JP4721649B2 - Metal separator for fuel cell and method for manufacturing fuel cell - Google Patents
Metal separator for fuel cell and method for manufacturing fuel cell Download PDFInfo
- Publication number
- JP4721649B2 JP4721649B2 JP2004084157A JP2004084157A JP4721649B2 JP 4721649 B2 JP4721649 B2 JP 4721649B2 JP 2004084157 A JP2004084157 A JP 2004084157A JP 2004084157 A JP2004084157 A JP 2004084157A JP 4721649 B2 JP4721649 B2 JP 4721649B2
- Authority
- JP
- Japan
- Prior art keywords
- separator
- fuel cell
- outer peripheral
- peripheral edge
- manufacturing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000446 fuel Substances 0.000 title claims description 47
- 238000004519 manufacturing process Methods 0.000 title claims description 32
- 239000002184 metal Substances 0.000 title claims description 10
- 238000000034 method Methods 0.000 title description 17
- 230000002093 peripheral effect Effects 0.000 claims description 52
- 238000009966 trimming Methods 0.000 claims description 9
- 238000000465 moulding Methods 0.000 claims description 6
- 239000007789 gas Substances 0.000 description 42
- 239000000463 material Substances 0.000 description 14
- 239000003792 electrolyte Substances 0.000 description 9
- 239000012528 membrane Substances 0.000 description 9
- 238000009792 diffusion process Methods 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 238000007789 sealing Methods 0.000 description 4
- 238000005520 cutting process Methods 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910000963 austenitic stainless steel Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000005518 polymer electrolyte Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 238000009751 slip forming Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Fuel Cell (AREA)
Description
本発明は、固体高分子型等の燃料電池に用いる燃料電池用金属製セパレータと、そのセパレータを用いた燃料電池の製造方法に関する。 The present invention relates to a metal separator for a fuel cell used for a solid polymer type fuel cell and a method for producing a fuel cell using the separator.
固体高分子型燃料電池は、平板状の電極構造体(MEA:Membrane Electrode Assembly)の両側にセパレータが積層されたものが1つのセルとされ、複数のセルが積層されて燃料電池スタックとして構成される。電極構造体は、正極(カソード)および負極(アノード)を構成する一対のガス拡散電極の間にイオン交換樹脂等からなる電解質膜が挟まれた三層構造である。ガス拡散電極は、電解質膜に接触する電極触媒層の外側にガス拡散層が形成されたものである。また、セパレータは、電極構造体のガス拡散電極に接触するように積層され、ガス拡散電極との間にガスを流通させるガス流路や冷媒流路が形成されている。このような燃料電池によると、例えば、負極側のガス拡散電極に面するガス流路に燃料である水素ガスを流し、正極側のガス拡散電極に面するガス流路に酸素や空気等の酸化性ガスを流すと電気化学反応が起こり、電気が発生する。 A polymer electrolyte fuel cell is a single-cell structure in which separators are stacked on both sides of a planar electrode assembly (MEA), and a plurality of cells are stacked to form a fuel cell stack. The The electrode structure has a three-layer structure in which an electrolyte membrane made of an ion exchange resin or the like is sandwiched between a pair of gas diffusion electrodes constituting a positive electrode (cathode) and a negative electrode (anode). In the gas diffusion electrode, a gas diffusion layer is formed on the outside of the electrode catalyst layer in contact with the electrolyte membrane. The separator is laminated so as to be in contact with the gas diffusion electrode of the electrode structure, and a gas flow path and a refrigerant flow path for allowing a gas to flow between the separator and the gas diffusion electrode are formed. According to such a fuel cell, for example, hydrogen gas, which is a fuel, is allowed to flow in a gas flow channel facing the negative electrode side gas diffusion electrode, and oxygen or air is oxidized in the gas flow channel facing the positive electrode side gas diffusion electrode. When a sex gas is flowed, an electrochemical reaction occurs and electricity is generated.
上記構造の燃料電池では、各セパレータ間およびセパレータと外界とは絶縁されている必要があり、そのため、従来においては、例えば特許文献1の図8に示されるように、反応ガスや冷媒の流路を仕切るシール部材を内部に設けるとともに、セパレータ1つ1つの外周縁を絶縁カバーで覆ったものがあった。ところが同文献によると、この形態では電解質膜が外界に曝されて乾燥による性能劣化を招くなどの問題があり、組立時の作業環境の湿度管理が必要であるとされている。そして、これを解決するためには、絶縁カバーを厚くして隣接する絶縁カバーどうしを当接させることにより電解質膜を内部に封止する形態が考えられるが、これでは、絶縁カバーによるシール性を確保するために、絶縁カバーどうしの密着性と、セパレータと電極構造体との密着性とを、同時に確保する必要が生じ、そのためには、内部のシール部材の厚さを高精度に管理することが求められるので、量産性の点で不利とされている。 In the fuel cell having the above-described structure, the separators and the separator and the outside need to be insulated. For this reason, conventionally, as shown in FIG. In some cases, a sealing member for partitioning is provided inside, and an outer peripheral edge of each separator is covered with an insulating cover. However, according to the same document, in this embodiment, there is a problem that the electrolyte membrane is exposed to the outside world and the performance is deteriorated due to drying, and the humidity management of the working environment at the time of assembly is required. In order to solve this problem, a form in which the insulating cover is thickened and the adjacent insulating covers are brought into contact with each other to seal the electrolyte membrane inside can be considered. In order to ensure this, it is necessary to ensure the adhesion between the insulating covers and the adhesion between the separator and the electrode structure at the same time. For this purpose, the thickness of the internal sealing member must be managed with high accuracy. Therefore, it is disadvantageous in terms of mass productivity.
また、特許文献2には、セパレータの外周縁に設けた絶縁部材で電解質膜の外周縁を挟み込み、これら絶縁部材と電解質膜の外側を外枠で包囲し、外枠どうしを連結部材で連結する燃料電池スタックが開示されている。この構造では、電解質膜の乾燥は外枠で防止することができるが、外枠どうしを連結してスタックを最後まで組み上げるまで電解質膜は外気に触れるので、やはり作業環境の湿度管理が必要であり、また、部品点数の増加という問題も挙げられる。さらに、特許文献3には、電極構造体の外周縁を包囲したシール部材によって電極構造体とセパレータとの間をシールする構造が開示されているが、この構造では、セパレータの外周縁が露出しているので、そもそもの課題であったセパレータと外界との絶縁は達成されていない。
In
上記各問題に対して有効な解決策が前出の特許文献1に開示されており、それは、同文献の図1に示されるように、1つのセルの各セパレータを跨ぐコ字状の絶縁カバーでセパレータの外周縁を覆うもので、これによれば、電解質膜の密封による乾燥防止やセパレータ間の絶縁といった機能を果たすとともに、部品点数の削減といった利点を備えている。 An effective solution to the above problems is disclosed in the above-mentioned Patent Document 1, which is a U-shaped insulating cover that straddles each separator of one cell, as shown in FIG. The outer peripheral edge of the separator is covered, and according to this, functions such as prevention of drying due to sealing of the electrolyte membrane and insulation between separators are achieved, and the number of parts is reduced.
ところで、セパレータが比較的薄いものの場合(例えば主体部分が0.2mm以下)、外周縁は相応に鋭利であり、このため、上記の解決策のようにセパレータの外周縁を跨ぐ絶縁カバーを装着した場合、鋭利なセパレータの外周縁によって絶縁カバーが切断されやすくなるという問題が発生することが判明した。これは、複数のセルが積層されて燃料電池スタックに組み立てられる際に、セパレータの寸法精度の違いによって外周縁が揃わずにずれが生じ、突出する外周縁を覆う絶縁カバーの一部に大きな負荷が偏ってかかるためである。図4(c)は、そのような状態を模式的に示しており、同図に示すように、セパレータ100を揃えて積層すると、寸法精度の違いによりセパレータ100の外周縁が揃わず、突出する外周縁によって絶縁カバー101に亀裂が生じて切断されやすくなっている(aで示す部分)。また、逆に絶縁カバー101への掛かり代が短くて外れやすくなる状態が生じる場合もある(bで示す部分)。これらの現象を防ぐには、絶縁カバー101の厚さを大きくすればよいが、その場合には燃料電池全体の厚さや重量が増大するという問題が生じるので、他の解決策が求められていた。
By the way, when the separator is relatively thin (for example, the main portion is 0.2 mm or less), the outer peripheral edge is correspondingly sharp, and therefore, an insulating cover is mounted across the outer peripheral edge of the separator as in the above solution. In this case, it has been found that there is a problem that the insulating cover is easily cut by the outer periphery of the sharp separator. This is because when a plurality of cells are stacked and assembled into a fuel cell stack, the outer peripheral edge is not aligned due to the difference in the dimensional accuracy of the separator, causing a shift and a large load on a part of the insulating cover covering the protruding outer peripheral edge. This is because it is biased. FIG. 4C schematically shows such a state. As shown in FIG. 4, when the
よって本発明は、絶縁カバーの厚さを増すことなく、セパレータの外周縁に装着される絶縁カバーが切断することを防止することができる燃料電池用金属製セパレータおよび燃料電池の製造方法を提供することを目的としている。 Therefore, the present invention provides a metal separator for a fuel cell and a method for manufacturing the fuel cell that can prevent the insulating cover attached to the outer periphery of the separator from being cut without increasing the thickness of the insulating cover. The purpose is that.
また、本発明の燃料電池用金属製セパレータの製造方法は、断面凹凸状のガス流路を有する燃料電池用金属製セパレータを、金型を用いたプレス成形によって製造するにあたり、ガス流路を成形した後、金型の型締め中に、セパレータに位置決め孔を形成し、この後、該位置決め孔を基準にして当該セパレータの外周縁をトリミングすることを特徴としている。 In addition, the method for manufacturing a fuel cell metal separator according to the present invention comprises forming a gas flow path when manufacturing a metal separator for a fuel cell having a gas flow path with a concave-convex cross section by press molding using a mold. After that, a positioning hole is formed in the separator during mold clamping, and thereafter, the outer peripheral edge of the separator is trimmed based on the positioning hole.
本発明によれば、プレス成形によるガス流路の成形の後、型締めを保持した状態で引き続きセパレータに位置決め孔を形成し、この後、セパレータの外周縁をトリミングするものであり、このようにして製造されるセパレータ1つ1つは、ガス流路と位置決め孔との位置関係が一定であり、両者間の寸法誤差が生じにくい。したがって、位置決め孔を基準にして、セパレータの間に電極構造体を挟んだセルを積層して燃料電池スタックに組み立てることにより、隣り合うセパレータのガス流路およびセパレータの外周縁の双方を揃った状態とすることができる。このため、上記発明と同様にして絶縁部材の切断が防止される。 According to the present invention, after forming the gas flow path by press molding, the positioning hole is continuously formed in the separator while the mold clamping is held, and then the outer peripheral edge of the separator is trimmed. Each separator manufactured in this manner has a constant positional relationship between the gas flow path and the positioning holes, and dimensional errors between them are less likely to occur. Therefore, by stacking the cells with the electrode structure sandwiched between the separators with reference to the positioning holes and assembling the fuel cell stack, both the gas flow paths of the adjacent separators and the outer peripheral edges of the separators are aligned. It can be. For this reason, cutting of an insulating member is prevented like the said invention.
本発明によれば、セパレータの外周縁が揃った状態でその外周縁に絶縁部材を装着させることができるので、絶縁部材の一部にセパレータの外周縁から大きな負荷が偏ってかかるといったことが起こらず、このため、絶縁部材の厚さを増すことなく絶縁部材が切断することを防止することができるといった効果を奏する。 According to the present invention, since the insulating member can be attached to the outer peripheral edge in a state where the outer peripheral edges of the separator are aligned, a large load is biased to a part of the insulating member from the outer peripheral edge of the separator. For this reason, there exists an effect that it can prevent that an insulating member cut | disconnects, without increasing the thickness of an insulating member.
以下、図面を参照して本発明の第1参考例を説明する。
(1)第1参考例
図1は、第1参考例に係る燃料電池用金属製セパレータの製造方法の各工程ごとで得られるセパレータの形態を示している。この方法は、まず、ステンレス鋼板等による所定厚さの金属製薄板から、矩形状の素材板10Aを切り出して得る(工程1)。次に、図示せぬ金型で素材板10Aをプレス成形してガス流路11を形成する(工程2)。ガス流路11は、複数の平行な溝がジグザグ状に形成されたもので、溝に直交する断面が凹凸状であり、全体の領域が矩形状である。ガス流路11が形成された領域は集電部であり、その周囲には、非集電部として、平坦な枠状の縁部12が形成される。この縁部12の外周側は、ガス流路成形用の金型から露出するものとされる。
Hereinafter, a first reference example of the present invention will be described with reference to the drawings.
(1) First Reference Example FIG. 1 shows the form of a separator obtained in each step of a method for manufacturing a metal separator for a fuel cell according to a first reference example . In this method, first, a
ガス流路11を成形したら、金型の型締めを保持したままの状態で、金型から露出する外周縁の全周を、打ち抜き加工等によってトリミングする(工程3)。この場合のトリミングは、ガス流路11から外周縁までの距離を所定の寸法に切断するとともに、四隅の角をR形状に処理することである。トリミング後は金型を型開きし、中央にガス流路11が形成され、外周縁がトリミングされたセパレータ10を得る。なお、この製造方法では、工程2のガス流路の成形と、工程3の縁部12の外周縁のトリミングとを同時に行ってもよい。
After the
次に、上記製造方法で得た複数のセパレータ10を用いて燃料電池スタックを製造する方法を説明する。図2(a)に示すように、電極構造体20をセパレータ10で挟み、さらに、セパレータ10の縁部12と電極構造体20との間に、ガス流路11を仕切るゴム等のシール部材21を挟んだ複数のセル22を積層し、各セパレータ10の外周縁のうちの一辺を平らな基準板30に載せて当て、その下端縁を揃えるとともに、側方の外周縁の少なくとも一方を、図示せぬ平らな基準板を当てるなどして揃える。次に、図2(b)に示すように、全てのセパレータ10の外周縁を覆うゴム等からなる絶縁カバー40を、その外周縁に装着する。絶縁カバー40は、隣り合うセパレータ10どうしを絶縁するもので、1つのセル22の一対のセパレータ10を跨いで装着されるセル単位のものや、スタック全体を覆う一括タイプのものなどが用いられる。このようにして複数のセル22を積層したら、最終的に、図3に示すように、セル22の積層体の両側に集電板23を設けてから、積層体を2つのクランプ板50で挟み、これらクランプ板50をボルト51とナット52で締結して燃料電池スタックSを得る。
Next, a method for manufacturing a fuel cell stack using the plurality of
上記のセパレータの製造方法によれば、プレス成形によるガス流路11の成形の後、金型の型締め中に引き続きセパレータ10の外周縁をトリミングするものであり、このようにして製造されるセパレータ10は、ガス流路11と外周縁との位置関係が一定であり、寸法誤差が生じにくい。したがって、図2(a)で示したようにセパレータ10の外周縁を基準板30に当てることにより、図4(a)に示すように、各セパレータ10の外周縁は全周にわたってずれなく揃う。そして、この状態から絶縁カバー40をセパレータ10の外周縁に装着するので、絶縁カバー40の一部にセパレータ10の外周縁から大きな負荷が偏ってかかるといったことが起こらず、このため、切断を予防するために絶縁カバー40の厚さを増すことなく、絶縁カバー40が切断することを防止することができる。
According to the separator manufacturing method described above, after forming the
(2)第1実施形態
図5は、本発明の第1実施形態に係る燃料電池用金属製セパレータの製造方法を示している。この方法は、素材板10Aを得た後(工程1)、図示せぬ金型で素材板10Aをプレス成形してガス流路11を形成する(工程2)までは上記第1実施形態と同じである。次に、金型の型締めを保持したままの状態で、金型から露出する縁部12の所定箇所に、位置決め孔13を穿孔する(工程3)。この場合の位置決め孔13は、一対の対角2箇所に形成される円形の孔である。次に、金型の型締めを引き続き保持したままの状態で、位置決め孔13を基準にして縁部12の外周縁をトリミングする(工程4)。なお、この製造方法では、外周縁のトリミングは金型から素材板10Aを取り出し、他の場所で位置決め孔13を基準にして縁部12の外周縁をトリミングしてもよい。また、工程2のガス流路11の成形と工程3の位置決め孔13の穿孔を同時に行ってもよく、また、これら工程2,3と、さらに工程4の縁部12の外周縁のトリミングの3工程を同時に行ってもよい。
(2) 1st Embodiment FIG. 5: has shown the manufacturing method of the metal separator for fuel cells which concerns on 1st Embodiment of this invention . This method is the same as in the first embodiment until the
次に、上記の製造方法で得た複数のセパレータ10を用いて、図2で示した方法でセル22を積層し、全てのセパレータ10の外周縁を覆う絶縁カバー40を装着し、この後、図3に示すように燃料電池スタックSを組み立てる。
Next, using the plurality of
(3)第2参考例
次に、燃料電池スタックの製造方法の第2参考例を説明する。この場合のセパレータは、通常の製造方法、すなわち、上記素材板10Aを金型にセットして上記ガス流路11をプレス成形し、次いで、金型から素材板10Aを取り出して他の場所で上記縁部12の外周縁をトリミングする工程によって得たものを用いる。このようにして得たセパレータを、図2と同様にして外周縁を基準にしてセルを積層し、セパレータの外周縁に上記絶縁カバー40を装着してから、図3に示すように燃料電池スタックSを組み立てる。
(3) a second reference example will now be described a second reference example of the manufacturing method of the fuel cell stack. The separator in this case is a normal manufacturing method, that is, the
この燃料電池スタックの製造方法によれば、セパレータの外周縁を位置決め基準にしてセルを積層することにより、図4(b)に示すように、各セパレータ10の外周縁が揃って積層される。このため、絶縁カバー40の一部にセパレータ10から偏った負荷がかかることがなく、その結果、絶縁カバー40が切断することを防止することができる。なお、この製造方法では、ガス流路11のプレス成形と外周縁のトリミングを上記第1実施形態のように関連して行わず、それぞれ独立した工程としたので、ガス流路11の成形位置にばらつきが生じ、このため、図4(b)に示すように、対面するガス流路11が整合せず、若干のずれが生じる場合があるが、セパレータ10の外周縁の突出による絶縁カバー40の切断は防止される。
According to this method of manufacturing a fuel cell stack, by stacking cells using the outer peripheral edge of the separator as a positioning reference, the outer peripheral edges of the
次に、実施例を示して本発明の効果を実証する。
(1)素材板の製造
表1に示す成分を有する厚さ0.2mmのオーステナイト系ステンレス鋼板から、一辺が約100mmの素材板を、必要数切り出して得た。次に、この素材板を用いて、以下の実施例および比較例に係るセパレータを製造し、さらにこれらセパレータと電極構造体を組み合わせて燃料電池スタックを製造した。なお、セパレータの寸法は、いずれも、一辺:86mm、厚さ:0.2mm、ガス流路の領域の一辺:60mm、ガス流路の幅:1.5mm、ガス流路の深さ:1.0mmとした。
Next, an example is shown and the effect of the present invention is proved.
(1) Manufacture of raw material plate A necessary number of raw material plates each having a side of about 100 mm were cut out from a 0.2 mm thick austenitic stainless steel plate having the components shown in Table 1. Next, separators according to the following examples and comparative examples were manufactured using this material plate, and a fuel cell stack was manufactured by combining these separators and electrode structures. The dimensions of the separators are as follows: one side: 86 mm, thickness: 0.2 mm, one side of the gas channel region: 60 mm, gas channel width: 1.5 mm, gas channel depth: 1. It was set to 0 mm.
(2)燃料電池スタックの製造
[参考例2]
・試料No.11〜20
上記第2参考例の製造方法、すなわち、素材板をプレス成形してガス流路を形成し、素材板を金型から取り出して外周縁をトリミングする工程によって必要数のセパレータを得た。次いで、得られた複数のセパレータと電極構造体を用いて、図2〜図3に示すようにしてセルを積層し、セパレータの外周縁に絶縁カバーを装着して燃料電池スタックを製造した。この製造方法によって、本発明の参考例2に係る10個の燃料電池スタック:試料No.11〜20を得た。
(2) Manufacture of fuel cell stack [ Reference Example 2 ]
・ Sample No. 11-20
The required number of separators were obtained by the manufacturing method of the second reference example , that is, the material plate was press-molded to form a gas flow path, the material plate was taken out of the mold and the outer peripheral edge was trimmed. Next, using the obtained plurality of separators and electrode structures, cells were stacked as shown in FIGS. 2 to 3, and an insulating cover was attached to the outer periphery of the separator to produce a fuel cell stack. By this manufacturing method, ten fuel cell stacks according to Reference Example 2 of the present invention: Sample No. 11-20 were obtained.
・試料No.21〜30
上記第1参考例の製造方法、すなわち、素材板をプレス成形してガス流路を形成し、金型の型締め中に素材板の外周縁をトリミングする工程によって必要数のセパレータを得た。次いで、得られた複数のセパレータと電極構造体を用いて、図2〜図3に示すようにしてセルを積層し、セパレータの外周縁に絶縁カバーを装着して燃料電池スタックを製造した。この製造方法によって、参考例1に係る10個の燃料電池スタック:試料No.21〜30を得た。
・ Sample No. 21-30
The required number of separators were obtained by the manufacturing method of the first reference example , that is, the material plate was press-molded to form a gas flow path, and the outer peripheral edge of the material plate was trimmed during mold clamping. Next, using the obtained plurality of separators and electrode structures, cells were stacked as shown in FIGS. 2 to 3, and an insulating cover was attached to the outer periphery of the separator to produce a fuel cell stack. By this manufacturing method, ten fuel cell stacks according to Reference Example 1 : Sample No. 21-30 were obtained.
・試料No.31〜40
上記第1実施形態の製造方法、すなわち、素材板をプレス成形してガス流路を形成し、金型の型締め中に位置決め孔を穿孔し、この後、セパレータの外周縁をトリミングする工程によって必要数のセパレータを得た。次いで、得られた複数のセパレータと電極構造体を用いて、図2〜図3に示すようにしてセルを積層し、セパレータの外周縁に絶縁カバーを装着して燃料電池スタックを製造した。この製造方法によって、本発明の実施例に係る10個の燃料電池スタック:試料No.31〜40を得た。
・ Sample No. 31-40
According to the manufacturing method of the first embodiment, that is, a material plate is press-molded to form a gas flow path, a positioning hole is drilled during mold clamping, and then the outer peripheral edge of the separator is trimmed. The required number of separators was obtained. Next, using the obtained plurality of separators and electrode structures, cells were stacked as shown in FIGS. 2 to 3, and an insulating cover was attached to the outer periphery of the separator to produce a fuel cell stack. By this manufacturing method, ten fuel cell stacks according to the embodiments of the present invention: Sample No. 31-40 were obtained.
[比較例]
・試料No.1〜10
素材板をプレス成形してガス流路を形成し、金型からセパレータを取り出して位置決め孔を穿孔し、この後、外周縁をトリミングする工程によって必要数のセパレータを得た。次いで、得られた複数のセパレータと電極構造体を用いて、セパレータの位置決め孔を基準にしてセルを積層し、セパレータの外周縁に絶縁カバーを装着して燃料電池スタックを製造した。この製造方法によって、本発明に対する比較例に係る10個の燃料電池スタック:試料No.1〜10を得た。
[Comparative example]
・ Sample No. 1-10
The material plate was press-molded to form a gas flow path, the separator was taken out from the mold, a positioning hole was drilled, and then the required number of separators were obtained by trimming the outer periphery. Next, using the obtained separators and electrode structures, cells were stacked with reference to the positioning holes of the separators, and an insulating cover was attached to the outer periphery of the separators to produce a fuel cell stack. By this manufacturing method, ten fuel cell stacks according to comparative examples for the present invention: Sample No. 1-10 were obtained.
(3)測定試験
上記の試料No.1〜40の燃料電池スタックにつき、以下の項目の測定試験を行った。
a.セパレータの有効接触面積率
隣り合うセパレータの有効接触面積率を、次の方法により測定した。
積層されている状態の燃料電池スタック(20セルの積層体)を、ファインカッターで切断して図4に示すような断面状態とした。この状態で、断面の溝山部分の接触長さを各セルの全てについて光学顕微鏡を用いて計測し、各セルごとの平均値を算出する。その平均値のうち最小の値を、そのスタックの接触長さL1とした。そして、セパレータ溝山の平坦部の長さの図面値(設計値)をL0としたとき、以下の式から有効接触面積率を求めた。
有効接触面積率=L1/L0
(3) Measurement test Measurement tests of the following items were performed on 1 to 40 fuel cell stacks.
a. Effective Contact Area Ratio of Separator The effective contact area ratio of adjacent separators was measured by the following method.
The fuel cell stack in a stacked state (20-cell stack) was cut with a fine cutter to obtain a cross-sectional state as shown in FIG. In this state, the contact length of the groove portion of the cross section is measured using an optical microscope for all the cells, and the average value for each cell is calculated. The minimum value of the average value, and a contact length L 1 of the stack. When the length of the drawing values of the flat portion of the separator groove mountain (design value) was L 0, to determine the effective contact area ratio from the following equation.
Effective contact area ratio = L 1 / L 0
b.セパレータの外周縁の位置ずれ量
セパレータの外周縁の位置ずれ量を、次の方法により測定した。
積層されている状態の燃料電池スタック(20セルの積層体)を、ファインカッターで切断して図4に示すような断面状態とした。この状態で、図面値(設計値)通りのセパレータの外周縁の位置(絶縁カバーに適性長さ挿入されている状態の外周縁の位置)に対する各セパレータの外周縁のずれ量を光学顕微鏡を用いて計測し、全てのずれ量の中で最大のずれ量を、外周縁の位置ずれ量とした。
b. Position shift amount of outer peripheral edge of separator The position shift amount of the outer peripheral edge of the separator was measured by the following method.
The fuel cell stack in a stacked state (20-cell stack) was cut with a fine cutter to obtain a cross-sectional state as shown in FIG. In this state, using an optical microscope, the amount of deviation of the outer peripheral edge of each separator with respect to the position of the outer peripheral edge of the separator (the position of the outer peripheral edge when the appropriate length is inserted into the insulating cover) as shown in the drawing value (design value) is used. The maximum deviation amount among all the deviation amounts was taken as the positional deviation amount of the outer periphery.
c.絶縁カバーの亀裂深さ
絶縁カバーの亀裂深さを、次の方法により測定した。
亀裂が発生したスタックの全ての亀裂について、表面から観察される亀裂の中央部を切断し、切断面に現れる亀裂の深さを計測した。そして、それらの亀裂の深さのうち、最大の深さを、そのスタックの絶縁カバーの亀裂深さとした。
c. Crack depth of insulating cover The crack depth of the insulating cover was measured by the following method.
For all the cracks in the stack where cracks occurred, the center part of the cracks observed from the surface was cut, and the depth of the cracks appearing on the cut surface was measured. Then, the maximum depth among the crack depths was defined as the crack depth of the insulating cover of the stack.
d.1つのセル(単セル)当たりの接触抵抗
20セルの燃料電池スタックを分解すると、セパレータ:40枚、電極構造体:20枚であるから、この電極構造体をカーボンペーパー(東レ社製)に置き換え、再度積層して燃料電池スタックを組み立て、このスタックの端部間の抵抗を測定し、その測定値を、セル数の20で除した数値を、そのスタックの単セル当たりの接触抵抗とした。
d. Contact resistance per cell (single cell) When a 20-cell fuel cell stack is disassembled, there are 40 separators and 20 electrode structures, so this electrode structure is replaced with carbon paper (Toray Industries, Inc.) Then, the fuel cell stack was assembled again, and the resistance between the ends of the stack was measured. The value obtained by dividing the measured value by 20 of the number of cells was defined as the contact resistance per unit cell of the stack.
上記の測定結果を表2に示し、また、特に単セル当たりの接触抵抗と絶縁カバーの亀裂深さに関して、図6にグラフ化した。この測定結果によると、参考例1、参考例2、および実施例の試料No.11〜40では、セパレータの外周縁の位置ずれ量が0.1mmを下回っており、いずれも絶縁カバーに亀裂は生じなかった。一方、比較例の試料No.1〜10では、セパレータの外周縁の位置ずれ量が0.1mmを超え、いずれも絶縁カバーに亀裂を生じていた。したがって、セパレータの外周縁を揃えてセルを積層する製造方法により、絶縁カバーの切断防止の効果が顕著に得られることが実証された。なお、試料No.11〜20では、外周縁を揃えるものの、図2(b)に示したようにガス流路にずれが生じたため、本発明の実施例よりもセパレータの有効接触面積率が低く、その結果、接触抵抗も低下したと推測された。 The measurement results are shown in Table 2, and are graphed in FIG. 6 in particular regarding the contact resistance per unit cell and the crack depth of the insulating cover. According to this measurement result, Sample No. 1 in Reference Example 1, Reference Example 2, and Example were used. In Nos. 11 to 40, the positional deviation amount of the outer peripheral edge of the separator was less than 0.1 mm, and none of the insulating covers cracked. On the other hand, Sample No. In Nos. 1 to 10, the amount of displacement of the outer peripheral edge of the separator exceeded 0.1 mm, and all of them had cracks in the insulating cover. Therefore, it has been proved that the effect of preventing the insulating cover from being cut off is remarkably obtained by the manufacturing method in which the cells are laminated with the outer peripheral edges of the separators aligned. Sample No. 11 to 20, although the outer peripheral edge is aligned, the gas flow path is displaced as shown in FIG. 2B, so that the effective contact area ratio of the separator is lower than that of the embodiment of the present invention. It was estimated that the resistance also decreased.
10…セパレータ、11…ガス流路、13…位置決め孔、20…電極構造体、
22…セル、40…絶縁カバー(絶縁部材)、S…燃料電池スタック。
DESCRIPTION OF
22 ... cell, 40 ... insulating cover (insulating member), S ... fuel cell stack.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004084157A JP4721649B2 (en) | 2004-03-23 | 2004-03-23 | Metal separator for fuel cell and method for manufacturing fuel cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004084157A JP4721649B2 (en) | 2004-03-23 | 2004-03-23 | Metal separator for fuel cell and method for manufacturing fuel cell |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005276461A JP2005276461A (en) | 2005-10-06 |
JP4721649B2 true JP4721649B2 (en) | 2011-07-13 |
Family
ID=35175917
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004084157A Expired - Lifetime JP4721649B2 (en) | 2004-03-23 | 2004-03-23 | Metal separator for fuel cell and method for manufacturing fuel cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4721649B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5286895B2 (en) | 2008-04-04 | 2013-09-11 | トヨタ自動車株式会社 | Single cell assembly and fuel cell |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001198921A (en) * | 2000-01-20 | 2001-07-24 | Nisshinbo Ind Inc | Mold for producing fuel cell separator |
JP2003077486A (en) * | 2001-09-05 | 2003-03-14 | Toyota Central Res & Dev Lab Inc | Fuel cell separator and its manufacturing method |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6422420A (en) * | 1987-07-15 | 1989-01-25 | Honda Motor Co Ltd | Method and device for working thin plate stock |
-
2004
- 2004-03-23 JP JP2004084157A patent/JP4721649B2/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001198921A (en) * | 2000-01-20 | 2001-07-24 | Nisshinbo Ind Inc | Mold for producing fuel cell separator |
JP2003077486A (en) * | 2001-09-05 | 2003-03-14 | Toyota Central Res & Dev Lab Inc | Fuel cell separator and its manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
JP2005276461A (en) | 2005-10-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7745035B2 (en) | Separator and fuel cell using thereof | |
JP4416038B2 (en) | Fuel cell | |
JP5026708B2 (en) | Cell for polymer electrolyte fuel cell and polymer electrolyte fuel cell using the same | |
EP1796195B1 (en) | Method of producing gasket for fuel cells | |
EP2759011B1 (en) | Fuel cell assembly | |
CA2910082C (en) | Insulating structure, fuel cell and fuel cell stack | |
US20060024560A1 (en) | Separator and cell using the same for use in solid polymer electrolyte fuel cell | |
US9806353B2 (en) | Fuel cell separator with gasket and method for manufacturing the same | |
CN107968212B (en) | Bipolar plate for fuel cell and method of manufacturing the same | |
JP2014049383A (en) | Fuel cell stack | |
JP7031455B2 (en) | Manufacturing method of metal separator for fuel cell | |
CA2832445C (en) | Fuel cell resistant to stress from differential pressure | |
CN110277581B (en) | Fuel cell stack, dummy cell for fuel cell stack, and method for manufacturing dummy cell | |
US20130149635A1 (en) | Laminated fuel cell assembly | |
JP3868784B2 (en) | Fuel cell | |
JP6103376B2 (en) | Fuel cell stack and manufacturing method thereof | |
JP4721649B2 (en) | Metal separator for fuel cell and method for manufacturing fuel cell | |
JP6123635B2 (en) | Fuel cells and fuel cells | |
JP5703186B2 (en) | Electrolyte membrane / electrode structure with resin frame for fuel cell and production method thereof | |
CN112582656B (en) | Membrane electrode assembly, fuel cell and fuel cell | |
JP4773055B2 (en) | FUEL CELL STACK, SEPARATOR INTERMEDIATE AND SEPARATOR MANUFACTURING METHOD | |
JP4900869B2 (en) | Fuel cell and fuel cell stack | |
JP5604404B2 (en) | Fuel cell | |
JP3357310B2 (en) | Fuel cell separator and method of manufacturing the same | |
JP2007213830A (en) | Membrane-electrode assembly for fuel cell and manufacturing method of the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061128 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090611 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091020 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091221 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101001 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101129 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110322 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110405 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140415 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4721649 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |