JP4721312B2 - Groundwater purification pile material, manufacturing method thereof, and groundwater purification pile - Google Patents

Groundwater purification pile material, manufacturing method thereof, and groundwater purification pile Download PDF

Info

Publication number
JP4721312B2
JP4721312B2 JP2001240994A JP2001240994A JP4721312B2 JP 4721312 B2 JP4721312 B2 JP 4721312B2 JP 2001240994 A JP2001240994 A JP 2001240994A JP 2001240994 A JP2001240994 A JP 2001240994A JP 4721312 B2 JP4721312 B2 JP 4721312B2
Authority
JP
Japan
Prior art keywords
groundwater
sand
gravel
purification
pile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001240994A
Other languages
Japanese (ja)
Other versions
JP2003047978A (en
Inventor
辰也 伊藤
光夫 野津
正彦 桑原
道憲 肥後
耕作 岡田
明夫 福本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fudo Tetra Corp
Original Assignee
Fudo Tetra Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fudo Tetra Corp filed Critical Fudo Tetra Corp
Priority to JP2001240994A priority Critical patent/JP4721312B2/en
Publication of JP2003047978A publication Critical patent/JP2003047978A/en
Application granted granted Critical
Publication of JP4721312B2 publication Critical patent/JP4721312B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、揮発性有機化合物等によって汚染された地下水を浄化するために使用する金属系還元剤を分離させることなく、安定して砂又は礫分中に保持することが可能な地下水浄化杭用材料、その製造方法及びそれを用いた地下水浄化杭に関するものである。
【0002】
【従来の技術】
半導体製造工場などの洗浄工程において多量に使用されるトリクロロエチレン等の揮発性有機化合物は、漏れなどにより土壌又は地下水を汚染する可能性があり、この場合、工場跡地の再利用の障害となったり、地下水の利用が制限されたりする問題がある。
【0003】
これを解決するものとして、揮発性有機化合物で汚染された地下水の流れを遮断する方向で金属性還元剤を含んだ浄化連続壁を地中に形成し、該浄化連続壁を地下水が通過する際に還元反応により、汚染物質を分解させ無公害化させる方法がある(国際公開番号WO91/08176号公報)。
【0004】
この処理方法は、地下水中の汚染物質が有効に分解されるため、有用な技術ではある。しかし、この方法は地中に浄化連続壁を設置する際、金属性還元剤が高密度であるため、砂又は礫分などの増量材から分離してしまい、地下水の浄化機能を低下させてしまうという問題がある。かかる問題を解決するものとして、地中に連続配置される浄化壁を円柱の連続杭又は間欠杭とし、該円柱に金属性還元剤を収納した円筒袋を積み重ねて、更に、該円筒袋をドーナツ型にすることで金属性還元剤の分離を防止すると共に、透水性の改善を図ったものも開示されている(特開平11−156351号公報)。
【0005】
【発明が解決しようとする課題】
しかしながら、円柱に金属性還元剤を収納した円筒袋を積み重ねる方法は、円筒袋の作製が複雑で面倒であり、施工コストを上昇させてしまう。また、円筒袋がドーナツ状であればなおさらである。また、地下水の浄化方法として、地中連続浄化壁を構築し、汚染された地下水の全量、すなわち透過率100%として処理するのではなく、従来の汚染水汲み上げ井戸を有効に活用し、該井戸での汚染物質の処理負荷を低減する地下浄化壁の設置の要望もある。
【0006】
従って、本発明の目的は、高密度の粉体状金属性還元剤の分離が生じない地下水浄化杭用材料、及びこれを簡易な方法で製造する方法並びに該地下水浄化杭用材料を使用して施工された地下水浄化杭を提供することである。
【0007】
【課題を解決するための手段】
かかる実情において、本発明者等は鋭意検討を行った結果、増量材の砂又は礫分に特定粒径範囲のものを使用し、これに還元剤である金属粉体を混合、攪拌する際、砂又は礫分の表面が湿る程度に水分を含水したものであれば、砂又は礫分表面に粉体がいわゆるきな粉をまぶしたように付着し、該付着物が浄化杭用材料製造過程、搬出及び浄化杭打設に至る一連の振動過程においても何ら分離することはなく、これを地下水浄化杭の材料として使用すれば該浄化杭の還元浄化機能が継続的、且つ有効に維持されることを見出し、本発明を完成するに至った。
【0008】
すなわち、本発明は、粒径0.5〜20mmの砂又は礫分に水を噴霧し、攪拌移動して砂又は礫分の表面を均等に湿らせ、次いで、還元剤である金属粉体を投入し、攪拌移動して得られるものであることを特徴とする地下水浄化杭用材料を提供することにある。
【0009】
また、本発明は、粒径0.5〜20mmの砂又は礫分、該砂又は礫分100重量部に対して3〜11重量部の水を噴霧し、攪拌移動して砂又は礫分を湿らせた状態とし、次いで、該砂又は礫分100重量部に対して10〜200重量部の還元剤である金属粉体を混合し、攪拌移動することを特徴とする地下水浄化杭用材料の製造方法を提供することにある。
【0010】
また、本発明は、前記地下水浄化杭用材料からなる浄化杭を、地中に間欠的且つ列状的に配置してなり、前記浄化杭は地下水水位より深部に配置され、地下水水位より浅部は空打ち部であることを特徴とする地下水浄化杭を提供することにある。
【0011】
【発明の実施の形態】
本発明の地下水浄化杭用材料において、粒径0.5〜20mmの砂又は礫分は、天然の土のうち、中砂、粗砂、細礫及び中礫分を言い、これらの1種又は2種以上の混合物が使用できる。また、粒径0.5〜20mmの人工の砕石や一般土木用7号砕石も使用できる。該砂又は礫分の粒径が上記範囲にあれば、鉄粉などの金属性還元剤との均一な混合が可能となると共に、浄化杭として使用した場合、適切な透水性が得られる。また、粒径0.5〜20mmの砂又は礫分は、粒径2〜5mmの細礫分が、該材料中80%以上、好ましくは90%以上であって、残部が粒径0.5〜20mmの範囲内にあるものがより好適である。該砂又は礫分の粒径は上記範囲内であるが、本発明の効果を阻害しない範囲で少量の粒径0.5mm未満、粒径20mmを越える細砂や粗礫分を含んでいてもよい。
【0012】
還元剤である金属粉体としては、鉄又は亜鉛の単体、若しくはそれらの合金又は化合物の粉体が挙げられる。このうち、鉄粉が安価であり、且つ廃棄物として排出されるものも使用できる点で好適である。還元剤である金属粉体は、平均粒径が砂又は礫分の粒径の1/2〜1/100程度のものが、後述する適量の水分の存在下、砂又は礫分と金属粉体との均一な混合物を形成できる。また、該金属粉体の配合量は、地下水浄化杭用材料100重量部に対して、10〜200重量部、好ましくは10〜50重量部の範囲であれば、還元浄化機能を発揮するに十分な量とすることができる。
【0013】
本発明の地下水浄化杭用材料は、上記粒径の砂又は礫分と還元剤である金属粉体とが均一に混ざり合った混合物であって、含水量が1〜10重量%、好ましくは3〜5重量%である。均一に混ざり合った混合物とは、前記砂又は礫分中、前記金属粉体が均一に分布している状態を言い、目視観察によれば、砂又は礫分表面は水が浮くほどには見えず、湿った状態であり、この砂又は礫分表面に金属粉体がいわゆるきな粉を均一にまぶしたように付着している状態である。すなわち、砂又は礫分表面と金属粉体がその間に存在する水のメニスカスによる吸引作用で吸着状態にあると推察される。含水量が1重量%未満、あるいは10重量%を越える場合、いずれも上記吸引作用が起こり難くなり、従って、僅かな振動においても、高密度の金属粉体は分離する傾向となる。
【0014】
本発明の地下水浄化杭用材料によれば、上記粒径の砂又は礫分と還元剤である金属粉体が、適量の水の存在により均一に混ざり合った難分離性の混合物となるため、該混合物から還元剤である金属粉体が浄化杭用材料製造過程、搬出及び浄化杭打設に至る一連の振動過程においても何ら分離することはない。また、砂又は礫分中に還元剤である金属粉体が均一に分布するため、地下水浄化杭用材料として好適である。
【0015】
本発明の地下水浄化杭用材料は、粒径0.5〜20mmの砂又は礫分と、該砂又は礫分100重量部に対して3〜11重量部の水と、該砂又は礫分100重量部に対して10〜200重量部の還元剤である金属粉体を混合し、攪拌して、前記砂又は礫分と前記金属粉体が均一に混ざり合った混合物を得ることで製造されるが、好ましくは、粒径0.5〜20mmの砂又は礫分と、該砂又は礫分100重量部に対して3〜11重量部の水を予め混合し、攪拌して砂又は礫分を湿らせた状態とし、次いで、該砂又は礫分100重量部に対して10〜200重量部の還元剤である金属粉体を混合し、攪拌して、前記砂又は礫分と前記金属粉体が均一に混ざり合った混合物を得ることで製造される。予め、砂又は礫分表面を適量の水で湿らし、その後、金属粉体を添加すると、前記吸着作用により金属粉体の砂又は礫分への付着が円滑に進行する点で好ましい。
【0016】
攪拌方法としては、砂又は礫分と金属粉体を十分に攪拌するものであれば、特に制限されないが、特に、砂又は礫分と金属粉体との混合物が天地方向に回転して攪拌される、すなわち、上下方向の移動を伴った攪拌が行われることが好ましい。このような攪拌は回転軸が水平又は水平面に対して傾斜を有するパドルミキサー又は容器が天地方向に回転して攪拌を行うコンクリートミキサーにより行われる。回転軸が水平面に対して傾斜を有するパドルミキサーの場合、傾斜角の最大は30度程度であり、通常3〜5度である。パドルミキサーにおいて、回転軸が若干の傾斜を有していると、パドル内において攪拌物の滞留時間が長くなり、より十分な攪拌が行われる。上記攪拌手段のうち、容器が天地方向に回転して攪拌を行うコンクリートミキサーを使用することが、比較的大容量の攪拌が可能であり、且つ砂又は礫分と金属粉体との混合物全体が天地方向に回転して攪拌される点で好適である。また、前記好ましい製造方法において、砂又は礫分と水の攪拌と、湿った砂又は礫分と金属粉体の攪拌は共に、同じ攪拌装置で行うことが効率的である。砂又は礫分と金属粉体を攪拌する条件としては、特に制限されないが、コンクリートミキサーの場合、5〜15rpm 、数分から十数分間が好ましい。
【0017】
本発明の製造方法によれば、得られた地下水浄化杭用材料は前記同様、上記粒径の砂又は礫分と還元剤である金属粉体が、適量の水の存在下において均一に混ざり合った混合物であるため、該混合物から還元剤である金属粉体が浄化杭用材料製造過程、搬出及び浄化杭打設に至る一連の振動過程においても何ら分離することはない。また、砂又は礫分中に還元剤である金属粉体が均一に分布するため、地下水浄化杭用材料として好適である。更に、本発明の製造方法は既存の設備を使用し、簡易な方法で行えるため、コスト低減に大いに寄与できる。
【0018】
本発明の地下水浄化杭は、前記地下水浄化杭用材料からなる浄化杭を、地中に間欠的且つ列状的に配置してなる。すなわち、前記地下水浄化杭用材料は製造工場から施工現場まで雨水の混入を避ける方法で搬入され、公知の砂杭造成工法で浄化杭が打設される。公知の砂杭造成工法は、例えば、中空管を地盤中の設計深度まで貫入した後、前記材料を投入し、中空管を地表に引き抜く過程で、前記投入された材料を排出して砂杭を造成する方法である。また、列状的な配置としては、1列状及び2列以上の複数列状が挙げられる。
【0019】
本発明の地下水浄化杭の配置例を図1及び図2を参照して説明する。図1は地下水浄化杭の配置を説明する縦断面図、図2は図1のX−X線に沿って見た図をそれぞれ示す。図1及び図2において、地下水浄化杭1は、地下水の流れに対し、汚染源の下流に形成され、地下水水位W.L.より深部に配置され前記還元剤である金属粉体が混入された浄化杭1bと、地下水水位W.L.より浅部に配置される空打ち部1aとからなる。空打ちとは、還元剤である金属粉体が混入されていない砂又は礫分などを言う。地下水水位W.L.より浅部に空打ち部1aを設けることにより、揮発性有機物が存在しない領域において還元剤を使用する無駄を排除することができる。また、空打ち部を無充填の空間としても本発明の効果は奏するものの、地表に凹凸が生じることは危険であり、上記の如く、金属粉体無充填の空打ち部により、施工などの安全を確保することができる。本例の地下水浄化杭は、地下水水位W.L.より浅部に空打ち部1aを配置しているが、他の例として当該地下水水位W.L.より浅部においても前記還元剤である金属粉体が混入された浄化杭を配置する形態が挙げられる。この場合、揮発性有機物が存在しない領域において還元剤を使用する無駄があるものの、地下水水位W.L.より深部から地表までの連続杭を均一材料で施工でき施工効率がよいという利点がある。図中、地下水浄化杭1は地中に等ピッチで間欠的、且つ2列に配置されている。本例では1列18本の浄化杭が2列の計36本であり、前列1Aの1本の浄化杭11とこれに隣接する浄化杭12の間101に、後列1Bの浄化杭13が入るように、すなわち、前列1Aの浄化杭と後列1Bの浄化杭は互いに千鳥状に配置されている。そして、図1に示すように、正面視、浄化杭造成領域断面中、浄化杭が占める断面積の割合、すなわち、地下水の透過率は75%となるように配置されている。図1中、符号2は地表3の舗装部を示す。
【0020】
次に、地下水浄化杭1による汚染地下水の浄化方法について説明する。汚染地下水の75%は地中に等ピッチで間欠的、且つ2列に配置された地下水浄化杭1内を透過する。その際、地下水は通常pHが中性域にあり、且つ酸化還元電位が低いため、例えば、地下水中の難分解性ハロゲン化炭化水素は、還元性金属粉体の存在下、脱ハロゲン化され、無害な炭化水素に変換されると共に、水素を発生する。これにより、難分解性ハロゲン化炭化水素が無害化され、汚染地下水が浄化される。この地下水浄化杭1は、該杭中に還元剤が均一に分布しているため、該浄化杭1を通過する汚染地下水は長期間に渡り安定して浄化される。そして、汚染地下水の25%は地下水浄化杭1を透過することなく通過するが、図では省略する下流側の井戸において、汚染物質濃度が希釈された地下水として汲み上げられ、該汲み上げられた地下水が従来の方法に基づき地上において浄化される。これにより、汚染地下水の流れを全部遮断するように形成される連続壁に比較して、浄化杭の施工が行い易くなると共に、還元剤を含めた浄化杭材料を節減できる。また、既存井戸における浄化の負荷を低減することができる。
【0021】
本発明の地下水浄化杭の配置としては、特に限定されず、上記以外に例えば、図3に示すように、地中に等ピッチで間欠的、且つ2列の千鳥状配置を汚染地下水の流れに対して角度α又は角αより小さく採れば、前列1Aの1本の浄化杭11とこれに隣接する浄化杭12の隙間101の寸法は汚染地下水の流れ方向に対して、狭くなるため、後列1Bの浄化杭13がすっぽり入り、透過率はほぼ100%を達成することができる。このように、本発明においては、地下水の透過率が50〜100%となるように、種々の配列形態をとることができる。種々の配列形態としては、1列の間欠配置、2列又は3列以上の千鳥状の間欠配置、更に、これに、地下水の流れに対し傾斜をつけた配置などが挙げられる。
【0022】
【実施例】
次に、実施例を挙げて本発明を更に具体的に説明するが、これは単に例示であって、本発明を制限するものではない。
実施例1
回転軸が水平面から5度傾斜し、全長2.3m 、各軸を互いに正逆反対方向に80rpm で回転させ、混合物を天地方向に回転しつつ攪拌しながら、左右方向に1m/分の速度で移動させ、軸端部から混合物を排出する小型2軸パドルミキサーを使用した。先ず、粒径2〜5mmのものが全体の約90%を占め、平均粒径が1.8mmの乾燥珪砂2号を上記小型2軸パドルミキサーの左端部上方から100kg/ 分で投入した。更に、珪砂2号が小型2軸パドルミキサーに落ちる部分に水を5リットル/ 分噴霧した。珪砂2号と水は小型2軸パドルミキサーで攪拌移動することにより、珪砂2号の表面を均等に湿らせることができた。次に、珪砂2号及び水の投入口から右へ0.6m の部分に平均粒径75μm の粉末冶金用鉄粉を上方から25kg/ 分の割合で投入した。投入した鉄粉は表面が湿らせた珪砂2号と共に、小型2軸パドルミキサーで攪拌、移動され排出口から均一な混合物として排出された。混合物が排出された後の小型2軸パドルミキサーを点検したところ、鉄粉や珪砂2号が偏って付着している部分は確認できなかった。原料の合計使用量は珪砂2号が1000kg、水が50リットル、粉末冶金用鉄粉が250kgであった。
【0023】
(混合物の分離性評価)
2リットルガラス容器に前記混合物を容器容積の80%となるように充填、封止し、振幅巾30mm、振幅回数120回/分で1分間加振して目視観察した。その結果、粉末冶金用鉄粉の分離は認められず、ガラス容器中の混合物を上中下の3試料に分けて含有量を分析したところ、鉄粉と珪砂2号の重量比はいずれも投入量比率に対して、ばらつきは2%以内であった。更に、混合物を顕微鏡で観察したところ、珪砂2号の表面に鉄粉がきなこをまぶしたように均一に付着していた。
【0024】
比較例1
水の噴霧を行わない以外は、実施例1と同様の方法で小型2軸パドルミキサーの排出口から混合物を得た。該混合物は一見、均一混合物として排出された。混合物が排出された後の小型2軸パドルミキサー内を観察したところ、小型2軸パドルミキサーの下方全域、特に、鉄粉投入口の下方に鉄粉の塊が残留していた。得られた混合物の分離性を実施例1と同様の加振方法で評価したところ、粉末冶金用鉄粉はガラス容器の下方に沈降し、明らかに鉄粉と珪砂2号は分離していた。
【0025】
参考例1
粒径2〜5mmのものが全体の約90%を占め、平均粒径が1.8mmの乾燥珪砂2号50kgに水分2.5リットルを加え、回転軸が垂直で攪拌羽根が水平面内を回転する小型ミキサーを用いて攪拌し、珪砂2号の表面を均等に湿らせた(含水比5%)。次いで、湿った珪砂2号52.5kgに、平均粒径75μm の粉末冶金用鉄粉を12.5kg混合し、更に、同じ小型ミキサーを用いて該混合物が主に水平面内において攪拌される条件で10分間行った。得られた珪砂2号と鉄粉の混合物は、一見均質攪拌混合されたように見えたが、攪拌羽根の外周部分に鉄粉の一部が集積しており、混合が偏っていることが判明した。
【0026】
実施例1から明らかなように、含水量5%の湿った珪砂2号に粉末冶金用鉄粉を添加し、更に、天地方向に回転するように攪拌した混合物は、粉末冶金用鉄粉と珪砂2号の付着が強固であり、容易には脱落しないものであった。これに対して、比較例1は乾燥した珪砂2号と粉末冶金用鉄粉をいくら強固に攪拌しても、粉末冶金用鉄粉は分離しており、適量の水分の存在が大切であることが判った。一方、攪拌方法は水平面内の攪拌より、上下方法の攪拌が優れていることが判った。
【0027】
【発明の効果】
本発明の地下水浄化杭用材料によれば、上記粒径の砂又は礫分と還元剤である金属粉体が、適量の水の存在により均一混合物となり、且つ砂又は礫分の表面に金属粉体が吸着状態にあるため、該混合物から還元剤である金属粉体が浄化杭用材料製造過程、搬出及び浄化杭打設に至る一連の振動過程においても何ら分離することはない。また、砂又は礫分中に還元剤である金属粉体が均一に分布するため、地下水浄化杭用材料として好適である。
また、本発明の地下水浄化杭用材料の製造方法によれば、得られた地下水浄化杭用材料は前記同様の効果を奏する。また、本発明の製造方法は既存の設備を使用し、簡易な方法で行えるため、製造コストを低減させることができる。
また、本発明の地下水浄化杭によれば、例えば、地下水中の難分解性ハロゲン化炭化水素は、還元性金属粉体の存在下、脱ハロゲン化され、無害な炭化水素に変換される。これにより、難分解性ハロゲン化炭化水素が無害化され、汚染地下水を浄化できる。また、地下水浄化杭は、該杭中に還元剤が均一に分布しているため、該浄化杭を通過する汚染地下水は長期間に渡り安定して浄化される。更に、汚染地下水の流れを全部遮断するように形成される連続壁に比較して、浄化杭の施工が行い易く、還元剤を含めた浄化杭材料を節減できる。また、下流側に設置される既存井戸における浄化の負荷を低減できる
【図面の簡単な説明】
【図1】 地下水浄化杭の配置を説明する図である。
【図2】 図1のX−X線に沿って見た図である。
【図3】 地下水浄化杭の他の配置を説明する図である。
【符号の説明】
1、11、12、13 地下水浄化杭
1a 空打ち部
1b 浄化杭
1A 地下水浄化杭の前列
1B 地下水浄化杭の後列
2 舗装部
3 地表
101 地下水浄化杭と隣接地下水浄化杭の隙間
α 汚染地下水の流れと地下水浄化杭の列方向とのなす角度
W.L. 地下水水位
[0001]
BACKGROUND OF THE INVENTION
The present invention is for a groundwater purification pile that can be stably held in sand or gravel without separating a metallic reducing agent used to purify groundwater contaminated with volatile organic compounds and the like. The present invention relates to a material, a manufacturing method thereof, and a groundwater purification pile using the material.
[0002]
[Prior art]
Volatile organic compounds such as trichlorethylene, which are used in large quantities in the cleaning process of semiconductor manufacturing plants, etc., may contaminate the soil or groundwater due to leakage, etc. There is a problem that the use of groundwater is restricted.
[0003]
As a solution to this problem, a continuous purification wall containing a metallic reducing agent is formed in the ground in a direction to block the flow of groundwater contaminated with volatile organic compounds, and the groundwater passes through the purification continuous wall. There is a method of decomposing pollutants and making them non-polluting by a reduction reaction (International Publication No. WO91 / 08176).
[0004]
This treatment method is a useful technique because pollutants in groundwater are effectively decomposed. However, this method, when installing a purification continuous wall in the ground, because the metallic reducing agent is dense, it separates from the bulking material such as sand or gravel, reducing the purification function of groundwater There is a problem. In order to solve such a problem, the purification wall continuously disposed in the ground is a cylindrical continuous pile or intermittent pile, and a cylindrical bag containing a metallic reducing agent is stacked on the column, and the cylindrical bag is further added to a donut. There is also disclosed one in which separation of the metallic reducing agent is prevented by using a mold and water permeability is improved (Japanese Patent Laid-Open No. 11-156351).
[0005]
[Problems to be solved by the invention]
However, the method of stacking a cylindrical bag containing a metallic reducing agent in a column is complicated and troublesome, and increases the construction cost. It is even more so if the cylindrical bag is donut shaped. Also, as a groundwater purification method, instead of constructing a continuous underground purification wall and treating it as a whole amount of contaminated groundwater, that is, a transmittance of 100%, the conventional well for pumping contaminated water is effectively utilized, There is also a demand for the installation of underground purification walls that reduce the processing load of pollutants in the country.
[0006]
Accordingly, an object of the present invention is to use a groundwater purification pile material that does not cause separation of a high-density powdery metallic reducing agent, a method for producing the same by a simple method, and the groundwater purification pile material. It is to provide constructed groundwater purification piles.
[0007]
[Means for Solving the Problems]
In such a situation, as a result of intensive studies, the present inventors used a specific particle size range of sand or gravel as an extender, and when mixing and stirring a metal powder as a reducing agent, If the water is so wet that the sand or gravel surface is wet, the powder adheres to the surface of the sand or gravel as if it were so-called kinako, There is no separation in the series of vibration processes leading to unloading and purification pile driving, and if this is used as a material for groundwater purification piles, the reduction purification function of the purification piles will be maintained continuously and effectively. As a result, the present invention has been completed.
[0008]
That is, the present invention sprays water onto sand or gravel having a particle size of 0.5 to 20 mm , stirs and moves to uniformly wet the surface of the sand or gravel, and then applies a metal powder as a reducing agent. An object of the present invention is to provide a material for groundwater purification piles, which is obtained by charging and moving by stirring .
[0009]
In the present invention, 3 to 11 parts by weight of water is sprayed on 100 parts by weight of sand or gravel on sand or gravel having a particle size of 0.5 to 20 mm , and moved by stirring to move the sand or gravel. a state moistened and then, mixing the metal powder is a reducing agent of 10 to 200 parts by weight relative to sand or gravel per 100 parts by weight, groundwater purification pile material, characterized in that the stirring movement It is in providing the manufacturing method of.
[0010]
Further, the present invention, the purification pile made of the material for groundwater purification pile is arranged intermittently and in a row in the ground, the purification pile is arranged deeper than the groundwater level, shallower than the groundwater level Is to provide a groundwater purification pile characterized by being an empty-placed portion.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
In the groundwater purification pile material of the present invention, the sand or gravel having a particle diameter of 0.5 to 20 mm refers to medium sand, coarse sand, fine gravel and medium gravel, among natural soils, A mixture of two or more can be used. Artificial crushed stone having a particle diameter of 0.5 to 20 mm and general crushed stone 7 for civil engineering can also be used. When the particle size of the sand or gravel is within the above range, uniform mixing with a metallic reducing agent such as iron powder is possible, and appropriate water permeability is obtained when used as a purification pile. The sand or gravel having a particle size of 0.5 to 20 mm has a fine gravel of 2 to 5 mm in the material of 80% or more, preferably 90% or more, and the balance is 0.5%. Those within the range of ˜20 mm are more preferred. The particle size of the sand or gravel is within the above range, but may contain a small amount of fine sand or coarse gravel that is less than 0.5 mm in particle size and 20 mm in particle size as long as the effect of the present invention is not impaired. Good.
[0012]
Examples of the metal powder as the reducing agent include iron or zinc simple substance, or an alloy or compound powder thereof. Of these, iron powder is preferable in that it is inexpensive and can be used as waste. The metal powder as the reducing agent has an average particle size of about 1/2 to 1/100 of the particle size of sand or gravel, and in the presence of an appropriate amount of water described later, sand or gravel and metal powder. And a uniform mixture can be formed. Moreover, if the compounding quantity of this metal powder is the range of 10-200 weight part with respect to 100 weight part of materials for groundwater purification piles, Preferably it is 10-50 weight part, It is enough for exhibiting a reduction purification function. The amount can be made small.
[0013]
The material for groundwater purification piles of the present invention is a mixture in which sand or gravel having the above particle size and metal powder as a reducing agent are uniformly mixed, and has a water content of 1 to 10% by weight, preferably 3 ~ 5% by weight. The uniformly mixed mixture means a state in which the metal powder is uniformly distributed in the sand or gravel, and according to visual observation, the surface of the sand or gravel is visible to the extent that water floats. It is in a wet state, in which the metal powder adheres to the surface of the sand or gravel as if so-called kina powder was evenly coated. That is, it is presumed that the sand or gravel surface and the metal powder are in an adsorbed state due to the suction action of the water meniscus existing between them. When the water content is less than 1% by weight or more than 10% by weight, the above suction action hardly occurs. Therefore, even with slight vibration, the high-density metal powder tends to be separated.
[0014]
According to the groundwater purification pile material of the present invention, the sand or gravel of the above particle size and the metal powder as the reducing agent become a hardly separable mixture that is uniformly mixed by the presence of an appropriate amount of water, The metal powder as the reducing agent is not separated from the mixture in a series of vibration processes from the purification pile material manufacturing process, unloading and purification pile placement. Moreover, since the metal powder which is a reducing agent distributes uniformly in sand or gravel, it is suitable as a material for groundwater purification piles.
[0015]
The material for groundwater purification piles of the present invention comprises a sand or gravel having a particle size of 0.5 to 20 mm, 3 to 11 parts by weight of water with respect to 100 parts by weight of the sand or gravel, and the sand or gravel 100 It is produced by mixing 10 to 200 parts by weight of metal powder as a reducing agent with respect to parts by weight and stirring to obtain a mixture in which the sand or gravel and the metal powder are uniformly mixed. However, preferably, sand or gravel having a particle size of 0.5 to 20 mm and 3 to 11 parts by weight of water are mixed in advance with respect to 100 parts by weight of the sand or gravel and stirred to remove the sand or gravel. Then, the sand or gravel content and the metal powder are mixed with 10 to 200 parts by weight of the reducing agent, and then stirred with respect to 100 parts by weight of the sand or gravel content. Is produced by obtaining a mixture that is uniformly mixed. It is preferable that the surface of the sand or gravel is moistened with an appropriate amount of water in advance and then the metal powder is added, in that the adhesion of the metal powder to the sand or gravel proceeds smoothly due to the adsorption action.
[0016]
The stirring method is not particularly limited as long as it sufficiently stirs the sand or gravel and the metal powder. In particular, the mixture of sand or gravel and the metal powder is rotated and stirred in the vertical direction. That is, it is preferable to perform stirring with movement in the vertical direction. Such agitation is performed by a paddle mixer having a rotating shaft that is horizontal or inclined with respect to a horizontal plane, or a concrete mixer that agitates by rotating a container in a vertical direction. In the case of a paddle mixer whose rotation axis is inclined with respect to a horizontal plane, the maximum inclination angle is about 30 degrees, and usually 3 to 5 degrees. In the paddle mixer, if the rotating shaft has a slight inclination, the residence time of the agitated material in the paddle becomes longer, and more sufficient stirring is performed. Among the above stirring means, it is possible to use a concrete mixer that stirs by rotating the container in the vertical direction, so that a relatively large volume of stirring is possible, and the entire mixture of sand or gravel and metal powder is It is suitable in that it is stirred by rotating in the vertical direction. Moreover, in the preferable production method, it is efficient that the stirring of the sand or gravel and water and the stirring of the wet sand or gravel and the metal powder are both performed with the same stirring device. The conditions for stirring the sand or gravel and the metal powder are not particularly limited, but in the case of a concrete mixer, 5 to 15 rpm and several to ten and several minutes are preferable.
[0017]
According to the production method of the present invention, the obtained groundwater purification pile material, as described above, is uniformly mixed in the presence of an appropriate amount of water with the above-mentioned particle size sand or gravel and the reducing agent metal powder. Therefore, the metal powder as the reducing agent is not separated from the mixture even in a series of vibration processes from the process of producing the material for purification piles, carrying out, and placing the purification piles. Moreover, since the metal powder which is a reducing agent distributes uniformly in sand or gravel, it is suitable as a material for groundwater purification piles. Furthermore, since the manufacturing method of the present invention can be performed by a simple method using existing equipment, it can greatly contribute to cost reduction.
[0018]
The groundwater purification pile of the present invention is formed by disposing the purification pile made of the material for groundwater purification piles intermittently and in a row in the ground. That is, the groundwater purification pile material is carried in from a manufacturing factory to a construction site by a method that avoids mixing of rainwater, and the purification pile is placed by a known sand pile construction method. In the known sand pile construction method, for example, after the hollow tube has been penetrated to the design depth in the ground, the material is introduced, and in the process of pulling the hollow tube to the ground surface, the introduced material is discharged to sand. It is a method of creating a pile. In addition, examples of the row-like arrangement include one row and two or more rows.
[0019]
The example of arrangement | positioning of the groundwater purification pile of this invention is demonstrated with reference to FIG.1 and FIG.2. FIG. 1 is a longitudinal sectional view for explaining the arrangement of groundwater purification piles, and FIG. 2 is a view taken along line XX of FIG. 1 and 2, the groundwater purification pile 1 is formed downstream of the pollution source with respect to the groundwater flow, and the groundwater level W.V. L. A purification pile 1b disposed deeper and mixed with the metal powder as the reducing agent; L. It consists of the blanking part 1a arrange | positioned in a shallower part. Immersion refers to sand or gravel that is not mixed with metal powder as a reducing agent. Groundwater level W. L. By providing the blanking portion 1a in the shallower portion, it is possible to eliminate waste of using a reducing agent in a region where no volatile organic matter exists. In addition, although the effect of the present invention is achieved even if the empty portion is an unfilled space, it is dangerous that irregularities occur on the ground surface. As described above, the empty portion not filled with metal powder can be used for safety such as construction. Can be secured. The groundwater purification pile of this example is the groundwater level W. L. Although the empty portion 1a is arranged in a shallower portion, as another example, the groundwater level W.V. L. The form which arrange | positions the purification | cleaning pile in which the metal powder which is the said reducing agent was mixed also in a shallower part is mentioned. In this case, although there is a waste of using a reducing agent in an area where volatile organic substances do not exist, the groundwater level W.V. L. There is an advantage that continuous piles from deeper to the ground surface can be constructed with uniform material and construction efficiency is good. In the figure, the groundwater purification piles 1 are arranged in the ground intermittently at equal pitches and in two rows. In this example, there are a total of 36 purification piles in one row and two rows, and the purification pile 13 in the rear row 1B enters between the purification pile 11 in the front row 1A and the purification pile 12 adjacent thereto. In other words, the purification piles in the front row 1A and the purification piles in the rear row 1B are arranged in a staggered manner. And as shown in FIG. 1, it arrange | positions so that the ratio of the cross-sectional area which a purification | cleaning pile occupies in a front view and a purification | cleaning pile formation area cross section, ie, the permeability | transmittance of groundwater may be 75%. In FIG. 1, reference numeral 2 indicates a pavement portion of the ground surface 3.
[0020]
Next, a method for purifying contaminated groundwater by the groundwater purification pile 1 will be described. 75% of the contaminated groundwater permeates through the groundwater purification pile 1 arranged in two rows intermittently at an equal pitch in the ground. At that time, since the groundwater usually has a neutral pH range and a low redox potential, for example, the hardly decomposable halogenated hydrocarbon in the groundwater is dehalogenated in the presence of the reducing metal powder, It is converted into harmless hydrocarbons and generates hydrogen. Thereby, the hardly decomposable halogenated hydrocarbon is rendered harmless and the contaminated groundwater is purified. In this groundwater purification pile 1, since the reducing agent is uniformly distributed in the pile, the contaminated groundwater passing through the purification pile 1 is stably purified over a long period of time. And 25% of the contaminated groundwater passes through the groundwater purification pile 1 without passing through it, but in the downstream well not shown in the figure, it is pumped up as a groundwater whose pollutant concentration is diluted. It is purified on the ground based on this method. Thereby, compared with the continuous wall formed so that all the flows of contaminated groundwater may be interrupted, it becomes easier to perform the purification pile, and the purification pile material including the reducing agent can be saved. Moreover, the purification load in the existing well can be reduced.
[0021]
The arrangement of the groundwater purification pile according to the present invention is not particularly limited. For example, as shown in FIG. 3, intermittently and in two rows of staggered arrangement in the ground as a flow of contaminated groundwater as shown in FIG. On the other hand, if the angle α or smaller than the angle α is taken, the size of the gap 101 between one purification pile 11 in the front row 1A and the purification pile 12 adjacent thereto becomes narrower with respect to the flow direction of the contaminated groundwater. The purification pile 13 is completely contained, and the transmittance can be almost 100%. Thus, in this invention, various arrangement | sequence forms can be taken so that the transmittance | permeability of groundwater may be 50-100%. Various arrangement forms include one row of intermittent arrangements, two rows or three or more rows of staggered intermittent arrangements, and further, an arrangement with an inclination with respect to the flow of groundwater.
[0022]
【Example】
EXAMPLES Next, although an Example is given and this invention is demonstrated more concretely, this is only an illustration and does not restrict | limit this invention.
Example 1
The axis of rotation is inclined 5 degrees from the horizontal plane, the total length is 2.3 m, each axis is rotated in the opposite direction of each other at 80 rpm, and the mixture is agitated while rotating in the vertical direction at a speed of 1 m / min in the left-right direction. A small biaxial paddle mixer was used that moved and discharged the mixture from the end of the shaft. First, dry silica sand No. 2 having a particle diameter of 2 to 5 mm accounted for about 90% of the whole, and an average particle diameter of 1.8 mm was introduced at 100 kg / min from the upper left end of the small biaxial paddle mixer. Further, water was sprayed at a rate of 5 liters / minute on the part where the silica sand No. 2 falls into a small two-shaft paddle mixer. Silica sand No. 2 and water were moistened and moved by a small biaxial paddle mixer, so that the surface of the silica sand No. 2 could be evenly moistened. Next, iron powder for powder metallurgy with an average particle size of 75 μm was charged from the top at a rate of 25 kg / min. The introduced iron powder was agitated and moved by a small two-shaft paddle mixer together with silica sand No. 2 whose surface was moistened, and discharged from the outlet as a uniform mixture. When the small biaxial paddle mixer after the mixture was discharged was inspected, it was not possible to confirm a portion where iron powder or silica sand No. 2 was unevenly attached. The total amount of raw materials used was 1000 kg for silica sand 2, 50 liters of water, and 250 kg of iron powder for powder metallurgy.
[0023]
(Evaluation of separability of mixture)
The mixture was filled and sealed in a 2 liter glass container so as to be 80% of the container volume, and the mixture was vibrated for 1 minute with an amplitude width of 30 mm and an amplitude of 120 times / minute, and visually observed. As a result, separation of iron powder for powder metallurgy was not recognized, and the content in the glass container was divided into three samples, upper, middle and lower, and the contents were analyzed. The variation was within 2% with respect to the amount ratio. Furthermore, when the mixture was observed with a microscope, iron powder was uniformly attached to the surface of silica sand No. 2 as if it was covered with kinako.
[0024]
Comparative Example 1
A mixture was obtained from the outlet of the small biaxial paddle mixer in the same manner as in Example 1 except that no water spraying was performed. The mixture seemed to be discharged as a homogeneous mixture. When the inside of the small biaxial paddle mixer was observed after the mixture was discharged, a lump of iron powder remained in the entire lower area of the small biaxial paddle mixer, particularly below the iron powder inlet. When the separability of the obtained mixture was evaluated by the same vibration method as in Example 1, the iron powder for powder metallurgy settled below the glass container, and the iron powder and quartz sand No. 2 were clearly separated.
[0025]
Reference example 1
The particle size of 2-5mm occupies about 90% of the total, 2.5 liters of water is added to 50kg of dry silica sand No. 2 with an average particle size of 1.8mm, the rotation axis is vertical, and the stirring blade rotates in the horizontal plane. The surface of silica sand No. 2 was evenly moistened (water content ratio 5%). Next, 12.5 kg of iron powder for powder metallurgy with an average particle diameter of 75 μm is mixed with 52.5 kg of wet silica sand No. 2 and, further, the mixture is stirred mainly in a horizontal plane using the same small mixer. 10 minutes. The resulting mixture of silica sand No. 2 and iron powder seemed to be homogeneously stirred and mixed, but it was found that a part of the iron powder was accumulated on the outer periphery of the stirring blade and the mixing was uneven did.
[0026]
As is apparent from Example 1, the mixture obtained by adding iron powder for powder metallurgy to wet silica sand No. 2 having a water content of 5% and further stirring in a vertical direction is composed of iron powder for powder metallurgy and silica sand. The adhesion of No. 2 was strong and did not easily fall off. On the other hand, in Comparative Example 1, no matter how hard the dried silica sand No. 2 and iron powder for powder metallurgy are stirred firmly, the iron powder for powder metallurgy is separated and the presence of an appropriate amount of water is important. I understood. On the other hand, it was found that the agitation method is superior to the agitation in the horizontal plane.
[0027]
【The invention's effect】
According to the material for groundwater purification piles of the present invention, the sand or gravel having the above particle size and the metal powder as the reducing agent become a uniform mixture due to the presence of an appropriate amount of water, and the metal powder on the surface of the sand or gravel. Since the body is in an adsorbed state, the metal powder as a reducing agent is not separated from the mixture even in a series of vibration processes from the purification pile material manufacturing process, unloading and purification pile placement. Moreover, since the metal powder which is a reducing agent distributes uniformly in sand or gravel, it is suitable as a material for groundwater purification piles.
Moreover, according to the manufacturing method of the material for groundwater purification piles of this invention, the obtained material for groundwater purification piles has an effect similar to the above. Moreover, since the manufacturing method of the present invention can be performed by a simple method using existing equipment, the manufacturing cost can be reduced.
Further, according to the groundwater purification pile of the present invention, for example, the hardly decomposable halogenated hydrocarbon in the groundwater is dehalogenated in the presence of the reducible metal powder and converted into a harmless hydrocarbon. Thereby, the hardly decomposable halogenated hydrocarbon is rendered harmless and the contaminated groundwater can be purified. In the groundwater purification pile, since the reducing agent is uniformly distributed in the pile, the contaminated groundwater that passes through the purification pile is stably purified over a long period of time. Furthermore, compared to a continuous wall formed so as to block all the contaminated groundwater flow, the purification pile can be easily constructed, and the purification pile material including the reducing agent can be saved. Moreover, it is possible to reduce the purification load in the existing wells installed downstream [Brief description of the drawings]
FIG. 1 is a diagram for explaining the arrangement of groundwater purification piles.
2 is a view taken along line XX in FIG. 1. FIG.
FIG. 3 is a diagram illustrating another arrangement of groundwater purification piles.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1, 11, 12, 13 Groundwater purification pile 1a Empty casting part 1b Purification pile 1A Front row of groundwater purification pile 1B Rear row of groundwater purification pile 2 Pavement part 3 Ground surface 101 Clearance between groundwater purification pile and adjacent groundwater purification pile α Flow of contaminated groundwater And the angle formed by the row direction of the groundwater purification pile L. Groundwater level

Claims (5)

粒径0.5〜20mmの砂又は礫分に水を噴霧し、攪拌移動して砂又は礫分の表面を均等に湿らせ、次いで、還元剤である金属粉体を投入し、攪拌移動して得られるものであることを特徴とする地下水浄化杭用材料。 Water is sprayed onto sand or gravel with a particle size of 0.5 to 20 mm , stirring and moving to evenly wet the surface of sand or gravel, then metal powder as a reducing agent is added, stirring and moving A material for groundwater purification piles obtained by 粒径0.5〜20mmの砂又は礫分、該砂又は礫分100重量部に対して3〜11重量部の水を噴霧し、攪拌移動して砂又は礫分を湿らせた状態とし、次いで、該砂又は礫分100重量部に対して10〜200重量部の還元剤である金属粉体を混合し、攪拌移動することを特徴とする地下水浄化杭用材料の製造方法。3-11 parts by weight of water is sprayed onto 100 parts by weight of sand or gravel on sand or gravel with a particle size of 0.5 to 20 mm, and the mixture is stirred and moved to wet the sand or gravel. Then, 10 to 200 parts by weight of metal powder, which is a reducing agent, is mixed with 100 parts by weight of the sand or gravel, and stirred and moved . 前記攪拌移動は回転軸が水平又は水平面に対して傾斜を有するパドルミキサー又は容器が天地方向に回転して攪拌を行うコンクリートミキサーにより行われることを特徴とする請求項記載の地下水浄化杭用材料の製造方法。The groundwater purification pile material according to claim 2, wherein the agitation movement is performed by a paddle mixer having a rotation axis that is horizontal or inclined with respect to a horizontal plane, or a concrete mixer that agitates by rotating a container in a vertical direction. Manufacturing method. 請求項1記載の地下水浄化杭用材料からなる浄化杭を、地中に間欠的且つ列状的に配置してなり、前記浄化杭は地下水水位より深部に配置され、地下水水位より浅部は空打ち部であることを特徴とする地下水浄化杭。 The purification pile made of the groundwater purification pile material according to claim 1 is arranged intermittently and in a row in the ground, and the purification pile is arranged deeper than the groundwater level, and the shallower portion than the groundwater level is empty. A groundwater purification pile characterized by being a striking part. 前記地下水浄化杭は、地中に間欠的且つ複数列状で、更に千鳥状とし、地下水の透過率が50〜100%となるように配置されることを特徴とする請求項記載の地下水浄化杭。The groundwater purification piles on an intermittent and multiple rows in the ground, further a staggered, groundwater purification according to claim 4, wherein the transmittance of the groundwater, characterized in that it is arranged to be 50-100% Pile.
JP2001240994A 2001-08-08 2001-08-08 Groundwater purification pile material, manufacturing method thereof, and groundwater purification pile Expired - Lifetime JP4721312B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001240994A JP4721312B2 (en) 2001-08-08 2001-08-08 Groundwater purification pile material, manufacturing method thereof, and groundwater purification pile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001240994A JP4721312B2 (en) 2001-08-08 2001-08-08 Groundwater purification pile material, manufacturing method thereof, and groundwater purification pile

Publications (2)

Publication Number Publication Date
JP2003047978A JP2003047978A (en) 2003-02-18
JP4721312B2 true JP4721312B2 (en) 2011-07-13

Family

ID=19071519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001240994A Expired - Lifetime JP4721312B2 (en) 2001-08-08 2001-08-08 Groundwater purification pile material, manufacturing method thereof, and groundwater purification pile

Country Status (1)

Country Link
JP (1) JP4721312B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8029008B2 (en) 2005-04-27 2011-10-04 Hendrickson Usa, L.L.C. Vehicle suspensions having leaf springs and alternative clamp groups
US8177246B2 (en) 2005-04-27 2012-05-15 Hendrickson Usa, L.L.C. Axle seat for vehicle suspensions

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4835624B2 (en) * 2008-03-25 2011-12-14 栗田工業株式会社 Permeation reaction wall and groundwater purification method
JP5463928B2 (en) * 2010-01-19 2014-04-09 三浦工業株式会社 Water treatment system
CN103922456A (en) * 2014-04-14 2014-07-16 北京工业大学 Method for preparing PRB filler of sodium alginate coated with coarse sand and loaded with zero-valent iron

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000263068A (en) * 1999-03-19 2000-09-26 Taisei Corp Permeable ground water purifying wall and ground water purifying wall

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3516613B2 (en) * 1999-07-01 2004-04-05 同和鉱業株式会社 Contaminated groundwater purification method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000263068A (en) * 1999-03-19 2000-09-26 Taisei Corp Permeable ground water purifying wall and ground water purifying wall

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8029008B2 (en) 2005-04-27 2011-10-04 Hendrickson Usa, L.L.C. Vehicle suspensions having leaf springs and alternative clamp groups
US8177246B2 (en) 2005-04-27 2012-05-15 Hendrickson Usa, L.L.C. Axle seat for vehicle suspensions

Also Published As

Publication number Publication date
JP2003047978A (en) 2003-02-18

Similar Documents

Publication Publication Date Title
JP3079109B2 (en) How to remove halogenated pollutants in groundwater
CN102267797A (en) Integral process for ecologically desilting and curing sludge
WO2001008825A1 (en) Soil purification agent and method for purifying soil
KR20030087915A (en) Method for purifying a layer of contaminated soil and apparatus
JP4721312B2 (en) Groundwater purification pile material, manufacturing method thereof, and groundwater purification pile
CN1143336A (en) Rectangular floatation plant
CN108911461A (en) A kind of mercury object original position abatement disposition ship
EP0045542B1 (en) Method of purifying soil polluted by oil or the like
JP3809579B2 (en) Contaminated soil improvement method
JP3493209B2 (en) Drilling mud treatment method
GB2152021A (en) Biological treatment of effluent
JP4067440B2 (en) Underground purification body with poorly permeable partition layer and construction method of underground purification body
JP6366275B2 (en) Purification method for contaminated ground
JP3897553B2 (en) Construction method of underground purification wall
JP5167190B2 (en) High specific gravity stable liquid and excavation method
JP4177155B2 (en) Purification body construction method
JP4135909B2 (en) Purification method for contaminated ground
KR101320302B1 (en) Method for processing muddy water in the huge tunnel
JP5881834B2 (en) Soil improvement
KR102208394B1 (en) Contaminated soil remediation system and remediation method having the same
JP2001269675A (en) Method and device for process of sewage water
CN112404116B (en) Soil remediation processing system
JP2008114174A (en) Method and apparatus for treating turbid water
NZ518383A (en) Separation of silt and water
JP2007209826A (en) Purifying method of polluted soil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110331

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110401

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4721312

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term