JP4719255B2 - High frequency accelerator - Google Patents

High frequency accelerator

Info

Publication number
JP4719255B2
JP4719255B2 JP2008190542A JP2008190542A JP4719255B2 JP 4719255 B2 JP4719255 B2 JP 4719255B2 JP 2008190542 A JP2008190542 A JP 2008190542A JP 2008190542 A JP2008190542 A JP 2008190542A JP 4719255 B2 JP4719255 B2 JP 4719255B2
Authority
JP
Japan
Prior art keywords
frequency
cavity
loop
resonators
acceleration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008190542A
Other languages
Japanese (ja)
Other versions
JP2010027529A (en
Inventor
博文 田中
和男 山本
洋一 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008190542A priority Critical patent/JP4719255B2/en
Publication of JP2010027529A publication Critical patent/JP2010027529A/en
Application granted granted Critical
Publication of JP4719255B2 publication Critical patent/JP4719255B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、荷電粒子を高エネルギーまで加速する線形型の高周波加速器に関する。   The present invention relates to a linear high-frequency accelerator that accelerates charged particles to high energy.

一般に、高周波加速器で荷電粒子を効率良く加速させるためには、荷電粒子が加速ギャップを通過するときのタイミングと高周波電界の位相を調整する必要があると共に、加速電界の電界強度も所定の大きさにする必要がある。さらに、複数の高周波加速空洞共振器(以下、単に空洞共振器という)を組み合わせて線形型の高周波加速器を構成する場合には、各々の加速位相と加速電界強度とを調整する必要がある。   In general, in order to efficiently accelerate charged particles with a high-frequency accelerator, it is necessary to adjust the timing when the charged particles pass through the acceleration gap and the phase of the high-frequency electric field, and the electric field strength of the accelerating electric field also has a predetermined magnitude. It is necessary to. Furthermore, when a linear type high frequency accelerator is configured by combining a plurality of high frequency acceleration cavity resonators (hereinafter simply referred to as “cavity resonators”), it is necessary to adjust each acceleration phase and acceleration electric field strength.

そこで、従来の線形型の高周波加速器は、個々の空洞共振器毎に高周波電源を接続し、個々の高周波電源で高周波電界の強度と、高周波電源間の位相を調整することにより実現している。例えば、下記の非特許文献1に記載の従来技術では、高周波加速器として、RFQ空洞共振器とAPF−IH空洞共振器との2つの空洞共振器から構成し、それぞれの空洞共振器毎に高周波電界を励起するために高周波電源を設置し、それぞれ高周波伝送管(同軸管)を通して各空洞共振器にパワーを供給している。   Therefore, a conventional linear type high frequency accelerator is realized by connecting a high frequency power source to each individual cavity resonator and adjusting the strength of the high frequency electric field and the phase between the high frequency power sources with each high frequency power source. For example, in the related art described in Non-Patent Document 1 below, the high-frequency accelerator includes two cavity resonators, an RFQ cavity resonator and an APF-IH cavity resonator, and a high-frequency electric field is provided for each cavity resonator. In order to excite the power, a high frequency power supply is installed, and power is supplied to each cavity resonator through a high frequency transmission tube (coaxial tube).

また、複数の空洞共振器を組み合わせて高周波加速器を構成する場合には、結合係数も重要である。すなわち、結合係数が小さいと、空洞共振器間の伝播速度が遅くなり、各空洞共振器にパワーを供給する高周波伝送管(同軸管)に大きな電圧が立ち放電する可能性がある。逆に、結合係数が大きすぎると、空洞共振器全体で見たQ値が下がってしまうので、高周波電源に必要となされるパワーが大きくなる。   In addition, when a high frequency accelerator is configured by combining a plurality of cavity resonators, the coupling coefficient is also important. That is, if the coupling coefficient is small, the propagation speed between the cavity resonators is slow, and there is a possibility that a large voltage will stand up and discharge in the high-frequency transmission tube (coaxial tube) that supplies power to each cavity resonator. On the other hand, if the coupling coefficient is too large, the Q value seen in the entire cavity resonator is lowered, so that the power required for the high frequency power supply is increased.

そのため、例えば下記の非特許文献2記載の従来技術では、個々の空洞共振器をスロット結合(空洞共振器に穴をあけそこからの磁界の漏れにより2つの空洞を結合)していた。この場合、結合係数の調整は、スロットの穴のサイズを微妙に後加工して調整することにより実施している。   Therefore, for example, in the prior art described in Non-Patent Document 2 below, individual cavity resonators are slot-coupled (two cavities are coupled by making holes in the cavity resonators and leaking magnetic fields therefrom). In this case, the coupling coefficient is adjusted by finely post-processing and adjusting the slot hole size.

Y.Iwata,et.al.,Alternating−phase focused IH−DTL for an injector of heavy−ion medical accelerators,Nuclear Instruments & Methods in Physics Research A,569,(2006),p685−696.Y. Iwata, et. al. , Alternate-phase focused IH-DTL for an injector of heavy-ion medical accelerators, Nuclear Instruments & Methods in Physics Research A, 569, (2006), p685-696. 青、他、J-PARC ACS用ブリッジカプラの開発、第28回リニアック技術研究会、(2003).Blue, et al., Development of bridge coupler for J-PARC ACS, 28th Linac Technical Meeting, (2003).

荷電粒子を加速すると運動エネルギーが荷電粒子に与えられる、いわゆるビームローディングが生じるが、そのエネルギーも高周波電源から供給する必要があり、荷電粒子を加速しないときより大きなパワーを必要とする。ビームローディングの位相と高周波電源の位相は異なるので、荷電粒子を加速するときには加速しないときと異なる電源位相にする必要がある。そのため、非特許文献1の従来技術では、空洞共振器毎に高周波電界を励起するために高周波電源を設置し、個々の高周波電源で高周波電界の強度と、高周波電源間の位相を調整することにより、各々の加速位相と加速電界強度とを調整しているため、複雑な制御が必要となる。   When the charged particles are accelerated, so-called beam loading occurs in which kinetic energy is given to the charged particles. However, the energy also needs to be supplied from a high-frequency power source, and requires a larger power than when the charged particles are not accelerated. Since the phase of the beam loading and the phase of the high-frequency power source are different, it is necessary to make the power source phase different from when not accelerating when the charged particles are accelerated. Therefore, in the prior art of Non-Patent Document 1, a high-frequency power source is installed to excite a high-frequency electric field for each cavity resonator, and the strength of the high-frequency electric field and the phase between the high-frequency power sources are adjusted by each high-frequency power source. Since each acceleration phase and acceleration electric field intensity are adjusted, complicated control is required.

また、上記の非特許文献2に記載の従来技術において、結合係数の調整は、スロットの穴のサイズを微妙に後加工して調整して実施している。この場合、スロット穴の部分の空洞は非常に複雑な構成をしており、結合係数の調整には多大な手間を要していた。また、個々の加速空洞共振器は同じ特性の空洞共振器であり、互いに異なる特性をもつ加速空洞共振器には適用し難いという問題がある。   In the prior art described in Non-Patent Document 2, the coupling coefficient is adjusted by slightly post-processing and adjusting the slot hole size. In this case, the cavity of the slot hole portion has a very complicated configuration, and adjustment of the coupling coefficient requires a great deal of labor. In addition, each acceleration cavity resonator is a cavity resonator having the same characteristics, and there is a problem that it is difficult to apply to acceleration cavity resonators having different characteristics.

これらのことから、従来の高周波加速器は、以下のような課題がある。すなわち、(1)互いに異なる特性を持つ複数の空洞共振器に対して1台の高周波電源から個々に異なる所定の加速電界を供給することが難しい。(2)複数の空洞共振器間の加速位相を調整するために複雑な制御が必要である。(3)複数の空洞共振器間の加速電圧を調整するために複雑な制御が必要である。   For these reasons, the conventional high-frequency accelerator has the following problems. That is, (1) it is difficult to individually supply different predetermined acceleration electric fields from one high-frequency power supply to a plurality of cavity resonators having different characteristics. (2) Complex control is required to adjust the acceleration phase between the plurality of cavity resonators. (3) Complex control is required to adjust the acceleration voltage between the plurality of cavity resonators.

本発明は、上記の課題を解決するためになされたもので、複数の高周波加速空洞共振器を組み合わせて線形型の高周波加速器を構成する場合において、1台の高周波電源から個々に異なる所定の加速電界を供給することができ、しかも、従来に比べて加速電圧や加速位相の調整を極めて容易に行うことができるようにすることを目的とする。   The present invention has been made in order to solve the above-described problems. In the case where a linear high-frequency accelerator is configured by combining a plurality of high-frequency accelerating cavities, a predetermined acceleration that is individually different from one high-frequency power source is provided. An object of the present invention is to be able to supply an electric field and to adjust the acceleration voltage and the acceleration phase very easily as compared with the conventional case.

上記の目的を達成するために、本発明では、複数の空洞共振器を有する高周波加速器において、上記各高周波加速空洞共振器は、外導体と内導体で構成された高周波同軸伝送路で相互に結合され、上記高周波同軸伝送路は、その両端部に上記外導体と内導体を接続するループが形成され、上記複数の高周波加速空洞共振器と上記高周波同軸伝送路とは、その共振周波数が略同一で、かつ、上記高周波同軸伝送路の空洞長は、共振波長の(1/2)・N倍(Nは自然数)とは異なる長さに設定されていることを特徴としている。   In order to achieve the above object, according to the present invention, in a high frequency accelerator having a plurality of cavity resonators, each of the high frequency acceleration cavity resonators is coupled to each other by a high frequency coaxial transmission line composed of an outer conductor and an inner conductor. In the high-frequency coaxial transmission line, a loop connecting the outer conductor and the inner conductor is formed at both ends thereof, and the plurality of high-frequency accelerating cavity resonators and the high-frequency coaxial transmission line have substantially the same resonance frequency. The cavity length of the high-frequency coaxial transmission line is set to a length different from (1/2) · N times the resonance wavelength (N is a natural number).

本発明によれば、異なる特性を持つ複数の高周波加速空洞共振器に対して、1台の高周波電源から個々に異なる所定の加速電界を供給することができる。また、複数の高周波加速空洞共振器間の加速位相が自動的に調整されるため、特別の手段を設けて位相調整をすることが不要である。これにより、複数の高周波加速空洞共振器間の加速電圧を調整するための複雑な制御が不要となる。   According to the present invention, it is possible to supply different predetermined acceleration electric fields individually from a single high-frequency power supply to a plurality of high-frequency acceleration cavity resonators having different characteristics. In addition, since the acceleration phase between the plurality of high-frequency accelerating cavities is automatically adjusted, it is not necessary to adjust the phase by providing special means. This eliminates the need for complicated control for adjusting the acceleration voltage between the plurality of high-frequency accelerating cavity resonators.

実施の形態1.
図1は本発明の実施の形態1における高周波加速器の構成図、図2は図1の符合Pで示す部分を拡大して示す断面図、図3は図2の部分を空洞共振器の空洞内部側から見た平面図である。
Embodiment 1 FIG.
1 is a configuration diagram of a high-frequency accelerator according to Embodiment 1 of the present invention, FIG. 2 is an enlarged cross-sectional view showing a portion indicated by reference numeral P in FIG. 1, and FIG. 3 is a diagram showing the portion of FIG. It is the top view seen from the side.

この実施の形態1の高周波加速器は、線形加速器、特にはHモード型加速器であって、イオン源1と前後2段の高周波加速空洞共振器(以下、単に空洞共振器という)2,3が直線状に配置され、これらが真空ダクト4を介して互いに順次接続されている。また、前段の空洞共振器2には、1台の高周波電源5が同軸管からなる高周波伝送管6を介して接続されている。さらに、この実施の形態1の特徴として、前後の空洞共振器2,3間は高周波同軸伝送路としての同軸管空洞7により結合されている。   The high-frequency accelerator according to the first embodiment is a linear accelerator, particularly an H-mode accelerator, in which an ion source 1 and two-stage high-frequency accelerating cavity resonators (hereinafter simply referred to as cavity resonators) 2 and 3 are linear. These are arranged in a row and are sequentially connected to each other through the vacuum duct 4. In addition, one high-frequency power source 5 is connected to the front-stage cavity resonator 2 via a high-frequency transmission tube 6 made of a coaxial tube. Further, as a feature of the first embodiment, the front and rear cavity resonators 2 and 3 are coupled by a coaxial tube cavity 7 as a high-frequency coaxial transmission line.

そして、イオン源1で発生した荷電粒子は、真空ダクト4の中を輸送され、前段の空洞共振器2、および後段の空洞共振器3を経由して加速される。また、前段の空洞共振器2と、後段の空洞共振器3に発生される高周波電界は、高周波電源5、高周波伝送管6、および同軸管空洞7により供給される。   Then, the charged particles generated in the ion source 1 are transported in the vacuum duct 4 and accelerated through the front cavity resonator 2 and the rear cavity resonator 3. The high-frequency electric field generated in the front-stage cavity resonator 2 and the rear-stage cavity resonator 3 is supplied by a high-frequency power source 5, a high-frequency transmission tube 6, and a coaxial tube cavity 7.

なお、前後の空洞共振器2,3の種類には格別な制約はなく、例えば、RFQ加速空洞共振器とAPF−IH加速空洞共振器との組み合わせなど、互いに異なる種類のものであってもよく、また、2つのRFQ加速器、あるいは2つのAPF−IH加速器など同じ種類のものを組み合わせたものであってもよい。また、高周波伝送管6は、高周波の電界を伝送する働きをもつのみであるが、同軸管空洞7は、高周波同軸伝送路としての機能のみならず、数100から数1000の共振の鋭さ(以下、Q値という)を持つ空洞共振器としての機能を有している。なお、Q値の調整については後述する。   There are no particular restrictions on the types of the cavity resonators 2 and 3 before and after, for example, different types such as a combination of an RFQ acceleration cavity resonator and an APF-IH acceleration cavity resonator may be used. In addition, two RFQ accelerators or two APF-IH accelerators may be combined with the same type. The high-frequency transmission tube 6 only has a function of transmitting a high-frequency electric field, but the coaxial tube cavity 7 has not only a function as a high-frequency coaxial transmission line but also several hundreds to thousands of resonance sharpness (hereinafter referred to as “high-frequency coaxial transmission line”). , Which has a function as a cavity resonator having a Q value). The adjustment of the Q value will be described later.

上記の同軸管空洞7は、前後の各空洞共振器2,3の空洞軸方向Zに沿って延びる長尺の横長部7aと、この横長部7aの両端部に設けられて各空洞共振器2,3に挿着された接続部7bとを有する。そして、各接続部7bは、横長部7aに対して回転フランジ等を介して接続されることにより、それぞれ軸心を中心にして回転可能に構成されており、これによって、各接続部7bは、前後の各空洞共振器2,3の空洞軸方向Zに対して、後述するループ14の角度Φが変更できるようになっている。そして、この角度Φを変更することによりループ14内を通過する磁束量が変化し、これに伴って結合係数κが変化するので、このことを利用して結合係数κを調整する。   The coaxial tube cavity 7 is provided with a long lateral portion 7a extending along the cavity axial direction Z of the front and rear cavity resonators 2 and 3, and provided at both ends of the laterally elongated portion 7a. , 3 and a connecting portion 7b. And each connection part 7b is comprised so that it can rotate centering around an axial center, respectively by connecting with the horizontal elongate part 7a via a rotation flange etc. Thereby, each connection part 7b is comprised. The angle Φ of the loop 14 described later can be changed with respect to the cavity axial direction Z of the front and rear cavity resonators 2 and 3. Then, by changing the angle Φ, the amount of magnetic flux passing through the loop 14 changes, and the coupling coefficient κ changes accordingly, and this is used to adjust the coupling coefficient κ.

さらに、各接続部7bは、横長部7aに対して例えばスプライン嵌合等によって軸方向に沿ってスライド可能に接続されており、これによって同軸管空洞7の全体の空洞長を可変できる構成となっている。そして、後述するように同軸管空洞7の空洞長を変化させることにより、共振周波数を調整する。   Further, each connecting portion 7b is connected to the horizontally long portion 7a so as to be slidable along the axial direction by, for example, spline fitting or the like, whereby the entire cavity length of the coaxial tube cavity 7 can be varied. ing. Then, as described later, the resonance frequency is adjusted by changing the cavity length of the coaxial tube cavity 7.

上記の同軸管空洞7の横長部7aと接続部7bとは、共に外導体11と内導体12を備え、外導体11と内導体12との間には高周波の電界が励起される。また、各接続部7bには、導電性材料からなるリング状の端板13、および導電性材料からなる略L字状のループ14が設けられている。そして、ループ14は、その一端側が内導体12に、他端側が端板13にそれぞれ接続されている。   Both the horizontally long portion 7 a and the connecting portion 7 b of the coaxial tube cavity 7 include an outer conductor 11 and an inner conductor 12, and a high-frequency electric field is excited between the outer conductor 11 and the inner conductor 12. Each connection portion 7b is provided with a ring-shaped end plate 13 made of a conductive material and a substantially L-shaped loop 14 made of a conductive material. The loop 14 has one end connected to the inner conductor 12 and the other end connected to the end plate 13.

なお、端板13は、図では端部にエッジがあるが、高周波の高電界がかかるので、実際にはエッジがなくなるように円弧状に形成されている。また、ループ14は、一端側が接続部7bを構成する内導体12の端面のどこかに接続されていればよく、また、ループ14の他端側は、端板13のいずれの位置に接続されていても良い。ループ14の接続位置は、結合係数の最大値をどのように設定するかによって任意に可変することができる。   The end plate 13 has an edge at the end in the figure, but since a high frequency high electric field is applied, the end plate 13 is actually formed in an arc shape so that the edge is eliminated. The loop 14 only needs to have one end connected to somewhere on the end face of the inner conductor 12 constituting the connecting portion 7 b, and the other end of the loop 14 is connected to any position of the end plate 13. May be. The connection position of the loop 14 can be arbitrarily changed depending on how the maximum value of the coupling coefficient is set.

また、この実施の形態1において、ループ14は棒状をしていて、その断面形状は四角形であるが、これに限らず円径であっても良い。さらに、図4に示すように、ループ14は内導体12から外導体11に向けて滑らかに末広がりとなる略扇形の形状とすることも可能である。このようにすれば、高周波電界が各空洞共振器2,3内に励起しているときのループ14を流れる電流が局部的に集中することによる抵抗の増大を防止することができ、電流損失が大きくなるのを回避して、大きなQ値を持つ同軸管空洞7を実現することができるので好ましい。   Further, in the first embodiment, the loop 14 has a rod shape and the cross-sectional shape is a quadrangle, but is not limited to this and may have a circular diameter. Furthermore, as shown in FIG. 4, the loop 14 may have a substantially sector shape that smoothly spreads from the inner conductor 12 toward the outer conductor 11. In this way, it is possible to prevent an increase in resistance due to local concentration of current flowing through the loop 14 when a high-frequency electric field is excited in each of the cavity resonators 2 and 3, and current loss is reduced. This is preferable because it is possible to avoid the increase and realize the coaxial tube cavity 7 having a large Q value.

また、この実施の形態1の各空洞共振器2,3には、ループ14により囲まれた位置にある平面Srが空洞共振器2,3内の磁束方向となす角度Φ(本例では、各空洞共振器2,3の空洞軸方向Zとなす角度)を計測する回転角度計測手段15が設けられている。   Further, in each of the cavity resonators 2 and 3 of the first embodiment, an angle Φ (in this example, each plane Sr that is surrounded by the loop 14 and the direction of the magnetic flux in the cavity resonators 2 and 3) A rotation angle measuring means 15 for measuring the angle formed between the cavity resonators 2 and 3 and the cavity axis direction Z is provided.

この回転角度計測手段15は、例えば同軸管空洞7の各接続部7bの外導体11の外周面に図示しない角度測定用の目盛りを形成する一方、前後の空洞共振器2,3の各周壁の一部に目盛りに対向させて突起部16を設け、この突起部16を基準として目盛りを目視で読み取ることで、接続部7bの回転角度Φを計測してループ14の角度調整が可能な構成となっている。なお、回転角度計測手段15としては、本例のような構成に限らず、角度検出センサによって角度検出を行うようなものであってもよい。   The rotation angle measuring means 15 forms, for example, a graduation for angle measurement (not shown) on the outer peripheral surface of the outer conductor 11 of each connection portion 7b of the coaxial tube cavity 7, while the peripheral walls of the front and rear cavity resonators 2, 3 are formed. Protrusion 16 is provided in part facing the scale, and the scale is visually read with reference to the protrusion 16 so that the rotation angle Φ of the connecting portion 7b can be measured to adjust the angle of the loop 14. It has become. The rotation angle measuring means 15 is not limited to the configuration as in this example, and may be one that performs angle detection by an angle detection sensor.

次に、上記のループ14の角度Φによって同軸管空洞7の前後の空洞共振器2,3との結合係数が変化し、また、端板13の占める割合によってQ値が変化し、さらに、同軸管空洞7の空洞長によって共振周波数が変化するので、これによって結合係数、Q値、共振周波数をそれぞれ調整するようにしている。このことについて、以下、さらに詳しく説明する。   Next, the coupling coefficient with the cavity resonators 2 and 3 before and after the coaxial tube cavity 7 changes according to the angle Φ of the loop 14, and the Q value changes depending on the ratio occupied by the end plate 13. Since the resonance frequency varies depending on the cavity length of the tube cavity 7, the coupling coefficient, the Q value, and the resonance frequency are adjusted accordingly. This will be described in more detail below.

図5はループ14の角度Φを変化させた場合の結合係数κの変化を示す特性図である。ここにループ14の角度Φは、前述のように、ループ14により囲まれた位置にある平面Srが空洞共振器2,3内の磁束方向となす角度Φ(本例では、各空洞共振器2,3の空洞軸方向Zとなす角度)のことである。そして、平面Srが各空洞共振器2,3内の磁束方向Zと直交している状態、すなわち、平面Srの法線方向が粒子線の加速方向Zと一致している場合を“0度”としている。その際、空洞共振器2,3はTEモードの高周波電磁界が加速空洞内に励起している。   FIG. 5 is a characteristic diagram showing changes in the coupling coefficient κ when the angle Φ of the loop 14 is changed. Here, as described above, the angle Φ of the loop 14 is the angle Φ between the plane Sr surrounded by the loop 14 and the magnetic flux direction in the cavity resonators 2 and 3 (in this example, each cavity resonator 2 , 3 is an angle formed with the cavity axial direction Z). The state in which the plane Sr is orthogonal to the magnetic flux direction Z in each of the cavity resonators 2 and 3, that is, the normal direction of the plane Sr coincides with the acceleration direction Z of the particle beam is “0 degree”. It is said. At that time, the cavity resonators 2 and 3 are excited by TE-mode high-frequency electromagnetic fields in the acceleration cavity.

図5から分かるように、ループ14が回転されてその平面Srを横切る磁束が増加すると、これに伴い結合係数の最大値が増大する。結合係数はループ14に鎖交する磁束量に依存するので、磁束の方向に対してループ14を回転させることで鎖交する磁束量を変化させ、これにより結合係数を調整することができる。その際、回転角度計測手段15を利用してループ14の回転角度Φを計測することにより、結合係数の調整度合いを容易に判断することができる。   As can be seen from FIG. 5, when the loop 14 is rotated and the magnetic flux crossing the plane Sr is increased, the maximum value of the coupling coefficient is increased accordingly. Since the coupling coefficient depends on the amount of magnetic flux interlinked with the loop 14, the amount of magnetic flux interlinked can be changed by rotating the loop 14 with respect to the direction of the magnetic flux, thereby adjusting the coupling coefficient. At that time, the degree of adjustment of the coupling coefficient can be easily determined by measuring the rotation angle Φ of the loop 14 using the rotation angle measuring means 15.

なお、結合係数は、概0.5%から3%程度が望ましい。結合係数が小さいと、空洞共振器2,3間の伝播速度が遅くなり、高周波伝送管6に大きな電圧が立ち放電する可能性がある。また、逆に結合係数が大きすぎると3つの空洞共振器2,3,7全体で見たQ値が下がってしまうので、高周波電源5の必要パワーが大きくなる。また、結合係数を調整するための回転角度Φの調整代は、+/−両方にとるので、回転角度Φの初期設定値は、結合係数の最大値近傍に対応した角度ではなく、それよりも小さな結合係数に対応した角度にしておく。例えば、図5のκa、Φaが初期設定値の例である。   The coupling coefficient is preferably about 0.5% to 3%. If the coupling coefficient is small, the propagation speed between the cavity resonators 2 and 3 is slow, and a large voltage may be discharged in the high-frequency transmission tube 6. On the other hand, if the coupling coefficient is too large, the Q value seen by the three cavity resonators 2, 3, 7 as a whole is lowered, so that the required power of the high-frequency power source 5 is increased. Further, since the adjustment margin of the rotation angle Φ for adjusting the coupling coefficient is both +/−, the initial setting value of the rotation angle Φ is not an angle corresponding to the vicinity of the maximum value of the coupling coefficient, but more than that. An angle corresponding to a small coupling coefficient is set. For example, κa and Φa in FIG. 5 are examples of initial setting values.

このように、この実施の形態1において、前後の空洞共振器2,3を結合する同軸管空洞7は非常に簡単な構成であり、かつ、その同軸管空洞7の各接続部7bの先端にループ14をつけそのループ14を回転することで容易に各空洞共振器2,3との結合係数を独立に調整することができる。よって、個々の空洞共振器2,3が異なるパラメータを持つ場合でも容易に結合係数を調整することができる。そして、結合係数を調整することにより、個々の空洞共振器2,3の加速電界強度の調整を容易に実現することができる。   As described above, in the first embodiment, the coaxial tube cavity 7 that couples the front and rear cavity resonators 2 and 3 has a very simple configuration, and at the tip of each connection portion 7 b of the coaxial tube cavity 7. By attaching the loop 14 and rotating the loop 14, the coupling coefficient with each of the cavity resonators 2 and 3 can be easily adjusted independently. Therefore, even when the individual cavity resonators 2 and 3 have different parameters, the coupling coefficient can be easily adjusted. Then, by adjusting the coupling coefficient, the adjustment of the acceleration electric field strength of each of the cavity resonators 2 and 3 can be easily realized.

図6は、同軸管空洞7の両端の各接続部7bに設けられたリング状の端板13が同軸管空洞7の端面に占める割合を変化させた場合のQ値の変化を示す特性図である。ここに、符合rは内導体12の内径、Rは外導体11の内径、aは端板13の内周壁から外導体11の内周壁までの距離である。   FIG. 6 is a characteristic diagram showing changes in the Q value when the ratio of the ring-shaped end plates 13 provided at the connection portions 7 b at both ends of the coaxial tube cavity 7 to the end surface of the coaxial tube cavity 7 is changed. is there. Here, the symbol r is the inner diameter of the inner conductor 12, R is the inner diameter of the outer conductor 11, and a is the distance from the inner peripheral wall of the end plate 13 to the inner peripheral wall of the outer conductor 11.

図6から分かるように、端板13の占める割合を大きくすると、これに伴ってQ値も増加する。したがって、同軸管空洞7の各接続部7bの端部にリング状の端板13を設けてその面積割合を調整することにより、同軸管空洞7のQ値を調整することができる。例えば、空洞共振器2,3の要求特性に応じて、Q値が数100から数1000程度の値を持つように調整される。   As can be seen from FIG. 6, when the proportion of the end plate 13 is increased, the Q value is increased accordingly. Therefore, the Q value of the coaxial tube cavity 7 can be adjusted by providing a ring-shaped end plate 13 at the end of each connection portion 7b of the coaxial tube cavity 7 and adjusting the area ratio. For example, according to the required characteristics of the cavity resonators 2 and 3, the Q value is adjusted to have a value of about several hundred to several thousand.

次に、同軸管空洞7の長さと共振周波数、およびそれに伴う前後の空洞共振器2,3の加速位相の関係について説明する。   Next, the relationship between the length of the coaxial tube cavity 7 and the resonance frequency, and the accompanying acceleration phases of the front and rear cavity resonators 2 and 3 will be described.

複数の空洞共振器2,3が存在する場合には、各々の加速位相と加速電界強度を調整する必要がある。そのため、従来技術では、背景技術の欄で既に説明したように、各々の空洞共振器毎に高周波電源5を接続し、個々の高周波電源5で高周波電界の強度と、高周波電源5間の位相を調整することで実現していた。   When there are a plurality of cavity resonators 2 and 3, it is necessary to adjust the acceleration phase and the acceleration electric field strength. Therefore, in the prior art, as already described in the background art section, the high frequency power source 5 is connected to each cavity resonator, and the strength of the high frequency electric field and the phase between the high frequency power sources 5 are determined by the individual high frequency power sources 5. It was realized by adjusting.

これに対して、この実施の形態1では、同軸管空洞7の軸方向長さと、ループ14の角度とを変化させることにより、前後の空洞共振器2,3と同軸管空洞7の共振周波数を調整し、これによって加速位相が自動的に所期の値にロックされるようにしたものである。   On the other hand, in the first embodiment, by changing the axial length of the coaxial tube cavity 7 and the angle of the loop 14, the resonance frequencies of the front and rear cavity resonators 2 and 3 and the coaxial tube cavity 7 are changed. Adjustment is made so that the acceleration phase is automatically locked to the desired value.

すなわち、この実施の形態1において、複数の空洞共振器2,3と同軸管空洞7とは、その共振周波数が略同一であるが、同軸管空洞7の軸方向の長さは、共振波長の(1/2)・N倍(Nは自然数)でないように設定されている。   That is, in the first embodiment, the plurality of cavity resonators 2 and 3 and the coaxial tube cavity 7 have substantially the same resonance frequency, but the axial length of the coaxial tube cavity 7 is equal to the resonance wavelength. It is set so that it is not (1/2) · N times (N is a natural number).

同軸管空洞7の軸方向の長さを前後の空洞共振器2,3の共振波長λの(1/2)・N倍(Nは自然数)に設定して、前後の空洞共振器2,3間にループ14を接続した場合、インダクタンス成分が空洞端部に生じるので、共振周波数がずれる。これを補正するためには、通常、同軸管空洞7の中にインダクタンスやキャパシタンスを変化させるチューナを設けるような工夫をするが、この実施の形態1では、構成を簡素化するために、同軸管空洞7の空洞長が共振波長の(1/2)・N倍(Nは自然数)ではないようにし、その長さを調整することで、結果的にループ14を接続した場合のインダクタンス等の変化に伴う共振周波数のずれを補正し、同軸管空洞7が空洞共振器と略同じ共振周波数になるようにしている。   The axial length of the coaxial tube cavity 7 is set to (1/2) · N times (N is a natural number) the resonance wavelength λ of the front and rear cavity resonators 2 and 3, and the front and rear cavity resonators 2 and 3 are set. When the loop 14 is connected between them, an inductance component is generated at the end of the cavity, so that the resonance frequency is shifted. In order to correct this, usually, a contrivance is provided such that a tuner for changing the inductance and capacitance is provided in the coaxial tube cavity 7, but in the first embodiment, the coaxial tube is simplified in order to simplify the configuration. By changing the length of the cavity 7 so that the cavity length is not (1/2) · N times (N is a natural number) of the resonance wavelength, the change in inductance or the like when the loop 14 is connected as a result. Therefore, the coaxial tube cavity 7 has a resonance frequency substantially the same as that of the cavity resonator.

図7に同軸管空洞7の共振周波数の調整方法の具体例を示す。
前段の空洞共振器2の出口から後段の空洞共振器3の入口までの距離Dは、各空洞共振器2,3の加速位相から決まる(この実施の形態1の場合には、荷電粒子が高周波電界の位相がπ+2nπ(nは整数)の間に進む長さとなる)ので、同軸管空洞7の横長部7aにおける水平方向の長さL1変更することはできない。そこで、この実施の形態1では、同軸管空洞7の各空洞共振器2,3内の表面と直交する軸方向の長さL2を調整するようにしている。
FIG. 7 shows a specific example of a method for adjusting the resonance frequency of the coaxial tube cavity 7.
The distance D from the exit of the front cavity resonator 2 to the entrance of the rear cavity resonator 3 is determined by the acceleration phase of each of the cavity resonators 2 and 3 (in the case of the first embodiment, charged particles are high frequency). Since the phase of the electric field advances during π + 2nπ (where n is an integer), the horizontal length L1 of the horizontally long portion 7a of the coaxial waveguide cavity 7 cannot be changed. Therefore, in the first embodiment, the axial length L2 orthogonal to the surface in each of the cavity resonators 2 and 3 of the coaxial tube cavity 7 is adjusted.

次に、本発明の物理的仕組みに関してさらに説明する。
複数の空洞共振器が電磁気的に結合している場合には、各々の空洞共振器が結合した特性を示すようになる。この実施の形態1の場合には、前段の空洞共振器2、後段の空洞共振器3、および同軸管空洞7を互いに電磁気的に結合させる。その時、空洞共振器2,3の基本モードの加速周波数(共振周波数)と同軸管空洞7の最低次数の共振周波数は各々独立に存在する共振周波数からずれ、ある3種類の共振周波数となる。具体的には、0モード、π/2モード、πモードの3種類である。この内、π/2モードの共振周波数の場合、前段の空洞共振器2と後段の空洞共振器3との間の加速位相がちょうどπだけずれ、かつ、同軸管空洞7の加速電界がほぼ“0”になる。
Next, the physical mechanism of the present invention will be further described.
When a plurality of cavity resonators are electromagnetically coupled, each cavity resonator exhibits coupled characteristics. In the case of the first embodiment, the front-stage cavity resonator 2, the rear-stage cavity resonator 3, and the coaxial tube cavity 7 are electromagnetically coupled to each other. At that time, the acceleration frequency (resonance frequency) of the fundamental mode of the cavity resonators 2 and 3 and the resonance frequency of the lowest order of the coaxial tube cavity 7 deviate from the resonance frequencies that exist independently, and become three kinds of resonance frequencies. Specifically, there are three types: 0 mode, π / 2 mode, and π mode. Of these, in the case of the resonance frequency of π / 2 mode, the acceleration phase between the front cavity resonator 2 and the rear cavity resonator 3 is shifted by exactly π, and the acceleration electric field of the coaxial tube cavity 7 is almost “ 0 ”.

また、前段の空洞共振器2と同軸管空洞7の結合係数をK1、後段の空洞共振器3と同軸管空洞7の結合係数をK2とすると、前段の空洞共振器2の加速電界E1と後段の空洞共振器3の加速電界E2の比E2/E1は、E2/E1=√(K1/K2)となる。この加速位相のロック現象(加速位相がちょうどπだけずれる現象をロック現象と称する)は、ビームローディングがある場合でも変化しない。よって、結合係数K1とK2が一定の場合には、空洞への投入パワーを上げていけば、加速位相と加速電界の双方が所定の値となり、制御なしに複数の空洞共振器2,3を用いて安定加速を実現することができる。   Further, when the coupling coefficient between the front cavity resonator 2 and the coaxial tube cavity 7 is K1, and the coupling coefficient between the rear cavity resonator 3 and the coaxial tube cavity 7 is K2, the acceleration electric field E1 of the front cavity resonator 2 and the subsequent stage The ratio E2 / E1 of the acceleration electric field E2 of the cavity resonator 3 becomes E2 / E1 = √ (K1 / K2). This acceleration phase lock phenomenon (a phenomenon in which the acceleration phase is shifted by exactly π is referred to as a lock phenomenon) does not change even when there is beam loading. Therefore, when the coupling coefficients K1 and K2 are constant, if the input power to the cavity is increased, both the acceleration phase and the acceleration electric field become predetermined values, and the plurality of cavity resonators 2 and 3 can be connected without control. Can be used to achieve stable acceleration.

図8および図9は、前後2つの空洞共振器2,3を用いて高周波加速電界を励起させる場合の構成例である。なお、図9(a)は図8の前段の空洞共振器2を空洞内部側から見た平面図、図9(b)は図8の後段の空洞共振器3を空洞内部側から見た平面図である。   FIGS. 8 and 9 are configuration examples in the case where a high-frequency acceleration electric field is excited using two front and rear cavity resonators 2 and 3. 9A is a plan view of the front cavity resonator 2 of FIG. 8 as viewed from the inside of the cavity, and FIG. 9B is a plan view of the rear cavity resonator 3 of FIG. 8 as viewed from the inside of the cavity. FIG.

ここに、符合Zaは前段の空洞共振器2の高周波磁場の方向、Zbは後段の空洞共振器3の高周波磁場の方向、Zcは荷電粒子が進む方向である。また、符合Iaは同軸管空洞7の前段側に設けられたループ14に流れる電流の方向、符合Ibは同軸管空洞7の後段側に設けられたループ14に流れる電流の方向である。   Here, the symbol Za is the direction of the high frequency magnetic field of the cavity resonator 2 in the previous stage, Zb is the direction of the high frequency magnetic field of the cavity resonator 3 in the subsequent stage, and Zc is the direction in which the charged particles travel. Symbol Ia is the direction of current flowing in the loop 14 provided on the front side of the coaxial tube cavity 7, and symbol Ib is the direction of current flowing in the loop 14 provided on the rear side of the coaxial tube cavity 7.

この実施の形態1では、前段の空洞共振器2の高周波磁場の方向Zaと、後段の空洞共振器3の高周波磁場の方向Zbとが逆方向で、同軸管空洞7の最低次数の高周波共振モードが(1/2)・N(ただし、Nは奇数)となっている場合である。このため、同軸管空洞7の前段側に設けられたループ14には、外導体11から内導体12に向けて電流Iaが流れ、同軸管空洞7の後段側に設けられたループ14には、内導体12から外導体11に向けて電流Ibが流れる。   In the first embodiment, the high-frequency magnetic field direction Za of the front-stage cavity resonator 2 and the high-frequency magnetic field direction Zb of the rear-stage cavity resonator 3 are opposite, and the lowest-order high-frequency resonance mode of the coaxial tube cavity 7 is used. Is (1/2) · N (where N is an odd number). For this reason, the current Ia flows from the outer conductor 11 toward the inner conductor 12 in the loop 14 provided on the front stage side of the coaxial pipe cavity 7, and the loop 14 provided on the rear stage side of the coaxial pipe cavity 7 A current Ib flows from the inner conductor 12 toward the outer conductor 11.

このような構成にしておけば、前段の空洞共振器2と後段の空洞共振器3との位相が正確にπだけずれた高周波電界を励起することができ、かつ、荷電粒子ビームが各空洞共振器2,3の加速空洞内の高周波電界のパワーを自己の運動エネルギーに変えるビームローディングの際にも2つの空洞共振器2,3間の加速位相がずれることはない。但し、同軸管空洞7の空洞のQ値は100以上あることが必要である。   With such a configuration, it is possible to excite a high-frequency electric field in which the phases of the front cavity resonator 2 and the rear cavity resonator 3 are accurately shifted by π, and the charged particle beam can resonate with each cavity. The acceleration phase between the two cavity resonators 2 and 3 does not shift even during beam loading in which the power of the high-frequency electric field in the acceleration cavities of the resonators 2 and 3 is changed to its own kinetic energy. However, the Q value of the cavity of the coaxial tube cavity 7 needs to be 100 or more.

以上のように、この実施の形態1では、空洞共振器2,3間を同軸管空洞7で結合し、同軸管空洞7の両端部に外導体11と内導体12を接続するループ14を形成し、かつ、同軸管空洞7の空洞長が空洞共振器2,3の共振波長の(1/2)・N倍(Nは自然数)でないように設定しているので、複数の加速空洞共振器2,3が異なる特性を持つ場合でも、1台の高周波電源5から個々に異なる所定の加速電界を供給することができるとともに、複数の空洞共振器2,3間の加速位相の調整をすることが不要となる。このため、複数の空洞共振器2,3間の加速電圧を調整するための複雑な制御が不要となり、しかも、簡単な構成によって空洞共振器2,3間を電磁気的に結合することができる。   As described above, in the first embodiment, the cavity resonators 2 and 3 are coupled by the coaxial tube cavity 7, and the loop 14 that connects the outer conductor 11 and the inner conductor 12 is formed at both ends of the coaxial tube cavity 7. In addition, since the cavity length of the coaxial tube cavity 7 is set not to be (1/2) · N times the resonance wavelength of the cavity resonators 2 and 3 (N is a natural number), a plurality of acceleration cavity resonators Even when two and three have different characteristics, it is possible to supply different predetermined acceleration electric fields from one high-frequency power source 5 and to adjust the acceleration phase between the plurality of cavity resonators 2 and 3. Is no longer necessary. Therefore, complicated control for adjusting the acceleration voltage between the plurality of cavity resonators 2 and 3 is not required, and the cavity resonators 2 and 3 can be electromagnetically coupled with a simple configuration.

実施の形態2.
図10および図11は、前後2つの空洞共振器を用いて高周波加速電界を励起させる場合の構成例である。なお、図11(a)は図10の前段の空洞共振器を空洞内部側から見た平面図、図11(b)は図10の後段の空洞共振器を空洞内部側から見た平面図である。
Embodiment 2. FIG.
FIGS. 10 and 11 are configuration examples in the case where a high-frequency acceleration electric field is excited using two front and rear cavity resonators. 11A is a plan view of the front cavity resonator of FIG. 10 viewed from the inside of the cavity, and FIG. 11B is a plan view of the rear cavity resonator of FIG. 10 viewed from the inside of the cavity. is there.

ここに、符合Zaは前段の空洞共振器2の高周波磁場の方向、Zbは後段の空洞共振器3の高周波磁場の方向、Zcは荷電粒子が進む方向である。また、符合Iaは同軸管空洞7の前段側に設けられたループ14に流れる電流の方向、符合Ibは同軸管空洞7の後段側に設けられたループ14に流れる電流の方向である。   Here, the symbol Za is the direction of the high frequency magnetic field of the cavity resonator 2 in the previous stage, Zb is the direction of the high frequency magnetic field of the cavity resonator 3 in the subsequent stage, and Zc is the direction in which the charged particles travel. Symbol Ia is the direction of current flowing in the loop 14 provided on the front side of the coaxial tube cavity 7, and symbol Ib is the direction of current flowing in the loop 14 provided on the rear side of the coaxial tube cavity 7.

この実施の形態2では、前段の空洞共振器2の高周波磁場の方向Zaと、後段の空洞共振器3の高周波磁場の方向Zbとが同じ方向で、同軸管空洞7の最低次数の高周波共振モードが(1/2)・N(ただし、Nは偶数)となっている場合である。このため、同軸管空洞7の前段側と後段側に設けられた各ループ14には、外導体11から内導体12に向けてそれぞれ電流Ia,Ibが流れる。   In the second embodiment, the high-frequency magnetic field direction Za of the front-stage cavity resonator 2 and the high-frequency magnetic field direction Zb of the rear-stage cavity resonator 3 are the same, and the lowest-order high-frequency resonance mode of the coaxial tube cavity 7 is used. Is (1/2) · N (where N is an even number). Therefore, currents Ia and Ib flow from the outer conductor 11 toward the inner conductor 12 through the loops 14 provided on the front side and the rear side of the coaxial tube cavity 7, respectively.

このような構成にしておけば、前段の空洞共振器2と後段の空洞共振器3との加速位相が同じ高周波電界を立てることができ、かつ、ビームローディングがあっても2つの空洞共振器間の加速位相がずれることはない。
その他の作用、効果は、実施の形態1の場合と同様であるから、ここでは詳しい説明は省略する。
With such a configuration, it is possible to establish a high-frequency electric field in which the acceleration phases of the front cavity resonator 2 and the rear cavity resonator 3 are the same, and between the two cavity resonators even if there is beam loading. The acceleration phase is not shifted.
Since other operations and effects are the same as those in the first embodiment, detailed description thereof is omitted here.

実施の形態3.
上記の実施の形態1,2に記載した高周波加速器はHモード型加速器であり、このHモード型加速器においては、各空洞共振器2,3に生じる磁束は空洞軸方向に形成されるので、ループ14により囲まれた位置にある平面Srが空洞共振器2,3内の磁束方向Zと直交しているときを“0度”と定義している。
Embodiment 3 FIG.
The high-frequency accelerator described in the first and second embodiments is an H-mode accelerator, and in this H-mode accelerator, the magnetic flux generated in each of the cavity resonators 2 and 3 is formed in the direction of the cavity axis. When the plane Sr at the position surrounded by 14 is orthogonal to the magnetic flux direction Z in the cavity resonators 2 and 3, it is defined as “0 degree”.

これに対して、アルバレ型加速器の場合には、空洞共振器2,3の空洞軸周りを周回する方向に磁束が形成される。したがって、この構成の場合には、ループ14により囲まれた位置にある平面Srが各空洞共振器2,3内の磁束方向Zと一致している状態のとき、すなわち、平面Srの法線方向が粒子線の加速方向Zと直交している状態が、図5における回転角度Φが“0度”のときである。   On the other hand, in the case of the Alvare type accelerator, a magnetic flux is formed in a direction around the cavity axis of the cavity resonators 2 and 3. Therefore, in the case of this configuration, the plane Sr located at the position surrounded by the loop 14 is in a state where it coincides with the magnetic flux direction Z in each of the cavity resonators 2 and 3, that is, the normal direction of the plane Sr. Is perpendicular to the acceleration direction Z of the particle beam when the rotation angle Φ in FIG. 5 is “0 degree”.

このように、図5における回転角度Φにおいて、基準となる“0度”をどこにとるかは、高周波加速器の種類によって異なっており、いずれの場合についても上記の説明はそのまま成立し、実施の形態1,2で説明した事項は適用可能である。
その他の作用、効果は、実施の形態1,2の場合と同様であるから、ここでは詳しい説明は省略する。
As described above, where the reference “0 degree” is taken at the rotation angle Φ in FIG. 5 differs depending on the type of the high-frequency accelerator, and in any case, the above description is valid as it is, and the embodiment is described. The matters described in 1 and 2 are applicable.
Since other operations and effects are the same as those in the first and second embodiments, detailed description thereof is omitted here.

本発明は上記の実施の形態1〜3の構成に限定されるものではなく、その趣旨を逸脱しない範囲内において各種の変形を加えることができる。例えば、各実施の形態1,2では前後2段にわたって空洞共振器2,3を設けているが、さらに3段以上に空洞共振器を設けた高周波加速器についても本発明は適用可能である。   The present invention is not limited to the configurations of the first to third embodiments, and various modifications can be made without departing from the spirit of the present invention. For example, in each of the first and second embodiments, the cavity resonators 2 and 3 are provided in two stages before and after, but the present invention can also be applied to a high-frequency accelerator provided with cavity resonators in three or more stages.

本発明の実施の形態1における高周波加速器の構成図である。It is a block diagram of the high frequency accelerator in Embodiment 1 of this invention. 図1の符合Pで示す部分を拡大して示す断面図である。It is sectional drawing which expands and shows the part shown with the code | symbol P of FIG. 図2の部分を高周波加速空洞共振器の空洞内部側から見た平面図である。FIG. 3 is a plan view of the portion of FIG. 2 viewed from the inside of the cavity of the high-frequency accelerating cavity resonator. ループの変形例を示す平面図である。It is a top view which shows the modification of a loop. ループの角度Φを変化させた場合の結合係数κの変化を示す特性図である。FIG. 6 is a characteristic diagram showing a change in the coupling coefficient κ when the loop angle Φ is changed. 同軸管空洞の両端の各接続部に設けられたリング状の端板が同軸管空洞の端面に占める割合を変化させた場合のQ値の変化を示す特性図である。It is a characteristic view which shows the change of Q value when the ratio for which the ring-shaped end plate provided in each connection part of the both ends of a coaxial tube cavity occupies the end surface of a coaxial tube cavity is changed. 同軸管空洞の共振周波数の調整方法の具体例を示す説明図である。It is explanatory drawing which shows the specific example of the adjustment method of the resonant frequency of a coaxial pipe cavity. 前後2つの高周波加速空洞共振器を用いて高周波加速電界を励起させる場合の構成例を示す説明図である。It is explanatory drawing which shows the structural example in the case of exciting a high frequency acceleration electric field using two high frequency acceleration cavity resonators before and behind. 図8の同軸管空洞の各端部を高周波加速空洞共振器の空洞内部側から見た平面図である。It is the top view which looked at each edge part of the coaxial tube cavity of FIG. 8 from the cavity inside side of the high frequency acceleration cavity resonator. 実施の形態2において、前後2つの高周波加速空洞共振器を用いて高周波加速電界を励起させる場合の構成例を示す説明図である。In Embodiment 2, it is explanatory drawing which shows the structural example in the case of exciting a high frequency acceleration electric field using two front and back high frequency acceleration cavity resonators. 図10の同軸管空洞の各端部を高周波加速空洞共振器の空洞内部側から見た平面図である。It is the top view which looked at each edge part of the coaxial pipe | tube cavity of FIG. 10 from the cavity inside side of the high frequency acceleration cavity resonator.

符号の説明Explanation of symbols

2 高周波加速空洞共振器(空洞共振器)、7 同軸管空洞(高周波同軸伝送路)、
11 外導体、12 内導体、13 端板、14 ループ、15 回転角度計測手段。
2 High-frequency accelerating cavity resonator (cavity resonator), 7 Coaxial tube cavity (high-frequency coaxial transmission line),
11 outer conductor, 12 inner conductor, 13 end plate, 14 loop, 15 rotation angle measuring means.

Claims (4)

複数の高周波加速空洞共振器を有する高周波加速器において、
上記各高周波加速空洞共振器は、外導体と内導体で構成された高周波同軸伝送路で相互に結合され、上記高周波同軸伝送路は、その両端部に上記外導体と内導体とを接続するループが形成され、上記複数の高周波加速空洞共振器と上記高周波同軸伝送路とは、その共振周波数が略同一で、かつ、上記高周波同軸伝送路の空洞長は、共振波長の(1/2)・N倍(Nは自然数)とは異なる長さに設定されていることを特徴とする高周波加速器。
In a high-frequency accelerator having a plurality of high-frequency accelerating cavities,
Each of the high-frequency accelerating cavity resonators is coupled to each other by a high-frequency coaxial transmission line composed of an outer conductor and an inner conductor, and the high-frequency coaxial transmission line is a loop that connects the outer conductor and the inner conductor to both ends thereof. The plurality of high-frequency accelerating cavity resonators and the high-frequency coaxial transmission line have substantially the same resonance frequency, and the cavity length of the high-frequency coaxial transmission line is (1/2) · A high-frequency accelerator characterized by being set to a length different from N times (N is a natural number).
上記ループは、平面上に形成されたものであり、上記ループで囲まれた上記平面と上記高周波加速空洞共振器内の磁束方向とのなす角度、および高周波同軸伝送路の軸方向長さの少なくとも一方が可変に構成されたものであることを特徴とする請求項1記載の高周波加速器。 The loop is formed on a plane, and at least an angle formed by the plane surrounded by the loop and a magnetic flux direction in the high-frequency accelerating cavity resonator and an axial length of the high-frequency coaxial transmission line The high-frequency accelerator according to claim 1, wherein one of the two is variably configured. 上記ループにより囲まれた上記平面と上記高周波加速空洞共振器内の磁束方向とのなす角度を計測する回転角度計測手段が設けられていることを特徴とする請求項1または請求項2に記載の高周波加速器。 The rotation angle measuring means for measuring the angle formed by the plane surrounded by the loop and the magnetic flux direction in the high-frequency accelerating cavity resonator is provided. High frequency accelerator. 上記高周波同軸伝送路の各端部には、リングの内径が内導体の外径より大きいリング状の端板が設けられていることを特徴とする請求項1ないし請求項3のいずれか1項に記載の高周波加速器。 4. A ring-shaped end plate having an inner diameter of the ring larger than an outer diameter of the inner conductor is provided at each end of the high-frequency coaxial transmission line. The high frequency accelerator described in 1.
JP2008190542A 2008-07-24 2008-07-24 High frequency accelerator Active JP4719255B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008190542A JP4719255B2 (en) 2008-07-24 2008-07-24 High frequency accelerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008190542A JP4719255B2 (en) 2008-07-24 2008-07-24 High frequency accelerator

Publications (2)

Publication Number Publication Date
JP2010027529A JP2010027529A (en) 2010-02-04
JP4719255B2 true JP4719255B2 (en) 2011-07-06

Family

ID=41733148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008190542A Active JP4719255B2 (en) 2008-07-24 2008-07-24 High frequency accelerator

Country Status (1)

Country Link
JP (1) JP4719255B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9402298B2 (en) 2013-02-28 2016-07-26 Mitsubishi Electric Corporation Method of manufacturing radio frequency accelerator, radio frequency accelerator, and circular accelerator system
WO2016035151A1 (en) 2014-09-03 2016-03-10 三菱電機株式会社 Transportable linear accelerator system and transportable neutron source equipped therewith

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63224196A (en) * 1987-03-13 1988-09-19 石川島播磨重工業株式会社 Radio frequency acceleration cavity
JPH01213999A (en) * 1988-02-23 1989-08-28 Toshiba Corp High frequency accelerating cavity
JPH0311600A (en) * 1989-06-08 1991-01-18 Mitsubishi Electric Corp Automatic frequency tuning circuit of high-frequency accelerator cavity
JPH03115369A (en) * 1989-09-28 1991-05-16 Showa Electric Wire & Cable Co Ltd Heat-resistant coating material
JPH0476300A (en) * 1990-07-16 1992-03-11 Toshiba Corp Pump system
JPH08172000A (en) * 1994-12-19 1996-07-02 Toshiba Corp High-frequency heating device for accelerator
JP2001060500A (en) * 1999-08-23 2001-03-06 Mitsubishi Heavy Ind Ltd High-frequency cavity device and high-frequency accelerator
US6366021B1 (en) * 2000-01-06 2002-04-02 Varian Medical Systems, Inc. Standing wave particle beam accelerator with switchable beam energy

Also Published As

Publication number Publication date
JP2010027529A (en) 2010-02-04

Similar Documents

Publication Publication Date Title
US7898193B2 (en) Slot resonance coupled standing wave linear particle accelerator
Alesini Power coupling
US7276708B2 (en) Diagnostic resonant cavity for a charged particle accelerator
Wei et al. Design and optimization of a longitudinal feedback kicker cavity for the HLS-storage ring
Gerigk Cavity types
Kutsaev et al. Design of hybrid electron linac with standing wave buncher and traveling wave structure
JP4719255B2 (en) High frequency accelerator
Ekdahl et al. Long-pulse beam stability experiments on the DARHT-II linear induction accelerator
Zhang et al. Eigenvalue equations and numerical analysis of a coaxial cavity with misaligned inner rod
Ghasemi et al. Design, construction and tuning of S-band coupler for electron linear accelerator of institute for research in fundamental sciences (IPM E-linac)
Schaer et al. rf traveling-wave electron gun for photoinjectors
EP2753155A2 (en) Compact self-resonant x-ray source
Shemelin et al. Low-kick Twin-coaxial and Waveguide-coaxial Couplers for ERL
Potter et al. The Klynac: An integrated klystron and linear accelerator
Shaker et al. Sub-harmonic buncher design for the CLIC drive beam injector
Jialin et al. Design considerations of the Beijing free electron laser project
Ambattu et al. Coupler induced monopole component and its minimization in deflecting cavities
Rao et al. Design, development, and acceleration trials of radio-frequency quadrupole
Enomoto Upgrade to the 8-GeV Electron Linac for KEKB
Sekutowicz TESLA superconducting accelerating structures
Bogomyagkov et al. Weak focusing low emittance storage ring with large 6d dynamic aperture based on canted cosine theta magnet technology
De Silva Superconducting cavities of interesting shapes (non-elliptical cavities)
Degiovanni Accelerating Structures
US3418463A (en) Atomic beam tube having multipole state selecting magnet means with shaped poles to inhibit majorana transitions
JPH07288200A (en) High frequency undulator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110329

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110401

R150 Certificate of patent or registration of utility model

Ref document number: 4719255

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250