が複数ある場合に、総運転時間の少ない発電機能付きエンジン駆動式ヒートポンプ装置を優先的に起動して発電機を駆動し、受電電力量の増加を抑える。
したがって、複数の発電機能付きエンジン駆動式ヒートポンプ装置の総運転時間を平準化でき、運転時間に基づいてメンテナンスを行う場合に、複数の発電機能付きエンジン駆動式ヒートポンプ装置に対するメンテナンスを一度に行うことができ、課金用受電電力量の適切な設定に加えてランニングコストを低減でき、経済性をより一層向上できる。
(Action / Effect)
According to the configuration of the power generation / air conditioning system of the invention according to claim 2 , when there are a plurality of engine-driven heat pump devices with a power generation function in a stopped state, priority is given to the engine-driven heat pump device with a power generation function with a short total operation time. Start up automatically and drive the generator to suppress the increase in the amount of received power.
Therefore, the total operation time of a plurality of engine-driven heat pump devices with a power generation function can be leveled, and when performing maintenance based on the operation time, maintenance for a plurality of engine-driven heat pump devices with a power generation function can be performed at one time. It is possible to reduce the running cost in addition to the appropriate setting of the amount of received power for billing, and further improve the economic efficiency.

以上の説明から明らかなように、請求項1に係る発明の発電・空調システムによれば、商用電源から受ける受電電力量が増加して設定電力量を超えると予測される場合に、発電機能付きエンジン駆動式ヒートポンプ装置を起動して発電機を駆動し、受電電力量の増加を抑える。
また、受電電力量記憶手段で記憶された課金対象期間内の最大受電電力量に基づいて、目標値となる設定電力量を自動的に設定することができる。
したがって、発電機能付きエンジン駆動式ヒートポンプ装置において、その内部に備えられている発電機を利用し、その発電機で発電電力を得て受電電力量の増加を抑えるから、経済的に受電電力量の増加を抑えることができる。
しかも、目標値となる設定電力量を、実測値である課金対象期間内の最大受電電力量に基づいて自動的に設定するから、設定を容易に行うことができる。また、kの設定を適切に行うことにより、全体として、目標値となる設定電力量を適切かつ容易に設定し、必要以上に発電機を駆動して耐久性を低下することを抑制でき、経済的に受電電力量の増加を抑えることができる。
As is clear from the above description, according to the power generation / air conditioning system of the invention according to claim 1, when it is predicted that the amount of received power received from the commercial power source will increase and exceed the set power amount, a power generation function is provided. The engine-driven heat pump device is activated to drive the generator and suppress the increase in the amount of received power.
In addition, the set power amount serving as the target value can be automatically set based on the maximum received power amount within the charging target period stored in the received power amount storage means.
Therefore, in an engine-driven heat pump device with a power generation function, a generator provided inside the engine is used, and the generated power is obtained by the generator to suppress an increase in the received power amount. The increase can be suppressed.
In addition, since the set power amount serving as the target value is automatically set based on the maximum received power amount within the chargeable period, which is an actually measured value, the setting can be easily performed. In addition, by appropriately setting k, it is possible to appropriately and easily set the set power amount as a target value as a whole, and to suppress the deterioration of durability by driving the generator more than necessary. Therefore, an increase in the amount of received power can be suppressed.

次に、本発明の実施例を図面に基づいて詳細に説明する。   Next, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本発明に係る発電・空調システムの実施例を示す概略構成図であり、建物1の屋上に5台の発電機能付きエンジン駆動式ヒートポンプ装置2が設置されている。
発電機能付きエンジン駆動式ヒートポンプ装置2は、図2の(a)の正面図に示すように、エンジン3の出力軸4の一方に発電クラッチ5を介して発電機6を連動連結するとともに、出力軸4の他方に、ベルト式伝動機構7、圧縮機用変速機構8および空調クラッチ9を介して圧縮機10を連動連結して構成されている。
Figure 1 is a schematic block diagram showing an embodiment of a power generation and air conditioning system according to the present invention, the roof to five power generation function engine driving type heat pump device 2 of the building 1 is provided.
As shown in the front view of FIG. 2A, the engine-driven heat pump device 2 with a power generation function interlocks a generator 6 with one of the output shafts 4 of the engine 3 via a power generation clutch 5 and outputs an output. The other end of the shaft 4 is configured by interlockingly connecting a compressor 10 via a belt type transmission mechanism 7, a compressor transmission mechanism 8 and an air conditioning clutch 9.

エンジンハウジング11に冷却用ファン12が設けられ、そのファンモータ13と冷却水ポンプ14に発電機6からの直流電力をコンバータ15およびインバータ16を介して交流電力に変換して供給するように構成されている。
また、インバータ16および受変電設備17を介して、交流電力に変換された発電機6からの発電電力を建物1内の照明などの電力負荷に供給できるように構成されている。受変電設備17には、電力線18を介して商用電源を供給するように構成されている。
The engine housing 11 is provided with a cooling fan 12, and is configured to convert the DC power from the generator 6 into AC power through a converter 15 and an inverter 16 and supply the fan motor 13 and the cooling water pump 14. ing.
Moreover, it is comprised so that the electric power generated from the generator 6 converted into alternating current power can be supplied to electric power loads, such as the illumination in the building 1, via the inverter 16 and the receiving / transforming equipment 17. FIG. The power receiving / transforming equipment 17 is configured to supply commercial power via a power line 18.

圧縮機10には冷媒回路19が接続され(室外側熱交換器や四路切換弁などの詳細は省略している)、その冷媒回路19に、建物1内に設置された室内側熱交換器20および膨張弁21が設けられ、都市ガスを燃料としてエンジン3により圧縮機10を駆動し、各階などに対応させて、冷房や暖房を行えるように構成されている。   A refrigerant circuit 19 is connected to the compressor 10 (details of an outdoor heat exchanger, a four-way switching valve, etc. are omitted), and an indoor heat exchanger installed in the building 1 is connected to the refrigerant circuit 19. 20 and an expansion valve 21 are provided, and the compressor 10 is driven by the engine 3 using city gas as fuel, and cooling and heating can be performed corresponding to each floor.

受変電設備17において、図3の発電制御系のブロック図に示すように、商用電源から受ける電力を計測する受電電力計測手段22が備えられている。
エンジン3には、前述した発電クラッチ5や圧縮機用変速機構8や空調クラッチ9に加えて、起動スイッチ23およびエンジン回転数制御装置24に対して制御するエンジン制御部25が備えられている。
As shown in the block diagram of the power generation control system in FIG. 3, the power receiving / transforming equipment 17 is provided with received power measuring means 22 for measuring the power received from the commercial power source.
The engine 3 is provided with an engine control unit 25 that controls the start switch 23 and the engine speed control device 24 in addition to the power generation clutch 5, the compressor transmission mechanism 8, and the air conditioning clutch 9 described above.

また、エンジン制御部25には、エンジン3の総運転時間を計測する総運転時間計測手段26と、空調負荷を計測する空調負荷計測手段27と、発電機能付きエンジン駆動式ヒートポンプ装置2の運転モードを発電優先運転モードと空調優先運転モードとに択一的に設定可能な運転モード選択手段28と、発電機能付きエンジン駆動式ヒートポンプ装置2のうちの一部の発電機6がメンテナンスなどによって運転不能状態にあるときに、運転不能状態の発電機2に対する駆動用の起動信号の出力を予め除外するように設定する運転不能状態設定手段29とが備えられている。運転不能状態設定手段29としては、例えば、エンジン制御部25に、発電用のON−OFFスイッチを備え、OFFスイッチを押すことにより、発電不能信号を出力するように構成される。   The engine control unit 25 includes a total operation time measurement unit 26 that measures the total operation time of the engine 3, an air conditioning load measurement unit 27 that measures the air conditioning load, and an operation mode of the engine-driven heat pump device 2 with a power generation function. Mode selection means 28 that can alternatively set the power generation priority operation mode and the air conditioning priority operation mode, and some generators 6 of the engine-driven heat pump device 2 with a power generation function cannot be operated due to maintenance or the like. An operation disable state setting means 29 is provided for setting so as to exclude in advance the output of the drive start signal for the generator 2 in the operation disabled state. As the inoperable state setting means 29, for example, the engine control unit 25 is provided with an ON-OFF switch for power generation, and is configured to output a power generation disabling signal by pressing the OFF switch.

受電電力計測手段22にマイクロコンピュータ30が接続され、そのマイクロコンピュータ30に、30分ごとにリセットされるタイマ31とエンジン制御部25と電力負荷としての電気式空調設備32の温度設定器とが接続されている。
マイクロコンピュータ30には、受電電力量算出手段33、受電電力量予測手段34、電力量比較手段35、運転不能状態判別手段36、運転停止状態判別手段37、総運転時間選択手段38、空調負荷選択手段39、発電制御手段40および電力負荷制御手段41が備えられている。
A microcomputer 30 is connected to the received power measuring means 22, and a timer 31 that is reset every 30 minutes, an engine control unit 25, and a temperature setting device of the electric air conditioning equipment 32 as a power load are connected to the microcomputer 30. Has been.
The microcomputer 30 includes a received power amount calculation means 33, a received power amount prediction means 34, a power amount comparison means 35, an inoperable state determination means 36, an operation stop state determination means 37, a total operation time selection means 38, and an air conditioning load selection. Means 39, power generation control means 40 and power load control means 41 are provided.

受電電力量算出手段33では、受電電力計測手段22で計測された電力をタイマ31によって設定される所定時間(30分)積算して設定時間における受電電力量を算出するようになっている。
受電電力量予測手段34では、受電電力計測手段22で計測された電力を、例えば、1分間ごとに受電電力量算出手段33で積算して求められる受電電力量の経時的変化に基づいて、設定時間内の受電電力量を算出予測するようになっている。一例を示せば、設定時間内において、10分経過後、次の1分間の受電電力量の20倍分を、10分間の受電電力量に加算するといったようにして、今回の設定時間経過後における受電電力量、すなわち、次の受電電力量を算出予測するようになっている。この次の受電電力量を算出予測する手法としては、各種の形態が採用できる。
The received power amount calculating means 33 calculates the received power amount at the set time by integrating the power measured by the received power measuring means 22 for a predetermined time (30 minutes) set by the timer 31.
In the received power amount prediction means 34, the power measured by the received power measurement means 22 is set based on, for example, a change over time in the received power amount obtained by integrating the received power amount calculation means 33 every minute. The amount of received power in time is calculated and predicted. For example, after 10 minutes have passed within the set time, 20 times the received power amount for the next 1 minute is added to the received power amount for 10 minutes. The amount of received power, that is, the next received power amount is calculated and predicted. As a method for calculating and predicting the next received power amount, various forms can be adopted.

電力量比較手段35では、受電電力量予測手段34で算出予測された受電電力量と、設定電力量(通常、契約の基準となった電力量より小さい電力量が設定されるが、空調機器やコンピュータの増設などにより、契約電力量の増加が見込まれる場合には、契約の基準となった電力量より大きい電力量が設定される場合もある)とを比較して予測受電電力量が設定電力量を超えると判断したときにデマンド信号を出力するようになっている。   In the power amount comparison unit 35, the received power amount calculated and predicted by the received power amount prediction unit 34 and the set power amount (usually, a power amount smaller than the power amount used as a contract reference is set. If the contract power amount is expected to increase due to an increase in the number of computers, etc., the predicted power reception amount may be set compared with the power amount that is greater than the contract reference power amount). A demand signal is output when it is determined that the amount is exceeded.

運転不能状態判別手段36では、エンジン制御部25の運転不能状態設定手段29から入力される発電不能信号、すなわち、発電用のON−OFFスイッチがOFF状態のときに出力される発電不能信号に基づいて、発電機能付きエンジン駆動式ヒートポンプ装置2のうち発電機6が運転不能状態にあるものを判別し、発電制御手段40から該当するエンジン制御部25の発電機6に対する駆動用の起動信号の出力を除外するようになっている。   The inoperable state determination unit 36 is based on a power generation disabling signal input from the inoperable state setting unit 29 of the engine control unit 25, that is, based on a power generation disabling signal output when the power generation ON-OFF switch is in the OFF state. Thus, it is determined which of the engine-driven heat pump devices 2 with a power generation function is in an inoperable state, and the drive control signal is output from the power generation control means 40 to the generator 6 of the corresponding engine control unit 25. Is supposed to be excluded.

運転停止状態判別手段37では、エンジン制御部25から入力される信号に基づき、起動スイッチ23がON状態であるかOFF状態であるかに基づいて、発電機能付きエンジン駆動式ヒートポンプ装置2のうち運転停止状態にあるもの、および、運転状態にあるものそれぞれを判別するようになっている。   The operation stop state discriminating means 37 operates based on the signal input from the engine control unit 25 based on whether the start switch 23 is in the ON state or the OFF state, and operates in the engine-driven heat pump device 2 with the power generation function. Each of the ones in the stopped state and the ones in the operating state are discriminated.

総運転時間優先選択手段38では、運転停止状態判別手段37で判別された運転停止状態の発電機能付きエンジン駆動式ヒートポンプ装置2が複数有るときに、総運転時間計測手段26で計測された総運転時間の少ないものを優先して選択するようになっている。   In the total operation time priority selection means 38, the total operation time measured by the total operation time measurement means 26 when there are a plurality of engine-driven heat pump devices 2 with a power generation function determined by the operation stop state determination means 37. Priority is given to the item with less time.

空調負荷選択手段39では、運転停止状態判別手段37で判別される運転停止状態の発電機能付きエンジン駆動式ヒートポンプ装置2が無いときに、運転状態の発電機能付きエンジン駆動式ヒートポンプ装置2のうちから、空調負荷計測手段27で計測された空調負荷の小さいものを優先して選択するようになっている。   In the air-conditioning load selection means 39, when there is no engine-driven heat pump device 2 with a power generation function in the operation stop state determined by the operation stop state determination means 37, the engine-driven heat pump device 2 with a power generation function in the operation state The air-conditioning load measuring means 27 measures a small air-conditioning load and selects it with priority.

電力負荷制御手段41では、発電制御手段40によって、駆動可能なすべての発電機6を駆動した後にデマンド信号を受けたとき、すなわち、システム上の発電容量が最大発電容量に達しても電力量比較手段35からデマンド信号が出力されるときに、電気式空調設備32に電力低減信号を出力し、例えば、冷房運転時において、設定温度を1℃高くするといったように、温度設定器の設定温度を空調負荷が低減する側に所定温度(例えば、1℃)調整するようになっている。   In the power load control means 41, when all the drivable generators 6 are driven by the power generation control means 40 and a demand signal is received, that is, even if the power generation capacity on the system reaches the maximum power generation capacity, the power amount comparison is performed. When a demand signal is output from the means 35, a power reduction signal is output to the electric air-conditioning equipment 32. For example, the set temperature of the temperature setter is increased by 1 ° C. during cooling operation. A predetermined temperature (for example, 1 ° C.) is adjusted to the side where the air conditioning load is reduced.

上記構成により、電力量比較手段35からのデマンド信号に応答して、発電制御手段40により発電機能付きエンジン駆動式ヒートポンプ装置2の駆動を制御するとともに、受電電力量の増加を抑制できるようになっており、次に説明する。
電力量比較手段35において予測受電電力量が設定電力量を超えると判断してデマンド信号が出力されるに伴い、デマンド信号に応答して、運転停止状態判別手段37で運転停止状態の発電機能付きエンジン駆動式ヒートポンプ装置2を判別する。
With the above configuration, in response to the demand signal from the power amount comparison means 35, the power generation control means 40 controls the driving of the engine-driven heat pump device 2 with a power generation function and can suppress an increase in the amount of received power. This will be explained next.
In response to the demand signal in response to the demand signal being output when the power amount comparison means 35 determines that the predicted received power amount exceeds the set power amount, the operation stop state determination means 37 has a power generation function in the operation stop state. The engine-driven heat pump device 2 is discriminated.

ここで、運転停止状態の発電機能付きエンジン駆動式ヒートポンプ装置2が複数あるときには、運転モード選択手段28で発電優先運転モードに設定されているものを優先し、かつ、総運転時間選択手段38により総運転時間の少ない方の発電機能付きエンジン駆動式ヒートポンプ装置2を選択して起動信号を出力し、その発電機6を駆動する。   Here, when there are a plurality of engine-driven heat pump devices 2 with a power generation function in the operation stop state, priority is given to the operation mode selection means 28 set in the power generation priority operation mode, and the total operation time selection means 38 The engine-driven heat pump device 2 with the power generation function with the shorter total operation time is selected, a start signal is output, and the generator 6 is driven.

上述手順により発電を順次行い、運転停止状態の発電機能付きエンジン駆動式ヒートポンプ装置2が無くなったときには、運転状態の発電機能付きエンジン駆動式ヒートポンプ装置2を選択する。   When the power generation is sequentially performed according to the above-described procedure and the engine-driven heat pump device 2 with the power generation function in the operation stopped state is lost, the engine-driven heat pump device 2 with the power generation function in the operation state is selected.

ここで、運転状態の発電機能付きエンジン駆動式ヒートポンプ装置2が複数あるときには、運転モード選択手段28で発電優先運転モードに設定されているものを優先し、かつ、空調負荷選択手段39により空調負荷の少ない方の発電機能付きエンジン駆動式ヒートポンプ装置2を選択して発電量増加信号を出力し、空調能力を低下させない状態でエンジン回転数を増加する。   Here, when there are a plurality of engine-driven heat pump devices 2 with a power generation function in the operating state, the operation mode selection unit 28 gives priority to the one set in the power generation priority operation mode, and the air conditioning load selection unit 39 controls the air conditioning load. The engine-driven heat pump device 2 with a smaller power generation function is selected to output a power generation amount increase signal, and the engine speed is increased without reducing the air conditioning capacity.

このエンジン回転数の増加に際しては、エンジン回転数の増加に反比例するように、可変容量タイプの圧縮機10の回転数を圧縮機用変速機構8により低下させ、発電機6の回転数を増加して発電電力量を増加しながらも、圧縮機10の回転数を一定に維持して吐出容量を一定に維持し、実質的に空調能力を低下させないように構成されている。   When the engine speed is increased, the rotational speed of the variable capacity type compressor 10 is decreased by the compressor speed change mechanism 8 so as to be inversely proportional to the increase of the engine speed, and the rotational speed of the generator 6 is increased. Thus, while the amount of generated power is increased, the rotation speed of the compressor 10 is maintained constant to maintain the discharge capacity constant, and the air conditioning capacity is not substantially reduced.

図2の(b)は、固定容量タイプの圧縮機を備えた発電機能付きエンジン駆動式ヒートポンプ装置の正面図であり、圧縮機10が2個設けられ、両圧縮機10とエンジン1の出力軸4とが、ひとつのベルト式伝動機構7および個別の空調クラッチ9を介して連動連結されている。   FIG. 2B is a front view of an engine-driven heat pump device with a power generation function equipped with a fixed capacity type compressor. Two compressors 10 are provided, and the output shafts of both the compressors 10 and the engine 1 are shown. 4 are linked together through one belt-type transmission mechanism 7 and individual air-conditioning clutch 9.

この固定容量タイプの圧縮機10を用いた場合では、エンジン回転数の増加に際し、回転数が2倍に増加するに伴って、一方の空調クラッチ9を遮断し、圧縮機10の運転台数を2台から1台に変更して吐出容量の変化を抑え、実質的に空調能力を低下させないように構成されている。   When this fixed capacity type compressor 10 is used, as the engine speed increases, one of the air-conditioning clutches 9 is disconnected and the number of compressors 10 operated is reduced to 2 as the engine speed increases twice. By changing from one to one, the change in the discharge capacity is suppressed, and the air conditioning capacity is not substantially reduced.

上述のようにして、システム上のすべての発電機2を最大発電容量で駆動しても電力量比較手段35からデマンド信号が出力されるときに、電気式空調設備32に電力低減信号を出力して温度設定器の設定温度を調整し、電気式空調設備32に供給される電力量を低減し、商用電源からの受電電力量が増加することを防止し、一時的な受電電力量の増加に起因する契約電力量の増加を回避できるようになっている。   As described above, even when all the generators 2 on the system are driven at the maximum power generation capacity, when a demand signal is output from the power amount comparison means 35, a power reduction signal is output to the electric air conditioning equipment 32. By adjusting the set temperature of the temperature setting device, the amount of power supplied to the electric air conditioning equipment 32 is reduced, the amount of power received from the commercial power supply is prevented from increasing, and the amount of power received temporarily increases. It is possible to avoid an increase in the contracted electric energy that is caused.

すなわち、図4の受電電力量の増加抑制の動作の説明に供する図に示すように、夏期の冷房負荷の増大などに起因して、電気式空調設備32の負荷が増大して受電電力量が増加し、設定電力量を超えると予測されるとき[図4の(a)]に、先ず、発電機2の発電電力量を増加する[図4の(b)]。これにより、受電電力量の増加を抑える。
その後、システム上のすべての発電機2を最大発電容量で駆動しても、受電電力量が増加し、設定電力量を超えると予測されるときには、電気式空調設備32の温度設定器の設定温度を調整し、電気式空調設備32に供給される電力量を低減し[図4の(c)]、商用電源からの受電電力量の増加を抑えるのである。
That is, as shown in the diagram for explaining the operation of suppressing the increase in the amount of received power in FIG. 4, the load of the electric air conditioning equipment 32 increases due to an increase in the cooling load in summer, etc. When it is predicted that it will increase and exceed the set power amount [FIG. 4A], first, the power generation amount of the generator 2 is increased [FIG. 4B]. Thereby, an increase in the amount of received power is suppressed.
After that, even if all the generators 2 on the system are driven at the maximum power generation capacity, when it is predicted that the amount of received power will increase and exceed the set power amount, the set temperature of the temperature setter of the electric air conditioning equipment 32 Is adjusted to reduce the amount of electric power supplied to the electric air-conditioning equipment 32 [(c) of FIG. 4], thereby suppressing an increase in the amount of electric power received from the commercial power source.

図5は、本発明に係る発電・空調システムの実施例の設定電力量および課金用受電電力量の設定制御系を示すブロック図であり、マイクロコンピュータ29に、受電電力量記憶手段42、発電量記憶手段43、加算手段44および設定電力量算出手段45が備えられている。 FIG. 5 is a block diagram showing a setting control system for the set power amount and the billing received power amount in the embodiment of the power generation / air conditioning system according to the present invention. The microcomputer 29 includes the received power amount storage means 42, the generated power amount. Storage means 43, addition means 44, and set power amount calculation means 45 are provided.

受電電力量記憶手段42では、受電電力量算出手段33で算出された受電電力量の経時的変化を記憶するようになっている。
発電量記憶手段43では、受電電力量記憶手段42で記憶された課金対象期間内の最大受電電力量のときの発電機6の発電量の合計値を記憶するようになっている。
加算手段44では、受電電力量記憶手段42で記憶された課金対象期間内の最大受電電力量と、発電量記憶手段43で記憶された発電機6の発電量の合計値とを加算した値Pmaxを算出するようになっている。
The received power amount storage means 42 stores a change with time of the received power amount calculated by the received power amount calculation means 33.
The power generation amount storage means 43 stores the total value of the power generation amount of the generator 6 at the maximum received power amount within the chargeable period stored in the received power amount storage means 42.
In the adding means 44, a value Pmax obtained by adding the maximum received power amount within the chargeable period stored in the received power amount storage means 42 and the total value of the power generation amount of the generator 6 stored in the power generation amount storage means 43. Is calculated.

設定電力量算出手段45では、加算手段44からの値Pmaxと、その値Pmaxから、5台の発電機6を最大能力で発電したと仮定した場合の発電電力量を減じた値Pminと係数kとに基づき、それらの値を(1)式に代入し、制御の目標値である設定電力量Psを自動的に算出するようになっている。この設定電力量算出手段45で算出された設定電力量Psを電力量比較手段35における設定電力量として置換するようになっている。
Ps=Pmin+(Pmax−Pmin)×k ……(1)
5台の発電機6を最大能力で発電したと仮定した場合の発電電力量は、システムを構築した段階で定まる値である。
係数kは、係数kは、過去の運転実績に基づいた値、あるいは、0.8≧k≧0.5の範囲で設定される値である。
過去の運転実績に基づいた値としては、これまでの全運転時間中の平均発電電力量を発電機の最大能力の合計値で除した値を用いることが例として挙げられる。全運転時間を受電電力量が一般に最大となる夏期の数ヶ月の間の時間としても良い。例えば、システムを稼動する初年度においては、中間の値k=0.5などに設定し、それ以降においては、大きな値k=0.7やk=0.8などに設定するものである。
In the set power amount calculation means 45, the value Pmax from the addition means 44, the value Pmin obtained by subtracting the generated power amount when it is assumed that the five generators 6 are generated with the maximum capacity from the value Pmax, and the coefficient k. Based on the above, these values are substituted into the equation (1) to automatically calculate the set power amount Ps that is the target value of the control. The set power amount Ps calculated by the set power amount calculating means 45 is replaced with the set power amount in the power amount comparing means 35.
Ps = Pmin + (Pmax−Pmin) × k (1)
The amount of power generated when it is assumed that the five generators 6 have been generated with the maximum capacity is a value determined at the stage of constructing the system.
The coefficient k is a value based on the past driving performance or a value set in a range of 0.8 ≧ k ≧ 0.5.
An example of the value based on the past operation results is to use a value obtained by dividing the average power generation amount during the entire operation time so far by the total value of the maximum capacity of the generator. The total operation time may be the time during the summer months when the amount of received power is generally maximum. For example, in the first year when the system is operated, an intermediate value k = 0.5 is set, and after that, a large value k = 0.7, k = 0.8, or the like is set.

本発明としては、実施例の構成に限らず、次のような構成をも含む。
(1)発電機能付きエンジン駆動式ヒートポンプ装置2を1台設けたシステム。
(2)目標値である設定電力量のみを自動的に算出設定するシステム。
(3)総運転時間計測手段26および総運転時間選択手段38を備えないシステム。
The present invention includes not only the configuration of the embodiment but also the following configuration.
(1) A system provided with one engine-driven heat pump device 2 with a power generation function.
(2) A system that automatically calculates and sets only a set power amount that is a target value.
(3) A system that does not include the total operation time measurement means 26 and the total operation time selection means 38.

また、上記実施例では、発電機能付きエンジン駆動式ヒートポンプ装置2を屋上に設置しているが、その設置場所は適宜変更可能である。   Moreover, in the said Example, although the engine drive type heat pump apparatus 2 with an electric power generation function is installed on the rooftop, the installation place can be changed suitably.

上述実施例では、システム上の最大発電容量を超えた後、受電電力量の増加を抑えるのに、電気式空調設備32の温度設定器の設定温度を空調負荷が減少する側に調整するようにしているが、本発明としては、例えば、換気ファンを停止するとか、照明設備の一部を消灯するなど、要するに、商用電源から電力負荷に供給する電力量を低減できるように構成するものであれば、各種の変形が可能である。 In the above embodiment, after exceeding the maximum generating capacity of the system, to suppress an increase in received power amount so as to adjust the set temperature of the temperature setting apparatus for an electric air-conditioning equipment 32 on the side where the air-conditioning load decreases However, the present invention is configured to reduce the amount of power supplied from the commercial power source to the power load, for example, by stopping the ventilation fan or turning off part of the lighting equipment. If there are, various modifications are possible.

上述実施例のエンジン3としては、汎用のガスエンジンやディーゼルエンジンやガソリンエンジンなど各種のエンジンを用いることができる。   As the engine 3 of the above-described embodiment, various engines such as a general-purpose gas engine, a diesel engine, and a gasoline engine can be used.

本発明に係る発電・空調システムの実施例を示す概略構成図である。It is a schematic block diagram which shows the Example of the electric power generation and air conditioning system which concerns on this invention. (a)は、可変容量タイプの圧縮機を備えた発電機能付きエンジン駆動式ヒートポンプ装置の正面図、(b)は、固定容量タイプの圧縮機を備えた発電機能付きエンジン駆動式ヒートポンプ装置の正面図である。(A) is a front view of an engine-driven heat pump device with a power generation function provided with a variable capacity type compressor, and (b) is a front view of an engine-driven heat pump device with a power generation function provided with a fixed capacity type compressor. FIG. 発電制御系を示すブロック図である。It is a block diagram which shows a power generation control system. 受電電力量の増加抑制の動作の説明に供する図である。It is a figure where it uses for description of operation | movement of the increase suppression of received electric energy. 本発明に係る発電・空調システムの実施例の設定電力量および課金用受電電力量の設定制御系を示すブロック図である。It is a block diagram which shows the setting control system of the setting electric energy of the Example of the electric power generation and air-conditioning system which concerns on this invention, and the amount of electric power for charging.

2…発電機能付きエンジン駆動式ヒートポンプ装置
3…エンジン
6…発電機
10…圧縮機
19…冷媒回路
20…室内側熱交換器
21…膨張弁
22…受電電力計測手段
26…総運転時間計測手
2…電気式空調設備(電力負荷)
33…受電電力量算出手段
34…受電電力量予測手段
35…電力量比較手段
37…運転停止状態判別手段
38…総運転時間選択手段
40…発電制御手
2…受電電力量記憶手段
45…設定電力量算出手段
2 ... Engine-driven heat pump with power generation function
3 ... Engine
6 ... generator 10 ... compressor 19 ... refrigerant circuit 20 ... indoor heat exchanger 21 ... expansion valves 22 ... received power measurement unit 26 ... total operating time measurement hands stage
3 2 ... Electric air-conditioning equipment (electric power load)
33 ... received power amount calculating means 34 ... receiving power amount prediction means 35 ... power quantity comparing unit 37 ... operation stop state determining means 38 ... total operating time selection means 40 ... power generation control hand stage
4 2... Received power amount storage means 45... Set power amount calculation means

Claims (2)

エンジンに発電機および圧縮機を連動連結した発電機能付きエンジン駆動式ヒートポンプ装置と、
膨張弁と室内側熱交換器とを備えて前記圧縮機に接続される冷媒回路と、
商用電源に接続されるとともに前記発電機の発電電力を供給可能な電力負荷と、
前記商用電源から受ける電力を計測する受電電力計測手段と、
前記受電電力計測手段で計測された電力を所定時間分積算して受電電力量を算出する受電電力量算出手段と、
前記受電電力量算出手段で算出された受電電力量の経時的変化に基づいて、次の受電電力量を算出予測する受電電力量予測手段と、
前記受電電力量予測手段で算出予測された受電電力量と、設定電力量とを比較して予測受電電力量が設定電力量を超えると判断したときにデマンド信号を出力する電力量比較手段と、
前記電力量比較手段からのデマンド信号に応答して、発電機能付きエンジン駆動式ヒートポンプ装置に起動信号を出力し、予測受電電力量が設定電力量を超えないように前記発電機を駆動する発電制御手段と、
を備えた発電・空調システムにおいて、
前記受電電力量算出手段で算出された受電電力量の経時的変化を記憶する受電電力量記憶手段と、
(1)式に基づいて、目標設定電力量Psを自動的に算出して前記電力量比較手段における設定電力量に置換する設定電力量算出手段と、
を備えたことを特徴とする発電・空調システム。
Ps=Pmin+(Pmax−Pmin)×k ……(1)
Pmax:前記受電電力量記憶手段で記憶された課金対象期間内の最大受電電力量にそのときの発電量合計値を加えた値
Pmin:Pmaxから発電機を最大能力で発電したと仮定した場合の発電電力量を減じた値
係数kは、過去の運転実績に基づいた値、あるいは、0.8≧k≧0.5の範囲で設定される値
An engine-driven heat pump device with a power generation function in which a generator and a compressor are linked to the engine;
A refrigerant circuit comprising an expansion valve and an indoor heat exchanger and connected to the compressor;
A power load connected to a commercial power source and capable of supplying power generated by the generator;
Received power measuring means for measuring power received from the commercial power source;
Received power amount calculating means for calculating the received power amount by integrating the power measured by the received power measuring means for a predetermined time;
A received power amount predicting means for calculating and predicting a next received power amount based on a temporal change in the received power amount calculated by the received power amount calculating means;
A power amount comparing means for outputting a demand signal when it is determined that the predicted received power amount exceeds the set power amount by comparing the received power amount calculated and predicted by the received power amount predicting unit; and
In response to a demand signal from the power amount comparison means, a power generation control that outputs a start signal to an engine-driven heat pump device with a power generation function and drives the generator so that a predicted received power amount does not exceed a set power amount Means,
In the power generation and air conditioning system with
Received power amount storage means for storing a change over time of the received power amount calculated by the received power amount calculation means;
A set power amount calculating means for automatically calculating a target set power amount Ps based on the equation (1) and replacing it with the set power amount in the power amount comparing means;
Generating and air conditioning system comprising the.
Ps = Pmin + (Pmax−Pmin) × k (1)
Pmax: a value obtained by adding the total amount of power generation at that time to the maximum amount of received power stored in the billing period stored in the received power amount storage unit
Pmin: A value obtained by subtracting the amount of power generated when it is assumed that the generator is generated with the maximum capacity from Pmax.
The coefficient k is a value based on past driving performance or a value set in a range of 0.8 ≧ k ≧ 0.5
請求項1に記載の発電・空調システムにおいて、
発電機能付きエンジン駆動式ヒートポンプ装置のうち運転停止状態にあるものを判別する運転停止状態判別手段と、
各発電機能付きエンジン駆動式ヒートポンプ装置に設けられて総運転時間を計測する総運転時間計測手段と、
運転停止状態判別手段で判別された運転停止状態の発電機能付きエンジン駆動式ヒートポンプ装置が複数有るときに、前記総運転時間計測手段で計測された総運転時間の少ないものを優先して選択する総運転時間選択手段とを備え、
発電制御手段が、デマンド信号に応答して前記総運転時間選択手段で選択された前記発電機能付きエンジン駆動式ヒートポンプ装置に起動信号を出力して発電機を駆動するものである発電・空調システム。
The power generation / air conditioning system according to claim 1,
An operation stop state determination means for determining an engine drive type heat pump device with a power generation function that is in an operation stop state,
A total operation time measuring means provided in each engine-driven heat pump device with a power generation function for measuring the total operation time;
When there are a plurality of engine-driven heat pump devices with a power generation function determined by the operation stop state determination unit, the total operation time selected by the total operation time measurement unit is selected with priority. Operating time selection means,
A power generation / air conditioning system in which a power generation control means outputs a start signal to the engine-driven heat pump device with a power generation function selected by the total operation time selection means in response to a demand signal to drive a generator.
JP2006022714A 2006-01-31 2006-01-31 Power generation / air conditioning system Active JP4721922B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006022714A JP4721922B2 (en) 2006-01-31 2006-01-31 Power generation / air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006022714A JP4721922B2 (en) 2006-01-31 2006-01-31 Power generation / air conditioning system

Publications (2)

Publication Number Publication Date
JP2007209081A JP2007209081A (en) 2007-08-16
JP4721922B2 true JP4721922B2 (en) 2011-07-13

Family

ID=38488038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006022714A Active JP4721922B2 (en) 2006-01-31 2006-01-31 Power generation / air conditioning system

Country Status (1)

Country Link
JP (1) JP4721922B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4921406B2 (en) * 2008-03-27 2012-04-25 大阪瓦斯株式会社 Power generation / air conditioning system
JP2009236417A (en) * 2008-03-27 2009-10-15 Osaka Gas Co Ltd Power generating-air conditioning system
JP4921407B2 (en) * 2008-03-27 2012-04-25 大阪瓦斯株式会社 Power generation / air conditioning system
JP5128348B2 (en) * 2008-03-31 2013-01-23 大阪瓦斯株式会社 Electric power demand control system
JP4742121B2 (en) * 2008-06-24 2011-08-10 大阪瓦斯株式会社 Power generation / air conditioning system
TWI397698B (en) * 2008-12-26 2013-06-01 Ind Tech Res Inst Method of determining demand threshold, and method and system of demand control
US8311680B2 (en) 2008-12-26 2012-11-13 Industrial Technology Research Institute Method of determining demand threshold, and method and system of demand control
JP5567816B2 (en) * 2009-10-27 2014-08-06 大阪瓦斯株式会社 Heat pump system
ES2884106T3 (en) * 2011-09-13 2021-12-10 Toshiba Mitsubishi Elec Ind beak cutting system
WO2015041501A1 (en) * 2013-09-23 2015-03-26 김영선 Heat pump power generating system and driving method therefor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6315635A (en) * 1986-07-04 1988-01-22 三菱重工業株式会社 System of control operation period of generating equipment to be uniform
JPH03195325A (en) * 1989-12-19 1991-08-26 Mitsubishi Electric Corp Demand controller
JP3468602B2 (en) * 1995-01-04 2003-11-17 新日本製鐵株式会社 Power consumption prediction device
JP2001272057A (en) * 2000-03-29 2001-10-05 Yanmar Diesel Engine Co Ltd Generating system for outdoor machine
JP2005151717A (en) * 2003-11-17 2005-06-09 Nishishiba Electric Co Ltd Generated power controller of non-utility power generation facility
JP4468852B2 (en) * 2005-04-07 2010-05-26 大阪瓦斯株式会社 Power generation / air conditioning system

Also Published As

Publication number Publication date
JP2007209081A (en) 2007-08-16

Similar Documents

Publication Publication Date Title
JP4721922B2 (en) Power generation / air conditioning system
JP5016894B2 (en) Air conditioning / power generation apparatus and control method thereof
CN101135512B (en) Air-conditioning and electric power generating system and control method for the same
US7614245B2 (en) Fuel cell power generation refrigerating system
JP2010236711A (en) Power generating-air conditioning system
JP4468852B2 (en) Power generation / air conditioning system
JP6235348B2 (en) Air conditioning system
JP2007010291A (en) Air conditioner
US9964319B2 (en) Air conditioner and method for controlling an air conditioner
CN108336812A (en) The control method of air-conditioning power supply
JP2011200097A (en) Air conditioning system
CN108344125A (en) The control method of air-conditioning power supply
JP6166572B2 (en) Air conditioning system
JP4468853B2 (en) Power generation / air conditioning system
CN108400649A (en) The control method of air-conditioning power supply
JP2004271033A (en) Engine-driven heat pump device
KR101760168B1 (en) Air conditioner and a method controlling the same
CN105276856B (en) Gas heat pump type air handling system
JP3417365B2 (en) Electric storage equipment
JP4302025B2 (en) Power generation control system and power generation facility equipped with the same
CN105180342B (en) Air regulator and its control method
JP4921406B2 (en) Power generation / air conditioning system
JP4703417B2 (en) Power generation / air conditioning system
JP2011007356A (en) Gas heat pump type air conditioning device
JP2009240085A (en) Power-generating and air-conditioning system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110405

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110405

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150